Skip to content

Commit bea2476

Browse files
committed
Fix typo
1 parent 899c2c4 commit bea2476

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

ch08/deep_convnet.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -27,17 +27,17 @@ def __init__(self, input_dim=(1, 28, 28),
2727
# 重みの初期化===========
2828
# 各層のニューロンひとつあたりが、前層のニューロンといくつのつながりがあるか(TODO:自動で計算する)
2929
pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*4*4, hidden_size])
30-
wight_init_scales = np.sqrt(2.0 / pre_node_nums) # ReLUを使う場合に推奨される初期値
30+
weight_init_scales = np.sqrt(2.0 / pre_node_nums) # ReLUを使う場合に推奨される初期値
3131

3232
self.params = {}
3333
pre_channel_num = input_dim[0]
3434
for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):
35-
self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])
35+
self.params['W' + str(idx+1)] = weight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])
3636
self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])
3737
pre_channel_num = conv_param['filter_num']
38-
self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size)
38+
self.params['W7'] = weight_init_scales[6] * np.random.randn(64*4*4, hidden_size)
3939
self.params['b7'] = np.zeros(hidden_size)
40-
self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)
40+
self.params['W8'] = weight_init_scales[7] * np.random.randn(hidden_size, output_size)
4141
self.params['b8'] = np.zeros(output_size)
4242

4343
# レイヤの生成===========

common/trainer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ def __init__(self, network, x_train, t_train, x_test, t_test,
2121
self.batch_size = mini_batch_size
2222
self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch
2323

24-
# optimzer
24+
# optimizer
2525
optimizer_class_dict = {'sgd':SGD, 'momentum':Momentum, 'nesterov':Nesterov,
2626
'adagrad':AdaGrad, 'rmsprpo':RMSprop, 'adam':Adam}
2727
self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)

0 commit comments

Comments
 (0)