@@ -28,8 +28,8 @@ def merge_set(self, a, b):
28
28
29
29
# Get the set of nodes at position <a> and <b>
30
30
# If <a> and <b> are the roots, this will be constant O(1)
31
- a = self .findSet (a )
32
- b = self .findSet (b )
31
+ a = self .find_set (a )
32
+ b = self .find_set (b )
33
33
34
34
# Join the shortest node to the longest, minimizing tree size (faster find)
35
35
if self .size [a ] < self .size [b ]:
@@ -73,8 +73,8 @@ def kruskal(n, edges, ds):
73
73
mst = [] # List of edges taken, minimum spanning tree
74
74
75
75
for edge in edges :
76
- set_u = ds .findSet (edge .u ) # Set of the node <u>
77
- set_v = ds .findSet (edge .v ) # Set of the node <v>
76
+ set_u = ds .find_set (edge .u ) # Set of the node <u>
77
+ set_v = ds .find_set (edge .v ) # Set of the node <v>
78
78
if set_u != set_v :
79
79
ds .merge_set (set_u , set_v )
80
80
mst .append (edge )
@@ -127,4 +127,4 @@ def kruskal(n, edges, ds):
127
127
edges [i ] = Edge (u , v , weight )
128
128
129
129
# After finish input and graph creation, use Kruskal algorithm for MST:
130
- print ("MST weights sum:" , kruskal (n , edges , ds ))
130
+ print ("MST weights sum:" , kruskal (n , edges , ds ))
0 commit comments