|
22 | 22 | },
|
23 | 23 | {
|
24 | 24 | "cell_type": "code",
|
25 |
| - "execution_count": 1, |
| 25 | + "execution_count": null, |
26 | 26 | "metadata": {
|
27 | 27 | "collapsed": false
|
28 | 28 | },
|
29 |
| - "outputs": [ |
30 |
| - { |
31 |
| - "name": "stdout", |
32 |
| - "output_type": "stream", |
33 |
| - "text": [ |
34 |
| - "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", |
35 |
| - "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", |
36 |
| - "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", |
37 |
| - "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n" |
38 |
| - ] |
39 |
| - } |
40 |
| - ], |
| 29 | + "outputs": [], |
41 | 30 | "source": [
|
42 | 31 | "from tensorflow.examples.tutorials.mnist import input_data\n",
|
43 | 32 | "\n",
|
|
59 | 48 | },
|
60 | 49 | {
|
61 | 50 | "cell_type": "code",
|
62 |
| - "execution_count": 2, |
| 51 | + "execution_count": null, |
63 | 52 | "metadata": {
|
64 | 53 | "collapsed": true
|
65 | 54 | },
|
|
109 | 98 | },
|
110 | 99 | {
|
111 | 100 | "cell_type": "code",
|
112 |
| - "execution_count": 3, |
| 101 | + "execution_count": null, |
113 | 102 | "metadata": {
|
114 | 103 | "collapsed": true
|
115 | 104 | },
|
|
181 | 170 | },
|
182 | 171 | {
|
183 | 172 | "cell_type": "code",
|
184 |
| - "execution_count": 4, |
| 173 | + "execution_count": null, |
185 | 174 | "metadata": {
|
186 | 175 | "collapsed": false
|
187 | 176 | },
|
|
204 | 193 | },
|
205 | 194 | {
|
206 | 195 | "cell_type": "code",
|
207 |
| - "execution_count": 5, |
| 196 | + "execution_count": null, |
208 | 197 | "metadata": {
|
209 | 198 | "collapsed": false
|
210 | 199 | },
|
|
232 | 221 | },
|
233 | 222 | {
|
234 | 223 | "cell_type": "code",
|
235 |
| - "execution_count": 6, |
| 224 | + "execution_count": null, |
236 | 225 | "metadata": {
|
237 | 226 | "collapsed": true
|
238 | 227 | },
|
|
266 | 255 | },
|
267 | 256 | {
|
268 | 257 | "cell_type": "code",
|
269 |
| - "execution_count": 7, |
| 258 | + "execution_count": null, |
270 | 259 | "metadata": {
|
271 | 260 | "collapsed": false
|
272 | 261 | },
|
273 |
| - "outputs": [ |
274 |
| - { |
275 |
| - "name": "stdout", |
276 |
| - "output_type": "stream", |
277 |
| - "text": [ |
278 |
| - "Training...\n", |
279 |
| - "\n", |
280 |
| - "EPOCH 1 ...\n", |
281 |
| - "Validation Loss = 35.403\n", |
282 |
| - "Validation Accuracy = 0.878\n", |
283 |
| - "\n", |
284 |
| - "EPOCH 2 ...\n", |
285 |
| - "Validation Loss = 16.436\n", |
286 |
| - "Validation Accuracy = 0.920\n", |
287 |
| - "\n", |
288 |
| - "EPOCH 3 ...\n", |
289 |
| - "Validation Loss = 9.704\n", |
290 |
| - "Validation Accuracy = 0.939\n", |
291 |
| - "\n", |
292 |
| - "EPOCH 4 ...\n", |
293 |
| - "Validation Loss = 6.490\n", |
294 |
| - "Validation Accuracy = 0.949\n", |
295 |
| - "\n", |
296 |
| - "EPOCH 5 ...\n", |
297 |
| - "Validation Loss = 4.432\n", |
298 |
| - "Validation Accuracy = 0.958\n", |
299 |
| - "\n", |
300 |
| - "EPOCH 6 ...\n", |
301 |
| - "Validation Loss = 3.353\n", |
302 |
| - "Validation Accuracy = 0.962\n", |
303 |
| - "\n", |
304 |
| - "EPOCH 7 ...\n", |
305 |
| - "Validation Loss = 2.444\n", |
306 |
| - "Validation Accuracy = 0.968\n", |
307 |
| - "\n", |
308 |
| - "EPOCH 8 ...\n", |
309 |
| - "Validation Loss = 1.756\n", |
310 |
| - "Validation Accuracy = 0.973\n", |
311 |
| - "\n", |
312 |
| - "EPOCH 9 ...\n", |
313 |
| - "Validation Loss = 1.754\n", |
314 |
| - "Validation Accuracy = 0.971\n", |
315 |
| - "\n", |
316 |
| - "EPOCH 10 ...\n", |
317 |
| - "Validation Loss = 1.169\n", |
318 |
| - "Validation Accuracy = 0.978\n", |
319 |
| - "\n", |
320 |
| - "Model saved\n" |
321 |
| - ] |
322 |
| - } |
323 |
| - ], |
| 262 | + "outputs": [], |
324 | 263 | "source": [
|
325 | 264 | "with tf.Session() as sess:\n",
|
326 | 265 | " sess.run(tf.global_variables_initializer())\n",
|
|
364 | 303 | },
|
365 | 304 | {
|
366 | 305 | "cell_type": "code",
|
367 |
| - "execution_count": 8, |
| 306 | + "execution_count": null, |
368 | 307 | "metadata": {
|
369 | 308 | "collapsed": false
|
370 | 309 | },
|
371 |
| - "outputs": [ |
372 |
| - { |
373 |
| - "name": "stdout", |
374 |
| - "output_type": "stream", |
375 |
| - "text": [ |
376 |
| - "Test Loss = 3.046\n", |
377 |
| - "Test Accuracy = 0.962\n" |
378 |
| - ] |
379 |
| - } |
380 |
| - ], |
| 310 | + "outputs": [], |
381 | 311 | "source": [
|
382 | 312 | "with tf.Session() as sess:\n",
|
383 | 313 | " loader = tf.train.import_meta_graph('lenet.meta')\n",
|
|
0 commit comments