|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +import sys |
| 4 | +import numpy as np |
| 5 | +from sklearn import metrics |
| 6 | +from sklearn.svm import SVC |
| 7 | +from sklearn.neural_network import MLPClassifier |
| 8 | +from sklearn.neighbors import KNeighborsClassifier |
| 9 | +from sklearn.tree import DecisionTreeClassifier |
| 10 | +from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier |
| 11 | +from sklearn.naive_bayes import GaussianNB |
| 12 | +from sklearn.discriminant_analysis import LinearDiscriminantAnalysis |
| 13 | +from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis |
| 14 | + |
| 15 | +FEATURE_NUMBER = 9 |
| 16 | + |
| 17 | +# Read train and test data |
| 18 | +with open("../data/cancer_train.csv", "r") as f: |
| 19 | + train_dataset = np.loadtxt(f, delimiter=",") |
| 20 | + train_labels = train_dataset[:, FEATURE_NUMBER] |
| 21 | + train_features = train_dataset[:, 0:FEATURE_NUMBER] |
| 22 | + |
| 23 | +with open("../data/cancer_test.csv", "r") as f: |
| 24 | + test_dataset = np.loadtxt(f, delimiter=",") |
| 25 | + test_labels = test_dataset[:, FEATURE_NUMBER] |
| 26 | + test_features = test_dataset[:, 0:FEATURE_NUMBER] |
| 27 | + |
| 28 | +# Define the model |
| 29 | +classifiers = [ |
| 30 | + DecisionTreeClassifier(max_depth=5), |
| 31 | + MLPClassifier(algorithm='sgd', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1, learning_rate_init=0.001, batch_size=64, max_iter=100, verbose=False), |
| 32 | + MLPClassifier(algorithm='l-bfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1), |
| 33 | + MLPClassifier(algorithm='adam', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1), |
| 34 | + KNeighborsClassifier(2), |
| 35 | + SVC(kernel="linear", C=0.025), |
| 36 | + SVC(gamma=2, C=1), |
| 37 | + RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), |
| 38 | + AdaBoostClassifier(), |
| 39 | + GaussianNB(), |
| 40 | + LinearDiscriminantAnalysis(), |
| 41 | + QuadraticDiscriminantAnalysis()] |
| 42 | + |
| 43 | +if len(sys.argv) > 1: |
| 44 | + classifier_index = int(sys.argv[1]) |
| 45 | +else: |
| 46 | + classifier_index = 0 |
| 47 | +classifier = classifiers[classifier_index] |
| 48 | +print("Use the classifier: {}".format(classifier)) |
| 49 | + |
| 50 | +# Train the model |
| 51 | +print("Start to train") |
| 52 | +model = classifier.fit(train_features, train_labels) |
| 53 | + |
| 54 | +print("Start to validate") |
| 55 | +predict_labels = model.predict(test_features) |
| 56 | +auc = metrics.roc_auc_score(test_labels, predict_labels) |
| 57 | +accuracy = metrics.accuracy_score(test_labels, predict_labels) |
| 58 | + |
| 59 | +# Print the metrics |
| 60 | +print("Accuracy: {}, acu: {}".format(accuracy, auc)) |
0 commit comments