Skip to content

Commit 191e67a

Browse files
committed
06_daca_deployment_guide/01_Prototype-Deployment-Serverless/5-Submission-and-Feedback/
1 parent 92af8e8 commit 191e67a

File tree

2 files changed

+516
-0
lines changed

2 files changed

+516
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,270 @@
1+
# Collecting Feedback and Iterating Guide
2+
3+
## Objective
4+
This guide provides a structured approach to collecting, analyzing, and acting on feedback for prototype deployments, ensuring continuous improvement and alignment with user needs.
5+
6+
## Prerequisites
7+
- Deployed prototype application
8+
- Feedback collection system
9+
- Access to application metrics
10+
- Basic understanding of user research methods
11+
12+
## Step-by-Step Instructions
13+
14+
### 1. Set Up Feedback Collection System
15+
16+
#### 1.1 Create Feedback Database Schema
17+
```sql
18+
CREATE TABLE feedback (
19+
id SERIAL PRIMARY KEY,
20+
user_id VARCHAR(255),
21+
rating INTEGER,
22+
comments TEXT,
23+
feature VARCHAR(255),
24+
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
25+
status VARCHAR(50) DEFAULT 'new'
26+
);
27+
28+
CREATE TABLE feedback_actions (
29+
id SERIAL PRIMARY KEY,
30+
feedback_id INTEGER REFERENCES feedback(id),
31+
action_taken TEXT,
32+
status VARCHAR(50),
33+
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
34+
);
35+
```
36+
37+
#### 1.2 Implement Feedback API
38+
```python
39+
from fastapi import FastAPI, HTTPException
40+
from pydantic import BaseModel
41+
from datetime import datetime
42+
from typing import List
43+
44+
app = FastAPI()
45+
46+
class Feedback(BaseModel):
47+
user_id: str
48+
rating: int
49+
comments: str
50+
feature: str
51+
52+
class FeedbackAction(BaseModel):
53+
feedback_id: int
54+
action_taken: str
55+
status: str
56+
57+
@app.post("/api/v1/feedback")
58+
async def submit_feedback(feedback: Feedback):
59+
try:
60+
# Store feedback in database
61+
# ...
62+
return {"status": "success", "message": "Feedback received"}
63+
except Exception as e:
64+
raise HTTPException(status_code=500, detail=str(e))
65+
66+
@app.post("/api/v1/feedback/action")
67+
async def log_action(action: FeedbackAction):
68+
try:
69+
# Log action taken
70+
# ...
71+
return {"status": "success", "message": "Action logged"}
72+
except Exception as e:
73+
raise HTTPException(status_code=500, detail=str(e))
74+
```
75+
76+
### 2. Create Feedback Analysis Dashboard
77+
78+
#### 2.1 Set Up Analytics
79+
```python
80+
from fastapi import FastAPI
81+
import pandas as pd
82+
import plotly.express as px
83+
from datetime import datetime, timedelta
84+
85+
app = FastAPI()
86+
87+
@app.get("/api/v1/feedback/analytics")
88+
async def get_analytics():
89+
# Get feedback data
90+
feedback_data = pd.DataFrame([
91+
{"rating": 4, "feature": "UI", "timestamp": datetime.now()},
92+
{"rating": 5, "feature": "Performance", "timestamp": datetime.now()}
93+
])
94+
95+
# Calculate metrics
96+
metrics = {
97+
"average_rating": feedback_data["rating"].mean(),
98+
"total_feedback": len(feedback_data),
99+
"feature_ratings": feedback_data.groupby("feature")["rating"].mean().to_dict()
100+
}
101+
102+
return metrics
103+
104+
@app.get("/api/v1/feedback/trends")
105+
async def get_trends():
106+
# Get time-series data
107+
# ...
108+
return {"trends": "data"}
109+
```
110+
111+
#### 2.2 Create Visualization
112+
```python
113+
def create_feedback_visualization(feedback_data):
114+
# Create rating distribution
115+
fig1 = px.histogram(feedback_data, x="rating", title="Rating Distribution")
116+
117+
# Create feature ratings
118+
fig2 = px.bar(
119+
feedback_data.groupby("feature")["rating"].mean().reset_index(),
120+
x="feature",
121+
y="rating",
122+
title="Feature Ratings"
123+
)
124+
125+
return fig1.to_json(), fig2.to_json()
126+
```
127+
128+
### 3. Implement Feedback Processing Workflow
129+
130+
#### 3.1 Create Feedback Processing Script
131+
```python
132+
from typing import List, Dict
133+
import pandas as pd
134+
from datetime import datetime
135+
136+
class FeedbackProcessor:
137+
def __init__(self):
138+
self.feedback_data = pd.DataFrame()
139+
140+
def load_feedback(self, data: List[Dict]):
141+
self.feedback_data = pd.DataFrame(data)
142+
143+
def analyze_feedback(self):
144+
analysis = {
145+
"total_feedback": len(self.feedback_data),
146+
"average_rating": self.feedback_data["rating"].mean(),
147+
"feature_analysis": self.feedback_data.groupby("feature").agg({
148+
"rating": ["mean", "count"],
149+
"comments": "count"
150+
}).to_dict()
151+
}
152+
return analysis
153+
154+
def identify_trends(self):
155+
# Implement trend analysis
156+
pass
157+
158+
def generate_report(self):
159+
analysis = self.analyze_feedback()
160+
return {
161+
"summary": analysis,
162+
"recommendations": self.generate_recommendations(analysis)
163+
}
164+
165+
def generate_recommendations(self, analysis: Dict):
166+
# Implement recommendation logic
167+
pass
168+
```
169+
170+
### 4. Create Iteration Planning Template
171+
172+
Create `iteration-plan.md`:
173+
174+
```markdown
175+
# Iteration Plan
176+
177+
## Feedback Summary
178+
- Total feedback received: [number]
179+
- Average rating: [rating]
180+
- Key themes: [list]
181+
182+
## Priority Areas
183+
1. [High priority item]
184+
- Feedback count: [number]
185+
- Impact: [description]
186+
- Proposed solution: [description]
187+
188+
2. [Medium priority item]
189+
- Feedback count: [number]
190+
- Impact: [description]
191+
- Proposed solution: [description]
192+
193+
## Action Items
194+
- [ ] Implement [feature]
195+
- [ ] Fix [issue]
196+
- [ ] Improve [aspect]
197+
198+
## Timeline
199+
- Start date: [date]
200+
- End date: [date]
201+
- Milestones: [list]
202+
203+
## Success Metrics
204+
- [Metric 1]: [target]
205+
- [Metric 2]: [target]
206+
```
207+
208+
## Validation
209+
210+
### 1. Test Feedback Collection
211+
```bash
212+
# Submit test feedback
213+
curl -X POST https://your-app.azurecontainerapps.io/api/v1/feedback \
214+
-H "Content-Type: application/json" \
215+
-d '{"user_id": "test", "rating": 5, "comments": "Great!", "feature": "UI"}'
216+
217+
# Check feedback storage
218+
curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/analytics
219+
```
220+
221+
### 2. Monitor Feedback Processing
222+
```bash
223+
# Check processing status
224+
curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/status
225+
226+
# View analytics
227+
curl -X GET https://your-app.azurecontainerapps.io/api/v1/feedback/trends
228+
```
229+
230+
## Common Issues and Solutions
231+
232+
### Issue 1: Low Feedback Response
233+
- **Solution**: Implement incentives and reminders
234+
- **Prevention**: Make feedback collection easy and visible
235+
236+
### Issue 2: Unclear Feedback
237+
- **Solution**: Provide structured feedback forms
238+
- **Prevention**: Guide users with specific questions
239+
240+
### Issue 3: Slow Iteration Cycle
241+
- **Solution**: Automate feedback processing
242+
- **Prevention**: Set clear iteration timelines
243+
244+
## Best Practices
245+
246+
### 1. Feedback Collection
247+
- Make it easy to provide feedback
248+
- Use multiple collection methods
249+
- Provide incentives
250+
- Regular reminders
251+
- Clear instructions
252+
253+
### 2. Analysis
254+
- Regular review cycles
255+
- Quantitative and qualitative analysis
256+
- Trend identification
257+
- Priority setting
258+
- Action planning
259+
260+
### 3. Implementation
261+
- Clear iteration goals
262+
- Measurable outcomes
263+
- Regular updates
264+
- User communication
265+
- Progress tracking
266+
267+
## Next Steps
268+
- Implement feedback collection (see Prototype-URL-Sharing.md)
269+
- Set up monitoring
270+
- Plan next iteration

0 commit comments

Comments
 (0)