|
22 | 22 | },
|
23 | 23 | {
|
24 | 24 | "cell_type": "code",
|
25 |
| - "execution_count": null, |
| 25 | + "execution_count": 1, |
26 | 26 | "metadata": {
|
27 | 27 | "collapsed": false
|
28 | 28 | },
|
29 |
| - "outputs": [], |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "name": "stdout", |
| 32 | + "output_type": "stream", |
| 33 | + "text": [ |
| 34 | + "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", |
| 35 | + "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", |
| 36 | + "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", |
| 37 | + "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n", |
| 38 | + "\n", |
| 39 | + "Image Shape: (784,)\n", |
| 40 | + "\n", |
| 41 | + "Training Set: 55000 samples\n", |
| 42 | + "Validation Set: 5000 samples\n", |
| 43 | + "Test Set: 10000 samples\n" |
| 44 | + ] |
| 45 | + } |
| 46 | + ], |
30 | 47 | "source": [
|
31 | 48 | "from tensorflow.examples.tutorials.mnist import input_data\n",
|
32 | 49 | "\n",
|
|
65 | 82 | },
|
66 | 83 | {
|
67 | 84 | "cell_type": "code",
|
68 |
| - "execution_count": null, |
| 85 | + "execution_count": 2, |
69 | 86 | "metadata": {
|
70 | 87 | "collapsed": false
|
71 | 88 | },
|
72 |
| - "outputs": [], |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "name": "stdout", |
| 92 | + "output_type": "stream", |
| 93 | + "text": [ |
| 94 | + "Updated Image Shape: (32, 32, 1)\n" |
| 95 | + ] |
| 96 | + } |
| 97 | + ], |
73 | 98 | "source": [
|
74 | 99 | "import numpy as np\n",
|
75 | 100 | "\n",
|
|
99 | 124 | },
|
100 | 125 | {
|
101 | 126 | "cell_type": "code",
|
102 |
| - "execution_count": null, |
| 127 | + "execution_count": 3, |
103 | 128 | "metadata": {
|
104 | 129 | "collapsed": false
|
105 | 130 | },
|
106 |
| - "outputs": [], |
| 131 | + "outputs": [ |
| 132 | + { |
| 133 | + "name": "stdout", |
| 134 | + "output_type": "stream", |
| 135 | + "text": [ |
| 136 | + "8\n" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "data": { |
| 141 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH0AAAB6CAYAAACShVydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF35JREFUeJztnWlwI9ldwH9/3ZZk2ZZs2R5bHsujsb2zu2bOJQkbshAq\ngVAEKKglECpAvpAiUCEfSIoisCFcRShSIUCqoIAAFaAqHKmQyjFJCFf2yFKZjWftOTK2x2NbtmxL\nPnRf1uNDq3s0Hntm5JHG8kq/Kn3o7tf9nvrf/d7//Y/XopSiRXNhOuwGtHj0tITehLSE3oS0hN6E\ntITehLSE3oS0hN6EtITehLSE3oS0hN6E1E3oIvJeEbkpIhkReUlELtSrrhbVURehi8hPAX8MPAec\nASaBiyLSXY/6WlSH1MPhIiIvAd9USr2vvC3AIvAJpdRHa15hi6qw1PqCImIFzgG/r+9TSikR+Rrw\n+j3K+4C3AvNAttbteQ3jAIaBi0qpWDUn1lzoQDdgBlZ37V8FxvYo/1bgH+rQjmbhncA/VnPCo9Te\nBdhrLJl/hG14LTJf7Qn1EHoU2AF6d+33c/fbD60u/WGp+v7VXOhKqQLwLeDN+r6yIvdm4IVa19ei\neuoxpgN8DPg7EfkW8DLwfsAJ/G2d6mtRBXURulLqM+U5+UfQuvlvA29VSq3Xo74W1VGXeXpVDRA5\nizYctDgY55RSl6o5oWV7b0JqLnQReU5ESrt+V2pdT4uDUy9FbgpNW5fydrFO9bQ4APUSerGltDUu\n9RrTT4pIWERmReTTIhKoUz0tDkA9hP4S8PNoNvX3AEHgf0TEVYe6WhyAmnfvSqmLFZtTIvIycAt4\nFvhUretrUT11n7IppbaB7wChetfV4sGolyJnICJu4ATw9/Wu6yCYzWasVit2u52Ojg48Hg9tbW04\nHA4sFgu5XI5cLsfOzg6lUolKY1Y+nyefz5PJZEilUiSTSQ7b2PUg1COI4o+Az6N16QPAb6NN2f6p\n1nXVAqvVisfjwev1EgqFCIVC9Pf3093djdPpJBaLEYvFyOVyFItFdnZ2jHPj8Tibm5usra2xuLhI\nJpOhWGz82Wk93vRBNKe+D1gHvgG8rtrojkeFw+HA5/MxNDTExMQE586dY2RkhIGBATweDysrKywv\nL5NOp8nn83cIPRqNsrq6ysLCAiJCIpEgnU4bPUOjUg9F7qdrfc160tnZydjYGKdPn2ZsbIxgMEhP\nTw9tbW2YzWba29vp7++nUCgYXbxOb28vQ0NDHD9+nN7eXo4dO8bs7Cxzc3NEo9FD/Ff3pu5jeqPT\n0dHB2NgYr3vd6xgcHGRgYACn04nZbEZE8Hg8uN1ulFJ3jdelUomdnR3i8TgDAwMMDQ3R1tbGxsZG\nQwu9au1dRN4oIv9eNr6UROTte5T5iIgsi0haRL4qIg2nuYsIJpMJm82G0+mkvb0dp9NpKHCgCbVY\nLJLP5ymVSpjNZmw2GyLCzs4OxWKRYrGIyWSip6eH8fFxxsfHGR0dZWhoiI6OjkP+l3tzkDfdheYf\n/xvgX3cfFJEPAr8M/BxwE/hdtJj3x5RS+Ydoa00xmUyYzWbMZjMm053PvlLKeIszmQzpdBqbzYbL\npdmXstmsMXbncjmUUjgcDoaHh1lfXycajVIoFJibmyMejzecRl+10JVSXwa+DEYY1G7eB/yOUurz\n5TLvQouN+zHgMwdvau0QERwOB06nk87OTlwuF3a7HbPZTKlUIp1Ok0wmSSQSbG9vE4/HcbvddHd3\n43K5SKfTZDIZ4vE4W1tbmEwmhoeHGRgY4Pjx42xubpLJZEgkEty6dYudnZ2GEnxNx3QRCQJ9wH/o\n+5RScRH5JlrMe0MI3Ww24/f7GRwcZHx8nGAwSG9vLzabjVwuRzgc5tq1a8zOzrKxscHGxga9vb0E\ng0H6+/uxWq1YrVYWFxeZnZ01rtvf309HRwehUIhMJsPi4iI2m83Q+htF8LVW5PrQwpz3innvq3Fd\nB0JEMJvNxhj82GOPMTw8jN/vJ5vNkslkWFhY4Pnnn+fFF19kfX2d9fV1gsEgExMTjI2N4fP58Pl8\nzMzM8PLLL1Mqlejr6+Ps2bN0dHTgdDopFotMTk5it9splUp3GXYOk0elve8X8/5IsVqttLW10dHR\nwYkTJzhz5gwnT57E4/GQSqW4fv06169fZ2pqiqmpKZaXl0kkEqRSKTY3N1lZWcFutxOPx9ne3mZp\naYm1tTWUUkQiERYXF/F6vbjdbjweD93d3fT39xOLxdja2iKXyx32LQBqL/QImoB7ufNt9wOv1Liu\nqtGtb319fYRCIc6cOUMgEMBisbC9vc3k5CQXL15kbm6O9fV1tra2KBQKKKXIZDJEo1HMZrNhiVta\nWiIWi2EymYhEIszPzyMiOJ1OXC4XPp+PgYEBQ094TQpdKXVTRCJoUTOXAUTEA3w38Oe1rOsg2O12\nvF4vg4ODBAIBAoEAnZ2dxONxotEoN2/eZHJykuXlZcMYIyKICEop8vk8yWSSbDZLLBZjbW2NeDyO\nw+EgmUwSj8fJZrNGXS6Xi66uLjY2NoxpYCNQdUvKfvEQt0OhRkTku4ANpdQi8HHgQyIyg5Zy8zvA\nEvC5mrT4IXA4HPj9foaHh/H5fFitVrLZLNFolKWlJTY2NshmsxSLRcPypk/r2tra8Hg8OJ1Otra2\n2NzcJJFIkMlkaGtrw2KxYLVaDaOOiGCxWLDZbMa+RuEgj9954D/RxmiFlocO8HfAu5VSHxURJ/AX\nQCfwv8APNcIcXRd6MBjE6/VitVrJZDLEYjHC4fAdQofbSp+uC7jdbtra2giHwywsLFAoFO4oZ7PZ\nsFgsxrxfP9disRxtoSul/pv7WPKUUh8GPnywJtUPq9VKe3s7Xq8Xl8uFyWQin8+TSCTY2NggnU7f\n4ShRShnb+nzcZrOxublJqVTC7XYbSuHw8DCBQACPx8POzg7b29usrKwY+kGjjOfQZLZ3i8WC2+3G\n5/Phcrkwm80UCgVD6KlU6g6HCmA4Wba3t0mn08aDsrOzQ3t7OwMDA4RCIYLBIIFAAKvVSqlUYmtr\nyxB6IpFoKKHX3PYuIp/aI+79i7Vr8sExmUx3jb1w2+y6F/qxfD5PKpUilUphsVjw+XwMDw/z5JNP\nMjExwdDQEB6PxzDuzM7Osry8zObmJqlUqqH87DW3vZf5ElpwpD6QNcRjrnfXuqKmlMJsNhuatu5M\nuRdWqxWfz0dfXx8TExM89dRTnDp1Cr/fj8lkYn19nVdffZVvf/vbhMPhhrPGQX1s7wC5Rox719/Y\nbDZrzL91zVwX+m7ni47JZMJkMuF0Ounr62N0dJQnn3yS8+fPEwqFKBaLZLNZwuEwU1NTXL58mZWV\nFaOeRqJeY/ozIrIKbAJfBz6klNqoU10PTCaTYW1tjZs3b+LxeBgcHMRiseByuejo6MDhcNwldH36\n5fF46Orq4tixY5w+fZrTp08TCoXo7OwklUqxsLDArVu3eOWVV7hy5QqLi4tsb283nMChPkL/Elq3\nfxMtIPIPgC+KyOvVId+BbDZrCH1wcJBCoYDVasXlctHZ2UlbW9td3bv+hns8HgKBAOPj41y4cIE3\nvOENdHZ2Yrfb2dzc5MaNG7z44otcvXqV73znO6yurjbUOF5JPcKlKj1p0yLyKjALPIM2vz80stks\n6+vrLCwsGMGO+rSrr6+PgYEBAoEAJpOJVCpFoVCgvb0dj8dDKBTi8ccf54knnmB0dJS+vj7y+TzR\naJT5+XnDZl9p5GlU6j5lK5tmo2hWvEMVei6XIxqNYrVaicViZLNZOjs76erqQinFyMgI4+PjmM1m\nwuEwyWQSv99PIBDg9OnTXLhwgVOnTuH1erHb7USjUebm5piamuLq1avMzMywvb3d0AKHRxP3PogW\nGbtS77ruRz6fZ3t7GxFhdXWVtbU1I0xKN8+eOnXKCKXa2NhgZGSEsbExJiYmmJiY4MSJE+TzedLp\nNCsrK1y/fp3p6WljitaoXXolNbW9l3/PoY3pkXK5P0TLcLl499UeLUopCoUC6XSaubk5nn/+eRKJ\nBKOjo/T39xMIBCgWi/h8PgKBANvb20Ys/ODgIB6Ph3Q6TTgcZnl5mStXrnD58mWuX79ONBrdd67f\naNTa9v5LwATwLjS7+zKasH+rvOrUoaIHM6RSKWZnZzGZTJRKJbq6ujh+/DiDg4N0dXURCAQYGRkh\nlUoxPDzM8PAwDocDESEej7OwsMDk5CTT09NcuXKFhYUFUqlUQ2rqe1EP2/sPHrw5j4adnR02NzeZ\nn583XK0+n8/wg/v9fsMD5/V6DXv7ysoKCwsLTE9PMz09zcLCAqurqySTyYacj+9HU9nedZRSxONx\nCoUCnZ2d9Pf34/F4GB4eNqJeHA4HhUIBEaFQKLC4uMgrr7zC5cuXmZubMyJd9eCIoyJwqNL2LiK/\nLiIvi0hcRFZF5LMiMrqrjF1E/lxEoiKSEJF/ERF/bZv9cOiRMFtbW0SjUdbW1lhbWyOdTiMiRkhV\nV1cXdrudQqHA2toa165d49KlS1y9epX5+XnW19dJpVJ3Zb40OtU6XN4I/ClaJMwPAFbgKyLSVlHm\n48APAz8BfC9wjP1t9IeGbmnTnTD7BTvotvpUKmU8IEclO3U/qurelVJvq9wWkZ8H1tCW+v5GOTTq\n3cA7ymM/IvILwFUReUop9XJNWl0jdKHrIc27ha572CqFrlvajtKbvZuHHdM70TR43a5+rnzNyrj3\n6yKygBb33hBCFxHcbjft7e0EAgGCwSAjIyN4PB4KhQLJZBLAeJudTicDAwNMTEyQyWRYWlpiaWnp\nSMzJ9+LAQi972D4OfEMppa8T1wfklVLxXcUbJu4dNHu62+02sk5PnDhBKBQyvHCVipnD4cDlchEI\nBDhz5gxKKUSESCTSfEIHPgmcAp5+gLINEfcOGAGLfr+fsbExTp48SX9/P06nk0gkQiQSMaJc7HY7\n/f39HDt2DJ/Px8jICJlMhnA4jMvlYmdn58gpcXBAoYvInwFvA96olFquOBQBbCLi2fW277fW+yNF\nF3hbWxtDQ0OcP3+eU6dO0dHRQSqVYmZmhkuXLpFKpTCbzXg8Hs6dO2esStHT00MgEKC3txev12sY\nevL5Q4/5rIqDmGH/DPhR4E1KqYVdh7+FttTIm4HPlsuPAkPAiw/X1IdHz1S12+0EAgHOnj1LMBjE\narWSSCSYmZnhhRdeYHNzE5vNht/vp7u7m8cffxyXy0V3dzfZbJb+/n78fj/5fJ5CofDaFrqIfBL4\naeDtQEpE9K83bCulsuVkxb8GPiYim0AC+ATwfKNo7voUzeFw4Ha7MZvNJJNJ1tfXWVlZYWVlhc3N\nTSwWC/l83rCz+/1+YzGikydP8vTTT3P58mVeffVVQ/E7KlT7pr8HbWz+r137f4Hbq0e9H+1zHv8C\n2NFCq9578CbWjsp5ucPhoL29HYvFQjKZZHl5mZWVFSKRiJGqlMvlWFpaIhwOY7PZ6OnpoaOjg9HR\nUex2O8VikcXFRZaWlg77r1VFtfP0+xpzlFI54FfKv4ZCN8hUJjHk83kikQgzMzNEIhGSySSZTMZw\nrqysrHDjxg3sdjtutxu3243X60UpRW9vL263G4vFYjhzjgJNv967vnDA9PQ0kUjEyFrRc9cikQjT\n09PMz8+TSCQwmUyGmVb3xdvt9obKVbsfR6eldSKTyRCJRJibmyMWi90x987n86yurmK1Wunt7WV8\nfJxisWgkTbjdblwuFw6Hw3hIjgL1cLj8165Eh52yAtiQ6KZWffWoSpu6np4UDodZXFwkHA6ztrZG\nNps11qBpb2+nvb0du93eUPlq96IeDhcF/CVajnof0A984OGbWj8qBV9JpdB1hW59fd0QutPpxOPx\n4PF4jpTQa+pwqTiUbsRkh73QHS76uLxbcPoqU/ryYcViEaWUMbZ3dXXh9XpJJpNHRugPq8jtdrjo\nvFNE1kXkVRH5/V09QUNhMpmw2+04nU6sVusdgtO1fIvFgsViMZYf08s4HA68Xi89PT04nc7D+gtV\nU2uHC2gfy72FFh83AXwUGAV+8iHaWRP07rtynTibzYbP52NwcNBwtmSzWWM+b7fbsdvtDAwMGEEV\nJpPJcK/qc399KngUqIXD5Xsqdyql/qpic7q8HMnXRCSolLr5EPXVBH0+XSgUyGaztLe3Mz4+jsvl\nIhgMMj8/z87ODm1tbTidTkNLHxoaIhgM0t3djdlsJpVKsbq6yszMDDdu3CAWix2ZeXotHC73i2f/\nJpqXLYSW6nRoVL7hhUKBXC5HX18fjz32GKFQiJGREW7duoXJZKKzs9NIhOjq6jKWD1VKGWu7RyIR\nZmdnmZmZIZfLvXaFfh+Hy16cQRv3Dz3ZQU9VTqfTXLlyhS984Qv09PRgMplQShGNRonFYogILpfL\neNP1BQxEhFKpRCaTIZvNcvnyZZaWlshmsw291PduaupwEZER4GeALwIx4LvQPrb730qpqdo1+2BU\nhj5NTk4SDoeNqZZSilwuZxhYdOVN/1UuYKD70be2tgyDzpGKmas0StzvB5TQnCm7f+8qHx9Ec8as\nA2ngOlrWqvse1zzL7cSJ1q/639lqZKiUqq3DRSm1hJad2qKBaXqHSzNSre39PSIyKSLb5d8LIvKD\nFccbPtGhRfVv+iLwQTSz6zm0pUU+JyKPlY8fiUSHpqdaJWAPRSyGFjnjQVtF6scrjo2hKX9PtRS5\nxlHkDjymi4hJRN4BONGCHvdMdAD0RIcWDcJBjDNPoAnZgRb4+ONKqWsicoYjkOjQ4mBm2GtoRpdO\ntLH770Xke+9RvmESHVpoHGRRgiIwV968JCJPoX2s5zM0cKJDi9vUYp5uQgt1rkx0AB440cFRgzY0\nM1Xfv2pt77+HtjjgItAOvBN4E/CWh0h0GK620S3uYBh4oZoTqu3ee9GSGvqBbbRPdrxFKfX18vGD\nJDpcRHt45oHGXoCtsXCgCbzqVbvkSHmHWtSElu29CWkJvQlpCb0JaQm9CWkJvQlpCKGLyHtF5KaI\nZETkJRG5sE+55+TujwJdqTh+z48Klct8RESWRSQtIv8nIl/br7zs/RGirfvk8lXGFOREZKMcW/Cg\nuX+qfF7d4hUOXegi8lNoiwo/hxY5OwlcFJHufU6Z4naeXB93LnSkf1Tovexh7xeRDwK/DPwi8BRQ\nQHPtvm+v8mW+VFHf19Hy8h508cT/Q3M9X79HecXt3L+fBd4BXKCe8QoP60+vgT/+JeBPKrYF7TOd\nH9ij7HPApSqCON++a98y8P6KbQ+QAZ7dp/yngH+7Rx3d5fOerrjevjEFu8uXj/8n8LF6xSvU1J9e\nC0TEivZEV/rgFfA19vfBnyx3x7Mi8mkRCTxgXUG0t7WyrjhaMsa9/P3PlLvmayLySRHxVhx7oMUT\nuR1T8MC5f/WMVzjsRQm6ATN3e+FW0Z7i3byE9r2362im4A8D/yMiTyilUvepqw/thu9V137+/n0/\nQlQ+Xu3iiQ+S+/cx4NfKx+oSr3DYQt+PPX3wSqlKO/OUiLyMdsOeReuKa1ZXub57fYToWapbPPEt\nQBf3z/1bA76ClkX0euoQr3DYilwUzUHTu2v/A/nglVLbaJ8KCT1AXRG0G3Sgusr13URr82+i5fI9\no/ZZPHHXqeNAsFz+fuldL5bbmVNK/QaaYvu+e1y76niFQxW60j7x8S3u9MFLefu+7kIRcaN1u/fN\nkysLLLKrLg+aJv5ArknRPkLUDTwJfJ+69+KJ+jmfRnNDv3uP8nuxO/fvYeMV7qYBtPdn0TTod6G9\nEX+BprH27FH2j9CmKseBNwBfRXvKfeXjLrRQrtNoWu2vlrcD5eMfKF/7R9AE93m04eH87vLla30U\n7aE4Xr7Za2g90zNoPYb+c1S08ZNoOsAzwD+XBTW5V3lgBPgQ2rTxOFr00RLwPPAEmg5RBL5/j2uf\nK5f736rv+WELvfxnfgnNn55Be2rP71Pun8o3JYOmtf4jEKw4/ib2zrf7m4oyH0ZTmtJoS5HvWR7N\nX/1ltN4hixYipvYoa+Tyla9vR1uXJ8rtMOUHzf3bQvtUaaZc71d0ge9x7UT5ofJXe79b/vQm5LAV\nuRaHQEvoTUhL6E1IS+hNSEvoTUhL6E1IS+hNSEvoTUhL6E1IS+hNSEvoTcj/A4tYT/JqB7iKAAAA\nAElFTkSuQmCC\n", |
| 142 | + "text/plain": [ |
| 143 | + "<matplotlib.figure.Figure at 0x7f62f51cc358>" |
| 144 | + ] |
| 145 | + }, |
| 146 | + "metadata": {}, |
| 147 | + "output_type": "display_data" |
| 148 | + } |
| 149 | + ], |
107 | 150 | "source": [
|
108 | 151 | "import random\n",
|
109 | 152 | "import numpy as np\n",
|
|
131 | 174 | },
|
132 | 175 | {
|
133 | 176 | "cell_type": "code",
|
134 |
| - "execution_count": null, |
| 177 | + "execution_count": 4, |
135 | 178 | "metadata": {
|
136 | 179 | "collapsed": false
|
137 | 180 | },
|
|
154 | 197 | },
|
155 | 198 | {
|
156 | 199 | "cell_type": "code",
|
157 |
| - "execution_count": null, |
| 200 | + "execution_count": 5, |
158 | 201 | "metadata": {
|
159 | 202 | "collapsed": true
|
160 | 203 | },
|
|
208 | 251 | },
|
209 | 252 | {
|
210 | 253 | "cell_type": "code",
|
211 |
| - "execution_count": null, |
| 254 | + "execution_count": 6, |
212 | 255 | "metadata": {
|
213 | 256 | "collapsed": true
|
214 | 257 | },
|
|
285 | 328 | },
|
286 | 329 | {
|
287 | 330 | "cell_type": "code",
|
288 |
| - "execution_count": null, |
| 331 | + "execution_count": 7, |
289 | 332 | "metadata": {
|
290 | 333 | "collapsed": false
|
291 | 334 | },
|
|
308 | 351 | },
|
309 | 352 | {
|
310 | 353 | "cell_type": "code",
|
311 |
| - "execution_count": null, |
| 354 | + "execution_count": 8, |
312 | 355 | "metadata": {
|
313 | 356 | "collapsed": false
|
314 | 357 | },
|
315 | 358 | "outputs": [],
|
316 | 359 | "source": [
|
| 360 | + "rate = 0.01\n", |
| 361 | + "\n", |
317 | 362 | "logits = LeNet(x)\n",
|
318 | 363 | "cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)\n",
|
319 | 364 | "loss_operation = tf.reduce_mean(cross_entropy)\n",
|
320 |
| - "optimizer = tf.train.AdamOptimizer()\n", |
| 365 | + "optimizer = tf.train.AdamOptimizer(learning_rate = rate)\n", |
321 | 366 | "training_operation = optimizer.minimize(loss_operation)"
|
322 | 367 | ]
|
323 | 368 | },
|
|
333 | 378 | },
|
334 | 379 | {
|
335 | 380 | "cell_type": "code",
|
336 |
| - "execution_count": null, |
| 381 | + "execution_count": 9, |
337 | 382 | "metadata": {
|
338 | 383 | "collapsed": true
|
339 | 384 | },
|
|
372 | 417 | },
|
373 | 418 | {
|
374 | 419 | "cell_type": "code",
|
375 |
| - "execution_count": null, |
| 420 | + "execution_count": 10, |
376 | 421 | "metadata": {
|
377 | 422 | "collapsed": false
|
378 | 423 | },
|
379 |
| - "outputs": [], |
| 424 | + "outputs": [ |
| 425 | + { |
| 426 | + "name": "stdout", |
| 427 | + "output_type": "stream", |
| 428 | + "text": [ |
| 429 | + "Training...\n", |
| 430 | + "\n", |
| 431 | + "EPOCH 1 ...\n", |
| 432 | + "Validation Loss = 0.068\n", |
| 433 | + "Validation Accuracy = 0.982\n", |
| 434 | + "\n", |
| 435 | + "EPOCH 2 ...\n", |
| 436 | + "Validation Loss = 0.072\n", |
| 437 | + "Validation Accuracy = 0.982\n", |
| 438 | + "\n", |
| 439 | + "EPOCH 3 ...\n", |
| 440 | + "Validation Loss = 0.058\n", |
| 441 | + "Validation Accuracy = 0.986\n", |
| 442 | + "\n", |
| 443 | + "EPOCH 4 ...\n", |
| 444 | + "Validation Loss = 0.062\n", |
| 445 | + "Validation Accuracy = 0.987\n", |
| 446 | + "\n", |
| 447 | + "EPOCH 5 ...\n", |
| 448 | + "Validation Loss = 0.061\n", |
| 449 | + "Validation Accuracy = 0.987\n", |
| 450 | + "\n", |
| 451 | + "EPOCH 6 ...\n", |
| 452 | + "Validation Loss = 0.080\n", |
| 453 | + "Validation Accuracy = 0.981\n", |
| 454 | + "\n", |
| 455 | + "EPOCH 7 ...\n", |
| 456 | + "Validation Loss = 0.080\n", |
| 457 | + "Validation Accuracy = 0.984\n", |
| 458 | + "\n", |
| 459 | + "EPOCH 8 ...\n", |
| 460 | + "Validation Loss = 0.074\n", |
| 461 | + "Validation Accuracy = 0.981\n", |
| 462 | + "\n", |
| 463 | + "EPOCH 9 ...\n", |
| 464 | + "Validation Loss = 0.067\n", |
| 465 | + "Validation Accuracy = 0.984\n", |
| 466 | + "\n", |
| 467 | + "EPOCH 10 ...\n", |
| 468 | + "Validation Loss = 0.105\n", |
| 469 | + "Validation Accuracy = 0.978\n", |
| 470 | + "\n", |
| 471 | + "Model saved\n" |
| 472 | + ] |
| 473 | + } |
| 474 | + ], |
380 | 475 | "source": [
|
381 | 476 | "with tf.Session() as sess:\n",
|
382 | 477 | " sess.run(tf.global_variables_initializer())\n",
|
|
421 | 516 | },
|
422 | 517 | {
|
423 | 518 | "cell_type": "code",
|
424 |
| - "execution_count": null, |
| 519 | + "execution_count": 11, |
425 | 520 | "metadata": {
|
426 | 521 | "collapsed": false
|
427 | 522 | },
|
428 |
| - "outputs": [], |
| 523 | + "outputs": [ |
| 524 | + { |
| 525 | + "name": "stdout", |
| 526 | + "output_type": "stream", |
| 527 | + "text": [ |
| 528 | + "Test Loss = 0.091\n", |
| 529 | + "Test Accuracy = 0.980\n" |
| 530 | + ] |
| 531 | + } |
| 532 | + ], |
429 | 533 | "source": [
|
430 | 534 | "with tf.Session() as sess:\n",
|
431 | 535 | " loader = tf.train.import_meta_graph('lenet.meta')\n",
|
|
0 commit comments