Skip to content

Commit 996b58b

Browse files
committed
paper links
1 parent ff0d5c0 commit 996b58b

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

70 files changed

+92
-92
lines changed

labml_nn/capsule_networks/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
# Capsule Networks
1111
1212
This is a [PyTorch](https://pytorch.org) implementation/tutorial of
13-
[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
13+
[Dynamic Routing Between Capsules](https://papers.labml.ai/paper/1710.09829).
1414
1515
Capsule network is a neural network architecture that embeds features
1616
as capsules and routes them with a voting mechanism to next layer of capsules.

labml_nn/capsule_networks/mnist.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
This is an annotated PyTorch code to classify MNIST digits with PyTorch.
1010
1111
This paper implements the experiment described in paper
12-
[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
12+
[Dynamic Routing Between Capsules](https://papers.labml.ai/paper/1710.09829).
1313
"""
1414
from typing import Any
1515

labml_nn/capsule_networks/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)
22

33
This is a [PyTorch](https://pytorch.org) implementation/tutorial of
4-
[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
4+
[Dynamic Routing Between Capsules](https://papers.labml.ai/paper/1710.09829).
55

66
Capsule network is a neural network architecture that embeds features
77
as capsules and routes them with a voting mechanism to next layer of capsules.

labml_nn/gan/cycle_gan/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
# Cycle GAN
1010
1111
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
12-
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593).
12+
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://papers.labml.ai/paper/1703.10593).
1313
1414
I've taken pieces of code from [eriklindernoren/PyTorch-GAN](https://github.com/eriklindernoren/PyTorch-GAN).
1515
It is a very good resource if you want to checkout other GAN variations too.

labml_nn/gan/cycle_gan/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html)
22

33
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
4-
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593).
4+
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://papers.labml.ai/paper/1703.10593).

labml_nn/gan/dcgan/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
# Deep Convolutional Generative Adversarial Networks (DCGAN)
88
99
This is a [PyTorch](https://pytorch.org) implementation of paper
10-
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
10+
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://papers.labml.ai/paper/1511.06434).
1111
1212
This implementation is based on the [PyTorch DCGAN Tutorial](https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html).
1313
"""

labml_nn/gan/dcgan/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# [Deep Convolutional Generative Adversarial Networks - DCGAN](https://nn.labml.ai/gan/dcgan/index.html)
22

33
This is a [PyTorch](https://pytorch.org) implementation of paper
4-
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
4+
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://papers.labml.ai/paper/1511.06434).

labml_nn/gan/original/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
# Generative Adversarial Networks (GAN)
88
99
This is an implementation of
10-
[Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
10+
[Generative Adversarial Networks](https://papers.labml.ai/paper/1406.2661).
1111
1212
The generator, $G(\pmb{z}; \theta_g)$ generates samples that match the
1313
distribution of data, while the discriminator, $D(\pmb{x}; \theta_g)$

labml_nn/gan/original/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# [Generative Adversarial Networks - GAN](https://nn.labml.ai/gan/original/index.html)
22

33
This is an annotated implementation of
4-
[Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
4+
[Generative Adversarial Networks](https://papers.labml.ai/paper/1406.2661).

labml_nn/gan/stylegan/__init__.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,12 @@
88
# StyleGAN 2
99
1010
This is a [PyTorch](https://pytorch.org) implementation of the paper
11-
[Analyzing and Improving the Image Quality of StyleGAN](https://arxiv.org/abs/1912.04958)
11+
[Analyzing and Improving the Image Quality of StyleGAN](https://papers.labml.ai/paper/1912.04958)
1212
which introduces **StyleGAN 2**.
1313
StyleGAN 2 is an improvement over **StyleGAN** from the paper
14-
[A Style-Based Generator Architecture for Generative Adversarial Networks](https://arxiv.org/abs/1812.04948).
14+
[A Style-Based Generator Architecture for Generative Adversarial Networks](https://papers.labml.ai/paper/1812.04948).
1515
And StyleGAN is based on **Progressive GAN** from the paper
16-
[Progressive Growing of GANs for Improved Quality, Stability, and Variation](https://arxiv.org/abs/1710.10196).
16+
[Progressive Growing of GANs for Improved Quality, Stability, and Variation](https://papers.labml.ai/paper/1710.10196).
1717
All three papers are from the same authors from [NVIDIA AI](https://twitter.com/NVIDIAAI).
1818
1919
*Our implementation is a minimalistic StyleGAN 2 model training code.
@@ -650,7 +650,7 @@ class DownSample(nn.Module):
650650
The down-sample operation [smoothens](#smooth) each feature channel and
651651
scale $2 \times$ using bilinear interpolation.
652652
This is based on the paper
653-
[Making Convolutional Networks Shift-Invariant Again](https://arxiv.org/abs/1904.11486).
653+
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
654654
"""
655655

656656
def __init__(self):
@@ -672,7 +672,7 @@ class UpSample(nn.Module):
672672
673673
The up-sample operation scales the image up by $2 \times$ and [smoothens](#smooth) each feature channel.
674674
This is based on the paper
675-
[Making Convolutional Networks Shift-Invariant Again](https://arxiv.org/abs/1904.11486).
675+
[Making Convolutional Networks Shift-Invariant Again](https://papers.labml.ai/paper/1904.11486).
676676
"""
677677

678678
def __init__(self):
@@ -824,7 +824,7 @@ class GradientPenalty(nn.Module):
824824
## Gradient Penalty
825825
826826
This is the $R_1$ regularization penality from the paper
827-
[Which Training Methods for GANs do actually Converge?](https://arxiv.org/abs/1801.04406).
827+
[Which Training Methods for GANs do actually Converge?](https://papers.labml.ai/paper/1801.04406).
828828
829829
$$R_1(\psi) = \frac{\gamma}{2} \mathbb{E}_{p_\mathcal{D}(x)}
830830
\Big[\Vert \nabla_x D_\psi(x)^2 \Vert\Big]$$

0 commit comments

Comments
 (0)