Skip to content

Commit c5a4121

Browse files
committed
Merge branch 'dev-1.x' of github.com:open-mmlab/mmsegmentation into 1.x
2 parents a35e1c4 + 779b86c commit c5a4121

File tree

131 files changed

+2459
-1609
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

131 files changed

+2459
-1609
lines changed

.dev/batch_test_list.py

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -2,129 +2,129 @@
22
# Inference Speed is tested on NVIDIA V100
33
hrnet = [
44
dict(
5-
config='configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py',
5+
config='configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py',
66
checkpoint='fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth', # noqa
77
eval='mIoU',
88
metric=dict(mIoU=33.0),
99
),
1010
dict(
11-
config='configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py',
11+
config='configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py',
1212
checkpoint='fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth', # noqa
1313
eval='mIoU',
1414
metric=dict(mIoU=76.31),
1515
),
1616
dict(
17-
config='configs/hrnet/fcn_hr48_512x512_160k_ade20k.py',
17+
config='configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py',
1818
checkpoint='fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth',
1919
eval='mIoU',
2020
metric=dict(mIoU=42.02),
2121
),
2222
dict(
23-
config='configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py',
23+
config='configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py',
2424
checkpoint='fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth', # noqa
2525
eval='mIoU',
2626
metric=dict(mIoU=80.65),
2727
),
2828
]
2929
pspnet = [
3030
dict(
31-
config='configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py',
31+
config='configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py',
3232
checkpoint='pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth', # noqa
3333
eval='mIoU',
3434
metric=dict(mIoU=78.55),
3535
),
3636
dict(
37-
config='configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py',
37+
config='configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py',
3838
checkpoint='pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth', # noqa
3939
eval='mIoU',
4040
metric=dict(mIoU=79.76),
4141
),
4242
dict(
43-
config='configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py',
43+
config='configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py',
4444
checkpoint='pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth', # noqa
4545
eval='mIoU',
4646
metric=dict(mIoU=44.39),
4747
),
4848
dict(
49-
config='configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py',
49+
config='configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py',
5050
checkpoint='pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth', # noqa
5151
eval='mIoU',
5252
metric=dict(mIoU=42.48),
5353
),
5454
]
5555
resnest = [
5656
dict(
57-
config='configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py',
57+
config='configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py', # noqa
5858
checkpoint='pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth', # noqa
5959
eval='mIoU',
6060
metric=dict(mIoU=45.44),
6161
),
6262
dict(
63-
config='configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py',
63+
config='configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py', # noqa
6464
checkpoint='pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth', # noqa
6565
eval='mIoU',
6666
metric=dict(mIoU=78.57),
6767
),
6868
]
6969
fastscnn = [
7070
dict(
71-
config='configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py',
71+
config='configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py',
7272
checkpoint='fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth',
7373
eval='mIoU',
7474
metric=dict(mIoU=70.96),
7575
)
7676
]
7777
deeplabv3plus = [
7878
dict(
79-
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py', # noqa
79+
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py', # noqa
8080
checkpoint='deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth', # noqa
8181
eval='mIoU',
8282
metric=dict(mIoU=80.98),
8383
),
8484
dict(
85-
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py', # noqa
85+
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py', # noqa
8686
checkpoint='deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth', # noqa
8787
eval='mIoU',
8888
metric=dict(mIoU=80.97),
8989
),
9090
dict(
91-
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py', # noqa
91+
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py', # noqa
9292
checkpoint='deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth', # noqa
9393
eval='mIoU',
9494
metric=dict(mIoU=80.09),
9595
),
9696
dict(
97-
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py', # noqa
97+
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py', # noqa
9898
checkpoint='deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth', # noqa
9999
eval='mIoU',
100100
metric=dict(mIoU=79.83),
101101
),
102102
]
103103
vit = [
104104
dict(
105-
config='configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py',
105+
config='configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py', # noqa
106106
checkpoint='upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth',
107107
eval='mIoU',
108108
metric=dict(mIoU=47.73),
109109
),
110110
dict(
111-
config='configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py',
111+
config='configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py', # noqa
112112
checkpoint='upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth',
113113
eval='mIoU',
114114
metric=dict(mIoU=43.52),
115115
),
116116
]
117117
fp16 = [
118118
dict(
119-
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py', # noqa
119+
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py', # noqa
120120
checkpoint='deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth', # noqa
121121
eval='mIoU',
122122
metric=dict(mIoU=80.46),
123123
)
124124
]
125125
swin = [
126126
dict(
127-
config='configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py', # noqa
127+
config='configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py', # noqa
128128
checkpoint='upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', # noqa
129129
eval='mIoU',
130130
metric=dict(mIoU=44.41),

.dev/batch_train_list.txt

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,19 @@
1-
configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py
2-
configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py
3-
configs/hrnet/fcn_hr48_512x512_160k_ade20k.py
4-
configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py
5-
configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py
6-
configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py
7-
configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py
8-
configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py
9-
configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
10-
configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
11-
configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py
12-
configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
13-
configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
14-
configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
15-
configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
16-
configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
17-
configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
18-
configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
19-
configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
1+
configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py
2+
configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py
3+
configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py
4+
configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py
5+
configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
6+
configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
7+
configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py
8+
configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py
9+
configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py
10+
configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py
11+
configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py
12+
configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py
13+
configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py
14+
configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py
15+
configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py
16+
configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py
17+
configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py
18+
configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
19+
configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py

README.md

Lines changed: 37 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,6 @@
1717
</sup>
1818
</div>
1919
<div>&nbsp;</div>
20-
</div>
21-
<br />
2220

2321
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
2422
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
@@ -33,6 +31,22 @@ Documentation: <https://mmsegmentation.readthedocs.io/en/1.x/>
3331

3432
English | [简体中文](README_zh-CN.md)
3533

34+
</div>
35+
36+
<div align="center">
37+
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
38+
<img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
39+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
40+
<a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
41+
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
42+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
43+
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
44+
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
45+
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
46+
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
47+
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
48+
</div>
49+
3650
## Introduction
3751

3852
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
@@ -62,11 +76,11 @@ The 1.x branch works with **PyTorch 1.6+**.
6276

6377
## What's New
6478

65-
v1.0.0rc5 was released on 01/02/2023.
79+
v1.0.0rc6 was released on 03/03/2023.
6680
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
6781

68-
- Support ISNet (ICCV'2021) in projects ([#2400](https://github.com/open-mmlab/mmsegmentation/pull/2400))
69-
- Support HSSN (CVPR'2022) in projects ([#2444](https://github.com/open-mmlab/mmsegmentation/pull/2444))
82+
- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658))
83+
- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554))
7084

7185
## Installation
7286

@@ -81,13 +95,14 @@ There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev
8195

8296
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
8397

84-
To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration.md).
98+
To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration).
8599

86100
## Benchmark and model zoo
87101

88102
Results and models are available in the [model zoo](docs/en/model_zoo.md).
89103

90-
Supported backbones:
104+
<details open>
105+
<summary>Supported backbones:</summary>
91106

92107
- [x] ResNet (CVPR'2016)
93108
- [x] ResNeXt (CVPR'2017)
@@ -103,7 +118,10 @@ Supported backbones:
103118
- [x] [MAE (CVPR'2022)](configs/mae)
104119
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
105120

106-
Supported methods:
121+
</details>
122+
123+
<details open>
124+
<summary>Supported methods:</summary>
107125

108126
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
109127
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
@@ -142,7 +160,10 @@ Supported methods:
142160
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
143161
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
144162

145-
Supported datasets:
163+
</details>
164+
165+
<details open>
166+
<summary>Supported datasets:</summary>
146167

147168
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
148169
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
@@ -161,8 +182,14 @@ Supported datasets:
161182
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
162183
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isaid)
163184

185+
</details>
186+
164187
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
165188

189+
## Projects
190+
191+
[Here](projects/README.md) are some implementations of SOTA models and solutions built on MMSegmentation, which are supported and maintained by community users. These projects demonstrate the best practices based on MMSegmentation for research and product development. We welcome and appreciate all the contributions to OpenMMLab ecosystem.
192+
166193
## Contributing
167194

168195
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
@@ -191,7 +218,7 @@ If you find this project useful in your research, please consider cite:
191218

192219
This project is released under the [Apache 2.0 license](LICENSE).
193220

194-
## Projects in OpenMMLab
221+
## OpenMMLab Family
195222

196223
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models
197224
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.

README_zh-CN.md

Lines changed: 19 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
6161

6262
## 更新日志
6363

64-
最新版本 v1.0.0rc5 在 2023.02.01 发布。
64+
最新版本 v1.0.0rc6 在 2023.03.03 发布。
6565
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)
6666

6767
## 安装
@@ -82,7 +82,8 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
8282

8383
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
8484

85-
已支持的骨干网络:
85+
<details open>
86+
<summary>已支持的骨干网络:</summary>
8687

8788
- [x] ResNet (CVPR'2016)
8889
- [x] ResNeXt (CVPR'2017)
@@ -98,7 +99,10 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
9899
- [x] [MAE (CVPR'2022)](configs/mae)
99100
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
100101

101-
已支持的算法:
102+
</details>
103+
104+
<details open>
105+
<summary>已支持的算法:</summary>
102106

103107
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
104108
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
@@ -137,7 +141,10 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
137141
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
138142
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
139143

140-
已支持的数据集:
144+
</details>
145+
146+
<details open>
147+
<summary>已支持的数据集:</summary>
141148

142149
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#cityscapes)
143150
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-voc)
@@ -156,15 +163,22 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
156163
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
157164
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isaid)
158165

166+
</details>
167+
159168
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/notes/faq.md)
160169

170+
## 社区项目
171+
172+
[这里](projects/README.md)有一些由社区用户支持和维护的基于 MMSegmentation 的 SOTA 模型和解决方案的实现。这些项目展示了基于 MMSegmentation 的研究和产品开发的最佳实践。
173+
我们欢迎并感谢对 OpenMMLab 生态系统的所有贡献。
174+
161175
## 贡献指南
162176

163177
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
164178

165179
## 致谢
166180

167-
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
181+
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
168182

169183
## 引用
170184

configs/_base_/datasets/ade20k.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525
]
2626
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
2727
tta_pipeline = [
28-
dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
28+
dict(type='LoadImageFromFile', backend_args=None),
2929
dict(
3030
type='TestTimeAug',
3131
transforms=[

configs/_base_/datasets/ade20k_640x640.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525
]
2626
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
2727
tta_pipeline = [
28-
dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
28+
dict(type='LoadImageFromFile', backend_args=None),
2929
dict(
3030
type='TestTimeAug',
3131
transforms=[

configs/_base_/datasets/chase_db1.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
]
2727
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
2828
tta_pipeline = [
29-
dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
29+
dict(type='LoadImageFromFile', backend_args=None),
3030
dict(
3131
type='TestTimeAug',
3232
transforms=[

0 commit comments

Comments
 (0)