File tree Expand file tree Collapse file tree 8 files changed +438
-2
lines changed Expand file tree Collapse file tree 8 files changed +438
-2
lines changed Original file line number Diff line number Diff line change 70
70
| [ 第十章 序列建模:循环和递归网络] ( https://exacity.github.io/deeplearningbook-chinese/Chapter10_sequence_modeling_rnn/ ) | [ 循环递归网络] ( 循环递归网络/README.md ) | @zengxy | @hjptriplebee |
71
71
| [ 第十一章 实践方法论] ( https://exacity.github.io/deeplearningbook-chinese/Chapter11_practical_methodology/ ) | [ 实践调参] ( 实践调参/README.md ) | @daweicheng | |
72
72
| [ 第十二章 应用] ( https://exacity.github.io/deeplearningbook-chinese/Chapter12_applications/ ) | | | |
73
- | [ 第十三章 线性因子模型] ( https://exacity.github.io/deeplearningbook-chinese/Chapter13_linear_factor_models/ ) | [ 线性因子模型] ( 线性因子模型/README.md ) | @jingshengwang92 | @YaoStriveCode |
73
+ | [ 第十三章 线性因子模型] ( https://exacity.github.io/deeplearningbook-chinese/Chapter13_linear_factor_models/ ) | [ 线性因子模型] ( 线性因子模型/README.md ) | @liqi | @YaoStriveCode |
74
74
| [ 第十四章 自编码器] ( https://exacity.github.io/deeplearningbook-chinese/Chapter14_autoencoders/ ) | [ 自编码器] ( 自编码器/README.md ) | @daweicheng | |
75
75
| [ 第十五章 表示学习] ( https://exacity.github.io/deeplearningbook-chinese/Chapter15_representation_learning/ ) | [ 表示学习] ( 表示学习/README.md ) | @daweicheng | |
76
76
| [ 第十六章 深度学习中的结构化概率模型] ( https://exacity.github.io/deeplearningbook-chinese/Chapter16_structured_probabilistic_modelling/ ) | [ 结构化概率模型] ( 结构化概率模型/README.md ) | @xuanming |
Load Diff Large diffs are not rendered by default.
Original file line number Diff line number Diff line change 1
- //todo
1
+ # 线性因子模型
2
+ &emsp ;&emsp ; 原书本章主要介绍几类常见的线性因子分析模型:概率PCA和因子分析、独立成分分析(ICA)、慢特征分析,稀疏编码等。本节重点讲解ICA的原理和几类常见算法,并基于典型的鸡尾酒会问题进行具体的代码演示。
3
+
4
+ ## 目录
5
+ 1 . [ 独立成分分析ICA] ( ICA.ipynb )
You can’t perform that action at this time.
0 commit comments