|
| 1 | +/* A c++ version of sparse_predict_client |
| 2 | + * Build it like inception_client.cc |
| 3 | + =======================================================*/ |
| 4 | +#include <iostream> |
| 5 | +#include <fstream> |
| 6 | + |
| 7 | +#include <grpc++/create_channel.h> |
| 8 | +#include "tensorflow_serving/apis/prediction_service.grpc.pb.h" |
| 9 | +#include "tensorflow/core/framework/tensor.h" |
| 10 | +#include "tensorflow/core/util/command_line_flags.h" |
| 11 | + |
| 12 | +using grpc::Channel; |
| 13 | +using grpc::ClientContext; |
| 14 | +using grpc::ClientReader; |
| 15 | +using grpc::ClientReaderWriter; |
| 16 | +using grpc::ClientWriter; |
| 17 | +using grpc::Status; |
| 18 | + |
| 19 | + |
| 20 | +using tensorflow::serving::PredictRequest; |
| 21 | +using tensorflow::serving::PredictResponse; |
| 22 | +using tensorflow::serving::PredictionService; |
| 23 | + |
| 24 | +typedef google::protobuf::Map< std::string, tensorflow::TensorProto > OutMap; |
| 25 | + |
| 26 | + |
| 27 | +class ServingClient { |
| 28 | + public: |
| 29 | + ServingClient(std::shared_ptr<Channel> channel) |
| 30 | + : stub_(PredictionService::NewStub(channel)) { |
| 31 | + } |
| 32 | + |
| 33 | + std::string callPredict(std::string model_name) { |
| 34 | + PredictRequest predictRequest; |
| 35 | + PredictResponse response; |
| 36 | + ClientContext context; |
| 37 | + |
| 38 | + predictRequest.mutable_model_spec()->set_name(model_name); |
| 39 | + |
| 40 | + google::protobuf::Map< std::string, tensorflow::TensorProto >& inputs = |
| 41 | + *predictRequest.mutable_inputs(); |
| 42 | + |
| 43 | + // Example libSVM data: |
| 44 | + // 0 5:1 6:1 17:1 21:1 35:1 40:1 53:1 63:1 71:1 73:1 74:1 76:1 80:1 83:1 |
| 45 | + // 1 5:1 7:1 17:1 22:1 36:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 81:1 83:1 |
| 46 | + |
| 47 | + // Generate keys proto |
| 48 | + tensorflow::TensorProto keys_tensor_proto; |
| 49 | + keys_tensor_proto.set_dtype(tensorflow::DataType::DT_INT32); |
| 50 | + keys_tensor_proto.add_int_val(1); |
| 51 | + keys_tensor_proto.add_int_val(2); |
| 52 | + keys_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(2); |
| 53 | + |
| 54 | + inputs["keys"] = keys_tensor_proto; |
| 55 | + |
| 56 | + |
| 57 | + // Generate indexs TensorProto |
| 58 | + tensorflow::TensorProto indexs_tensor_proto; |
| 59 | + indexs_tensor_proto.set_dtype(tensorflow::DataType::DT_INT64); |
| 60 | + long indexs[28][2] = { {0, 0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, |
| 61 | + {0, 6}, {0, 7}, {0, 8}, {0, 9}, {0, 10}, {0, 11}, |
| 62 | + {0, 12}, {0, 13}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, |
| 63 | + {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, |
| 64 | + {1, 10}, {1, 11}, {1, 12}, {1, 13} }; |
| 65 | + for (int i = 0; i < 28; i++) { |
| 66 | + for (int j = 0; j < 2; j++) { |
| 67 | + indexs_tensor_proto.add_int64_val(indexs[i][j]); |
| 68 | + } |
| 69 | + } |
| 70 | + indexs_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(28); |
| 71 | + indexs_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(2); |
| 72 | + |
| 73 | + inputs["indexs"] = indexs_tensor_proto; |
| 74 | + std::cout << "Generate indexs tensorproto ok." << std::endl; |
| 75 | + |
| 76 | + // Generate ids TensorProto |
| 77 | + tensorflow::TensorProto ids_tensor_proto; |
| 78 | + ids_tensor_proto.set_dtype(tensorflow::DataType::DT_INT64); |
| 79 | + int ids[28] = {5, 6, 17, 21, 35, 40, 53, 63, 71, 73, 74, 76, 80, 83, 5, |
| 80 | + 7, 17, 22, 36, 40, 51, 63, 67, 73, 74, 76, 81, 83}; |
| 81 | + for (int i = 0; i < 28; i++) { |
| 82 | + ids_tensor_proto.add_int64_val(ids[i]); |
| 83 | + } |
| 84 | + ids_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(28); |
| 85 | + |
| 86 | + inputs["ids"] = ids_tensor_proto; |
| 87 | + std::cout << "Generate ids tensorproto ok." << std::endl; |
| 88 | + |
| 89 | + // Generate values TensorProto |
| 90 | + tensorflow::TensorProto values_tensor_proto; |
| 91 | + values_tensor_proto.set_dtype(tensorflow::DataType::DT_FLOAT); |
| 92 | + float values[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 93 | + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 94 | + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; |
| 95 | + for (int i = 0; i < 28; i++) { |
| 96 | + values_tensor_proto.add_float_val(values[i]); |
| 97 | + } |
| 98 | + values_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(28); |
| 99 | + |
| 100 | + inputs["values"] = values_tensor_proto; |
| 101 | + std::cout << "Generate values tensorproto ok." << std::endl; |
| 102 | + |
| 103 | + // Generate shape TensorProto |
| 104 | + tensorflow::TensorProto shape_tensor_proto; |
| 105 | + shape_tensor_proto.set_dtype(tensorflow::DataType::DT_INT64); |
| 106 | + shape_tensor_proto.add_int64_val(2); // ins num |
| 107 | + shape_tensor_proto.add_int64_val(124); // feature num |
| 108 | + shape_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(2); |
| 109 | + |
| 110 | + inputs["shape"] = shape_tensor_proto; |
| 111 | + std::cout << "Generate shape tensorproto ok." << std::endl; |
| 112 | + |
| 113 | + |
| 114 | + Status status = stub_->Predict(&context, predictRequest, &response); |
| 115 | + |
| 116 | + std::cout << "check status.." << std::endl; |
| 117 | + |
| 118 | + if (status.ok()) { |
| 119 | + std::cout << "call predict ok" << std::endl; |
| 120 | + std::cout << "outputs size is "<< response.outputs_size() << std::endl; |
| 121 | + OutMap& map_outputs = *response.mutable_outputs(); |
| 122 | + OutMap::iterator iter; |
| 123 | + int output_index = 0; |
| 124 | + |
| 125 | + for(iter = map_outputs.begin();iter != map_outputs.end(); ++iter){ |
| 126 | + tensorflow::TensorProto& result_tensor_proto= iter->second; |
| 127 | + tensorflow::Tensor tensor; |
| 128 | + bool converted = tensor.FromProto(result_tensor_proto); |
| 129 | + if (converted) { |
| 130 | + std::cout << "the " <<iter->first <<" result tensor[" << output_index << "] is:" << |
| 131 | + std::endl << tensor.SummarizeValue(13) << std::endl; |
| 132 | + }else { |
| 133 | + std::cout << "the " <<iter->first <<" result tensor[" << output_index << |
| 134 | + "] convert failed." << std::endl; |
| 135 | + } |
| 136 | + ++output_index; |
| 137 | + } |
| 138 | + return "Done."; |
| 139 | + } else { |
| 140 | + std::cout << "gRPC call return code: " |
| 141 | + <<status.error_code() << ": " << status.error_message() |
| 142 | + << std::endl; |
| 143 | + return "gRPC failed."; |
| 144 | + } |
| 145 | + } |
| 146 | + |
| 147 | + private: |
| 148 | + std::unique_ptr<PredictionService::Stub> stub_; |
| 149 | +}; |
| 150 | + |
| 151 | +int main(int argc, char** argv) { |
| 152 | + std::string server_port = "localhost:9000"; |
| 153 | + std::string model_name = "sparse"; |
| 154 | + std::vector<tensorflow::Flag> flag_list = { |
| 155 | + tensorflow::Flag("server_port", &server_port, |
| 156 | + "the IP and port of the server"), |
| 157 | + tensorflow::Flag("model_name", &model_name, "name of model") |
| 158 | + }; |
| 159 | + std::string usage = tensorflow::Flags::Usage(argv[0], flag_list); |
| 160 | + const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list); |
| 161 | + if (!parse_result) { |
| 162 | + std::cout << usage; |
| 163 | + return -1; |
| 164 | + } |
| 165 | + |
| 166 | + ServingClient guide( |
| 167 | + grpc::CreateChannel( server_port, |
| 168 | + grpc::InsecureChannelCredentials())); |
| 169 | + std::cout << "Calling sparse predictor..." << std::endl; |
| 170 | + std::cout << guide.callPredict(model_name) << std::endl; |
| 171 | + |
| 172 | + return 0; |
| 173 | +} |
0 commit comments