|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# 循环神经网络\n", |
| 8 | + "\n", |
| 9 | + "本节将介绍如何在MNIST数据集中,搭建一个简单的循环神经网络,使用Tensorflow将进行手写字体分为0-9之间的10个类别。\n", |
| 10 | + "\n", |
| 11 | + "## 代码环境\n", |
| 12 | + "1. Python 3.6.1\n", |
| 13 | + "1. Tensorflow 1.4.0\n", |
| 14 | + "1. Jupyter 4.3.0\n" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "- import 需要的库" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 2, |
| 27 | + "metadata": { |
| 28 | + "collapsed": true |
| 29 | + }, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "import tensorflow as tf\n", |
| 33 | + "from tensorflow.contrib import rnn\n", |
| 34 | + "from tensorflow.examples.tutorials.mnist import input_data" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "- import MNIST data" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 4, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "name": "stdout", |
| 51 | + "output_type": "stream", |
| 52 | + "text": [ |
| 53 | + "Extracting data/train-images-idx3-ubyte.gz\n", |
| 54 | + "Extracting data/train-labels-idx1-ubyte.gz\n", |
| 55 | + "Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.\n", |
| 56 | + "Extracting data/t10k-images-idx3-ubyte.gz\n", |
| 57 | + "Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.\n", |
| 58 | + "Extracting data/t10k-labels-idx1-ubyte.gz\n" |
| 59 | + ] |
| 60 | + } |
| 61 | + ], |
| 62 | + "source": [ |
| 63 | + "mnist = input_data.read_data_sets(\"data/\", one_hot=True)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "markdown", |
| 68 | + "metadata": {}, |
| 69 | + "source": [ |
| 70 | + "## 构建模型\n", |
| 71 | + "首先设置训练的超参数,分别设置学习率、训练轮数和每轮训练的数据大小:\n", |
| 72 | + "- 设置训练的超参数,学习率为0.001、训练轮数100000次,以及batch_size" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": 5, |
| 78 | + "metadata": { |
| 79 | + "collapsed": true |
| 80 | + }, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "lr = 0.001\n", |
| 84 | + "training_iters = 100000\n", |
| 85 | + "batch_size = 128\n", |
| 86 | + "display_step = 10" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "为了使用RNN来做图片分类,可以把图片看成一个像素序列。MNIST图片的大小是28x28像素,所以把每一个图像样本看成一行行的序列。因此共有(28个元素序列)x(28行),每一步输入序列的长度是28,输入的步数是28步\n", |
| 94 | + "- 设置神经网络参数,序列长度28,步数28,隐藏单元128,分类的类别10" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": 6, |
| 100 | + "metadata": { |
| 101 | + "collapsed": true |
| 102 | + }, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "n_input = 28\n", |
| 106 | + "n_step = 28\n", |
| 107 | + "n_hidden = 128\n", |
| 108 | + "n_classes = 10" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "定义输入数据以及权重" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 7, |
| 121 | + "metadata": { |
| 122 | + "collapsed": true |
| 123 | + }, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "x = tf.placeholder(tf.float32, [None, n_step, n_input])\n", |
| 127 | + "y = tf.placeholder(tf.float32, [None, n_classes])\n", |
| 128 | + "\n", |
| 129 | + "weights = {\n", |
| 130 | + " # (28,128)\n", |
| 131 | + " 'in': tf.Variable(tf.random_normal([n_input,n_hidden])),\n", |
| 132 | + " # (128,10)\n", |
| 133 | + " 'out': tf.Variable(tf.random_normal([n_hidden,n_classes]))\n", |
| 134 | + "}\n", |
| 135 | + "\n", |
| 136 | + "biases = {\n", |
| 137 | + " # (128)\n", |
| 138 | + " 'in': tf.Variable(tf.constant(0.1,shape=[n_hidden,])),\n", |
| 139 | + " # (10,)\n", |
| 140 | + " 'out': tf.Variable(tf.constant(0.1,shape=[n_classes,]))\n", |
| 141 | + "}" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "## 定义RNN模型\n", |
| 149 | + "- 把输入的X转换成 X ==> (128 batch*28 steps,28 inputs)\n", |
| 150 | + "- 采用基本的LSTM循环网络单元\n", |
| 151 | + "- 输出该序列的各个分类概率" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": 8, |
| 157 | + "metadata": { |
| 158 | + "collapsed": true |
| 159 | + }, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "def rnn_model(X,weights,biases):\n", |
| 163 | + " # X ==> (128 batch*28 steps,28 inputs)\n", |
| 164 | + " X = tf.reshape(X,[-1,n_input])\n", |
| 165 | + " # X_in = (128 batch*28 steps,128 hidden)\n", |
| 166 | + " X_in = tf.matmul(X,weights['in']+biases['in'])\n", |
| 167 | + " # X_in ==> (128 batch,28 steps,128 hidden)\n", |
| 168 | + " X_in = tf.reshape(X_in,[-1,n_step,n_hidden])\n", |
| 169 | + "\n", |
| 170 | + " #use basic LSTM Cell\n", |
| 171 | + " lstm_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0,\n", |
| 172 | + " state_is_tuple=True)\n", |
| 173 | + " init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32)\n", |
| 174 | + " outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=init_state,\n", |
| 175 | + " time_major=False)\n", |
| 176 | + " results = tf.matmul(final_state[1],weights['out'] + biases['out'])\n", |
| 177 | + " return results" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "metadata": {}, |
| 183 | + "source": [ |
| 184 | + "定义损失函数和优化器,优化器采用AdamOptimizer" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": 9, |
| 190 | + "metadata": { |
| 191 | + "collapsed": true |
| 192 | + }, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "pred = rnn_model(x,weights,biases)\n", |
| 196 | + "cost = tf.reduce_mean(\n", |
| 197 | + " tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n", |
| 198 | + "optimizer = tf.train.AdamOptimizer(lr).minimize(cost)" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "markdown", |
| 203 | + "metadata": {}, |
| 204 | + "source": [ |
| 205 | + "定义模型预测结果以及准确率的计算方法" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": 10, |
| 211 | + "metadata": { |
| 212 | + "collapsed": true |
| 213 | + }, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n", |
| 217 | + "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "markdown", |
| 222 | + "metadata": {}, |
| 223 | + "source": [ |
| 224 | + "## 训练数据以及评估模型" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": 11, |
| 230 | + "metadata": {}, |
| 231 | + "outputs": [ |
| 232 | + { |
| 233 | + "name": "stdout", |
| 234 | + "output_type": "stream", |
| 235 | + "text": [ |
| 236 | + "Iteration 1280, Minibatch Loss= 1.301216, Training Accuracy= 0.55469\n", |
| 237 | + "Iteration 2560, Minibatch Loss= 1.010427, Training Accuracy= 0.66406\n", |
| 238 | + "Iteration 3840, Minibatch Loss= 0.788430, Training Accuracy= 0.70312\n", |
| 239 | + "Iteration 5120, Minibatch Loss= 0.667551, Training Accuracy= 0.78906\n", |
| 240 | + "Iteration 6400, Minibatch Loss= 0.595816, Training Accuracy= 0.78125\n", |
| 241 | + "Iteration 7680, Minibatch Loss= 0.350965, Training Accuracy= 0.88281\n", |
| 242 | + "Iteration 8960, Minibatch Loss= 0.499101, Training Accuracy= 0.79688\n", |
| 243 | + "Iteration 10240, Minibatch Loss= 0.482088, Training Accuracy= 0.82812\n", |
| 244 | + "Iteration 11520, Minibatch Loss= 0.504503, Training Accuracy= 0.83594\n", |
| 245 | + "Iteration 12800, Minibatch Loss= 0.271221, Training Accuracy= 0.91406\n", |
| 246 | + "Iteration 14080, Minibatch Loss= 0.464995, Training Accuracy= 0.86719\n", |
| 247 | + "Iteration 15360, Minibatch Loss= 0.322582, Training Accuracy= 0.89844\n", |
| 248 | + "Iteration 16640, Minibatch Loss= 0.347899, Training Accuracy= 0.88281\n", |
| 249 | + "Iteration 17920, Minibatch Loss= 0.394192, Training Accuracy= 0.88281\n", |
| 250 | + "Iteration 19200, Minibatch Loss= 0.213484, Training Accuracy= 0.94531\n", |
| 251 | + "Iteration 20480, Minibatch Loss= 0.294130, Training Accuracy= 0.92188\n", |
| 252 | + "Iteration 21760, Minibatch Loss= 0.258474, Training Accuracy= 0.92969\n", |
| 253 | + "Iteration 23040, Minibatch Loss= 0.385059, Training Accuracy= 0.89062\n", |
| 254 | + "Iteration 24320, Minibatch Loss= 0.264384, Training Accuracy= 0.89844\n", |
| 255 | + "Iteration 25600, Minibatch Loss= 0.288544, Training Accuracy= 0.92969\n", |
| 256 | + "Iteration 26880, Minibatch Loss= 0.439751, Training Accuracy= 0.86719\n", |
| 257 | + "Iteration 28160, Minibatch Loss= 0.200464, Training Accuracy= 0.95312\n", |
| 258 | + "Iteration 29440, Minibatch Loss= 0.362614, Training Accuracy= 0.87500\n", |
| 259 | + "Iteration 30720, Minibatch Loss= 0.279403, Training Accuracy= 0.92188\n", |
| 260 | + "Iteration 32000, Minibatch Loss= 0.221065, Training Accuracy= 0.93750\n", |
| 261 | + "Iteration 33280, Minibatch Loss= 0.254707, Training Accuracy= 0.91406\n", |
| 262 | + "Iteration 34560, Minibatch Loss= 0.186574, Training Accuracy= 0.96094\n", |
| 263 | + "Iteration 35840, Minibatch Loss= 0.209275, Training Accuracy= 0.93750\n", |
| 264 | + "Iteration 37120, Minibatch Loss= 0.200519, Training Accuracy= 0.92188\n", |
| 265 | + "Iteration 38400, Minibatch Loss= 0.160687, Training Accuracy= 0.94531\n", |
| 266 | + "Iteration 39680, Minibatch Loss= 0.298483, Training Accuracy= 0.91406\n", |
| 267 | + "Iteration 40960, Minibatch Loss= 0.201895, Training Accuracy= 0.92188\n", |
| 268 | + "Iteration 42240, Minibatch Loss= 0.158606, Training Accuracy= 0.94531\n", |
| 269 | + "Iteration 43520, Minibatch Loss= 0.307986, Training Accuracy= 0.90625\n", |
| 270 | + "Iteration 44800, Minibatch Loss= 0.281966, Training Accuracy= 0.88281\n", |
| 271 | + "Iteration 46080, Minibatch Loss= 0.261283, Training Accuracy= 0.89844\n", |
| 272 | + "Iteration 47360, Minibatch Loss= 0.291441, Training Accuracy= 0.91406\n", |
| 273 | + "Iteration 48640, Minibatch Loss= 0.202818, Training Accuracy= 0.92188\n", |
| 274 | + "Iteration 49920, Minibatch Loss= 0.113422, Training Accuracy= 0.96875\n", |
| 275 | + "Iteration 51200, Minibatch Loss= 0.105692, Training Accuracy= 0.96875\n", |
| 276 | + "Iteration 52480, Minibatch Loss= 0.154081, Training Accuracy= 0.96094\n", |
| 277 | + "Iteration 53760, Minibatch Loss= 0.145414, Training Accuracy= 0.95312\n", |
| 278 | + "Iteration 55040, Minibatch Loss= 0.117242, Training Accuracy= 0.96094\n", |
| 279 | + "Iteration 56320, Minibatch Loss= 0.081149, Training Accuracy= 0.97656\n", |
| 280 | + "Iteration 57600, Minibatch Loss= 0.108463, Training Accuracy= 0.95312\n", |
| 281 | + "Iteration 58880, Minibatch Loss= 0.156470, Training Accuracy= 0.96094\n", |
| 282 | + "Iteration 60160, Minibatch Loss= 0.148587, Training Accuracy= 0.95312\n", |
| 283 | + "Iteration 61440, Minibatch Loss= 0.237871, Training Accuracy= 0.92969\n", |
| 284 | + "Iteration 62720, Minibatch Loss= 0.147145, Training Accuracy= 0.96094\n", |
| 285 | + "Iteration 64000, Minibatch Loss= 0.098019, Training Accuracy= 0.96875\n", |
| 286 | + "Iteration 65280, Minibatch Loss= 0.118203, Training Accuracy= 0.96094\n", |
| 287 | + "Iteration 66560, Minibatch Loss= 0.101285, Training Accuracy= 0.96875\n", |
| 288 | + "Iteration 67840, Minibatch Loss= 0.207359, Training Accuracy= 0.93750\n", |
| 289 | + "Iteration 69120, Minibatch Loss= 0.067886, Training Accuracy= 0.97656\n", |
| 290 | + "Iteration 70400, Minibatch Loss= 0.161458, Training Accuracy= 0.93750\n", |
| 291 | + "Iteration 71680, Minibatch Loss= 0.138106, Training Accuracy= 0.96094\n", |
| 292 | + "Iteration 72960, Minibatch Loss= 0.073405, Training Accuracy= 0.98438\n", |
| 293 | + "Iteration 74240, Minibatch Loss= 0.143483, Training Accuracy= 0.96094\n", |
| 294 | + "Iteration 75520, Minibatch Loss= 0.097661, Training Accuracy= 0.97656\n", |
| 295 | + "Iteration 76800, Minibatch Loss= 0.118980, Training Accuracy= 0.95312\n", |
| 296 | + "Iteration 78080, Minibatch Loss= 0.124437, Training Accuracy= 0.97656\n", |
| 297 | + "Iteration 79360, Minibatch Loss= 0.128721, Training Accuracy= 0.95312\n", |
| 298 | + "Iteration 80640, Minibatch Loss= 0.162701, Training Accuracy= 0.95312\n", |
| 299 | + "Iteration 81920, Minibatch Loss= 0.070164, Training Accuracy= 0.98438\n", |
| 300 | + "Iteration 83200, Minibatch Loss= 0.077578, Training Accuracy= 0.98438\n", |
| 301 | + "Iteration 84480, Minibatch Loss= 0.138588, Training Accuracy= 0.96094\n", |
| 302 | + "Iteration 85760, Minibatch Loss= 0.162362, Training Accuracy= 0.95312\n", |
| 303 | + "Iteration 87040, Minibatch Loss= 0.135977, Training Accuracy= 0.94531\n", |
| 304 | + "Iteration 88320, Minibatch Loss= 0.129117, Training Accuracy= 0.96094\n", |
| 305 | + "Iteration 89600, Minibatch Loss= 0.148080, Training Accuracy= 0.95312\n", |
| 306 | + "Iteration 90880, Minibatch Loss= 0.122423, Training Accuracy= 0.96875\n", |
| 307 | + "Iteration 92160, Minibatch Loss= 0.207287, Training Accuracy= 0.94531\n", |
| 308 | + "Iteration 93440, Minibatch Loss= 0.246922, Training Accuracy= 0.93750\n", |
| 309 | + "Iteration 94720, Minibatch Loss= 0.140132, Training Accuracy= 0.93750\n", |
| 310 | + "Iteration 96000, Minibatch Loss= 0.063141, Training Accuracy= 0.97656\n", |
| 311 | + "Iteration 97280, Minibatch Loss= 0.036757, Training Accuracy= 0.99219\n", |
| 312 | + "Iteration 98560, Minibatch Loss= 0.062806, Training Accuracy= 0.97656\n", |
| 313 | + "Iteration 99840, Minibatch Loss= 0.107706, Training Accuracy= 0.96875\n", |
| 314 | + "Optimization Finished!\n" |
| 315 | + ] |
| 316 | + } |
| 317 | + ], |
| 318 | + "source": [ |
| 319 | + "tf.summary.scalar('accuracy', accuracy)\n", |
| 320 | + "tf.summary.scalar('loss', cost)\n", |
| 321 | + "summaries = tf.summary.merge_all()\n", |
| 322 | + "\n", |
| 323 | + "with tf.Session() as sess:\n", |
| 324 | + " train_writer = tf.summary.FileWriter('logs/', sess.graph)\n", |
| 325 | + " init = tf.global_variables_initializer()\n", |
| 326 | + " sess.run(init)\n", |
| 327 | + " step = 1\n", |
| 328 | + " while batch_size * step < training_iters:\n", |
| 329 | + " batch_x, batch_y = mnist.train.next_batch(batch_size)\n", |
| 330 | + " batch_x = batch_x.reshape(batch_size, n_step, n_input)\n", |
| 331 | + " sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})\n", |
| 332 | + " if step % display_step == 0:\n", |
| 333 | + " acc, loss = sess.run(\n", |
| 334 | + " [accuracy, cost], feed_dict={x: batch_x,\n", |
| 335 | + " y: batch_y})\n", |
| 336 | + " print(\"Iteration \" + str(step * batch_size) + \", Minibatch Loss= \" + \\\n", |
| 337 | + " \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \\\n", |
| 338 | + " \"{:.5f}\".format(acc))\n", |
| 339 | + " if step % 100 == 0:\n", |
| 340 | + " s = sess.run(summaries, feed_dict={x: batch_x, y: batch_y})\n", |
| 341 | + " train_writer.add_summary(s, global_step=step)\n", |
| 342 | + "\n", |
| 343 | + " step += 1\n", |
| 344 | + " print(\"Optimization Finished!\")\n" |
| 345 | + ] |
| 346 | + }, |
| 347 | + { |
| 348 | + "cell_type": "markdown", |
| 349 | + "metadata": {}, |
| 350 | + "source": [ |
| 351 | + "代码参考[https://github.com/nlintz/TensorFlow-Tutorials/blob/master/07_lstm.py](https://github.com/nlintz/TensorFlow-Tutorials/blob/master/07_lstm.py \"title\")" |
| 352 | + ] |
| 353 | + } |
| 354 | + ], |
| 355 | + "metadata": { |
| 356 | + "kernelspec": { |
| 357 | + "display_name": "Python 3", |
| 358 | + "language": "python", |
| 359 | + "name": "python3" |
| 360 | + }, |
| 361 | + "language_info": { |
| 362 | + "codemirror_mode": { |
| 363 | + "name": "ipython", |
| 364 | + "version": 3 |
| 365 | + }, |
| 366 | + "file_extension": ".py", |
| 367 | + "mimetype": "text/x-python", |
| 368 | + "name": "python", |
| 369 | + "nbconvert_exporter": "python", |
| 370 | + "pygments_lexer": "ipython3", |
| 371 | + "version": "3.6.3" |
| 372 | + } |
| 373 | + }, |
| 374 | + "nbformat": 4, |
| 375 | + "nbformat_minor": 2 |
| 376 | +} |
0 commit comments