|
| 1 | +# Collecting Feedback and Iterating Guide |
| 2 | + |
| 3 | +## Objective |
| 4 | +This guide provides a structured approach to collecting, analyzing, and acting on feedback for prototype deployments, ensuring continuous improvement and alignment with user needs. |
| 5 | + |
| 6 | +## Prerequisites |
| 7 | +- Deployed prototype application |
| 8 | +- Feedback collection system |
| 9 | +- Access to application metrics |
| 10 | +- Basic understanding of user research methods |
| 11 | + |
| 12 | +## Step-by-Step Instructions |
| 13 | + |
| 14 | +### 1. Set Up Feedback Collection System |
| 15 | + |
| 16 | +#### 1.1 Create Feedback Database Schema |
| 17 | +```sql |
| 18 | +CREATE TABLE feedback ( |
| 19 | + id SERIAL PRIMARY KEY, |
| 20 | + user_id VARCHAR(255), |
| 21 | + rating INTEGER, |
| 22 | + comments TEXT, |
| 23 | + feature VARCHAR(255), |
| 24 | + timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
| 25 | + status VARCHAR(50) DEFAULT 'new' |
| 26 | +); |
| 27 | + |
| 28 | +CREATE TABLE feedback_actions ( |
| 29 | + id SERIAL PRIMARY KEY, |
| 30 | + feedback_id INTEGER REFERENCES feedback(id), |
| 31 | + action_taken TEXT, |
| 32 | + status VARCHAR(50), |
| 33 | + timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP |
| 34 | +); |
| 35 | +``` |
| 36 | + |
| 37 | +#### 1.2 Implement Feedback API |
| 38 | +```python |
| 39 | +from fastapi import FastAPI, HTTPException |
| 40 | +from pydantic import BaseModel |
| 41 | +from datetime import datetime |
| 42 | +from typing import List |
| 43 | + |
| 44 | +app = FastAPI() |
| 45 | + |
| 46 | +class Feedback(BaseModel): |
| 47 | + user_id: str |
| 48 | + rating: int |
| 49 | + comments: str |
| 50 | + feature: str |
| 51 | + |
| 52 | +class FeedbackAction(BaseModel): |
| 53 | + feedback_id: int |
| 54 | + action_taken: str |
| 55 | + status: str |
| 56 | + |
| 57 | +@app.post("/api/v1/feedback") |
| 58 | +async def submit_feedback(feedback: Feedback): |
| 59 | + try: |
| 60 | + # Store feedback in database |
| 61 | + # ... |
| 62 | + return {"status": "success", "message": "Feedback received"} |
| 63 | + except Exception as e: |
| 64 | + raise HTTPException(status_code=500, detail=str(e)) |
| 65 | + |
| 66 | +@app.post("/api/v1/feedback/action") |
| 67 | +async def log_action(action: FeedbackAction): |
| 68 | + try: |
| 69 | + # Log action taken |
| 70 | + # ... |
| 71 | + return {"status": "success", "message": "Action logged"} |
| 72 | + except Exception as e: |
| 73 | + raise HTTPException(status_code=500, detail=str(e)) |
| 74 | +``` |
| 75 | + |
| 76 | +### 2. Create Feedback Analysis Dashboard |
| 77 | + |
| 78 | +#### 2.1 Set Up Analytics |
| 79 | +```python |
| 80 | +from fastapi import FastAPI |
| 81 | +import pandas as pd |
| 82 | +import plotly.express as px |
| 83 | +from datetime import datetime, timedelta |
| 84 | + |
| 85 | +app = FastAPI() |
| 86 | + |
| 87 | +@app.get("/api/v1/feedback/analytics") |
| 88 | +async def get_analytics(): |
| 89 | + # Get feedback data |
| 90 | + feedback_data = pd.DataFrame([ |
| 91 | + {"rating": 4, "feature": "UI", "timestamp": datetime.now()}, |
| 92 | + {"rating": 5, "feature": "Performance", "timestamp": datetime.now()} |
| 93 | + ]) |
| 94 | + |
| 95 | + # Calculate metrics |
| 96 | + metrics = { |
| 97 | + "average_rating": feedback_data["rating"].mean(), |
| 98 | + "total_feedback": len(feedback_data), |
| 99 | + "feature_ratings": feedback_data.groupby("feature")["rating"].mean().to_dict() |
| 100 | + } |
| 101 | + |
| 102 | + return metrics |
| 103 | + |
| 104 | +@app.get("/api/v1/feedback/trends") |
| 105 | +async def get_trends(): |
| 106 | + # Get time-series data |
| 107 | + # ... |
| 108 | + return {"trends": "data"} |
| 109 | +``` |
| 110 | + |
| 111 | +#### 2.2 Create Visualization |
| 112 | +```python |
| 113 | +def create_feedback_visualization(feedback_data): |
| 114 | + # Create rating distribution |
| 115 | + fig1 = px.histogram(feedback_data, x="rating", title="Rating Distribution") |
| 116 | + |
| 117 | + # Create feature ratings |
| 118 | + fig2 = px.bar( |
| 119 | + feedback_data.groupby("feature")["rating"].mean().reset_index(), |
| 120 | + x="feature", |
| 121 | + y="rating", |
| 122 | + title="Feature Ratings" |
| 123 | + ) |
| 124 | + |
| 125 | + return fig1.to_json(), fig2.to_json() |
| 126 | +``` |
| 127 | + |
| 128 | +### 3. Implement Feedback Processing Workflow |
| 129 | + |
| 130 | +#### 3.1 Create Feedback Processing Script |
| 131 | +```python |
| 132 | +from typing import List, Dict |
| 133 | +import pandas as pd |
| 134 | +from datetime import datetime |
| 135 | + |
| 136 | +class FeedbackProcessor: |
| 137 | + def __init__(self): |
| 138 | + self.feedback_data = pd.DataFrame() |
| 139 | + |
| 140 | + def load_feedback(self, data: List[Dict]): |
| 141 | + self.feedback_data = pd.DataFrame(data) |
| 142 | + |
| 143 | + def analyze_feedback(self): |
| 144 | + analysis = { |
| 145 | + "total_feedback": len(self.feedback_data), |
| 146 | + "average_rating": self.feedback_data["rating"].mean(), |
| 147 | + "feature_analysis": self.feedback_data.groupby("feature").agg({ |
| 148 | + "rating": ["mean", "count"], |
| 149 | + "comments": "count" |
| 150 | + }).to_dict() |
| 151 | + } |
| 152 | + return analysis |
| 153 | + |
| 154 | + def identify_trends(self): |
| 155 | + # Implement trend analysis |
| 156 | + pass |
| 157 | + |
| 158 | + def generate_report(self): |
| 159 | + analysis = self.analyze_feedback() |
| 160 | + return { |
| 161 | + "summary": analysis, |
| 162 | + "recommendations": self.generate_recommendations(analysis) |
| 163 | + } |
| 164 | + |
| 165 | + def generate_recommendations(self, analysis: Dict): |
| 166 | + # Implement recommendation logic |
| 167 | + pass |
| 168 | +``` |
| 169 | + |
| 170 | +### 4. Create Iteration Planning Template |
| 171 | + |
| 172 | +Create `iteration-plan.md`: |
| 173 | + |
| 174 | +```markdown |
| 175 | +# Iteration Plan |
| 176 | + |
| 177 | +## Feedback Summary |
| 178 | +- Total feedback received: [number] |
| 179 | +- Average rating: [rating] |
| 180 | +- Key themes: [list] |
| 181 | + |
| 182 | +## Priority Areas |
| 183 | +1. [High priority item] |
| 184 | + - Feedback count: [number] |
| 185 | + - Impact: [description] |
| 186 | + - Proposed solution: [description] |
| 187 | + |
| 188 | +2. [Medium priority item] |
| 189 | + - Feedback count: [number] |
| 190 | + - Impact: [description] |
| 191 | + - Proposed solution: [description] |
| 192 | + |
| 193 | +## Action Items |
| 194 | +- [ ] Implement [feature] |
| 195 | +- [ ] Fix [issue] |
| 196 | +- [ ] Improve [aspect] |
| 197 | + |
| 198 | +## Timeline |
| 199 | +- Start date: [date] |
| 200 | +- End date: [date] |
| 201 | +- Milestones: [list] |
| 202 | + |
| 203 | +## Success Metrics |
| 204 | +- [Metric 1]: [target] |
| 205 | +- [Metric 2]: [target] |
| 206 | +``` |
| 207 | + |
| 208 | +## Validation |
| 209 | + |
| 210 | +### 1. Test Feedback Collection |
| 211 | +```bash |
| 212 | +# Submit test feedback |
| 213 | +curl -X POST https://your-app.azurecontainerapps.io/api/v1/feedback \ |
| 214 | + -H "Content-Type: application/json" \ |
| 215 | + -d '{"user_id": "test", "rating": 5, "comments": "Great!", "feature": "UI"}' |
| 216 | + |
| 217 | +# Check feedback storage |
| 218 | +curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/analytics |
| 219 | +``` |
| 220 | + |
| 221 | +### 2. Monitor Feedback Processing |
| 222 | +```bash |
| 223 | +# Check processing status |
| 224 | +curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/status |
| 225 | + |
| 226 | +# View analytics |
| 227 | +curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/trends |
| 228 | +``` |
| 229 | + |
| 230 | +## Common Issues and Solutions |
| 231 | + |
| 232 | +### Issue 1: Low Feedback Response |
| 233 | +- **Solution**: Implement incentives and reminders |
| 234 | +- **Prevention**: Make feedback collection easy and visible |
| 235 | + |
| 236 | +### Issue 2: Unclear Feedback |
| 237 | +- **Solution**: Provide structured feedback forms |
| 238 | +- **Prevention**: Guide users with specific questions |
| 239 | + |
| 240 | +### Issue 3: Slow Iteration Cycle |
| 241 | +- **Solution**: Automate feedback processing |
| 242 | +- **Prevention**: Set clear iteration timelines |
| 243 | + |
| 244 | +## Best Practices |
| 245 | + |
| 246 | +### 1. Feedback Collection |
| 247 | +- Make it easy to provide feedback |
| 248 | +- Use multiple collection methods |
| 249 | +- Provide incentives |
| 250 | +- Regular reminders |
| 251 | +- Clear instructions |
| 252 | + |
| 253 | +### 2. Analysis |
| 254 | +- Regular review cycles |
| 255 | +- Quantitative and qualitative analysis |
| 256 | +- Trend identification |
| 257 | +- Priority setting |
| 258 | +- Action planning |
| 259 | + |
| 260 | +### 3. Implementation |
| 261 | +- Clear iteration goals |
| 262 | +- Measurable outcomes |
| 263 | +- Regular updates |
| 264 | +- User communication |
| 265 | +- Progress tracking |
| 266 | + |
| 267 | +## Next Steps |
| 268 | +- Implement feedback collection (see Prototype-URL-Sharing.md) |
| 269 | +- Set up monitoring |
| 270 | +- Plan next iteration |
0 commit comments