Skip to content

Commit 482da3d

Browse files
添加独立成分分析ICA (exacity#38)
* 添加ICA内容 * add sound file * add reference,fix typo * fix typo * update namelist
1 parent 5ad54b6 commit 482da3d

File tree

8 files changed

+438
-2
lines changed

8 files changed

+438
-2
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@
7070
| [第十章 序列建模:循环和递归网络](https://exacity.github.io/deeplearningbook-chinese/Chapter10_sequence_modeling_rnn/) | [循环递归网络](循环递归网络/README.md) | @zengxy | @hjptriplebee |
7171
| [第十一章 实践方法论](https://exacity.github.io/deeplearningbook-chinese/Chapter11_practical_methodology/) |[实践调参](实践调参/README.md) | @daweicheng | |
7272
| [第十二章 应用](https://exacity.github.io/deeplearningbook-chinese/Chapter12_applications/) | | | |
73-
| [第十三章 线性因子模型](https://exacity.github.io/deeplearningbook-chinese/Chapter13_linear_factor_models/) | [线性因子模型](线性因子模型/README.md) | @jingshengwang92 | @YaoStriveCode |
73+
| [第十三章 线性因子模型](https://exacity.github.io/deeplearningbook-chinese/Chapter13_linear_factor_models/) | [线性因子模型](线性因子模型/README.md) | @liqi | @YaoStriveCode |
7474
| [第十四章 自编码器](https://exacity.github.io/deeplearningbook-chinese/Chapter14_autoencoders/) | [自编码器](自编码器/README.md) | @daweicheng | |
7575
| [第十五章 表示学习](https://exacity.github.io/deeplearningbook-chinese/Chapter15_representation_learning/) | [表示学习](表示学习/README.md) |@daweicheng | |
7676
| [第十六章 深度学习中的结构化概率模型](https://exacity.github.io/deeplearningbook-chinese/Chapter16_structured_probabilistic_modelling/) |[结构化概率模型](结构化概率模型/README.md) | @xuanming |

线性因子模型/ICA.ipynb

Lines changed: 432 additions & 0 deletions
Large diffs are not rendered by default.

线性因子模型/README.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,5 @@
1-
//todo
1+
# 线性因子模型
2+
   原书本章主要介绍几类常见的线性因子分析模型:概率PCA和因子分析、独立成分分析(ICA)、慢特征分析,稀疏编码等。本节重点讲解ICA的原理和几类常见算法,并基于典型的鸡尾酒会问题进行具体的代码演示。
3+
4+
## 目录
5+
1. [独立成分分析ICA](ICA.ipynb)
48.9 KB
Binary file not shown.
48.9 KB
Binary file not shown.
97.7 KB
Binary file not shown.
97.7 KB
Binary file not shown.

线性因子模型/img/image.png

157 KB
Loading

0 commit comments

Comments
 (0)