Mathematical Methods for Computer
Vision, Robotics, and Graphics

Course notes for CS 205A, Fall 2013

Justin Solomon
Department of Computer Science
Stanford University

Contents

I Preliminaries

0 Mathematics Review

0.1 Preliminaries: Numbersand Sets
0.2 VectorSpaces e
0.2.1 Defining Vector Spaces o o
0.2.2 Span, Linear Independence,and Bases
0.2.3 OwurFocus: R" e
0.3 Linearity e
0.3.1 Matrices e e e e e e e e e
0.3.2 Scalars, Vectors, and Matrices e
033 Model Problem: AX =D . . . o o oo
0.4 Non-Linearity: Differential Calculus
0.4.1 Differentiation. e e
042 Optimization e
0.5 Problems e e

1 Numerics and Error Analysis

1.1 Storing Numbers with Fractional Parts
1.1.1 Fixed Point Representations
1.1.2 Floating Point Representations
1.1.3 More ExoticOptions
1.2 Understanding Error
121 Classifying Error Lo
1.2.2 Conditioning, Stability, and Accuracy
1.3 Practical Aspects
1.3.1 Larger-Scale Example: Summation
1.4 Problems

II Linear Algebra

2 Linear Systems and the LU Decomposition

2.1 Solvability of Linear Systems
2.2 Ad-Hoc Solution Strategies
2.3 Encoding Row Operations

23.1 Permutation e

232 RowScaling
233 Elimination e e
24 Gaussian Elimination e
2.4.1 Forward Substitution.
242 BackSubstitution
2.4.3 Analysis of Gaussian Elimination
2.5 LUFactorization. e e e e
2.5.1 Constructing the Factorization
252 Implementing LU
2.6 Problems e e e
Designing and Analyzing Linear Systems
3.1 Solution of Square Systems L L Lo
311 Regression
312 LeastSquares
3.1.3 Additional Examples oo Lo
3.2 Special Properties of Linear Systems
3.2.1 Positive Definite Matrices and the Cholesky Factorization
322 Sparsity e
3.3 Sensitivity Analysis
3.3.1 Matrixand Vector Norms
3.3.2 Condition Numbers
3.4 Problems e e
Column Spaces and QR
4.1 The Structure of the Normal Equations
42 Orthogonality
421 Strategy for Non-Orthogonal Matrices
4.3 Gram-Schmidt Orthogonalization.
43.1 Projections
43.2 Gram-Schmidt Orthogonalization
4.4 Householder Transformations
45 Reduced QR Factorization e
4.6 Problems e e e
Eigenvectors
51 Motivation e e e e e e e e e e
5.1.1 Statistics e e e e
5.1.2 Differential Equations 0 0L
52 Spectral Embedding
5.3 Properties of Eigenvectors L L L L
53.1 Symmetric and Positive Definite Matrices
53.2 Specialized Properties L.
54 Computing Eigenvalues
54.1 Powerlteration e

73
73
74
75
76
76
77
78
80
81

8

55
5.6

542 Inverselteration e
543 Shifting.
5.4.4 Finding Multiple Eigenvalues
Sensitivity and Conditioning oL oo
Problems e e

Singular Value Decomposition

6.1

6.2

6.3

7.1

7.2

7.3
74

8.1
8.2

8.3

8.4

Derivingthe SVD
6.1.1 ComputingtheSVD o
Applicationsof theSVD
6.2.1 Solving Linear Systems and the Pseudoinverse
6.2.2 Decomposition into Outer Products and Low-Rank Approximations
623 Matrix Norms
6.24 The Procrustes Problem and Alignment
6.2.5 Principal Components Analysis (PCA)
Problems e

III' Nonlinear Techniques
7 Nonlinear Systems
Single-Variable Problems L oo
7.1.1 Characterizing Problemso 0L
7.1.2 Continuity and Bisection. o 0 L.
7.1.3 Analysisof Root-Finding
714 Fixed Point Iteration o oL
715 Newton'sMethod
716 SecantMethod
7.1.7 Hybrid Techniques
7.1.8 Single-Variable Case: Summary
Multivariable Problems
721 Newton'sMethod
7.2.2 Making Newton Faster: Quasi-Newtonand Broyen
Conditioning
Problems
Unconstrained Optimization
Unconstrained Optimization: Motivation
Optimality
8.2.1 Differential Optimality
8.2.2 Optimality via Function Properties
One-Dimensional Strategies
83.1 Newton'sMethod
83.2 GoldenSectionSearch L.
Multivariable Strategies o
8.4.1 GradientDescent L

99

99
101
101
101
102
104
105
106
107

109

111
111
111
112
112
113
114
115
116
116
117
117
117
119
119

842 Newton'sMethod
8.4.3 Optimization without Derivatives: BEGS
85 Problems
9 Constrained Optimization
9.1 Motivation
9.2 Theory of Constrained Optimization
9.3 Optimization Algorithms L
9.3.1 Sequential Quadratic Programming (SQP)
9.3.2 BarrierMethods.
94 Convex Programming
95 Problems
10 Iterative Linear Solvers
10.1 Gradient Descent L
10.1.1 Deriving the Iterative Scheme o L.
10.1.2 Convergence
10.2 Conjugate Gradients
1021 Motivation L
10.2.2 Suboptimality of Gradient Descent
10.2.3 Generating A-Conjugate Directions
10.2.4 Formulating the Conjugate Gradients Algorithm
10.2.5 Convergence and Stopping Conditions
10.3 Preconditioning
10.3.1 CG with Preconditioning
10.3.2 Common Preconditioners
10.4 Other Iterative Schemes
10.5 Problems

IV Functions, Derivatives, and Integrals

11 Interpolation
11.1 Interpolation in a Single Variable
11.1.1 Polynomial Interpolation,
11.1.2 Alternative Bases e
11.1.3 Piecewise Interpolation
11.1.4 Gaussian Processes and Kriging
11.2 Multivariable Interpolation
11.3 Theory of Interpolation L L
11.3.1 Linear Algebraof Functions
11.3.2 Approximation via Piecewise Polynomials
114 Problems e

135
135
137
140
140
141
141
143

145
146
146
147
149
149
151
152
154
155
156
157
158
159
160

161

12

13

14

Numerical Integration and Differentiation

12.1 Motivation e e e e e

12.2 Quadrature. e e e e e
12.2.1 Interpolatory Quadrature
12.2.2 QuadratureRules
12.2.3 Newton-Cotes Quadrature,
12.2.4 Gaussian Quadrature
12.2.5 Adaptive Quadrature
12.2.6 Multiple Variables oo o
12.2.7 Conditioning

12.3 Differentiation e e
12.3.1 Differentiating Basis Functions
12.3.2 Finite Differences e
12.3.3 ChoosingtheStepSize Lo L L L.
12.3.4 Integrated Quantities. o L L L L

12.4 Problems e e e

Ordinary Differential Equations
13.1 Motivation e e e e e e
13.2 Theory of ODEs
13.2.1 BasicNotions e e e
13.2.2 Existence and Uniqueness,
13.23 Model Equations L
13.3 Time-Stepping Schemes L.
13.3.1 ForwardEuler. e
13.3.2 Backward Euler
13.3.3 Trapezoidal Method
13.3.4 Runge-KuttaMethods
13.3.5 Exponential Integrators
13.4 Multivalue Methods e
13.4.1 NewmarkSchemes e
1342 Staggered Grid L
135 ToDo e e e e
13.6 Problems e e e

Partial Differential Equations

14.1 Motivation e e e e e

14.2 Basicdefinitions e

14.3 Model Equations
14.3.1 EllipticPDEs
14.3.2 ParabolicPDEs e
14.3.3 HyperbolicPDEs

14.4 Derivativesas Operators

14.5 Solving PDEs Numerically
14.5.1 Solving Elliptic Equations
14.5.2 Solving Parabolic and Hyperbolic Equations

7

175
176
177
177
178
179
182
183
183
184
185
185
185
187
187
188

189
190
190
191
192
193
194
194
195
196
197
198
199
199
202
203
203

14.6
14.7

14.8
14.9

Method of Finite Elements 217
Examplesin Practice 217
14.7.1 Gradient Domain Image Processing 217
14.7.2 Edge-Preserving Filtering 217
14.7.3 Grid-Based Fluids e 217
ToDo e e 217
Problems e e 218

Part1

Preliminaries

Chapter 0

Mathematics Review

In this chapter we will review relevant notions from linear algebra and multivariable calculus that
will figure into our discussion of computational techniques. It is intended as a review of back-
ground material with a bias toward ideas and interpretations commonly encountered in practice;
the chapter safely can be skipped or used as reference by students with stronger background in
mathematics.

0.1 Preliminaries: Numbers and Sets
Rather than considering algebraic (and at times philosophical) discussions like “What is a num-
ber?,” we will rely on intuition and mathematical common sense to define a few sets:

e The natural numbers N = {1,2,3,...}

e Theintegers Z ={...,—-2,—-1,0,1,2,...}

e The rational numbers Q = {2/v: a,b € Z}!

o The real numbers R encompassing Q as well as irrational numbers like 7t and /2

e The complex numbers C = {a + bi : a,b € R}, where we think of i as satisfying i = v/—1.

It is worth acknowledging that our definition of R is far from rigorous. The construction of the
real numbers can be an important topic for practitioners of cryptography techniques that make
use of alternative number systems, but these intricacies are irrelevant for the discussion at hand.
As with any other sets, N, Z, Q, R, and C can be manipulated using generic operations to
generate new sets of numbers. In particular, recall that we can define the “Euclidean product” of

two sets A and B as
AxB={(ab):ac Aand b € B}.

We can take powers of sets by writing

A"=AxAXx ---xA.

n times

I This is the first of many times that we will use the notation {A : B}; the braces should denote a set and the colon
can be read as “such that.” For instance, the definition of Q can be read as “the set of fractions 4/b such that a and b are
integers.” As a second example, we could write N = {n € Z : n > 0}.

11

This construction yields what will become our favorite set of numbers in chapters to come:

R" = {(ay,az,...,a,) : a; € R for all i}

0.2 Vector Spaces

Introductory linear algebra courses easily could be titled “Introduction to Finite-Dimensional Vec-
tor Spaces.” Although the definition of a vector space might appear abstract, we will find many
concrete applications that all satisfy the formal aspects and thus can benefit from the machinery
we will develop.

0.2.1 Defining Vector Spaces
We begin by defining a vector space and providing a number of examples:

Definition 0.1 (Vector space). A vector space is a set V that is closed under scalar multiplication and
addition.

For our purposes, a scalar is a number in IR, and the addition and multiplication operations
satisfy the usual axioms (commutativity, associativity, and so on). It is usually straightforward to
spot vector spaces in the wild, including the following examples:

Example 0.1 (R"” as a vector space). The most common example of a vector space is R". Here, addition
and scalar multiplication happen component-by-component:

(1,2) + (=3,4) = (1—-3,2+4) = (-2,6)
10-(—=1,1) = (10- —1,10-1) = (—10,10)

Example 0.2 (Polynomials). A second important example of a vector space is the “ring” of polynomials
with real number inputs, denoted R[x]. A polynomial p € R[x] is a function p : R — R taking the form?

p(x) = Zﬂkxk-
k

Addition and scalar multiplication are carried out in the usual way, e.g. if p(x) = x> +2x — 1 and
q(x) = 23, then 3p(x) + 5q(x) = 5x° + 3x2 + 6x — 3, which is another polynomial. As an aside, for
future examples note that functions like p(x) = (x —1)(x + 1) + x%(x®> — 5) are still polynomials even

though they are not explicitly written in the form above.

Elements 7 € V of a vector space V are called vectors, and a weighted sum of the form }; a;7;,
where a; € R and ¥; € V, is known as a linear combination of the 7;’s. In our second example,
the “vectors” are functions, although we do not normally use this language to discuss R[x]. One
way to link these two viewpoints would be to identify the polynomial Y a;x* with the sequence
(ag, a1, 4z, - - -); remember that polynomials have finite numbers of terms, so the sequence eventu-
ally will end in a string of zeros.

2The notation f : A — B means f is a function that takes as input an element of set A and outputs an element of
set B. For instance, f : R — Z takes as input a real number in IR and outputs an integer Z, as might be the case for
f(x) = |x], the “round down” function.

12

0.2.2 Span, Linear Independence, and Bases

Suppose we start with vectors 7, ..., 7, € V for vector space V. By Definition 0.1, we have two
ways to start with these vectors and construct new elements of V: addition and scalar multiplica-
tion. The idea of span is that it describes all of the vectors you can reach via these two operations:

Definition 0.2 (Span). The span of aset S C V of vectors is the set
span S = {mv1 + - -+ ax U 1 k > 0,v; € V forall i, and a; € R for all i}.

Notice that span S is a subspace of V, that is, a subset of V that is in itself a vector space. We can
provide a few examples:

Example 0.3 (Mixology). The typical “well” at a cocktail bar contains at least four ingredients at the
bartender’s disposal: vodka, tequila, orange juice, and grenadine. Assuming we have this simple well, we
can represent drinks as points in R*, with one slot for each ingredient. For instance, a typical “tequila
sunrise” can be represented using the point (0,1.5,6,0.75), representing amounts of vodka, tequila, orange
juice, and grenadine (in ounces), resp.

The set of drinks that can be made with the typical well is contained in

span {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)},

that is, all combinations of the four basic ingredients. A bartender looking to save time, however, might no-
tice that many drinks have the same orange juice to grenadine ratio and mix the bottles. The new simplified
well may be easier for pouring but can make fundamentally fewer drinks:

span {(1,0,0,0), (0,1,0,0),(0,0,6,0.75) }
Example 0.4 (Polynomials). Define the pi(x) = x*. Then, it is easy to see that
R[x] = span {py : k > 0}.
Make sure you understand notation well enough to see why this is the case.

Adding another item to a set of vectors does not always increase the size of its span. For
instance, in IR? it is clearly the case that

span{(1,0),(0,1)} =span{(1,0),(0,1),(1,1)}.
In this case, we say that the set {(1,0), (0,1), (1,1)} is linearly dependent:

Definition 0.3 (Linear dependence). We provide three equivalent definitions. A set S C 'V of vectors is
linearly dependent if:

1. One of the elements of S can be written as a linear combination of the other elements, or S contains
zero.

2. There exists a non-empty linear combination of elements Uy € S yielding Y ' | cxvx = 0 where
cx # 0 for all k.

3. There exists U € S such that span S = span S\{¥}. That is, we can remove a vector from S without
affecting its span.

13

If S is not linearly dependent, then we say it is linearly independent.

Providing proof or informal evidence that each definition is equivalent to its counterparts (in an
“if and only if” fashion) is a worthwhile exercise for students less comfortable with notation and
abstract mathematics.

The concept of linear dependence leads to an idea of “redundancy” in a set of vectors. In
this sense, it is natural to ask how large a set we can choose before adding another vector cannot
possibly increase the span. In particular, suppose we have a linearly independent set S C V), and
now we choose an additional vector 7 € V. Adding 7 to S leads to one of two possible outcomes:

1. The span of S U {#} is larger than the span of S.
2. Adding 7 to S has no effect on the span.

The dimension of V is nothing more than the maximal number of times we can get outcome 1, add
7 to S, and repeat.

Definition 0.4 (Dimension and basis). The dimension of V is the maximal size |S| of a linearly-
independent set S C 'V such that span S = V. Any set S satisfying this property is called a basis for
V.

Example 0.5 (R"). The standard basis for R" is the set of vectors of the form

&=(0,.,0,10,...,0).
k—1 slots n—k slots

That is, e, has all zeros except for a single one in the k-th slot. It is clear that these vectors are linearly
independent and form a basis; for example in R® any vector (a,b,c) can be written as aey + bé; + c@;.
Thus, the dimension of R" is n, as we would expect.

Example 0.6 (Polynomials). It is clear that the set {1,x,x%,x°,...} is a linearly independent set of poly-
nomials spanning R|[x|. Notice that this set is infinitely large, and thus the dimension of R[x] is co.

0.2.3 Owur Focus: R”

Of particular importance for our purposes is the vector space R", the so-called n-dimensional Eu-
clidean space. This is nothing more than the set of coordinate axes encountered in high school math
classes:

e R! = R is the number line
e IR? is the two-dimensional plane with coordinates (x,y)
e IR? represents three-dimensional space with coordinates (x,y, z)

Nearly all methods in this course will deal with transformations and functions on IR".
For convenience, we usually write vectors in R” in “column form,” as follows

(a1,...,a,)

14

This notation will include vectors as special cases of matrices discussed below.
Unlike some vector spaces, R” has not only a vector space structure, but also one additional
construction that makes all the difference: the dot product.

Definition 0.5 (Dot product). The dot product of two vectors @ = (ay,...,a,) and b = (b, ..., b,) in
R" is given by

n
ia-b= Z akbk.
k=1

Example 0.7 (R?). The dot product of (1,2) and (—2,6)is1-—2+2-6 = —2+12 = 10.

The dot product is an example of a metric, and its existence gives a notion of geometry to R".
For instance, we can use the Pythagorean theorem to define the norm or length of a vector @ as the

square root
@2 = /a3 + - +a2 =Vi-a.

Then, the distance between two points @,b € R" is simply ||b — |
Dot products yield not only notions of lengths and distances but also of angles. Recall the
following identity from trigonometry for 4,b € R3:

i-b=|a]|b]| cos®

where 6 is the angle between @ and b. For n > 4, however, the notion of “angle” is much harder to
visualize for IR”. We might define the angle 6 between @ and b to be the value 6 given by
i-b
[all[[o]l

0 = arccos

We must do our homework before making such a definition! In particular, recall that cosine out-
puts values in the interval [—1,1], so we must check that the input to arc cosine (also notated

cos™1) is in this interval; thankfully, the well-known Cauchy-Schwarz inequality - b < ||@||||?|
guarantees exactly this property.

When @ = cb for some ¢ € R, we have § = arccos 1 = 0, as we would expect: the angle between
parallel vectors is zero. What does it mean for vectors to be perpendicular? Let’s substitute 6 =
90°. Then, we have

0 = cos90°
@b
1]l o]l
Multiplying both sides by ||7||||b| motivates the definition:

Definition 0.6 (Orthogonality). Two vectors are perpendicular, or orthogonal, when 4 - b=0.

This definition is somewhat surprising from a geometric standpoint. In particular, we have
managed to define what it means to be perpendicular without any explicit use of angles. This
construction will make it easier to solve certain problems for which the nonlinearity of sine and
cosine might have created headache in simpler settings.

15

Aside 0.1. There are many theoretical questions to ponder here, some of which we will address in future
chapters when they are more motivated:

e Do all vector spaces admit dot products or similar structures?
e Do all finite-dimensional vector spaces admit dot products?
o What might be a reasonable dot product between elements of R[x]?

Intrigued students can consult texts on real and functional analysis.

0.3 Linearity

A function between vector spaces that preserves structure is known as a linear function:

Definition 0.7 (Linearity). Suppose V and V' are vector spaces. Then, L : V — V' is linear if it satisfies
the following two criteria for all U, v,,7, € V and c € R:

o L preserves sums: L[01 + U] = L[01] + L[]
e L preserves scalar products: L[ct| = c L[]

It is easy to generate linear maps between vector spaces, as we can see in the following examples:
Example 0.8 (Linearity in R"). The following map f : R? — R3 is linear:

floy) = (3x,2x +y, ~y)
We can check linearity as follows:

e Sum preservation:

flx1+x2,y1 +y2) = (B(x1 + x2),2(x1 + x2) + (y1 +y2), —(y1 + ¥2))
(

3x1,2x1 +y1, —y1) + (Bx2, 2x%2 + y2, —V2)
flxu,y1) + f(x2,92)

e Scalar product preservation:

flex,cy) = (Bex, 2¢x + cy, —cy)
=c(3x,2x+y,—y)
= cf(xy)

Contrastingly, ¢(x,y) = xy? is not linear. For instance, g(1,1) = 1 but g(2,2) = 8 #2-g(1,1), so this
form does not preserve scalar products.

Example 0.9 (Integration). The following “functional” L from R|x] to R is linear:

Llp@)] = [plo)dx

16

This somewhat more abstract example maps polynomials p(x) to real numbers L]{p(x)]. For example, we
can write

1
L[3x* +x —1] :/ (3x2+x—1)dx:%.
0

Linearity comes from the following well-known facts from calculus:

[Fe far=c [fix)ax
/Ol[f(x) +g(x)]dx = /Olf(x)dx—i—/olg(x) dx

We can write a particularly nice form for linear maps on R”. Recall that the vector 7 =
(a1,...,a,) is equal to the sum Y j axé, where & is the k-th standard basis vector. Then, if £ is
linear we know:

Lld =L [Z ak(?k] for the standard basis &)
k

=Y L [a&] by sum preservation
k

= Y @ L [@] by scalar product preservation
k

This derivation shows the following important fact:

L is completely determined by its action on the standard basis vectors é.
That is, for any vector 7 € R”, we can use the sum above to determine £[4] by linearly combining
Lle1], ..., L[e].

Example 0.10 (Expanding a linear map). Recall the map in Example 0.8 given by f(x,y) = (3x,2x +
Y, —y). We have f(&1) = f(1,0) = (3,2,0) and f(é2) = f(0,1) = (0,1, —1). Thus, the formula above

shows:
3 0
f(x/y)xf(51)+yf(52)x<2)+y(1)

0.3.1 Matrices

The expansion of linear maps above suggests one of many contexts in which it is useful to store
multiple vectors in the same structure. More generally, say we have n vectors 7y, ..., 7, € R™. We
can write each as a column vector:

011 012 U1n

- 021 . 022 . U2n
1= 7 02 - s, 0 =

Om1 Om2 Omn

17

Carrying these around separately can be cumbersome notationally, so to simplify matters we sim-
ply combine them into a single m X n matrix:

011 Y12 - Uin
| | | Uyl Upp -+ Uy
5’1 7}'2 e 7771 —
. |
Oml Om2 " Omn

We will call the space of such matrices R"*".

Example 0.11 (Identity matrix). We can store the standard basis for R" in the n x n “identity matrix”
Ly xn given by:

1 0 --- 00

| ’ ‘ o1 .-- 00

Lixn = e & € = o : M
| \ 00 --- 10

00 --- 01

Since we constructed matrices as convenient ways to store sets of vectors, we can use multi-
plication to express how they can be combined linearly. In particular, a matrix in R"*" can be
multiplied by a column vector in IR" as follows:

C1

| ’ c
2
U Ty - Uy) =101+ b+ - -+ cuTy
| :

Cn

Expanding this sum yields the following explicit formula for matrix-vector products:

011 Y12t O1n €1 €1011 + 2012 + - - - + Cu0V1y
Up1 U2 - U2 c2 C1U21 + CoUp + -+ - 4+ €Uy
Om1 Om2 - Omn Cn C10m1 + C20m2 +--+ CnOmn

Example 0.12 (Identity matrix multiplication). It is clearly true that for any ¥ € R", we can write
X = LyxnX, where I,y is the identity matrix from Example 0.11.

Example 0.13 (Linear map). We return once again to the expression from Example 0.8 to show one more
alternative form:
3 0
floy)=12 1 (x>
0o -1/ \Y

We similarly define a product between a matrix in M € R"*" and another matrix in R"*? by
concatenating individual matrix-vector products:

|
M|la & - & M& M& - Mé,
| | I |

18

Example 0.14 (Mixology). Continuing Example 0.3, suppose we make a tequila sunrise and second con-
coction with equal parts of the two liquors in our simplified well. To find out how much of the basic in-
gredients are contained in each order, we could combine the recipes for each column-wise and use matrix
multiplication:

Well 1 Well2 Well 3 . . Drink1 Drink 2
Vodka / 1 0 0 b ”gk 1D 61315‘ 2 0 0.75 \ Vodka
Tequila 0 1 0o | 15 0'75 _| 15 0.75 | Tequila
0]} 0 0 6 1 '2 6 12 o]
Grenadine 0 0 0.75 0.75 15 Grenadine

In general, we will use capital letters to represent matrices, like A € R"™*". We will use the
notation A;; € R to denote the element of A at row i and column j.

0.3.2 Scalars, Vectors, and Matrices

It comes as no surprise that we can write a scalar asa 1 x 1 vector ¢ € R1*!. Similar, as we already
suggested in §0.2.3, if we write vectors in IR" in column form, they can be considered 1 x 1 matrices
7 € R"*!. Notice that matrix-vector products can be interpreted easily in this context; for example,
if A e R™" ¥ e R", and be R™, then we can write expressions like

A X =_b
N ~—~—
mxn nx1 mx1

We will introduce one additional operator on matrices that is useful in this context:

Definition 0.8 (Transpose). The transpose of a matrix A € R"™*" isa matrix AT € R" ™ with elements
(AT>1']‘ =A jis

Example 0.15 (Transposition). The transpose of the matrix

1
A= 3
5

NN

is given by
T (135
A= (2 4 6))
Geometrically, we can think of transposition as flipping a matrix on its diagonal.

This unified treatment of scalars, vectors, and matrices combined with operations like trans-
position and multiplication can lead to slick derivations of well-known identities. For instance,

19

we can compute the dot products of vectors @, b € R” by making the following series of steps:

k=1
by
by
=(m m a) |
by,
=7'b

Many important identities from linear algebra can be derived by chaining together these opera-
tions with a few rules:

(A7) =4
(A+B)T =A"+B'
(AB)T =BTA"T

Example 0.16 (Residual norm). Suppose we have a matrix A and two vectors X and b. If we wish to
know how well AX approximates b, we might define a residual 7 = b — AX; this residual is zero exactly
when AZ = b. Otherwise, we might use the norm |7 as a proxy for the relationship between AX and b.
We can use the identities above to simplify:

713 = [[b — AZ]13

= (b — AX) - (b — AX) as explained in §0.2.3

= (b — AX)" (b — AX) by our expression for the dot product above
= (b" —x"AT)(b— AR) by properties of transposition
=b'b—b"AX— X" ATb+ %" AT AR after multiplication

All four terms on the right hand side are scalars, or equivalently 1 x 1 matrices. Scalars thought of as
matrices trivially enjoy one additional nice property c' = c, since there is nothing to transpose! Thus, we
can write

X'ATh=x"ATh) =b" A%
This allows us to simplify our expression even more:

I713=0"b—2b" AX+ X' AT AX
— || A%||3 — 2b7 A%+ |3

We could have derived this expression using dot product identities, but intermediate steps above will prove
useful in our later discussion.

20

0.3.3 Model Problem: A% = b

In introductory algebra class, students spend considerable time solving linear systems such as the
following for triplets (x,y, z):

3x+2y+5z=0
—4x +9y — 3z = -7
2x -3y —3z=1

Our constructions in §0.3.1 allow us to encode such systems in a cleaner fashion:

3 2 5 X 0
-4 9 -3 y | =1 -7
2 -3 -3 z 1

More generally, we can write linear systems of equations in the form A¥ = b by following the
same pattern above; here, the vector ¥ is unknown while A and b are known. Such a system of
equations is not always guaranteed to have a solution. For instance, if A contains only zeros, then
clearly no ¥ will satisfy AX = b whenever b # 0. We will defer a general consideration of when a
solution exists to our discussion of linear solvers in future chapters.
A key interpretation of the system AX = b is that it addresses task:
Write b as a linear combination of the columns of A.

Why? Recall from §0.3.1 that the product AX is encoding a linear combination of the columns of A
with weights contained in elements of ¥. So, the equation AX = b asks that the linear combination
AZ equal the given vector b. Given this interpretation, we define the column space of A to be the
space of right hand sides b for which the system has a solution:

Definition 0.9 (Column space). The column space of a matrix A € R™*" is the span of the columns of
A. We can write as

col A ={AX: X € R"}.

One important case is somewhat easier to consider. Suppose A is square, so we can write
A € R"™*", Furthermore, suppose that the system AX¥ = b has a solution for all choices of b. The
only condition on b is that it is a member of R, so by our interpretation above of AX = b we can
conclude that the columns of A span R".

In this case, since the linear system is always solvable suppose we plug in the standard basis
ey, ..., e, to yield vectors ¥y,..., X, satisfying AXy; = ¢ for each k. Then, we can “stack” these
expressions to show:

= =

| |
Al % % o %y | =| A% AR, - A%, | =& & - & | =l
| | |

where I, is the identity matrix from Example 0.11. We will call the matrix with columns ¥j the
inverse A1, which satisfies

ol

AAT = ATTA = I,4,.

21

100

— 50
\}j/ |
=)

—50 |

Figure 1: The closer we zoom into f(x) = x* 4+ x? — 8x + 4, the more it looks like a line.

It is also easy to check that (A~!)~! = A. When such an inverse exists, it is easy to solve the
system AX = b. In particular, we find:

X=Ipa¥=(A1TA)¥= A1 (A%) = A1

0.4 Non-Linearity: Differential Calculus

While the beauty and applicability of linear algebra makes it a key target of study, nonlinearities
abound in nature and we often must design computational systems that can deal with this fact of
life. After all, at the most basic level the square in the famous relationship E = mc? makes it less
than amenable to linear analysis.

0.4.1 Differentiation

While many functions are globally nonlinear, locally they exhibit linear behavior. This idea of “local
linearity” is one of the main motivators behind differential calculus. For instance, Figure 1 shows
that if you zoom in close enough to a smooth function eventually it looks like a line. The derivative
f'(x) of a function f(x) : R — R is nothing more than the slope of the approximating line,
computed by finding the slope of lines through closer and closer points to x:

f/(x) — lim f(y) —f(X)

y—x y—x

We can express local linearity by writing f(x + Ax) = f(x) + Ax - f'(x) + O(Ax?).

If the function f takes multiple inputs, then it can be written f(¥) : R” — R for ¥ € R"; in
other words, to each point ¥ = (x1,...,,) in n-dimensional space f assigns a single number
f(x1,...,x,). Our idea of local linearity breaks down somewhat here, because lines are one-
dimensional objects. However, fixing all but one variable reduces back to the case of single-
variable calculus. For instance, we could write g(t) = f(t,x2,...,x,), where we simply fix con-
stants x,...,x,. Then, g(t) is a differentiable function of a single variable. Of course, we could
have put f in any of the input slots for f, so in general we make the following definition of the
partial derivative of f:

22

Definition 0.10 (Partial derivative). The k-th partial derivative of f, notated %, is given by differen-
tiating f in its k-th input variable:

d d
a;fk(xl,.-.,xn) = ﬁf(xlz---/xk—lzt/xk+1/---/xn)|t:xk

The notation “|;—y,” should be read as “evaluated at t = x;.”

Example 0.17 (Relativity). The relationship E = mc? can be thought of as a function from m and c to E.
Thus, we could write E(m,c) = mc?, yielding the derivatives

8E_2
%—c
JoE
§_2mc

Using single-variable calculus, we can write:
f(X+AX) = f(x1+Axq, %0+ Axp, ..., Xy + Axy)

= f(x1, %0+ Axa, ..., xy + Axy) + aa;rmq + O(Ax%) by single-variable calculus
1

= flxr,... X))+) [;}{Axk + O(Axi)] by repeating this n times
k=1 LYk

= f(X)+ Vf(2) - A%+ O(||7]*)

where we define the gradient of f as

S SO P

ox; 9xy” T ox,

From this relationship, it is easy to see that f can be differentiated in any direction ¥, we can
evaluate this derivative D3f as follows:

t
— V()5
Example 0.18 (R?). Tuke f(x,y) = x*y>. Then,
of _ 5.3
Pl 2xy
Of 529
- 3x°y

Thus, we can write V f (x,y) = (2xy®, 3x?y?). The derivative of f at (1,2) in the direction (—1,4) is given
by (—1,4) - Vf(1,2) = (—1,4) - (16,12) = 32.

Example 0.19 (Linear functions). It is obvious but worth noting that the gradient of f(X) =d-X+¢ =
(a1x1+ 1., anXy +Cp) is 4.

23

Example 0.20 (Quadratic forms). Take any matrix A € R"*", and define f(¥) = ¥' AX. Expanding
this function element-by-element shows

f(f) = ZAijxixj;

ij
expanding out f and checking this relationship explicitly is worthwhile. Take some k € {1,...,n}. Then,
we can can separate out all terms containing xy.:

f(f) = Akkx,% + Xk (Z Ajxi + Z Aij]-> + Z Ai]-xz-x]-
ik j#k ij#k
With this factorization, it is easy to see
of
o = 2Akexe + Y Auxi+) Agx;
Xk iZk 7k

n
=Y (A + Axi)xi
i-1

This sum is nothing more than the definition of matrix-vector multiplication! Thus, we can write
Vf(X)=A¥+A"%

We have generalized from f : R — R to f : R"” — R. To reach full generality, we would
like to consider f : R" — RR™. In other words, f takes in n numbers and outputs m numbers.
Thankfully, this extension is straightforward, because we can think of f as a collection of single-
valued functions fi, ..., fi : R" — R smashed together into a single vector. That is, we write:

Each f can be differentiated as before, so in the end we get a matrix of partial derivatives called
the Jacobian of f:

Definition 0.11 (Jacobian). The Jacobian of f : R" — IR™ is the matrix D f € R™*" with entries
ofi
ax]' '

(Df)ij =

Example 0.21 (Simple function). Suppose f(x,y) = (3x, —xy?, x +y). Then,

30
Df(x,y) = (—1yz —21xy) :

Make sure you can derive this computation by hand.

24

Example 0.22 (Matrix multiplication). Unsurprisingly, the Jacobian of f(X) = AX for matrix A is given
by Df(X) = A.

Here we encounter a common point of confusion. Suppose a function has vector input and
scalar output, thatis, f : R” — IR. We defined the gradient of f as a column vector, so to align this
definition with that of the Jacobian we must write

Df =Vf'.

0.4.2 Optimization

Recall from single variable calculus minima and maxima of f : R — IR must occur at points x
satisfying f'(x) = 0. Of course, this condition is necessary rather than sufficient: there may exist
points x with f/'(x) = 0 that are not maxima or minima. That said, finding such critical points of
f can be a step of a function minimization algorithm, so long as the next step ensures that the
resulting x actually a minimum /maximum.

If f:R" = R is minimized or maximized at X, we have to ensure that there does not exist a
single direction Ax from ¥ in which f decreases or increases, resp. By the discussion in §0.4.1, this
means we must find points for which Vf = 0.

Example 0.23 (Simple function). Suppose f(x,y) = x* + 2xy + 4y>. Then, % = 2x + 2y and % =
2x + 8y. Thus, critical points of f satisfy:

2x+2y =0
2x +8y =0

Clearly this system is solved at (x,y) = (0,0). Indeed, this is the minimum of f, as can be seen more clearly
by writing f(x,y) = (x +y)? + 3y

Example 0.24 (Quadratic functions). Suppose f(¥) = ¥T AX + b' % + c. Then, from the examples in
the previous section we can write V f(¥) = (AT + A)X 4 b. Thus, critical points X of f satisfy (AT +
A)X+b=0.

Unlike single-variable calculus, when we do calculus on R” we can add constraints to our
optimization. The most general form of such a problem looks like:

minimize f(X)
such that g(¥) = 0

Example 0.25 (Rectangle areas). Suppose a rectangle has width w and height h. A classic geometry
problem is to maximize area with a fixed perimeter 1:

maximize wh
such that 2w +2h—1=0

When we add this constraint, we can no longer expect that critical points satisfy V f(¥) = 0, since
these points might not satisfy ¢(¥) = 0.

25

For now, suppose g : R" — R. Consider the set of points Sg = {X¥ : g(¥) = 0}. Obviously, any
two X,/ € S satisfy the relationship g(i/) — g(¥) = 0 — 0 = 0. Suppose i = X + AX for small AX.
Then, ¢(¥/) — ¢(¥) = Vg(¥) - A% + O(||AX||?). In other words, if we start at ¥ satisfying g(¥) = 0,
then if we displace in the AX direction Vg(X) - AX = 0 to continue to satisfy this relationship.

Now, recall that the derivative of f in the direction 7 at X is given by V f - 7. If ¥ is a minimum
of the constrained optimization problem above, then any small displacement X to ¥ 4 ¥ should
cause an increase from f(X) to f(X¥ + 7). Since we only care about displacements ¥ preserving
the ¢(X¥ + ¥) = ¢ constraint, from our argument above we want Vf -7 = 0 for all 7 satisfying
Vg(X)-7 = 0. In other words, V f and Vg must be parallel, a condition we can writeas Vf = AVg
for some A € R.

Define

A(X,A) = f(X) = Ag().

Then, critical points of A without constraints satisfy:

In other words, critical points of A satisfy ¢(¥) = 0 and Vf(X) = AVg(X), exactly the optimality
conditions we derived!
Extending to multivariate constraints yields the following:

Theorem 0.1 (Method of Lagrange multipliers). Critical points of the constrained optimization problem
above are unconstrained critical points of the Lagrange multiplier function

AT A) = f(X) - 1-g(3),

with respect to both ¥ and A.

Example 0.26 (Maximizing area). Continuing Example 0.25, we define the Lagrange multiplier function
A(w, h,A) = wh — A(2w + 2h — 1). Differentiating, we find:

Oza—A:h—ZA
Jw
oA
0= By =w—2A
oA
0= 7 1—-2w—2h

So, critical points of the system satisfy

(2 3)(5)-()

Solving the system shows w = h = 1/4 and A = 1/8. In other words, for a fixed amount of perimeter, the
rectangle with maximal area is a square.

26

Example 0.27 (Eigenproblems). Suppose that A is a symmetric positive definite matrix, meaning A" =
A (symmetry) and T A% > 0 for all ¥ € R™"\{0} (positive definite). Often we wish to minimize X' A%
subject to ||x||3 = 1 for a given matrix A € R™*"; notice that without the constraint the minimum trivially
takes place at X = 0. We define the Lagrange multiplier function
A(FA) =21 AX = A(|%]2 - 1)
=¥ AX - A(XT¥-1).

Differentiating with respect to X, we find
0= VzA =2AX — 2AX
In other words, X is an eigenvector of the matrix A:

AX = AX.

0.5 Problems

Problem 0.1. Take C'(IR) to be the set of functions f : R — R that admit a first derivative f'(x). Why is
C!(R) a vector space? Prove that C'(R) has dimension .

Problem 0.2. Suppose the rows of A € R™*" are given by the transposes of 71,...,7n € R" and the
columns of A € R™*" are given by ¢y, ..., ¢, € R™. That is,

=T

2T

: | |
7;;

Give expressions for the elements of AT A and AAT in terms of these vectors.

Problem 0.3. Give a linear system of equations satisfied by minima of the energy f(¥) = ||AX — b3

with respect to ¥, for ¥ € R", A € R™*", and b € R™. This system is called the “normal equations”
and will appear elsewhere in these notes; even so, it is worth working through and fully understanding the
derivation.

Problem 0.4. Suppose A,B € R"*". Formulate a condition for vectors X € IR" to be critical points of
| AX||3 subject to ||Bx||3 = 1. Also, give an alternative form for the optimal values of || AX]|3.

Problem 0.5. Fix some vector @ € R"\{0} and define f(X) = @ - ¥. Give an expression for the maximum
of f(X) subject to ||X|| = 1.

27

28

Chapter 1

Numerics and Error Analysis

In studying numerical analysis, we move from dealing with ints and longs to f1loats and doubles.
This seemingly innocent transition comprises a huge shift in how we must think about algorith-
mic design and implementation. Unlike the basics of discrete algorithms, we no longer can expect
our algorithms to yield exact solutions in all cases. “Big O” and operation counting do not always
reign supreme; instead, even in understanding the most basic techniques we are forced to study
the trade off between timing, approximation error, and so on.

1.1 Storing Numbers with Fractional Parts

Recall that computers generally store data in binary format. In particular, each digit of a positive
integer corresponds to a different power of two. For instance, we might convert 463 to binary
using the following table:

1{1(1;0j0 (1 1|1]1
28 [27 [26|25 2423 |22 |21 [20
In other words, this notation encodes the fact that 463 can be decomposed into powers of two
uniquely as:

463 =28 427 426 423 4 22 4 21 4 20
=256+ 128 +64+8+4+2+1

Issues of overflow aside, all positive integers can be written in this form using a finite number of
digits. Negative numbers also can be represented this way, either by introducing a leading sign
bit or by using the “two’s complement” trick.

Such a decomposition inspires a simple extension to numbers that include fractions: simply
include negative powers of two. For instance, decomposing 463.25 is as simple as adding two
slots:

1/1(1}j0}0|11]1|1] 0 1
2827 126 |25 [2423|2221 [20 271 [272

Just as in the decimal system, however, representing fractional parts of numbers this way is
not nearly as well-behaved as representing integers. For instance, writing the fraction 1/3 in binary
yields the expression:

% = (0.0101010101...

29

Such examples show that there exist numbers at all scales that cannot be represented using a
finite binary string. In fact, numbers like 7t = 11.00100100001 . . ., have infinitely-long expansions
regardless of which (integer) base you use!

For this reason, when designing computational systems that do math on R instead of Z, we
are forced to make approximations for nearly any reasonably efficient numerical representation.
This can lead to many points of confusion while coding. For instance, consider the following C++
snippet:
double x = 1.0;
double y = x / 3.0;

if (x == y*3.0) cout << "They are equal!";
else cout << "They are NOT equal.";

Contrary to intuition, this program prints "They are NOT equal." Why? The definition of y
makes an approximation to 1/3 since it cannot be written as a terminating binary string, rounding
to a nearby number it can represent. Thus, y*3.0 no longer is multiplying 3 by 1/3. One way to fix
this issue is below:

double x = 1.0;

double y = x / 3.0;

if (fabs(x-y*3.0) < numeric_limits<double>::epsilon) cout << "They are equal!";
else cout << "They are NOT equal.";

Here, we check that x and y*3.0 are within some tolerance of one another rather than checking
exact equality. This is an example of a very important point:
Rarely if ever should the operator == and its equivalents be used on fractional values.
Instead, some tolerance should be used to check if numbers are equal.
Of course, there is a tradeoff here: the size of the tolerance defines a line between equality and
“close-but-not-the-same,” which must be chosen carefully for a given application.
We consider a few options for representing numbers on a computer below.

1.1.1 Fixed Point Representations

The most straightforward option for storing fractions is to add a fixed decimal point. That is, as in
the example above we represent values by storing 0/1 coefficients in front of powers of two that
range from 27 to 2 for some k, £ € Z. For instance, representing all nonnegative values between
0 and 127.75 in increments of 1/4is as easy as taking k = 2 and ¢ = 7; in this situation, we represent
these values using 9 binary digits, of which two occur after the decimal point.

The primary advantage of this representation is that nearly all arithmetic operations can be
carried out using the same algorithms as with integers. For example, it is easy to see that

a+b=(a-264+p-25 .27

Multiplying our fixed representation by 2¢ guarantees the result is integral, so this observation
essentially shows that addition can be carried out using integer addition essentially by “ignor-
ing” the decimal point. Thus, rather than using specialized hardware, the pre-existing integer
arithmetic logic unit (ALU) carries out fixed-point mathematics quickly.

Fixed-point arithmetic may be fast, but it can suffer from serious precision issues. In particular,
it is often the case that the output of a binary operation like multiplication or division can require
more bits than the operands. For instance, suppose we include one decimal point of precision and

30

wish to carry out the product 1/2 - 1/2 = 1/4. We write 0.1, x 0.1, = 0.01,, which gets truncated to
0. In this system, it is fairly straightforward to combine fixed point numbers in a reasonable way
and get an unreasonable result.

Due to these drawbacks, most major programming languages do not by default include a
fixed-point decimal data type. The speed and regularity of fixed-pont arithmetic, however, can
be a considerable advantage for systems that favor timing over accuracy. In fact, some lower-end
graphics processing units (GPU) implement only these operations since a few decimal points of
precision is sufficient for many graphical applications.

1.1.2 Floating Point Representations

One of many numerical challenges in writing scientific applications is the variety of scales that can
appear. Chemists alone deal with values anywhere between 9.11 x 1073 and 6.022 x 10%. An op-
eration as innocent as a change of units can cause a sudden transition between these regimes: the
same observation written in kilograms per lightyear will look considerably different in megatons
per second. As numerical analysts, our job is to write software that can transition between these
scales gracefully without imposing on the client unnatural restrictions on their techniques.

A few notions and obsevations from the art of scientific measurement are relevant to such a
discussion. First, obviously one of the following representations is more compact than the other:

6.022 x 10 = 602,200, 000,000, 000, 000, 000, 000

Furthermore, in the absence of exceptional scientific equipment, the difference between 6.022 x
10%% and 6.022 x 10% 4 9.11 x 10~3! is negligible. One way to come to this conclusion is to say
that 6.022 x 1023 has only three digits of precision and probably represents some range of possible
measurements [6.022 x 102 — ¢,6.011 x 10?® + ¢] for some & ~ 0.001 x 10?3,

Our first observation was able to compactify our representation of 6.022 x 10%* by writing it
in scientific notation. This number system separates the “interesting” digits of a number from its
order of magnitude by writing it in the form a x 10” for some a ~ 1 and b € Z. We call this format
the floating-point form of a number, because unlike the fixed-point setup in §1.1.1, here the decimal
point “floats” to the top. We can describe floating point systems using a few parameters (CITE):

e The base B € IN; for scientific notation explained above, the base is 10
e The precision p € N representing the number of digits in the decimal expansion
e The range of exponents [L, U] representing the possible values of b

Such an expansion looks like:

- - - b
G (dotdy Bl tdy B4t dyg)X P

sign mantissa exponent

where each digit dy is in the range [0, — 1] and b € [L, U].

Floating point representations have a curious property that can affect software in unexpected
ways: Their spacing is uneven. For example, the number of values representable between f and
p? is the same as that between B2 and 2 even though usually g — g2 > B2 — B. To understand
the precision possible with a given number system, we will define the machine precision e,, as the

31

smallest £, > 0 such that 1 + ¢, is representable. Then, numbers like 8 4+ ¢,, are not expressible in
the number system because ¢, is too small!

By far the most common standard for storing floating point numbers is provided by the IEEE
754 standard. This standard specifies several classes of floating point numbers. For instance, a
double-precision floating point number is written in base f = 2 (as are most numbers on the
computer), with a single & sign bit, 52 digits for d, and a range of exponents between —1022
and 1023. The standard also specifies how to store +co and values like NaN, or “not-a-number,”
reserved for the results of computations like 10/0. An extra bit of precision can be gained by writing
normalizing floating point values and assuming the most significant digit d is 1 and not writing it.

The IEEE standard also includes agreed-upon options for dealing with the finite number of
values that can be represented given a finite number of bits. For instance, a common unbiased
strategy for rounding computations is round to nearest, ties to even, which breaks equidistant ties
by rounding to the nearest floating point value with an even least-significant (rightmost) bit. Note
that there are many equally legitimate strategies for rounding; choosing a single one guarantees
that scientific software will work identically on all client machines implementing the same stan-
dard.

1.1.3 More Exotic Options

Moving forward, we will assume that decimal values are stored in floating-point format unless
otherwise noted. This, however, is not to say that other numerical systems do not exist, and for
specific applications an alternative choice might be necessary. We acknowledge some of those
situations here.

The headache of adding tolerances to account for rounding errors might be unacceptable for
some applications. This situation appears in computational geometry applications, e.g. when the
difference between nearly- and completely-parallel lines may be a difficult distinction to make. One
resolution might be to use arbitrary-precision arithmetic, that is, to implement arithmetic without
rounding or error of any sort.

Arbitrary-precision arithmetic requires a specialized implementation and careful considera-
tion for what types of values you need to represent. For instance, it might be the case that rational
numbers Q are sufficient for a given application, which can be written as ratios ¢/v for a,b € Z.
Basic arithmetic operations can be carried out in Q without any loss in precision. For instance, it
is easy to see

ad

o c_ac
b~ d

a . c
bd b d b
Arithmetic in the rationals precludes the existence of a square root operator, since values like v/2
are irrational. Also, this representation is nonunique, since e.g. /b = 51/5b.
Other times it may be useful to bracket error by representing values alongside error estimates

as a pair a,& € R; we think of the pair (a,¢) as the range a & €. Then, arithmetic operations also
update not only the value but also the error estimate, as in

(xxe1)+(yEte) = (x+y) £ (e1 +e+error(x+y)),
where the final term represents an estimate of the error induced by adding x and y.

32

1.2

Understanding Error

With the exception of the arbitrary-precision systems describe in §1.1.3, nearly every computer-
ized representation of real numbers with fractional parts is forced to employ rounding and other
approximation schemes. This scheme represents one of many sources of approximations typically
encountered in numerical systems:

Truncation error comes from the fact that we can only represent a finite subset of all the
possible set of values in IR; for example, we must truncate long or infinite sequences past the
decimal point to the number of bits we are willing to store.

Discretization error comes from our computerized adaptations of calculus, physics, and other
aspects of continuous mathematics. For instance, we make an approximation

dy _ y(x+e) —y(x)

dx €

We will learn that this approximation is a legitimate and useful one, but depending on the
choice of ¢ it may not be completely correct.

Modeling error comes from incomplete or inaccurate descriptions of the problems we wish to
solve. For instance, a simulation for predicting weather in Germany may choose to neglect
the collective flapping of butterfly wings in Malaysia, although the displacement of air by
these butterflies may be enough to perturb the weather patterns elsewhere somewhat.

Empirical constant error comes from poor representations of physical or mathematical con-
stants. For instance, we may compute 7t using a Taylor sequence that we terminate early, and
even scientists may not even know the speed of light to more than some number of digits.

Input error can come from user-generated approximations of parameters of a given system
(and from typos!). Simulation and numerical techniques can be used to answer “what if”
type questions, in which exploratory choices of input setups are chosen just to get some idea
of how a system behaves.

Example 1.1 (Computational physics). Suppose we are designing a system for simulating planets as
they revolve around the earth. The system essentially solves Newton's equation F = ma by integrating
forces forward in time. Examples of error sources in this system might include:

Truncation error: Using IEEE floating point to represent parameters and output of the system and
truncating when computing the product ma

Discretization error: Replacing the acceleration a with a divided difference

Modeling error: Neglecting to simulate the moon’s effects on the earth’s motion within the planetary
system

Empirical error: Only entering the mass of Jupiter to four digits

Input error: The user may wish to evaluate the cost of sending garbage into space rather than risking
a Wall-E style accumulation on Earth but can only estimate the amount of garbage the government
is willing to jettison in this fashion

33

1.2.1 Classifying Error

Given our previous discussion, the following two numbers might be regarded as having the same
amount of potential error:

140.01
10° 4+ 0.01

Although it has the size as the range [1 — 0.01, 1 + 0.01], the range [10° — 0.01, 10° + 0.01] appears
to encode a more confident measurement because the error 0.01 is much smaller relative to 10° than
to 1.

The distinction between these two classes of error is described by differentiating between ab-
solute error and relative error:

Definition 1.1 (Absolute error). The absolute error of a measurement is given by the difference between
the approximate value and its underlying true value.

Definition 1.2 (Relative error). The relative error of a measurement is given by the absolute error divided
by the true value.

One way to distinguish between these two species of error is the use of units versus percentages.

Example 1.2 (Absolute and relative error). Here are two equivalent statements in contrasting forms:

Absolute: 2 in +0.02 in
Relative: 2 in + 1%

In most applications the true value is unknown; after all, if this were not the case the use of
an approximation in lieu of the true value may be a dubious proposition. There are two popular
ways to resolve this issue. The first simply is to be conservative when carrying out computations:
at each step take the largest possible error estimate and propagate these estimates forward as
necessary. Such conservative estimates are powerful in that when they are small we can be very
confident that our solution is useful.

An alternative resolution has to do with what you can measure. For instance, suppose we wish
to solve the equation f(x) = 0 for x given a function f : R — R. We know that somewhere there
exists a root x satisfying f(xo) = 0 exactly, but if we knew this root our algorithm would not be
necessary in the first place. In practice, our computational system may yield some x.; satisfying
f(xest) = € for some € with |¢| < 1. We may not be able to evaluate the difference xo — x5 since xo
is unknown. On the other hand, simply by evaluating f we can compute f(Xest) — f(X0) = f(Xest)
since we know f(xg) = 0 by definition. This value gives some notion of error for our calculation.

This example illustrates the distinction between forward and backward error. The forward error
made by an approximation most likely defines our intuition for error analysis as the difference
between the approximated and actual solution, but as we have discussed it is not always possible
to compute. The backward error, however, has the distinguishably of being calculable but not our
exact objective when solving a given problem. We can adjust our definition and interpretation
of backward error as we approach different problems, but one suitable if vague definition is as
follows:

34

Definition 1.3 (Backward error). Backward error is given by the amount a problem statement would
have to change to realize a given approximation of its solution.

This definition is somewhat obtuse, so we illustrate its use in a few examples.

Example 1.3 (Linear systems). Suppose we wish to solve the n x n linear system AX = b. Call the
true solution Xy = A~'b. In reality, due to truncation error and other issues, our system yields a near-
solution Xest. The forward error of this approximation obviously is measured using the difference Xost — Xo;
in practice this value is impossible to compute since we do not know Xo. In reality, X, is the exact solution
to a modified system AX = Egst for Eest = AXest; thus, we might measure backward error in terms of the
difference b — bes;. Unlike the forward error, this error is easily computable without inverting A, and it is
easy to see that X, is a solution to the problem exactly when backward (or forward) error is zero.

Example 1.4 (Solving equations, CITE). Suppose we write a function for finding square roots of positive
numbers that outputs /2 ~ 1.4. The forward error is |1.4 — 1.41421 - - - | &~ 0.0142. Notice that 1.4> =
1.96, so the backward error is |1.96 — 2| = 0.04.

The two examples above demonstrate a larger pattern that backward error can be much easier
to compute than forward error. For example, evaluating forward error in Example 1.3 required
inverting a matrix A while evaluating backward error required only multiplication by A. Sim-
ilarly, in Example 1.4 transitioning from forward error to backward error replaced square root
computation with multiplication.

1.2.2 Conditioning, Stability, and Accuracy

In nearly any numerical problem, zero backward error implies zero forward error and vice versa.
Thus, a piece of software designed to solve such a problem surely can terminate if it finds that
a candidate solution has zero backward error. But what if backward error is nonzero but small?
Does this necessarily imply small forward error? Such questions motivate the analysis of most nu-
merical techniques whose objective is to minimize forward error but in practice only can measure
backward error.

We desire to analyze changes in backward error relative to forward error so that our algorithms
can say with confidence using only backward error that they have produced acceptable solutions.
This relationship can be different for each problem we wish to solve, so in the end we make the
following rough classification:

e A problem is insensitive or well-conditioned when small amounts of backward error imply
small amounts of forward error. In other words, a small perturbation to the statement of a
well-conditioned problem yields only a small perturbation of the true solution.

e A problem is sensitive or poorly-conditioned when this is not the case.

Example 1.5 (ax = b). Suppose as a toy example that we want to find the solution xo = b/a to the linear
equation ax = b for a,x,b € R. Forward error of a potential solution x is given by x — xo while backward
error is given by b — ax = a(x — xp). So, when |a| > 1, the problem is well-conditioned since small values
of backward error a(x — xo) imply even smaller values of x — xo; contrastingly, when |a| < 1 the problem
is ill-conditioned, since even if a(x — xo) is small the forward error x — xg = 1/a - a(x — xo) may be large
given the 1/a factor.

35

We define the condition number to be a measure of a problem’s sensitivity:

Definition 1.4 (Condition number). The condition number of a problem is the ratio of how much its
solution changes to the amount its statement changes under small perturbations. Alternatively, it is the
ratio of forward to backward error for small changes in the problem statement.

Example 1.6 (ax = b, part two). Continuing Example 1.5, we can compute the condition number exactly:

_ forward error x—xo _ 1
 backward error — a(x —x9)

a
In general, computing condition numbers is nearly as hard as computing forward error, and

thus their exact computation is likely impossible. Even so, many times it is possible to find bounds
or approximations for condition numbers to help evaluate how much a solution can be trusted.

Example 1.7 (Root-finding). Suppose that we are given a smooth function f : R — R and want to find
values x with f(x) = 0. Notice that f(x + A) ~ f(x) + Af'(x). Thus, an approximation of the condition
number for finding x might be

change in forward error (x +A) —x
change in backward error — f(x + A) — f(x)
A
~ AF)
1

Notice that this approximation aligns with the one in Example 1.6. Of course, if we do not know x we
cannot evaluate f'(x), but if we can look at the form of f and bound |f’| near x, we have an idea of the
worst-case situation.

Forward and backward error are measures of the accuracy of a solution. For the sake of scien-
tific repeatability, we also wish to derive stable algorithms that produce self-consistent solutions
to a class of problems. For instance, an algorithm that generates very accurate solutions only one
fiftth of the time might not be worth implementing, even if we can go back using the techniques
above to check whether the candidate solution is a good one.

1.3 Practical Aspects

The infinitude and density of the real numbers R can cause pernicious bugs while implement-
ing numerical algorithms. While the theory of error analysis introduced in §1.2 eventually will
help us put guarantees on the quality of numerical techniques introduced in future chapters, it
is worth noting before we proceed a number of common mistakes and “gotchas” that pervade
implementations of numerical methods.

We purposefully introduced the largest offender early in §1.1, which we repeat in a larger font
for well-deserved emphasis:

Rarely if ever should the operator == and its equivalents be
used on fractional values.

36

Finding a suitable replacement for == and corresponding conditions for terminating a numerical
method depends on the technique under consideration. Example 1.3 shows that a method for
solving AX = b can terminate when the residual b — AX is zero; since we do not want to check if
Axx==b explicitly, in practice implementations will check norm(A*x-b)<epsilon. Notice that this
example demonstrates two techniques:

e The use of backward error b — AX rather than forward error to determine when to terminate,
and

e Checking whether backward error is less than epsilon to avoid the forbidden ==0 predicate.

The parameter epsilon depends on how accurate the desired solution must be as well as the
resolution of the numerical system at use.

A programmer making use of these data types and operations must be vigilant when it comes
to detecting and preventing poor numerical operations. For example, consider the following code
snippet for computing the norm || X||, for a vector ¥ € R” represented as a 1D array x[1:
double normSquared = O0;
for (int i = 0; i < n; i++)

normSquared += x[il*x[i];
return sqrt(normSquared);

It is easy to see that in theory min; |x;| < lI¥ll2/\/n < max; |x;|, that is, the norm of ¥ is on the order
of the values of elements contained in ¥. Hidden in the computation of ||X||2, however, is the
expression x[1]*x [i]. If there exists i such that x[i] is on the order of DOUBLE_MAX, the product
x[1]1*x[i] will overflow even though ||X||, is still within the range of the doubles. Such overflow
is easily preventable by dividing X by its maximum value, computing the norm, and multiplying
back:
double maxElement = epsilon; // don’t want to divide by zero!
for (int i = 0; i < n; i++)

maxElement = max(maxElement, fabs(x[i]));
for (int i = 0; i < n; i++) {

double scaled = x[i] / maxElement;

normSquared += scaled*scaled;

}

return sqrt(normSquared) * maxElement;

The scaling factor removes the overflow problem by making sure that elements being summed are
no larger than 1.

This small example shows one of many circumstances in which a single character of code can
lead to a non-obvious numerical issue. While our intuition from continuous mathematics is suffi-
cient to generate many numerical methods, we must always double-check that the operations we
employ are valid from a discrete standpoint.

1.3.1 Larger-Scale Example: Summation

We now provide an example of a numerical issue caused by finite-precision arithmetic that can be
resolved using a less than obvious algorithmic trick.

Suppose that we wish to sum a list of floating-point values, easily a task required by systems
in accounting, machine learning, graphics, and nearly any other field. A snippet of code to accom-
plish this task that no-doubt appears in countless applications looks as follows:

37

double sum = 0;
for (int i = 0; i < mn; i++)
sum += x[i];
Before we proceed, it is worth noting that for the vast majority of applications, this is a perfectly
stable and certainly mathematically valid technique.

But, what can go wrong? Consider the case where n is large and most of the values x[i] are
small and positive. In this case, when i is large enough, the variable sum will be large relative to
x[i]. Eventually, sum could be so large that x[i] affects only the lowest-order bits of sum, and
in the extreme case sum could be large enough that adding x[1] has no effect whatsoever. While
a single such mistake might not be a big deal, the accumulated effect of making this mistake
repeatedly could overwhelm the amount that we can trust sum at all.

To understand this effect mathematically, suppose that computing a sum a + b can be off by as
much as € > 0. Then, the method above clearly can induce error on the order of ne, which grows
linearly with n. In fact, if most elements x[i] are on the order of ¢, then the sum cannot be trusted
whatsoever! This is a disappointing result: The error can be as large as the sum itself.

Fortunately, there are many ways to do better. For example, adding the smallest values first
might help account for their accumulated effect. Pairwise methods recursively adding pairs of
values from x [] and building up a sum also are more stable, but they can be difficult to implement
as efficiently as the for loop above. Thankfully, an algorithm by Kahan (CITE) provides an easily-
implemented “compensated summation” method that is nearly as fast.

The useful observation here is that we actually can keep track of an approximation of the error
in sum during a given iteration. In particular, consider the expression

((a+b)—a)—b.

Obviously this expression algebraically is zero. Numerically, however, this may not be the case.
In particular, the sum (a + b) may round the result to keep it within the realm of floating-point
values. Subtracting a2 and b one-at-a-time then yields an approximation of the error induced by
this operation; notice that the subtraction operations likely are better conditioned since moving
from large numbers to small ones adds digits of precision due to cancellation.

Thus, the Kahan technique proceeds as follows:

double sum = 0;
double compensation = 0; // an approxzimation of the error

for (int i = 0; i < n; i++) {
// try to add back to both z[i] and the missing part
double nextTerm = x[i] + compensation;

// compute the summation result of this tteration
double nextSum = sum + nextTerm;

// compute the compensation as the difference between the term you wished
// to add and the actual result
compensation = nextTerm - (nextSum - sum);

sum = nextSum;

}

Instead of simply maintaining sum, now we keep track of sum as well as an approximation compensation
of the difference between sum and the desired value. During each iteration, we attempt to add back

38

this compensation in addition to the current element of x [1, and then we recompute compensation
to account for the latest error.

Analyzing the Kahan algorithm requires more careful bookkeeping than analyzing the simpler
incremental technique. You will walk through one derivation of an error expression at the end of
this chapter; the final mathematical result will be that error improves from ne to O(e + nsz), a
considerable improvement when 0 < & < 1.

Implementing Kahan summation is straightforward but more than doubles the operation count
of the resulting program. In this way, there is an implicit trade-off between speed and accuracy
that software engineers must make when deciding which technique is most appropriate.

More broadly, Kahan'’s algorithm is one of several methods that bypass the accumulation of
numerical error during the course of a computation consisting of more than one operation. Other
examples include Bresenham’s algorithm for rasterizing lines (CITE), which uses only integer
arithmetic to draw lines even when they intersect rows and columns of pixels at non-integral
locations, and the Fast Fourier Transform (CITE), which effectively uses the binary partition sum-
mation trick described above.

1.4 Problems

Problem 1.1. Here’s a problem.

39

40

Part 11

Linear Algebra

41

Chapter 2

Linear Systems and the LU
Decomposition

In Chapter 0, we discussed a variety of situations in which linear systems of equations A¥ = b
appear in mathematical theory and in practice. In this chapter, we tackle the basic problem head-
on and explore numerical methods for solving such systems.

2.1 Solvability of Linear Systems
As introduced in §0.3.3, systems of linear equations like

3x+2y =6
—A4x+y=7

can be written in matrix form as in

3 2 x\ _ (6
—4 1 v) \7)°
More generally, we can write systems of the form AX = bfor A e R™", % e R" and b € R™.

The solvability of the system must fall into one of three cases:

1. The system may not admit any solutions, as in:

10 x\ (-1
10 y) U1)
This system asks that x = —1 and x = 1 simultaneously, obviously two incompatible condi-

tions.

2. The system may admit a single solution; for instance, the system at the beginning of this
section is solved by (x,y) = (—8/11,45/11).

43

3. The system may admit infinitely many solutions, e.g. 0% = 0. Notice that if a system AX = b
admits two solutions Xy and ¥;, then it automatically has infinitely many solutions of the
form cXp + (1 — ¢)X; for ¢ € R, since

AlcXy+ (1 —0)%) = cATy + (1 —c)A%; = cb+ (1 —c)b = b.
This linear system would be labeled underdetermined.

In general, the solvability of a system depends both on A and on b. For instance, if we modify
the unsolvable system above to be

(19)()-(1)

then the system moves from having no solutions to infinitely many of the form (1,y). In fact,
every matrix A admits a right hand side b such that A¥ = b is solvable, since A¥ = 0 always
can be solved by ¥ = 0 regardless of A. Recall from §0.3.1 that matrix-vector multiplication can
be viewed as linearly combining the columns of A with weights from ¥. Thus, as mentioned in
§0.3.3, we can expect AX = b to be solvable exactly when bis in the column space of A.

In a broad way, the “shape” of the matrix A € IR"*" has considerable bearing on the solvability
of AX = b. Recall that the columns of A are m-dimensional vectors. First, consider the case when
A is “wide,” that is, when it has more columns than rows (n > m). Each column is a vector in IR",
so at most the column space can have dimension m. Since n > m, the n columns of A must then
be linearly dependent; this implies that there exists an Xy # 0 such that AXy = 0. Then, if we can
solve AX = b for %, then A(X + aXy) = AX+ aAXy = b+0=b, showing that there are actually
infinitely many solutions ¥ to AX = b. In other words, we have shown that no wide matrix system
admits a unique solution.

When A is “tall,” that is, when it has more rows than columns (m > n), then the n columns
cannot span R™. Thus, there exists some vector Eo € R™\col A. By definition, this Eo cannot satisfy
AR = by for any X. In other words, every tall matrix A admits systems AX = by that are not solvable.

Both of the situations above are far from favorable for designing numerical algorithms. For
example, if a linear system admits many solutions we must first define which solution is desired
from the user: after all, the solution ¥ + 103!%, might not be as meaningful as ¥ — 0.1%. On the
flip side, in the tall case even if AX = b is solvable for a particular E, any small perturbation
AX = b+ ¢by isno longer solvable; this situation can appear simply because rounding procedures
discussed in the last chapter can only approximate A and b in the first place.

Given these complications, in this chapter we will make some simplifying assumptions:

e We will consider only square A € R"*".

o We will assume that A is nonsingular, that is, that AX = b is solvable for any b.

Recall from §0.3.3 that the nonsingularity condition is equivalent to asking that the columns of A
span R" and implies the existence of a matrix A~! satisfying A™'A = AA™! = L«

A misleading observation is to think that solving AX = bis equivalent to computing the matrix
A1 explicitly and then multiplying to find ¥ = A~'b. While this solution strategy certainly is
valid, it can represent a considerable amount of overkill: after all, we're only interested in the n
values in ¥ rather than the n? values in A~!. Furthermore, even when A is well-behaved it can be
the case that writing A~! yields numerical difficulties that can be bypassed.

44

2.2 Ad-Hoc Solution Strategies

In introductory algebra, we often approach the problem of solving a linear system of equations as
an art form. The strategy is to “isolate” variables, iteratively writing alternative forms of the linear
system until each line is of the form x = const.

In formulating systematic algorithms for solving linear systems, it is instructive to carry out
an example of this solution process. Consider the following system:

y—z=-1
3x—y+z=4
X+y—2z=-3

b

In parallel, we can maintain a matrix version of this system. Rather than writing out AX
explicitly, we can save a bit of space by writing the “augmented” matrix below:

o 1 —-1|-1
3 -1 1 4
1 1 -2|-3

We can always write linear systems this way so long as we agree that the variables remain on the
left hand side of the equations and the constants on the right.

Perhaps we wish to deal with the variable x first. For convenience, we may permute the rows
of the system so that the third equation appears first:

x+y—2z =-3 1 1 -2]-3
y—z =-1 0 1 —-1|-1
3x—y+z =4 3 -1 1| 4

We can then substitute the first equation into the third to eliminate the 3x term. This is the same as
scaling the relationship x +y — 2z = —3 by —3 and adding the result to the third equation:

x+y—2z =-3 1 1 -2|-3
y—z =-1 0 1 -1|-1
—4y+7z =13 0 -4 7 |13

Similarly, to eliminate y from the third equation we can multiply the second equation by 4 and
add the result to the third:

x+y—2z =-3 11 -2|-3
y—z =-1 01 -1|-1
3z =9 00 319

We have now isolated z! Thus, we can scale the third row by 1/3 to yield an expression for z:

x+y—2z =-3 11 -2|-3
y—z =-1 01 —-1]-1
z =3 00 1|3

45

Now, we can substitute z = 3 into the other two equations to remove z from all but the final row:

x+y =3 110|3
y =2 01 0]2
z =3 00 1|3

Finally we make a similar substitution for y to complete the solve:

x =1 100][1
y =2 01 0]2
z =3 00 1|3

This example might be somewhat pedantic, but looking back on our strategy yields a few
important observations about how we can go about solving linear systems:

We wrote successive systems A;X = b; that can be viewed as simplifications of the original
A% =b.

We solved the system without ever writing down A~L.

We repeatedly used a few simple operations: scaling, adding, and permuting rows of the
system.

The same operations were applied to A and b. If we scaled the k-th row of A, we also scaled
the k-th row of b. If we added rows k and ¢ of A, we added rows k and ¢ of b.

Less obviously, the steps of the solve did not depend on b. That is, all of our decisions for
how to solve were motivated by eliminating nonzero values in A rather than examining

values in E,' Ejust came along for the ride.

We terminated when we reduced the system to I, x,X = b.

We will use all of these general observations about solving linear systems to our advantage.

2.3

Encoding Row Operations

Looking back at the example in §2.2, we see that solving the linear system really only involved
applying three operations: permutation, row scaling, and adding the scale of one row to another.
In fact, we can solve any linear system this way, so it is worth exploring these operations in more
detail.

2.3.1 Permutation

Our first step in §2.2 was to swap two of the rows in the system of equations. More generally, we
might index the rows of a matrices using the numbers 1, ..., m. Then, a permutation of those rows
can be written as a function ¢ such that the list o(1),...,0(m) covers the same set of indices.

46

If & is the k-th standard basis function, then it is easy to see that the product & A yields the
k-th row of the matrix A. Thus, we can “stack” or concatenate these row vectors vertically to yield
a matrix permuting the rows according to o

=T

T
Il
S
n

o(m)
That is, the product P, A is exactly the matrix A with rows permuted according to ¢.

Example 2.1 (Permutation matrices). Suppose we wish to permute rows of a matrix in R3*3 with (1) =
2,0(2) =3,and 0(3) = 1. According to our formula we would have

01
P,=1 00
10

S = O

From Example 2.1, we can see that P, has ones in positions of the form (k, o (k)) and zeros else-
where. The pair (k, o (k)) represents the statement, “We would like row k of the output matrix to
be row (k) from the input matrix.” Based on this description of a permutation matrix, it is easy
to see that the inverse of P, is the transpose P, since this simply swaps the roles of the rows and
columns — now we take row o (k) of the input and put it in row k of the output. In other words,
Pl Py = Luxm-

2.3.2 Row Scaling

Suppose we write down a list of constants 4y, . . ., 4,; and seek to scale the k-th row of some matrix
A by ay. This is obviously accomplished by applying the scaling matrix S, given by:

aq 0 0

0 an 0
Se=| . ..

0 0 e Ay

Assuming that all a; satisfy a, # 0, it is easy to invert S, by “scaling back:”

1/&1 0 0
» 0 Yu O
Sa° =512 = : s :
0 0 - 1/a,

2.3.3 Elimination

Finally, suppose we wish to scale row k by a constant ¢ and add the result to row ¢. This operation
may seem less natural than the previous two but actually is quite practical: It is the only one we

47

need to combine equations from different rows of the linear system! We will realize this operation
using an “elimination matrix” M such that the product M A applies this operation to matrix A.

Recall that the product & A picks out the k-th row of A. Then, premultiplying by & yields a
matrix &2, A, which is zero except the (-th row is equal to the k-th of A.

Example 2.2 (Elimination matrix construction). Take

A=

N~ -
o U1 N
O N W

Suppose we wish to isolate the third row of A € R>*3 and move it to row two. As discussed above, this
operation is accomplished by writing:

0 123
b A=|1](00 1) 456
0 7 89
0
=(1](7 8 9)
0
000
=7 89
000

Of course, we multiplied right-to-left above but just as easily could have grouped the product as (€,¢;) A.
The structure of this product is easy to see:

0 000
e = 1](001)=|001
0 000

We have succeeded in isolating row k and moving it to row /. Our original elimination operation
wanted to add ¢ times row k to row ¢, which we can now accomplish as the sum A + &g} A =
(Lixn + c&/€,) A.

Example 2.3 (Solving a system). We can now encode each of our operations from Section 2.2 using the
matrices we have constructed above:

1. Permute the rows to move the third equation to the first row:

O O =

00
P=1120
01

2. Scale row one by -3 and add the result to row three: E; = Izx3 — 3€3é’1T
3. Scale row two by 4 and add the result to row three: Ey = Izx3 + 453(?;

4. Scale row three by 1/3: S = diag(1,1,1/3)

48

5. Scale row three by 2 and add it to row one: E3 = I3x3 + 251(?;
6. Add row three to row two: Ey = Izx3 + ¢85
7. Scale row three by -1 and add the result to row one: Es = Izx3 — 5’15;
Thus, the inverse of A in Section 2.2 satisfies
A~ = EsE4E3SEoE P.

Make sure you understand why these matrices appear in reverse order!

2.4 Gaussian Elimination

The sequence of steps chosen in Section 2.2 was by no means unique: There are many different
paths that can lead to the solution of AX = b. Our steps, however, followed the strategy of Gaussian
elimination, a famous algorithm for solving linear systems of equations.

More generally, let’s say our system has the following “shape:”

X X X X |X
> X X X X |X
(A ‘ b) o x ox x x| x
X X X X |X
The algorithm proceeds in phases described below.
24.1 Forward Substitution
Consider the upper-left element of our matrix:
@ X X X | X
(A ‘ A) _ X X X X |X
X X X X |X
X X X X |[X

We will call this element our first pivot and will assume it is nonzero; if it is zero we can permute
rows so that this is not the case. We first apply a scaling matrix so that the pivot equals one:

@X X X | X
X X X X | X
X X X X | X
X X X X | X

Now, we use the row containing the pivot to eliminate all other values underneath in the same
column:

@ X X X | X
0 x X Xx|x
0 x X x|X
0 x X Xx|Xx

49

We now move our pivot to the next row and repeat a similar series of operations:

X X X X
X X X X
X X X X

Notice that a nice thing happens here. After the first pivot has been eliminated from all other
rows, the first column is zero beneath row 1. This means we can safely add multiples of row two
to rows underneath without affecting the zeros in column one.

We repeat this process until the matrix becomes upper-triangular:

X X X X

X
X
X

S O O =
S O = X
O = X X

2.4.2 Back Substitution

Eliminating the remaining x’s from the system is now a straight forward process. Now, we pro-
ceed in reverse order of rows and eliminate backward. For instance, after the first series of back
substitution steps, we are left with the following shape:

0

S O O =
o O~ X
S = X X
X X X X

0
0
@

Similarly, the second iteration yields:

—_ o O O
X X X X

0

0
@

0

S O O
o O — X

After our final elimination step, we are left with our desired form:

@
0

S O = O
S = OO
—_ o O O
X X X X

0
0
The right hand side now is the solution to the linear system AX = b.

2.4.3 Analysis of Gaussian Elimination

Each row operation in Gaussian elimination — scaling, elimination, and swapping two rows —
obviously takes O(n) time to complete, since you have to iterate over all n elements of a row (or

50

two) of A. Once we choose a pivot, we have to do n forward- or back- substitutions into the rows
below or above that pivot, resp.; this means the work for a single pivot in total is O(n?). In total,
we choose one pivot per row, adding a final factor of n. Thus, it is easy enough to see that Gaussian
elimination runs in O(n?) time.

One decision that takes place during Gaussian elimination that we have not discussed is the
choice of pivots. Recall that we can permute rows of the linear system as we see fit before perform-
ing back- or forward- substitution. This operation is necessary to be able to deal with all possible
matrices A. For example, consider what would happen if we did not use pivoting on the following

matrix: L (@ : >

1 0

Notice that the circled element is exactly zero, so we cannot expect to divide row one by any
number to replace that 0 with a 1. This does not mean the system is not solvable, it just means we
must do pivoting, accomplished by swapping the first and second rows, to put a nonzero in that
slot.

More generally, suppose our matrix looks like:

a=(©1),

where 0 < ¢ < 1. If we do not pivot, then the first iteration of Gaussian elimination yields:

(9 4)
0 -1/)’

We have transformed a matrix A that looks nearly like a permutation matrix (in fact, A1~ AT a
very easy way to solve the system!) into a system with potentially huge values 1/-.

This example shows that there are cases when we may wish to pivot even when doing so
strictly speaking is not necessary. Since we are scaling by the reciprocal of the pivot value, clearly
the most numerically stable options is to have a large pivot: Small pivots have large reciprocals,
scaling numbers to large values in regimes that are likely to lose precision. There are two well-
known pivoting strategies:

1. Partial pivoting looks through the current column and permutes rows of the matrix so that
the largest absolute value appears on the diagonal.

2. Full pivoting iterates over the entire matrix and permutes both rows and columns to get
the largest possible value on the diagonal. Notice that permuting columns of a matrix is a
valid operation: it corresponds to changing the labeling of the variables in the system, or
post-multiplying A by a permutation.

Example 2.4 (Pivoting). Suppose after the first iteration of Gaussian elimination we are left with the
following matrix:

1 10 -10
0 (01) s
0 4 6.2

51

If we implement partial pivoting, then we will look only in the second column and will swap the second
and third rows; notice that we leave the 10 in the first row since that one already has been visited by the
algorithm:

1 10 -10

0 (4) 62

0 01 9
If we implement full pivoting, then we will move the 9:

1 —10 10

0 (9 01

0 62 4

Obviously full pivoting yields the best possible numerics, but the cost is a more expensive search
for large elements in the matrix.

2.5 LU Factorization

There are many times when we wish to solve a sequence of problems A¥; = 51, AXy = Ez,As
we already have discussed, the steps of Gaussian elimination for solving AX = by depend mainly
on the structure of A rather than the values in a particular by. Since A is kept constant here, we
may wish to “remember” the steps we took to solve the system so that each time we are presented
with a new b we do not have to start from scratch.

Solidifying this suspicion that we can move some of the O(n?) for Gaussian elimination into
precomputation time, recall the upper triangular system resulting after the forward substitution
stage:

1 X X X | X
01 x x |Xx
0 0 1 x |x

00 0 (1)]x

In fact, solving this system by back-substitution only takes O(n?) time! Why? Back substitution
in this case is far easier thanks to the structure of the zeros in the system. For example, in the first
series of back substitutions we obtain the following matrix:

1 x x 0fX
0 1 x 0]x
0O 0 1 0]x
© © © 1]x

Since we know that the (circled) values to the left of the pivot are zero by construction, we don’t
need to copy them explicitly. Thus, this step only took O(n) time rather than O(n?) taken by
forward substitution.

Now, our next pivot does a similar substitution:

1 x 0 0 |x
0O 1 0 0 |x
© © 1 @ x
O 0 0 1 |x

52

Once again the zeros on both sides of the 1 do not need to be copied explicitly.
Thus, we have found:

Observation. While Gaussian elimination takes O(n3) time, solving triangular systems takes O(n?) time.

2,51 Constructing the Factorization

Recall from §2.3 that all the operations in Gaussian elimination can be thought of as pre-multiplying
AT = b by different matrices M to obtain an easier system (MA)X = Mb. As we demon-
strated in Example 2.3, from this standpoint each step of Gaussian elimination represents a system
(M- - MpMjA)X = M- - Mley . Of course, explicitly storing these matrices My as n x n ob-
jects is overkill, but keeping this interpretation in mind from a theoretical perspective simplifies
many of our calculations.

After the forward substitution phase of Gaussian elimination, we are left with an upper trian-
gular matrix, which we can call U € R"*". From the matrix multiplication perspective, we can
write:

My ---MA=1U,

or, equivalently,
A= (Mg---Mi)"lU
= (MM - MU
= LU, if we make the definition L = Ml_le_1 . Mk_l.
We don’t know anything about the structure of L yet, but we do know that systems of the form

Uy = d are easier to solve since U is upper triangular. If L is equally nice, we could solve AX = b
in two steps, by writing (LU)X = b, or ¥ = U~ 'L~ 1p:

1. Solve Lij = b for i, yielding i/ = L 'b.

Sa!

2. Now that we have 7, solve UX = ¥, yielding ¥ = U~'§j = U~*(L™'b) = (LU) b = A
We already know that this step only takes O(n?) time.

Our remaining task is to make sure that L has nice structure that will make solving Ljj = b
easier than solving AX = b. Thankfully-and unsurprisingly-we will find that L is lower triangular
and thus can be solved using O(n?) forward substitution.

To see this, suppose for now that we do not implement pivoting. Then, each of our matrices
M is either a scaling matrix or has the structure

R
My = Lyxn + cépey,

where ¢ > k since we only have carried out forward substitution. Remember that this matrix
serves a specific purpose: Scale row k by ¢ and add the result to row ¢. This operation obviously
is easy to undo: Scale row k by ¢ and subtract the result from row ¢. We can check this formally:

(L 4 €880) (Inxcn — 88l) = Lyn + (—c&/&] + c&e]) — 2¢,e] &,e]
= In><n — CZEg(EkTEg)EkT

= I, xy since E;Eg =¢e-e,and k £ /¢

53

So, the L matrix is the product of scaling matrices and matrices of the form M 1=+ CEZE,—I are
lower triangular when ¢ > k. Scaling matrices are diagonal, and the matrix M is lower triangular.
You will show in Exercise 2.1 that the product of lower triangular matrices is lower triangular,
showing in turn that L is lower triangular as needed.

We have shown that if it is possible to carry out Gaussian elimination of A without using piv-
oting, you can factor A = LU into the product of lower- and upper-triangular matrices. Forward
and back substitution each take O(n?) time, so if this factorization can be computed ahead of time
the linear solve can be carried out faster than full O(n®) Gaussian elimination. You will show in
Exercise 2.2 what happens when we carry out LU with pivoting; no major changes are necessary.

2.5.2 Implementing LU

A simple implementation of Gaussian elimination to solve AX¥ = b is straightforward enough to
formulate. In particular, as we have discussed earlier, we can form the augmented matrix (A | B)
and apply row operations one at a time to this # x (1 + 1) block until it looks like (I, A~ | b).
This process, however, is destructive, that is, in the end we care only about the last column of the
augmented matrix and have kept no evidence of our solution path. Such behavior clearly is not
acceptable for LU factorization.

Let’s examine what happens when we multiply two elimination matrices:

— —— — S
(Lnxn — o808,) (Inxn — Cp€pey) = Luxn — Co€1€; — Cp€pey

As in our construction of the inverse of an elimination matrix, the product of the two ¢; terms
vanishes since the standard basis is orthogonal. This formula shows that after the pivot is scaled
to 1, the product of the elimination matrices used to forward substitute for that pivot has the form:

0
@
X
X

—_ o O O

S OO =
o= o O

where the values x are the values used to eliminate the rest of the column. Multiplying matrices
of this form together shows that the elements beneath the diagonal of L just come from coefficients
used to accomplish substitution.

We can make one final decision to keep the elements along the diagonal of L in the LU fac-
torization equal to 1. This decision is a legitimate one, since we can always post-multiply a L by
a scaling matrix S taking these elements to 1 and write LU = (LS)(S~'U) without affecting the
triangular pattern of L or U. With this decision in place, we can compress our storage of both L
and U into a single n x n matrix whose upper triangle is U and which is equal to L beneath the
diagonal; the missing diagonal elements of L are all 1.

We are now ready to write pseudocode for the simplest LU factorization strategy in which we
do not permute rows or columns to obtain pivots:

// Takes as input an n-by-n matriz Al%, 5]
// Edits A in place to obtain the compact LU factorization described above

for pivot from 1 to n {
pivotValue = A[pivot,pivot]l; // Bad assumption that this <s nonzero!

54

for eliminationRow from (pivot+1l) to n { // Eliminate values beneath the pivot
// How much to scale the pivot row to eliminate the wvalue in the current
// row; motice we’re not scaling the pivot row to 1, so we divide by the
// pivot wvalue
scale = A[eliminationRow,pivot]/pivotValue;

// Since we /subtract/ scale times the pivot row from the current rTow

// during Gaussian elimination, we /add/ it in the inverse operation

// stored in L

AleliminationRow ,pivot] = scale;

// Now, as in Gaussian elimination, perform the row operation on the rest
// of the row: this will become U

for eliminationCol from (pivot+1l) to n
AleliminationRow ,eliminationCol] -= A[pivot,eliminationCol]*scale;

2.6 Problems

Problem 2.1. Product of lower triangular things is lower triangular; product of pivot matrices looks right
Problem 2.2. Implement LU with pivoting

Problem 2.3. Non-square LU

55

56

Chapter 3

Designing and Analyzing Linear
Systems

Now that we have some methods for solving linear systems of equations, we can use them to solve
a variety of problems. In this chapter, we will explore a few such applications and accompanying
analytical techniques to characterize the types of solutions we can expect.

3.1 Solution of Square Systems

At the beginning of the previous chapter we made several assumptions on the types of linear
systems we were going to solve. While this restriction was a nontrivial one, in fact many if not
most applications of linear solvers can be posed in terms of square, invertible linear systems. We
explore a few contrasting applications below.

3.1.1 Regression

We will start with a simple application appearing in data analysis known as regression. Suppose
that we carry out a scientific experiment and wish to understand the structure of our experimental
results. One way to model such an relationship might be to write the independent variables of the
experiment in some vector ¥ € R” and to consider the dependent variable as a function f(¥) : R" —
R. Our goal is to predict the output of f without carrying out the full experiment.

Example 3.1 (Biological experiment). Suppose we wish to measure the effect of fertilizer, sunlight, and
water on plant growth. We might do a number of experiments applying different amounts of fertilizer (in
cm®), sunlight (in watts), and water (in ml) and measuring the height of the plant after a few days. We
might model our observations as a function f : R® — R taking in the three parameters we wish to test and
outputting the height of the plant.

In parametric regression, we make a simplifying assumption on the structure of f. For example,
suppose that f is linear:

f(X) = a1x1 4+ agxp + - - - + ayxy,.

Then, our goal becomes more concrete: to estimate the coefficients ay.

57

Suppose we do a series of experiments that show #¥) — y¥) = £(%(®)). By plugging into our
form for f, we obtain a series of statements:

yW = f(x) = a1x§1) + azxgl) 4ot apx)
¥ = f(

=

@) = a1x§2) + azxéz) 4t agx

Notice that contrary to our notation AX = B, the unknowns here are the a;’s, not the ¥ variables. If
we make n observations, we can write:

_ f(l)T _ M y(l)
— f(Z)T — a, y(Z)
_ f(r'l)T _ a'n y(.n)

In other words, if we carry out n trials of our experiment and write them in the columns of a
matrix X € R"*" and write the dependent variables in a vector ij € R", the coefficients @ can be
recovered by solving X' = /.

In fact, we can generalize our approach to other more interesting nonlinear forms for the func-
tion f. What matters here is that f is a linear combination of functions. In particular, suppose f(X)
takes the following form:

f(X) =mfi(X) +axfo(X) + -+ amfum(X),

where f; : R" — R and we wish to estimate the parameters a;. Then, by a parallel derivation
given m observations of the form #*) i— y(¥) we can find the parameters by solving:

AED) - fHED) £ (RD) a1 yt
AFD) HE®) - fu(R@) o | | y?
AE) LED) o fu@)) \an)\ o)

That is, even if the f’s are nonlinear, we can learn weights a; using purely linear techniques.

Example 3.2 (Linear regression). The system X '@ = ij can be recovered from the general formulation by
taking fr(X) = xy.

Example 3.3 (Polynomial regression). Suppose that we observe a function of a single variable f(x) and
wish to write it as an n-th degree polynomial

f(x) = ap+a1x + apx® + - + apx".

Given n pairs x©) — yX), we can solve for the parameters @ via the system
1 x(l) (x(l))2 (x(l))n ag y(l)
1 2@ (x(2))2 (x(2)n a y?
1 x(n) (x(n)>2 (x(”))n ay y(n)

In other words, we take fi(x) = x* in our general form above. Incidentally, the matrix on the left hand

side of this relationship is known as a Vandermonde matrix, which has many special properties specific to
its structure.

Example 3.4 (Oscillation). Suppose we wish to find a and ¢ for a function f(x) = acos(x + ¢). Recall
from trigonometry that we can write cos(x + ¢) = cosxcos ¢ — sinxsin¢g. Thus, given two sample
points we can use the technique above to find f(x) = ay cos x + ay sin x, and applying this identity we can

write
_ 2 2
a=./aj+a;

a2
¢ = —arctan —
m

This construction can be extended to finding f(x) = Yy axcos(x + ¢x), giving one way to motivate the
discrete Fourier transform of f.

3.1.2 Least Squares

The techniques in §3.1.1 provide valuable methods for finding a continuous f matching a set of
data pairs Xy — yj exactly. There are two related drawbacks to this approach:

e There might be some error in measuring the values Xy and yj. In this case, an approximate
relationship f(Xy) ~ yx may be acceptable or even preferable to an exact f(X;) = yi.

e Notice that if there were m functions fj total, then we needed exactly m observations ¥; — y.
Additional observations would have to be thrown out, or we would have to change the form

of f.
Both of these issues related to the larger problem of over-fitting: Fitting a function with n degrees
of freedom to n data points leaves no room for measurement error.
More generally, suppose we wish to solve the linear system AX = b for ¥. If we denote row k
of A as 7,?, then our system looks like

bl — 7; — X1 71 X

by - - x2 P2 ¥ . o
=))) = i by definition of matrix multiplication.

bn - ?;lr - xn ?n * J_C'

Thus, each row of the system corresponds to an observation of the form 7y - ¥ = by. That is, yet
another way to interpret the linear system AX = b is as 1 statements of the form, “The dot product
of X with 7 is by.”

From this viewpoint, a tall system AX = b with A € R"*" and m > n simply encodes more
than 7 of these dot product observations. When we make more than n observations, however, they
may be incompatible; as explained §2.1, tall systems likely will not admit a solution. In our “exper-
imental” setup explained above, this situation might correspond to errors in the measurement of
the pairs X — y.

When we cannot solve A% = b exactly, we might relax the problem a bit to approximate AX ~
b. In particular, we can ask that the residual b — AX be as small as possible by minimizing the

59

norm ||b — A%||. Notice that if there is an exact solution to the linear system, then this norm is
minimized at zero, since in this case we have ||b — AX|| = ||b — b|| = 0. Minimizing ||b — AX|| is
the same as minimizing ||b — A¥||?, which we expanded in Example 0.16 to:

|b— A%||> = ¥T AT AX — 20" A% + ||b||2.!

The gradient of this expression with respect to X must be zero at its minimum, yielding the fol-
lowing system:

0=2ATA¥—2A"b
Or equivalently: ~ATA% = ATb.

This famous relationship is worthy of a theorem:

Theorem 3.1 (Normal equations). Minima of the residual |b — AX|| for A € R™ " (with no restriction
on mor n) satisfy AT AX = ATb.

If at least 7 rows of A are linearly independent, then the matrix AT A € R"*" is invertible. In this
case, the minimum residual occurs (uniquely) at (ATA)TATD, or equivalently, solving the least
squares problem is as easy as solving the square linear system A" AX = ATD from Theorem 3.1.
Thus, we have expanded our set of solution strategies to A € R"*" with m > n by applying only
techniques for square matrices.

The underdetermined case m < n is considerably more difficult to deal with. In particular,
we lose the possibility of a unigue solution to A¥ = b. In this case we must make an additional
assumption on X to obtain a unique solution, e.g. that it has a small norm or that it contains many
zeros. Each such regularizing assumption leads to a different solution strategy; we will explore a
few in the exercises accompanying this chapter.

3.1.3 Additional Examples

An important skill is to be able to identify linear systems “in the wild.” Here we quickly enumerate
a few more examples.

Alignment

Suppose we take two photographs of the same scene from different positions. One common task
in computer vision and graphics is to stitch them together. To do so, the user (or an automatic
system) may mark a number of points ¥, iy € IR? such that ¥} in image one corresponds to i in
image two. Of course, likely mistakes were made while matching these points, so we wish to find
a stable transformation between the two images by oversampling the number of necessary pairs
(%,).

Assuming our camera has a standard lens, camera projections are linear, so a reasonable as-
sumption is that there exists some A € IR>*? and a translation vector b € R? such that

B may be valuable to return to the preliminaries in Chapter 0 at this point for review.

60

Our unknown variables here are A and b rather than X and .
In this case, we can find the transformation by solving:

p —
min) [[(A%; +B) — 5>
Ab k=1

This expression is once again a sum of squared linear expressions in our unknowns A and b, and
by a similar derivation to our discussion of the least-squares problem it can be solved linearly.

Deconvolution

Often times we accidentally take photographs that are somewhat out of focus. While a photo
that is completely blurred may be a lost cause, if there is localized or small-scale blurring, we
may be able to recover a sharper image using computational techniques. One simple strategy is
deconvolution, explained below.

We can think of a photograph as a point in R”, where p is the number of pixels; of course, if the
photo is in color we may need three values (RGB) per pixel, yielding a similar technique in R%.
Regardless, many simple image blurs are linear, e.g. Gaussian convolution or operations averaging
pixels with their neighbors on the image. In image processing, these linear operations often have
other special properties like shift-invariance, but for our purposes we can think of blurring as
some linear operator X — G * X.

Suppose we take a blurry photo Xy € R?. Then, we could try to recover the sharp image
X € R? by solving the least-squares problem

min ||%) — G * ¥||*.

XERP
That is, we ask that when you blur ¥ with G, you get the observed photo Xy. Of course, many
sharp images might yield the same blurred result under G, so we often add additional terms to
the minimization above asking that Xy not vary wildly.

3.2 Special Properties of Linear Systems

Our discussion of Gaussian elimination and the LU factorization led to a completely generic
method for solving linear systems of equations. While this strategy always works, sometimes we
can gain speed or numerical advantages by examining the particular system we are solving. Here
we discuss a few common examples where knowing more about the linear system can simplify
solution strategies.

3.2.1 Positive Definite Matrices and the Cholesky Factorization

As shown in Theorem 3.1, solving a least-squares problem AX ~ b yields a solution ¥ satisfying
the square linear system (A'TA)¥ = ATb. Regardless of A, the matrix AT A has a few special
properties that make this system special.

First, it is easy to see that AT Ais symmetric, since

(ATA)T = AT(ATT = ATA.

61

Here, we simply used the identities (AB)T = BTAT and (AT)T = A. We can express this sym-
metry index-wise by writing (A" A);; = (A" A);; for all indices i, j. This property implies that it is
sufficient to store only the values of AT A on or above the diagonal, since the rest of the elements
can be obtained by symmetry.

Furthermore, A" A is a positive semidefinite matrix, as defined below:

Definition 3.1 (Positive (Semi-)Definite). A matrix B € R"*" is positive semidefinite if for all ¥ € R",
X"BX > 0. B is positive definite if X' BX > 0 whenever ¥ # 0.

It is easy to show that A" A is positive semidefinite, since:
#TATAZ = (AZ)T (A¥) = (AZ) - (AZ) = || AZ|% > 0.

In fact, if the columns of A are linearly independent, then A" A is positive definite.

More generally, suppose we wish to solve a symmetric positive definite system CX = d. As we
have already explored, we could LU-factorize the matrix C, but in fact we can do somewhat better.
We write C € R"*" as a block matrix:

(% %)
v C

where 7 € R" ! and € € R("=Dx("=1) Thanks to the special structure of C, we can make the
following observation:

1
dca=(10 - o)(cg; 5CT> 0
0
=(10 -- 0)(%1)
=1

> 0 since C is positive definite and & # 0.

This shows that-ignoring numerical issues— we do not have to use pivoting to ensure that cj; # 0
for the first step Gaussian elimination.
Continuing with Gaussian elimination, we can apply a forward substitution matrix E, which

generically has the form
E_ < 1/ yen 0")

r I(nfl)x(nfl)

Here, the vector 7 € R"~! contains the multiples of row 1 to cancel the rest of the first column of
C. We also scale row 1 by 1/,/a; for reasons that will become apparent shortly!
By design, after forward substitution we know the product

EC — (Ven Z7T/\/ﬁ>

-

0 D
for some D € R(n—1)x(n-1)

62

Here’s where we diverge from Gaussian elimination: rather than moving on to the second row,
we can post-multiply by ET to obtain a product ECE ":

ECE" = (EC)ET

:<M f/m)(l/@ 7l >

0 D 0 In-1yx@m-1

/1 0"
~\0 D

That is, we have eliminated the first row and the first column of C! Furthermore, it is easy to check
that the matrix D is also positive definite.

We can repeat this process to eliminate all the rows and columns of C symmetrically. Notice
that we used both symmetry and positive definiteness to derive the factorization, since

e symmetry allowed us to apply the same E to both sides, and
e positive definiteness guaranteed that c1; > 0, thus implying that ,/cq exists.

In the end, similar to LU factorization we now obtain a factorization C = LLT for a lower trian-
gular matrix L. This is known as the Cholesky factorization of C. If taking the square roots along
the diagonal causes numerical issues, a related LDLT factorization, where D is a diagonal matrix,
avoids this issue and is straightforward to derive from the discussion above.

The Cholesky factorization is important for a number of reasons. Most prominently, it takes
half the memory to store L than the LU factorization of C or even C itself, since the elements above
the diagonal are zero, and as in LU solving CX¥ = d is as easy as forward and back substitution.
You will explore other properties of the factorization in the exercises.

In the end, code for Cholesky factorization can be very succinct. To derive a particularly com-
pact form, suppose we choose an arbitrary row k and write L in block form isolating that row:

-

L1 O 0
L=| ¢ &g 07
Ly 4, Lsz

Here, L1; and L33 are both lower triangular square matrices. Then, carrying out a product yields:

Ly 0 0 L, 4 L
LLT = | ¢ 4 OF 0" b (4)7
Ly ¢ La 0 0 Lj

X X X

— | 7Ly Wi+, x

X X X

We leave out values of the product that are not necessary for our derivation.
In the end, we know we can write C = LLT. The middle element of the product shows:

O = v/ o — |14k l13

63

where Z’k € R¥1 contains the elements of the k-th row of L to the left of the diagonal. Furthermore,
the middle left element of the product shows

L1l = ¢k

where ¢} contains the elements of C in the same position as Zk. Since Lq; is lower triangular, this
system can be solved by forward substitution!

Notice that our discussion above yields an algorithm for computing the Cholesky factorization
from top to bottom, since Ly; will already be computed by the time we reach row k. We provide
pseudocode below, adapted from CITE:

// Takes as input an n-by-n matriz A[i, 5]
// Edits A in place to obtain the Cholesky factorization in its lower triangle

for k from 1 to n {

// Back-substitute to find l_k

for i from 1 to k-1 { // element % of l_k
sum = O;
for j from 1 to i-1

sum += A[i,jlxA[k,j];

Alk,i] = (A[k,il-sum)/A[i,i];

}

// Apply the formula for l_kk
normSquared = 0
for j from 1 to i-1
normSquared += A[k,j]l"2;
Alk,k] = sqrt(A[k,k] - normSquared);
}

As with LU factorization, this algorithm clearly runs in O(n%) time.

3.2.2 Sparsity

Many linear systems of equations naturally enjoy sparsity properties, meaning that most of the
entries of A in the system AX = b are exactly zero. Sparsity can reflect particular structure in a
given problem, including the following use cases:

e In image processing, many systems for photo editing and understanding express relation-
ships between the values of pixels and those of their neighbors on the image grid. An image
may be a point in R? for p pixels, but when solving AX = b for a new size-p image, A € RP*?
may have only O(p) rather than O(p?) nonzeros since each row only involves a single pixel
and its up/down/left/right neighbors.

e In machine learning, a graphical model uses a graph structure G = (V, E) to express probabil-
ity distributions over several variables. Each variable is represented using a node v € V of
the graph, and edge e € E represents a probabilistic dependence. Linear systems arising in
this context often have one row per vertex v € V with nonzeros only in columns involving
v and its neighbors.

e In computational geometry, shapes are often expressed using collections of triangles linked
together into a mesh. Equations for surface smoothing and other tasks once again link posi-
tions and other values at a given vertex with those at their neighbors in the mesh.

64

Example 3.5 (Harmonic parameterization). Suppose we wish to use an image to texture a triangle mesh.
A mesh can be represented as a collection of vertices V C R3 linked together by edges E C 'V x V to form
triangles. Since the vertices of the geometry are in R3, we must find a way to map them to the image plane
to store the texture as an image. Thus, we must assign texture coordinates t(v) € R? on the image plane to
eachv € V. See Figure NUMBER for an illustration.

One strategy for making this map involves a single linear solve. Suppose the mesh has disk topology,
that is, it can be mapped to the interior of a circle in the plane. For each vertex vy, on the boundary of the
mesh, we can specify the position of vy, by placing it on a circle. In the interior, we can ask that the texture
map position be the average of its neighboring positions:

LI

- ‘7’1(7))’ wen(v)

Here, n(v) C V is the set of neighbors of v € V on the mesh. Thus, each v € V is associated with a linear
equation, either fixing it on the boundary or asking that its position equal the average of its neighboring po-
sitions. This |V | x | V| system of equations leads to a stable parameterization strategy known as harmonic
parameterization; the matrix of the system only has O(|V|) nonzeros in slots corresponding to vertices
and their neighbors.

Of course, if A € R"™ " is sparse to the point that it contains O(n) rather than O(n?) nonzero
values, there is no reason to store A as an n x n matrix. Instead, sparse matrix storage techniques
only store the O(n) nonzeros in a more reasonable data structure, e.g. a list of row /column/value
triplets. The choice of a matrix data structure involves considering the likely operations that will
occur on the matrix, possibly including multiplication, iteration over nonzeros, or iterating over
individual rows or columns.

Unfortunately, it is easy to see that the LU factorization of a sparse A may not result in sparse
L and U matrices; this loss of structure severely limits the applicability of using these methods to
solve AX¥ = b when A is large but sparse. Thankfully, there are many direct sparse solvers adapting
LU to sparse matrices that can produce an LU-like factorization without inducing much fill, or
additional nonzeros; discussion of these techniques is outside the scope of this text. Alternatively,
iterative techniques have been used to obtain approximate solutions to linear systems; we will
defer discussion of these methods to future chapters.

Certain matrices are not only sparse but also structured. For instance, a tridiagonal system of
linear equations has the following pattern of nonzero values:

X X
X X X
X X X
X X X
X X

In the exercises following this chapter, you will derive a special version of Gaussian elimination
for dealing with this this simple banded structure.

In other cases, matrices may not be sparse but might admit a sparse representation. For exam-
ple, consider the cyclic matrix:

a b c d
d a b c
c d a b
b ¢c d a

65

Obviously, this matrix can be stored using only the values a,b,c,d. Specialized techniques for
this and other classes of matrices are well-studied and often more efficient than generic Gaussian
elimination.

3.3 Sensitivity Analysis

As we have seen, it is important to examine the matrix of a linear system to find out if it has special
properties that can simplify the solution process. Sparsity, positive definiteness, symmetry, and so
on all call can provide clues to the proper solver to use for a particular problem.

Even if a given solution strategy might work in theory, however, it is equally important to
understand how well we can trust the answer to a linear system given by a particular solver. For
instance, due to rounding and other discrete effects, it might be the case that an implementation
of Gaussian elimination for solving A% = b yields a solution ¥ such that 0 < ||A%) — b|| < 1; in
other words, Xj only solves the system approximately.

One way to understand the likelihood of these approximation effects is through sensitivity
analysis. In this approach, we ask what might happen to ¥ if instead of solving AX = bin reality
we solve a perturbed system of equations (A + 0A)X = b + 6b. There are two ways of viewing
conclusions made by this type of analysis:

1. Likely we make mistakes representing A and b thanks to rounding and other effects. This
analysis then shows the best possible accuracy we can expect for ¥ given the mistakes made
representing the problem.

2. If our solver generates an approximation ¥, to the solution of AX = b, it is an exact solution
to the system AXp = Bg if we define BO = AXy (be sure you understand why this sentence is
not a tautology!). Understanding how changes in X affect changes in bo show how sensitive
the system is to slightly incorrect answers.

Notice that our discussion here is similar to and indeed motivated by our definitions of forward
and backward error in previous chapters.
3.3.1 Matrix and Vector Norms

Before we can discuss the sensitivity of a linear system, we have to be somewhat careful to define
what it means for a change X to be “small.” Generally, we wish to measure the length, or norm,
of a vector X¥. We have already encountered the two-norm of a vector:

#le= /53 + 3+ 453

for ¥ € R". This norm is popular thanks to its connection to Euclidean geometry, but it is by no
means the only norm on IR". Most generally, we define a norm as follows:

Definition 3.2 (Vector norm). A vector norm is a function || - || : R" — [0, 00) satisfying the following
conditions:

o ||| = Oifand only if ¥ = 0.

66

o |[cX|| = |c|||X]| for all scalars ¢ € R and vectors X € R".
o [¥+ 7l <[IX]| + (|7l forall X, € R™.

While we use the two subscript || - ||2 to denote the two-norm of a vector, unless we note otherwise
we will use the notation ||¥|| to denote the two-norm of X. Other than this norm, there are many
other examples:

e The p-norm ||X||,, for p > 1, given by:

— 1
IZp = (Jx1]” + 2] + -+ [xa]?)

Of particular importance is the 1-norm or “taxicab” norm, given by

n
%]l = 3 [xl-
k=1

This norm receives its nickname because it represents the distance a taxicab drives between
two points in a city where the roads only run north/south and east/west.

e The co-norm ||¥|| given by:

1X]leo = max(|xa, [x2], - -, [2a])-

In some sense, many norms on IR" are the same. In particular, suppose we say two norms are
equivalent when they satisfy the following property:

Definition 3.3 (Equivalent norms). Two norms || - || and || - ||" are equivalent if there exist constants
Clow and Cpigp, Such that
clow | %]l < 1IZ]" < chignl|X]|

forall X € R".

This condition guarantees that up to some constant factors, all norms agree on which vectors
are “small” and “large.” In fact, we will state without proof a famous theorem from analysis:

Theorem 3.2 (Equivalence of norms on R"). All norms on R" are equivalent.

This somewhat surprising result implies that all vector norms have the same rough behavior,
but the choice of a norm for analyzing or stating a particular problem can make a huge difference.
For instance, on R® the co-norm considers the vector (1000, 1000, 1000) to have the same norm as
(1000, 0,0) whereas the 2-norm certainly is affected by the additional nonzero values.

Since we perturb not only vectors but also matrices, we must also be able to take the norm of
a matrix. Of course, the basic definition of a norm does not change on IR"*". For this reason, we
can “unroll” any matrix in R"*" to a vector in R"" to adopt any vector norm to matrices. One
such norm is the Frobenius norm, given by

IAlro = [
L]

Such adaptations of vector norms, however, are not always very meaningful. In particular,
the priority for understanding the structure of a matrix A often is its action on vectors, that is, the
likely results when A is multiplied by an arbitrary ¥. With this motivation, we can define the norm
induced by a vector norm as follows:

67

Definition 3.4 (Induced norm). The norm on R™*" induced by a norm || - || on R" is given by
|A]] = max{||A%]| : [|x]| = 1}.
That is, the induced norm is the maximum length of the image of a unit vector multiplied by A.

Since vector norms satisfy ||cX|| = |c|||¥X||, it is easy to see that this definition is equivalent to
requiring

A7
|A|l = max | _,xH.
ger\{0} [|X]

From this standpoint, the norm of A induced by || - || is the largest achievable ratio of the norm of
AX relative to that of the input X.

This general definition makes it somewhat hard to compute the norm || A|| given a matrix A
and a choice of || - ||. Fortunately, the matrix norms induced by many popular vector norms can
be simplified. We state some such expressions without proof:

e The induced one-norm of A is the maximum sum of any one column of A:
m
1Al = lrg%i; |aij]
e The induced co-norm of A is the maximum sum of any one row of A:
n
[Alleo = 1@%; ;]

e The induced two-norm, or spectral norm, of A € R"*" is the square root of the largest eigen-
value of AT A. That is,

|Al|3 = max{A : there exists ¥ € R" with AT AX¥ = A%}

At least the first two norms are relatively easy to compute; the third we will return to while dis-
cussing eigenvalue problems.

3.3.2 Condition Numbers

Now that we have tools for measuring the action of a matrix, we can define the condition number
of a linear system by adapting our generic definition of condition numbers from Chapter 1. We
follow the development presented in CITE.

Suppose we perturbation A of a matrix A and a corresponding perturbation 6b. For each
e > 0, ignoring invertibility technicalities we can write a vector X(e) as the solution to

(A+e-8A)%(e) =b+¢-6b.

If we differentiate both sides with respect to € and apply the product rule, we obtain the following
result:
5A-x+(A+s-5A)% =6b

68

In particular, when € = 0 we find

dax -
A-X A— =
JA -X(0) e ob
or, equivalently,
) A1 (b —6A - 2(0))

de le=0

Using the Taylor expansion, we can write

X(e) = ¥+ X' (0) + O(?),

where we define ¥'(0) = %f

perturbed system:

1%(e) — X(0)|| _ [lex’(0) +O(e?)|
[2(0)]| 1%(0)]]
_ |leAT1 (0B — A - %(0)) + O(e?)]|
[2(0)|

< '(’)H<||A 5B + A4 - 5(0))]) + O()

by the triangle inequality || A + B|| < ||A| + ||B||

‘s:O' Thus, we can expand the relative error made by solving the

by the Taylor expansion

by the derivative we computed

_ 5b .
< J¢l||A 1||(lov] +H6AH> O(2) by the identity || AB|| < [|A[[|B|

EHOI
o B oAl)
— e A]4] <||AHH HA”>+o<s>
< lellA-114] (I ” ”m”) 1 0(&) since | AZ(0) | < ||A]||Z(0)]

_ ob JA . " =
— ellA Al <HHBHH ”H AH”) +0(2) since | AZ(0)| < [|A][[£(0)]

since by definition, AX(0) = b

Here we have applied some properties of the matrix norm which follow from corresponding prop-
erties for vectors. Notice that the sum D = [1951l/|5|| + 04l /|| 4| encodes the relative perturbations
of A and b. From this standpoint, to first order we have bounded the relative error of perturbing
the system by ¢ using a factor x = || A||||A7!|:

LOREUTIRPINANES

In this way, the quantity ¥ bounds the conditioning of linear systems involving A. For this reason,
we make the following definition:

69

Definition 3.5 (Matrix condition number). The condition number of A € R"*" for a given matrix norm
-1 s

cond A = || A||||A7Y.
If A is not invertible, we take cond A = oo.

It is easy to see that cond A > 1 for all A, that scaling A has no effect on its condition number,
and that the condition number of the identity matrix is 1. These properties contrast with the
determinant, which can scale up and down as you scale A.

If || - || is induced by a vector norm and A is invertible, then we have
1 1A~]| -
|A7"|| = max ~——=— by definition

w20 X

= max ’EX/H by substituting i = A~'¥

y#0 H H

A7 -1
< y,y) by taking the reciprocal

In this case, the condition number of A is given by:

AX A7\
cond A = | max H qu min I qu
w20 |IX]| 770 171l

In other words, cond A measures the maximum to minimum possible stretch of a vector ¥ under
A.

More generally, a desirable stability property of a system AX = bis that if A or b is perturbed,
the solution X does not change considerably. Our motivation for cond A shows that when the
condition number is small, the change in ¥ is small relative to the change in A or E, as illustrated
in Figure NUMBER. Otherwise, a small change in the parameters of the linear system can cause
large deviations in ¥; this instability can cause linear solvers to make large mistakes in ¥ due to
rounding and other approximations during the solution process.

The norm ||A~!|| can be as difficult as computing the full inverse A~!. One way to lower-
bound the condition number is to apply the identity ||A~'%|| < ||A~Y||||Z. Thus, for any ¥ #
we can write ||A~Y|| > 147'%/|%|. Thus,

I A~ =]
[&dl

So, we can bound the condition number by solving A~1% for some vectors X; of course, the ne-
cessity of a linear solver to find A~!¥ creates a circular dependence on the condition number to
evaluate the quality of the estimate! When || - || is induced by the two-norm, in future chapters we
will provide more reliable estimates.

cond A = A[[[|AH]| >

3.4 Problems

Something like:

70

Kernel regression as an example of §3.1.1
Least-norm solution to AX = E, least squares matrix is invertible otherwise

Variational versions of Tikhonov regularization/“ridge” regression (not the usual approach
to this, but whatever); completing the underdetermined story this way

L' approaches to regularization for contrast — draw a picture of why to expect sparsity, draw
unit circles, show that p norm isn’t a norm for p < 1, take limitas p — 0

Mini-Riesz — derive matrix for inner product, use to show how to rotate space
tridiagonal solve

properties of condition number

71

72

Chapter 4

Column Spaces and QR

One way to interpret the linear problem AX = b for ¥ is that we wish to write b as a linear com-
bination of the columns of A with weights given in ¥. This perspective does not change when we
allow A € R™*" to be non-square, but the solution may not exist or be unique depending on the
structure of the column space. For these reasons, some techniques for factoring matrices and ana-
lyzing linear systems seek simpler representations of the column space to disambiguate solvability
and span more explicitly than row-based factorizations like LU.

4.1 The Structure of the Normal Equations

As we have shown, a necessary and sufficient condition for X to be a solution of the least-squares
problem AX ~ b is that ¥ satisfy the normal equations (AT A)¥ = ATb. This theorem suggests
that solving least-squares is a simple enough extension of linear techniques. Methods such as
Cholesky factorization also show that the special structure of least-squares problems can be used
to the solver’s advantage.

There is one large problem limiting the use of this approach, however. For now, suppose A is
square; then we can write:

cond ATA=||ATA||(ATA)Y
~ [[AT[IAINAT AT Y| depending on the choice of | - ||
= |l A|FlA7Y?
= (cond A)?

That is, the condition number of A" A is approximately the square of the condition number of
A! Thus, while generic linear strategies might work on AT A when the least-squares problem is
“easy,” when the columns of A are nearly linearly dependent these strategies are likely to generate
considerable error since they do not deal with A directly.

Intuitively, a primary reason that cond A canbe large is that columns of A mightlook “similar.”
Think of each column of A as a vector in R™. If two columns 4; and Zz'j satisfy d; ~ Zz'j, then the

least-squares residual length ||b — AX|| probably would not suffer much if we replace multiples
of d; with multiples of d; or vice versa. This wide range of nearly-but not completely—equivalent
solutions yields poor conditioning. While the resulting vector ¥ is unstable, however, the product

73

AX remains nearly unchanged, by design of our substitution. Therefore, if we wish to solve AX ~ b
simply to write b in the column space of A, either solution would suffice.

To solve such poorly-conditioned problems, we will employ an alternative strategy with closer
attention to the column space of A rather than employing row operations as in Gaussian elimina-
tion. This way, we can identify such near-dependencies explicitly and deal with them in a numeri-
cally stable way.

4.2 Orthogonality

We have determined when the least-squares problem is difficult, but we might also ask when it
is most straightforward. If we can reduce a system to the straightforward case without inducing
conditioning problems along the way, we will have found a more stable way around the issues
explained in §4.1.

Obviously the easiest linear system to solve is I, X = b: The solution simply is ¥ = B! We
are unlikely to enter this particular linear system into our solver explicitly, but we may do so
accidentally while solving least-squares. In particular, even when A # I,.,—in fact, A need
not be a square matrix—we may in particularly lucky circumstances find that the normal matrix
AT A satisfies AT A = I,,«,,. To avoid confusion with the general case, we will use the letter Q to
represent such a matrix.

Simply praying that Q'Q = Lixn unlikely will yield a desirable solution strategy, but we
can examine this case to see how it becomes so favorable. Write the columns of Q as vectors
d1, - ,Gn € R™. Then, it is easy to verify that the product Q" Q has the following structure:

B ﬂ B o | g qq o i

oo-| ~ " (4 g ST A G G
— . 1 A n — . . .

o . | L L L

— 4y n-q1 qn-q2 -+ qn-qn

Setting the expression on the right equal to I, yields the following relationship:

- - _ | 1 wheni=j
79 =10 wheni#]

In other words, the columns of Q are unit-length and orthogonal to one another. We say that they
form an orthonormal basis for the column space of Q:

Definition 4.1 (Orthonormal; orthogonal matrix). A set of vectors {¥y,-- - ,Ux} is orthonormal if
|5i]| = 1 for all i and T; - G; = 0 for all i # j. A square matrix whose columns are orthonormal is called an
orthogonal matrix.

We motivated our discussion by asking when we can expect Q' Q = I,,»,. Now it is easy
to see that this occurs when the columns of Q are orthonormal. Furthermore, if Q is square and
invertible with Q" Q = I,;x»,, then simply by multiplying both sides of this expression by Q! we
find Q-! = Q. Thus, solving Q% = b in this case is as easy as multiplying both sides by the
transpose Q.

Orthonormality also has a strong geometric interpretation. Recall from Chapter 0 that we can
regard two orthogonal vectors @ and b as being perpendicular. So, an orthonormal set of vectors

74

simply is a set of unit-length perpendicular vectors in IR". If Q is orthogonal, then its action does
not affect the length of vectors:

1Q%|1? = 2T QTQT = F ¥ =¥ ¥ = | 7|
Similarly, Q cannot affect the angle between two vectors, since:
= N 2TOTor— 2T 7.
(Q¥)-(Qy) =% Q Qy =X Luxuf = X+
From this standpoint, if Q is orthogonal, then Q represents an isometry of R”, that is, it preserves
lengths and angles. In other words, it can rotate or reflect vectors but cannot scale or shear them.

From a high level, the linear algebra of orthogonal matrices is easier because their action does not
affect the geometry of the underlying space in any nontrivial way.

4.2.1 Strategy for Non-Orthogonal Matrices

Except in special circumstances, most of our matrices A when solving Ax = b or the corresponding
least-squares problem will not be orthogonal, so the machinery of §4.2 does not apply directly.
For this reason, we must do some additional computations to connect the general case to the
orthogonal one.

Take a matrix A € R™*", and denote its column space as col A; recall that col A represents the
span of the columns of A. Now, suppose a matrix B € R"*" is invertible. We can make a simple
observation about the column space of AB relative to that of A:

Lemma 4.1 (Column space invariance). For any A € R™*" and invertible B € R"*",

col A = col AB.

Proof. Suppose b € col A. Then, by definition of multiplication by A there exists ¥ with A¥ = b.

Then, (AB) - (B~'¥) = A¥ = b, so b € col AB. Conversely, take ¢ € col AB, so there exists i with
(AB)yj = c. Then, A - (By) = ¢, showing that ¢'is in col A. O

Recall the “elimination matrix” description of Gaussian elimination: We started with a matrix
A and applied row operation matrices E; such that the sequence A, E1A, E;E A, ... represented
sequentially easier linear systems. The lemma above suggests an alternative strategy for situations
in which we care about the column space: Apply column operations to A by post-multiplication
until the columns are orthonormal. That is, we obtain a product Q = AE{E; - - - E such that Q is
orthonormal. As long as the E;’s are invertible, the lemma shows that col Q = col A. Inverting
these operations yields a factorization A = QR for R = E° 1Ek’_l1 - EfL

As in the LU factorization, if we design R carefully, the solution of least-squares problems
AR ~ b may simplify. In particular, when A = QR, we can write the solution to AT AX = ATb as
follows:

x=(ATA)ATh
= (RTQ"OR)'RTQ b since A = QR
= (R"R)™'R"T Q"D since Q is orthogonal
“Y(RT)'RTQ b since (AB)™' =B 1A}
—1QTE
Or equivalently, R¥ = Q' b

R
R

75

Thus, if we design R to be a triangular matrix, then solving the linear system RX = Qb is as
simple as back-substitution.

Our task for the remainder of the chapter is to design strategies for such a factorization.

4.3 Gram-Schmidt Orthogonalization

Our first approach for finding OR factorizations is the simplest to describe and implement but
may suffer from numerical issues. We use it here as an initial strategy and then will improve upon
it with better operations.

4.3.1 Projections

Suppose we have two vectors 4 and b. Then, we could easily ask “Which multiple of 4 is closest
to b?” Mathematically, this task is equivalent to minimizing ||c@ — b||? over all possible ¢ € R. If
we think of 7 and b as 1 x 1 matrices and cas a 1 x 1 matrix, then this is nothing more than an
unconventional least-squares problem 4 - ¢ ~ b. In this case, the normal equations show 47 - c =
al E, or

a-b d-b

a-a |la]*
We denote this projection of b onto @ as:
proj. b = c@ E'Eﬁ ﬁ'gﬁ
;0 =C0 = >—=04= 75
’ a-a |al?

Obviously projﬁg is parallel to 4. What about the remainder b— projﬁB? We can do a simple
computation to find out:

Thus, we have decomposed binto a component parallel to 7 and another component orthogonal
tod.

Now, suppose that dq,4,, - - ,d; are orthonormal; we will put hats over vectors with unit
length. Then, for any single i we can see:

-

pI‘OjﬁiE = (ﬁi . b)ﬁi

76

The norm term does not appear because ||4;]| = 1 by definition. We could project b onto span {a;, - - - , 4 }
by minimizing the following energy over cy,...,cx € R:

1

k k k

||C1ﬁ1 + oo + - - - 4 crly — b”z = (ZCZ‘C]'(@Z' . ﬁj)) —2b- <Eczﬁi> +b-b
=1j=1 j

by applying [|7]> = 7- 7

k
— Z (sz —2¢;b - ﬁi> + ||b||? since the 4;’s are orthonormal
=1

~

Notice that the second step here is only valid because of orthonormality. At a minimum, the
derivative with respect to c; is zero for every c;, yielding;:

C; = ﬁi . B
Thus, we have shown that when 4y, - - - , 4 are orthonormal, the following relationship holds:
projspan {41, A} b= (ﬁl ’ b)al +oee (ﬁk ’ b)ék

This is simply an extension of our projection formula, and by a similar proof it is easy to see that

—

a;-(b— PTOjspan {4y, i} b) =0.

That is, we have separated binto a component parallel to the span of the 4;’s and a perpendicular
residual.

4.3.2 Gram-Schmidt Orthogonalization

Our observations above lead to a simple algorithm for orthogonalization, or finding an orthogonal
basis {41, - - ,dx} whose span is the same as that of a set of linearly independent input vectors

(B, B}

1. Set

L

1
171

That is, we take 4; to be a unit vector parallel to 7.

L

a1

2. Forifrom?2tok,

(a) Compute the projection
pi = projspan {41, 4i_1} 51'-
By definition 4y, - - - , 4;_1 are orthonormal, so our formula above applies.

(b) Define
ﬁi = 751. — ﬁi .
15; — Fill

77

This technique, known as “Gram-Schmidt Orthogonalization,” is a straightforward application of
our discussion above. The key to the proof of this technique is to notice that span {7y, --- ,7;} =
span{dy,---,4;} foreachi € {1,--- ,k}. Step 1 clearly makes this the case fori = 1, and fori > 1
the definition of 4; in step 2b simply removes the projection onto the vectors we already have seen.

If we start with a matrix A whose columns are ¥y, - - - , ¥, then we can implement Gram-
Schmidt as a series of column operations on A. Dividing column i of A by its norm is equivalent
to post-multiplying A by a k x k diagonal matrix. Similarly, subtracting off the projection of a
column onto the orthonormal columns to its left as in step 2 is equivalent to post-multiplying by
an upper-triangular matrix: Be sure to understand why this is the case! Thus, our discussion in
64.2.1 applies, and we can use Gram-Schmidt to obtain a factorization A = QR.

Unfortunately, the Gram-Schmidt algorithm can introduce serious numerical instabilities due
to the subtraction step. For instance, suppose we provide the vectors ¥; = (1,1) and 7, = (1+¢,1)
as input to Gram-Schmidt for some 0 < ¢ < 1. Notice that an obvious basis for span {71, 7,} is
{(1,0),(0,1)}. But, if we apply Gram-Schmidt, we obtain:

(1)

>

11
. 24e(1
2= 1
55— T+e) 2+4e/1
2mP=0a 2 \1
_L[e
2\ —e
Notice that ||7; — pa|| = (V2/2) - ¢, so computing 4, will require division by a scalar on the order

of &. Division by small numbers is an unstable numerical operation that we should avoid.

4.4 Householder Transformations

In §4.2.1, we motivated the construction of QR factorization by post-multiplication and column
operations. This construction is reasonable in the context of analyzing column spaces, but as we
saw in our derivation of the Gram-Schmidt algorithm, the resulting numerical techniques can be
unstable.

Rather than starting with A and post-multiplying by column operations to obtain Q = AE; - - - E,
however, we can preserve our high-level strategy from Gaussian elimination. That is, we can start
with A and pre-multiply by orthogonal matrices Q; to obtain Q- -- Q1A = R; these Q’s will act
like row operations, eliminating elements of A until the resulting product R is upper-triangular.
Then, thanks to orthogonality of the Q’s we can write A = QlT e Q,;r R, obtaining the QR factor-
ization since the product of orthogonal matrices is orthogonal.

The row operation matrices we used in Gaussian elimination and LU will not suffice for QR
factorization since they are not orthogonal. A number of alternatives have been suggested; we
will introduce one common strategy introduced in 1958 by Alston Scott Householder.

The space of orthogonal n x n matrices is very large, so we must find a smaller space of Q;’s
that is easier to work with. From our geometric discussions in §4.2, we know that orthogonal
matrices must preserve angles and lengths, so intuitively they only can rotate and reflect vectors.

78

Thankfully, the reflections can be easy to write in terms of projections, as illustrated in Figure
NUMBER. Suppose we have a vector b that we wish to reflect over a vector 7. We have shown
that the residual 7 = b — projﬁg is perpendicular to . As in Figure NUMBER, the difference
2proj55 — b reflects b over 7.

We can expand our reflection formula as follows:

o T b - - -
2proj;b — b = ZWZJ — b by definition of projection
b
=27 - == b using matrix notation
7'7

207" I 3
= | =7 — lnxn
7o

— Hzb where the negative is introduced to align with other treatments

Thus, we can think of reflecting b over 7 as applying a linear operator —Hjy to b! Of course, Hy
without the negative is still orthogonal, so we will use it from now on.

Suppose we are doing the first step of forward substitution during Gaussian elimination. Then,
we wish to pre-multiply A by a matrix that takes the first column of A, which we will denote 4, to
some multiple of the first identity vector €. In other words, we want for some ¢ € R:

Cgl = H{jﬁ
I 2007 _
=\ lnxn — 3 a
7o
. . o'a
=da— ZUT
7o
Moving terms around shows
7= (d—cer) 09
== - 1 —T =
2074

In other words, 7 must be parallel to the difference @ — céj. In fact, scaling ¥ does not affect the
formula for Hy, so we can choose 7 = @ — c€;. Then, for our relationship to hold we must have

A

- 20'a

@) —2cé a+c?

= 2@ i—ca)
On0= |72 - = c=+[7|

With this choice of ¢, we have shown:

[ev i o)
X X
X X
X X

HzA =

79

We have just accomplished a step akin to forward elimination using only orthogonal matrices!
Proceeding, in the notation of CITE during the k-th step of triangularization we have a vector
d that we can split into two components:

Following a parallel derivation to the one above, it is easy to show that

7= 0 — c@
i, k

accomplishes exactly this transformation when ¢ = =||@;||; we usually choose the sign of ¢ to
avoid cancellation by making it have sign opposite to that of the k-th value in 4.

The algorithm for Householder QR is thus fairly straightforward. For each column of A, we
compute ¥ annihilating the bottom elements of the column and apply Hz to A. The end result is
an upper triangular matrix R = Hj, - - - Hz A. The orthogonal matrix Q is given by the product
H;l XX H;n , which can be stored implicitly as a list of vectors 7, which fits in the lower triangle as
shown above.

4.5 Reduced QR Factorization

We conclude our discussion by returning to the most general case AX ~ b when A € R™" is
not square. Notice that both algorithms we have discussed in this chapter can factor non-square
matrices A into products QR, but the output is somewhat different:

e When applying Gram-Schmidt, we do column operations on A to obtain Q by orthogonal-
ization. For this reason, the dimension of A is that of Q, yielding Q € R™*" and R € R"*".

e When using Householder reflections, we obtain Q as the product of a number of m x m
reflection matrices, leaving R € R"*".

Suppose we are in the typical case for least-squares, for which m > n. We still prefer to use the
Householder method due to its numerical stability, but now the m x m matrix Q might be too
large to store! Thankfully, we know that R is upper triangular. For instance, consider the structure
of a 5 x 3 matrix R:

!

I
o olo o X
o olo X X
O Ol X X X

80

It is easy to see that anything below the upper n x n square of R must be zero, yielding a simplifi-

cation:
A=QR=(Q1 @) < o) — QiR

Here, Q1 € R™*" and R; € R"*" still contains the upper triangle of R. This is called the “reduced”
QR factorization of A, since the columns of Q; contain a basis for the column space of A rather
than for all of R™; it takes up far less space. Notice that the discussion in §4.2.1 still applies, so the
reduced QR factorization can be used for least-squares in a similar fashion.

4.6 Problems

e tridiagonalization with Householder
e Givens

e Underdetermined QR

81

82

Chapter 5

Eigenvectors

We turn our attention now to a nonlinear problem about matrices: Finding their eigenvalues and
eigenvectors. Eigenvectors X and their corresponding eigenvalues A of a square matrix A are
determined by the equation A¥ = AX. There are many ways to see that this problem is nonlinear.
For instance, there is a product of unknowns A and ¥, and to avoid the trivial solution ¥ = 0
we constrain ||¥|| = 1; this constraint is circular rather than linear. Thanks to this structure, our
methods for finding eigenspaces will be considerably different from techniques for solving and
analyzing linear systems of equations.

5.1 Motivation

Despite the arbitrary-looking form of the equation AX = AX, the problem of finding eigenvectors
and eigenvalues arises naturally in many circumstances. We motivate our discussion with a few
examples below.

5.1.1 Statistics

Suppose we have machinery for collecting several statistical observations about a collection of
items. For instance, in a medical study we may collect the age, weight, blood pressure, and heart
rate of 100 patients. Then, each patient i can be represented by a point ¥; in R* storing these four
values.

Of course, such statistics may exhibit strong correlation. For instance, patients with higher
blood pressure may be likely to have higher weights or heart rates. For this reason, although
we collected our data in R?, in reality it may—to some approximate degree—live in a lower-
dimensional space better capturing the relationships between the different variables.

For now, suppose that in fact there exists a one-dimensional space approximating our dataset.
Then, we expect all the data points to be nearly parallel to some vector @, so that each can be
written as X; ~ ;7 for different c; € R. From before, we know that the best approximation of ¥;
parallel to @ is proj; X;:

Rel!
<

proj; X; U by definition

<

;- 0)0 since 7 - 7 = ||77]|?

83

Here, we define 9 = 9/|5||. Of course, the magnitude of 7 does not matter for the problem at hand,
so it is reasonable to search over the space of unit vectors 9.
Following the pattern of least squares, we have a new optimization problem:

minimize) _ ||X; — proj, X; 12
i

such that ||9]] =1
We can simplify our optimization objective a bit:
Y |IX; — proj, Xi|? = Yo llx— (%)9||> by definition of projection
i i

=Y (J|%]]* = (% - 9)?) since ||9]| = 1and ||@|* = @@
i
= const. —) (%;- 0)?

i
This derivation shows that we can solve an equivalent optimization problem:

maximize || X 9||?

such that ||9*> =1,

where the columns of X are the vectors ¥;. Notice that || X'9||> = 6" XX "9, so by Example 0.27
the vector 9 corresponds to the eigenvector of XX " with the highest eigenvalue. The vector ¢ is
known as the first principal component of the dataset.

5.1.2 Differential Equations

Many physical forces can be written as functions of position. For instance, the force between two
particles at positions ¥ and i in R® exerted by a spring can be written as k(¥ — i) by Hooke’s
Law; such spring forces are used to approximate forces holding cloth together in many simulation
systems. Although these forces are not necessarily linear in position, we often approximate them
in a linear fashion. In particular, in a physical system with n particles encode the positions of all
the particles simultaneously in a vector X € R". Then, if we assume such an approximation we
can write that the forces in the system are approximately F ~ AX for some matrix A.

Recall Newton’s second law of motion F = ma, or force equals mass times acceleration. In our
context, we can write a diagonal mass matrix M € RR®>*3" containing the mass of each particle in
the system. Then, we know F = MX”, where prime denotes differentiation in time. Of course,
X" = (X')', so in the end we have a first-order system of equations:

i X o 0 I3n x3n X

a\v) \M'A 0 1%
Here, we simultaneously compute both positions in X € R** and velocities V € R of all n
particles as functions of time.

More generally, differential equations of the form ¥’ = AX appear in many contexts, including
simulation of cloth, springs, heat, waves, and other phenomena. Suppose we know eigenvectors

84

X1,..., X of A, such that AX; = A;X;. If we write the initial condition of the differential equation in
terms of the eigenvectors, as
9?(0) = C1f1 +---+ Ckfk,
then the solution to the equation can be written in closed form:
X(t) = c1eMF + -+ o™ F,

This solution is easy to check by hand. That is, if we write the initial conditions of this differential
equation in terms of the eigenvectors of A, then we know its solution for all times ¢t > 0 for free.
Of course, this formula is not the end of the story for simulation: Finding the complete set of
eigenvectors of A is expensive, and A may change over time.

5.2 Spectral Embedding

Suppose we have a collection of 1 items in a dataset and a measure w;; > 0 of how similar each pair
of elements i and j are; we will assume w;; = wj;. For instance, maybe we are given a collection of
photographs and use w;; to compare the similarity of their color distributions. We might wish to
sort the photographs based on their similarity to simplify viewing and exploring the collection.
One model for ordering the collection might be to assign a number x; for each item i, asking
that similar objects are assigned similar numbers. We can measure how well an assignment groups

similar objects by using the energy
E(J?) = Zwij(xi — x]-)z
if

That is, E(X) asks that items i and j with high similarity scores w;; get mapped to nearby values.

Of course, minimizing E(X) with no constraints gives an obvious minimum: x; = const. for
all i. Adding a constraint ||X|| = 1 does not remove this constant solution! In particular, taking
x; = 1/ym for alli gives || X|| = 1 and E(X) = 0 in an uninteresting way. Thus, we must remove this
case as well:

minimize E(X)
such that ||%||* = 1
1.x=0

Notice that our second constraint asks that the sum of ¥ is zero.
Once again we can simplify the energy:

Zwu x; — ;)

= Zwu — 2x;x; + x7)

= Zaix ZZwl]xlx] + Zb x;
lmm Z%mM_Z%

=% (A—2W+ B)x where diag(A) = 7 and diag(B) = b
= %" (2A — 2W)X by symmetry of W

85

It is easy to check that T is an eigenvector of 24 — 2W with eigenvalue 0. More interestingly, the
eigenvector corresponding to the second-smallest eigenvalue corresponds to the solution of our
minimization objective above! (TODO: Add KKT proof from lecture)

5.3 Properties of Eigenvectors

We have established a variety of applications in need of eigenspace computation. Before we can
explore algorithms for this purpose, however, we will more closely examine the structure of the
eigenvalue problem.

We can begin with a few definitions that likely are evident at this point:

Definition 5.1 (Eigenvalue and eigenvector). An eigenvector ¥ # 0 of a matrix A € R"™ " is any
vector satisfying AX = AX for some A € IR; the corresponding A is known as an eigenvalue. Complex
eigenvalues and eigenvectors satisfy the same relationships with A € C and ¥ € C".

Definition 5.2 (Spectrum and spectral radius). The spectrum of A is the set of eigenvalues of A. The
spectral radius p(A) is the eigenvalue A maximizing |A|.

The scale of an eigenvector is not important. In particular, scaling an eigenvector ¥ by c yields
A(cX) = cAX = cAX = A(cX), so cX is an eigenvector with the same eigenvalue. We often restrict
our search by adding a constraint ||X|] = 1. Even this constraint does not completely relieve
ambiguity, since now £X are both eigenvectors with the same eigenvalue.

The algebraic properties of eigenvectors and eigenvalues easily could fill a book. We will limit
our discussion to a few important theorems that affect the design of numerical algorithms; we
will follow development of CITE AXLER. First, we should check that every matrix has at least
one eigenvector so that our search is not in vain. Our usual strategy is to notice that if A is an
eigenvalue such that AX = AX, then (A — AL, x,)X = 0; thus, A is an eigenvalue exactly when the
matrix A — Al,«, is not full-rank.

Lemma 5.1 (CITE Theorem 2.1). Every matrix A € R"*" has at least one (complex) eigenvector.

Proof. Take any vector ¥ € R"\{0}. The set {X, AX, A%%,--- , A"X} must be linearly dependent
because it contains n + 1 vectors in n dimensions. So, there exist constants cg,...,c;, € R with
cn 7 0 such that

0= coX + 1 AX + - - + ¢, A"X.

We can write down a polynomial
f(z) =co+ciz+---+cnz".
By the Fundamental Theorem of Algebra, there exist n roots z; € C such that
f(z)=cn(z—2z1)(z—22) - (2 — 2zn).
Then, we have:
0= co¥ + c1AX + -+ - + c, A"%
= (coluxn + 1A+ -+ -+ c,AMX
= cn(A —z1Luxn) - - - (A — 2y lyxn)X by our factorization

Thus, at least one A — z;I,x, has a null space, showing that there exists 7 with AT = z;7, as
needed. O

86

There is one additional fact worth checking to motivate our discussion of eigenvector compu-
tation:

Lemma 5.2 (CITE Proposition 2.2). Eigenvectors corresponding to different eigenvalues must be linearly
independent.

Proof. Suppose this is not the case. Then there exist eigenvectors ¥y, - - - , X with distinct eigenval-
ues Ay, - - -, A that are linearly dependent. This implies that there are coefficients cy, . . ., ¢k not all
zero with 0 = 1% + - - - + cxXy. If we premultiply by the matrix (A — A2Lyixn) - - - (A — AgLuxn), we
find:

0= (A—=AaLyun) - (A= AeLysen) (1% + - - - + %)
=0 (/\1 — /\2) s ()\1 —)\k)fl since Afi =)\ifi

Since all the A;’s are distinct, this shows ¢; = 0. A similar proof shows that the rest of the ¢;’s have
to be zero, contradicting linear dependence. O

This lemma shows that an 7 x n matrix can have at most n distinct eigenvalues, since a set of
eigenvalues yields 7 linearly independent vectors. The maximum number of linearly independent
eigenvectors corresponding to a single eigenvalue A is known as the geometric multiplicity of A.

It is not true, however, that a matrix has to have exactly n linearly independent eigenvectors.
This is the case for many matrices, which we will call nondefective:

Definition 5.3 (Nondefective). A matrix A € R"*" is nondefective or diagonalizable if its eigenvec-
tors span IR".

We call such a matrix diagonalizable for the following reason: If a matrix is diagonalizable, then it
has n eigenvectors ¥y, . . ., ¥, € IR” with corresponding (possibly non-unique) eigenvalues Ay, ..., A,.
Take the columns of X to be the vectors X;, and define D to be the diagonal matrix with eigenval-
ues Ay,..., A, along the diagonal. Then, by definition of eigenvalues we have AX = XD; this is
simply a “stacked” version of AX; = A;X;. In other words,

D =X 'AX,
meaning A is diagonalized by a similarity transformation A — X 1AX :
Definition 5.4 (Similar matrices). Two matrices A and B are similar if there exists T with B = T~ AT.
Similar matrices have the same eigenvalues, since if BX = Ax, then T 1ATX = AX. Equiva-
lently, A(TX) = A(TX), showing TX is an eigenvector with eigenvalue A.
5.3.1 Symmetric and Positive Definite Matrices

Unsurprisingly given our special consideration of normal matrices A" A, symmetric and/or pos-
itive definite matrices enjoy special eigenvector structure. If we can verify either of these proper-
ties, specialized algorithms can be used to extract their eigenvectors more quickly.

First, we can prove a property of symmetric matrices that obliterates the need for complex
arithmetic. We begin by making a generalization of symmetric matrices to matrices in C"*":

Definition 5.5 (Complex conjugate). The complex conjugate of a numberz = a+bi € Cisz = a — bi.

87

Definition 5.6 (Conjugate transpose). The conjugate transpose of A € C"™*" is AH = AT.
Definition 5.7 (Hermitian matrix). A matrix A € C"*" is Hermitian if A = A

Notice that a symmetric matrix A € R"*" is automatically Hermitian because it has no complex
part. With this slight generalization in place, we can prove a symmetry property for eigenvalues.
Our proof will make use of the dot product of vectors in C", given by

(X,9) = sz'y_z‘/

where ¥, € C". Notice that once again this definition coincides with ¥ - if when ¥, i € R". For the
most part, properties of this inner product coincide with those of the dot product on R", a notable

exception being that (7, @) = (@, 7).
Lemma 5.3. All eigenvalues of Hermitian matrices are real.

Proof. Suppose A € C"™ " is Hermitian with A¥ = AX. By scaling we can assume || X||?> = (¥, X) =
1. Then, we have:

A= A{ since X has norm 1

=
=l =
S~ ~

by linearity of (-, -)

I
N
R

— Rl

) since AX = AX

|
—~

>

=1

X by definition of (-,)

|
1)
i

N

%) by expanding the product and using ab = ab
H¥) by definition of A" and (-, -)
X) since A = AH

, X) since AX = AX

I
—~ =
1
b
K

7

7

o
B
RS

= A since ¥ has norm 1
Thus A = A, which can happen only if A € R, as needed. O

Symmetric and Hermitian matrices also enjoy a special orthogonality property for their eigenvec-
tors:

Lemma 5.4. Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Proof. Suppose A € C"*" is Hermitian, and suppose A # y with AX = A¥ and Ay = pij. By the
previous lemma we know A, u € R. Then, (AX,) = A(X,). But since A is Hermitian we can also
write (A%,) = (¥, Ay) = (%, AYj) = u(®,). Thus, A(%,7) = u(®, 7). Since A # u, we must have
(x,9) = 0. O

Finally, we can state without proof a crowning result of linear algebra, the Spectral Theorem.
This theorem states that no symmetric or Hermitian matrix can be defective, meaning thatann x n
matrix satisfying this property has exactly n orthogonal eigenvectors.

Theorem 5.1 (Spectral Theorem). Suppose A € C"*" is Hermitian (if A € R"™", suppose it is sym-
metric). Then, A has exactly n orthonormal eigenvectors X1, - - - , X, with (possibly repeated) eigenvalues
A1, ..., An . In other words, there exists an orthonormal matrix X of eigenvectors and diagonal matrix D of
eigenvalues such that D = X" AX.

88

This theorem implies that any vector i € R" can be decomposed into a linear combination of the
eigenvectors of a Hermitian matrix A. Many calculations are easier in this basis, as shown below:

Example 5.1 (Computation using eigenvectors). Take X1, ...,%, € IR" to be the unit-length eigenvec-
tors of symmetric matrix A € R™". Suppose we wish to solve Ajj = b. We can write

b:C1f1+'--+Cnfn,

where c; = b - X; by orthonormality. It is easy to guess the following solution:

= 1% 4+ %
y—All /\n n-

In particular, we find:

- 1. Cn o
A=A —=X1 + —
y (/\1 X1 + Anxn>
1 — Cn —
= —AX1+---+—A
A 1 + An A

= b, as desired.

The calculation above is both a positive and negative result. It shows that given the eigenvectors
of symmetric A, operations like inversion are straightforward. On the flip side, this means that
finding the full set of eigenvectors of a symmetric matrix A is “at least” as difficult as solving
A¥ =b.

Returning from our foray into the complex numbers, we return to real numbers to prove one
final useful if straightforward fact about positive definite matrices:

Lemma 5.5. All eigenvalues of positive definite matrices are nonnegative.

Proof. Take A € R"*" positive definite, and suppose AX = AX with ||X|| = 1. By positive definite-
ness, we know ¥' A% > 0. But, ¥' A% = ¥' (A¥) = A||¥||?> = A, as needed. O

5.3.2 Specialized Properties’
Characteristic Polynomial

Recall that the determinant of a matrix det A satisfies the relationship that det A # 0 if and only
if A is invertible. Thus, one way to find eigenvalues of a matrix is to find roots of the characteristic
polynomial

pa(A) = det(A — ALixy).

We will not define determinants in our discussion here, but simplifying p4 reveals that it is an
n-th degree polynomial in A. This provides an alternative reason why there are at most n distinct
eigenvalues, since there are at most # roots of this function.

From this construction, we can define the algebraic multiplicity of an eigenvalue as its multiplic-
ity as aroot of p4. It is easy to see that the algebraic multiplicity is at least as large as the geometric

IThis section can be skipped if readers lack sufficient background but is included for completeness.

89

multiplicity. If the algebraic multiplicity is 1, the root is called simple, because it corresponds to a
single eigenvector that is linearly dependent with any others. Eigenvalues for which the algebraic
and geometric multiplicities are not equal are called defective.

In numerical analysis we avoid discussing the determinant of a matrix. While it is a convenient
theoretical construction, its practical use is limited. Determinants are difficult to compute. In fact,
eigenvalue algorithms do not attempt to find roots of p4 since doing so would require evaluation
of a determinant. Furthermore, the determinant det A has nothing to do with the conditioning of
A, so near-zero determinant of det(A — Al,x,) might not show that A is nearly an eigenvalue of
A.

Jordan Normal Form

We can only diagonalize a matrix when it has a full eigenspace. All matrices, however, are similar
to a matrix in Jordan normal form, which has the following form:

e Nonzero values are on the diagonal entries 4;; and on the “superdiagonal” a;(; ;).

e Diagonal values are eigenvalues repeated as many times as their multiplicity; the matrix is
block diagonal about these clusters.

e Off-diagonal values are 1 or 0.

Thus, the shape looks something like the following

A1
A1
M

Jordan normal form is attractive theoretically because it always exists, but the 1/0 structure is
discrete and unstable under numerical perturbation.

5.4 Computing Eigenvalues

The computation and estimation of the eigenvalues of a matrix is a well-studied problem with
many potential solutions. Each solution is tuned for a different situation, and achieving maximum
conditioning or speed requires experimentation with several techniques. Here, we cover a few of
the most popular and straightforward solutions to the eigenvalue problem frequently encountered
in practice.

5.4.1 Power Iteration

For now, suppose that A € R"*" is symmetric. Then, by the spectral theorem we can write
eigenvectors ¥p,...,X, € R"; we sort them such that their corresponding eigenvalues satisfy
Adl = Al = - 2 [l

90

Suppose we take an arbitrary vector 7. Since the eigenvectors of A span R", we can write:
U=0c1X1+ -+,
Then,

AT = 1AX1 + - -+, AX,
= MX1+ -+ cpAg X, since AX; = AX;

=M <c1x1 + A—jszz + 4t A'Icnxn>

- SV A\
A% = /\% <C1x1 + (;) Xy + -+ <)\n> Cnxn>
1 1
B AN L AN L
Ak?} = /\11(<C1X1 + </\2> CoXp+ -+ (;) Cnxn>
1 1

Notice that as k — oo, the ratio (Ai/A,)¥ — 0 unless A; = Ay, since A1 has the largest magnitude of
any eigenvalue by definition. Thus, if ¥ is the projection of ¥ onto the space of eigenvectors with
eigenvalues Aj, then as k — oo the following approximation holds more and more exactly:

This observation leads to an exceedingly simple algorithm for computing an eigenvector ¥ of
A corresponding to the largest eigenvalue A;:

1. Take 7; € R” to be an arbitrary nonzero vector.
2. Iterate until convergence for increasing k:
Uk = ATy

This algorithm, known as power iteration, will produce vectors 7 more and more parallel to the
desired X;. It is guaranteed to converge, even when A is asymmetric, although the proof of this
fact is more involved than the derivation above. The one time that this technique may fail is if we
accidentally choose 7 such that c; = 0, but the odds of this occurring are slim to none.

Of course , if [A1| > 1, then ||T|| — o0 as k — oo, an undesirable property for floating point
arithmetic. Recall that we only care about the direction of the eigenvector rather than its magnitude,
so scaling has no effect on the quality of our solution. Thus, to avoid this divergence situation we
can simply normalize at each step, producing the normalized power iteration algorithm:

1. Take 7; € R" to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k:

Wy = AT

. Wy

Uy = 7=
||

91

Notice that we did not decorate the norm || - || with a particular subscript. Mathematically, any
norm will suffice for preventing the divergence issue, since we have shown that all norms on R”
are equivalent. In practice, we often use the infinity norm || - ||«; in this case it is easy to check that
[@k[| = [Aq].

5.4.2 Inverse Iteration

We now have a strategy for finding the largest-magnitude eigenvalue A;. Suppose A is invertible,
so that we can evaluate = A~'7 by solving A = ¥ using techniques covered in previous
chapters.
If AX = AX, then ¥ = AA1%, or equivalently
1
ATIX = ZX.

A
Thus, we have shown that 1/1 is an eigenvalue of A~! with eigenvector . Notice that if |a| > |b|
then |b|~! > |a|~! for any a,b € R, so the smallest-magnitude eigenvalue of A is the largest-
magnitude eigenvector of A~!. This observation yields a strategy for finding A, rather than A,
called inverse power iteration:

1. Take 7; € R” to be an arbitrary nonzero vector.
2. Iterate until convergence for increasing k:
(a) Solve for Wy: AW, = Ti_1

Wy
@

(b) Normalize: 7, =

We repeatedly are solving systems of equations using the same matrix A, which is a perfect
application of factorization techniques from previous chapters. For instance, if we write A = LU,
then we could formulate an equivalent but considerably more efficient version of inverse power
iteration:

>

1. Factor A = LU
2. Take 77 € R" to be an arbitrary nonzero vector.
3. Iterate until convergence for increasing k:

(a) Solve for iji by forward substitution: Lij, = Tx_1
(b) Solve for @y by back substitution: Uwy = i

Wy

(c¢) Normalize: 7 = A

5.4.3 Shifting

Suppose A, is the eigenvalue with second-largest magnitude of A. Given our original derivation
of power iteration, it is easy to see that power iteration converges fastest when |2/,] is small,
since in this case the power (12/1,)F decays quickly. Contrastingly, if this ratio is nearly 1 it may
take many iterations of power iteration before a single eigenvector is isolated.

92

If the eigenvalues of A are Ay, ..., A,, thenitis easy to see that the eigenvalues of A — I, are
A —o0,..., Ay — 0. Then, one strategy for making power iteration converge quickly is to choose o

such that:
Ay

M
Of course, guessing such a ¢ can be an art, since the eigenvalues of A obviously are not known
initially. Similarly, if we think that ¢ is near an eigenvalue of A, then A — I, «,, has an eigenvalue
close to 0 that we can reveal by inverse iteration.

One strategy that makes use of this observation is known as Rayleigh quotient iteration. If we
have a fixed guess at an eigenvector ¥ of A, then by NUMBER the least-squares approximation of
the corresponding eigenvalue ¢ is given by

)L2—(7
/\1—(7'

This fraction is known as a Rayleigh quotient. Thus, we can attempt to increase convergence by
iterating as follows:

1. Take 7; € R" to be an arbitrary nonzero vector or initial guess of an eigenvector.
2. Iterate until convergence for increasing k:
(a) Write the current estimate of the eigenvalue

. 7 ATy
1T 112
(b) Solve for ZT)kS (A — Uklnxn)ﬁ]k = Uk—1

Wy
(|l

(c) Normalize: 7, =

This strategy converges much faster given a good starting guess, but the matrix A — oyl xn is
different each iteration and cannot be prefactored using LU or most other strategies. Thus, fewer
iterations are necessary but each iteration takes more time!

5.4.4 Finding Multiple Eigenvalues

So far, we have described techniques for finding a single eigenvalue/eigenvector pair: power it-
eration to find the largest eigenvalue, inverse iteration to find the smallest, and shifting to target
values in between. Of course, for many applications a single eigenvalue will not suffice. Thank-
fully we can extend our strategies to handle this case as well.

Deflation

Recall our power iteration strategy: Choose an arbitrary 7, and iteratively multiply it by A until
only the largest eigenvalue A; survives. Take X; to be the corresponding eigenvector.

We were quick to dismiss an unlikely failure mode of this algorithm, however, when ¢ - ¥; = 0.
In this case, no matter how many times you premultiply by A you will never recover a vector

93

parallel to X1, since you cannot amplify a zero component. The probability of choosing such a 7
is exactly zero, so in all but the most pernicious of cases power iteration remains safe.

We can turn this drawback on its head to formulate a strategy for finding more than one eigen-
value when A is symmetric. Suppose we find ¥; and A; via power iteration as before. Now, we
restart power iteration, but before beginning project X¥; out of 7;. Then, since the eigenvectors of
A are orthogonal, power iteration will recover the second-largest eigenvalue!

Due to numerical issues, it may be the case that applying A to a vector introduces a small
component parallel to ¥;. In practice we can avoid this effect by projecting in each iteration. In
the end, this strategy yields the following algorithm for computing the eigenvalues in order of
descending magnitude:

e For each desired eigenvalue / = 1,2, ...

1. Take 7; € R" to be an arbitrary nonzero vector.
2. Iterate until convergence for increasing k:

(a) Project out the eigenvectors we already have computed:
il = Ux—1 — projspan{fc’l,...,fg_l} k-1
(b) Multiply Aiij = Wy

(c) Normalize: 7, = H%H

3. Add the result of iteration to the set of X;’s

The inner loop is equivalent to power iteration on the matrix AP, where P projects out X1, ..., ¥;_1.
It is easy to see that AP has the same eigenvectors as A; its eigenvalues are Ay, ..., A, with the
remaining eigenvalues taken to zero.

More generally, the strategy of deflation involves modifying the matrix A so that power itera-
tion reveals an eigenvector you have not yet computed. For instance, AP is a modification of A so
that the large eigenvalues we already have computed are zeroed out.

Our projection strategy fails if A is asymmetric, since in that case its eigenvectors may not be
orthogonal. Other less obvious deflation strategies can work in this case. For instance, suppose
AXy = A% with ||¥1]] = 1. Take H to be the Householder matrix such that HX; = &, the first
standard basis vector. Similarity transforms once again do not affect the set of eigenvectors, so we
might try conjugating by H. Consider what happens when we multiply HAH " by é&;:

HAH'& = HAH®é, since H is symmetric
= HAZX, since HX; = &; and H? = I«

= A1 HX; since AX; = A1¥ = A1) by definition of H
Thus, the first column of HAH is A€, showing that HAH T has the following structure (CITE
HEATH):
7T
HAH = M 0 .
0 B

The matrix B € R("=1)x(1=1) K55 eigenvalues Ay, ..., A,. Thus, another strategy for deflation is to
construct smaller and smaller B matrices with each eigenvalue computed using power iteration.

94

OR Iteration

Deflation has the drawback that we must compute each eigenvector separately, which can be slow
and can accumulate error if individual eigenvalues are not accurate. Our remaining strategies
attempt to find more than one eigenvector at a time.

Recall that similar matrices A and B = T~ 1AT must have the same eigenvalues. Thus, an
algorithm attempting to find the eigenvalues of A can freely apply similarity transformations to
A. Of course, applying T~! in general may be a difficult proposition, since it effectively would
require inverting T, so we seek T matrices whose inverses are easy to apply.

One of our motivators for deriving QR factorization was that the matrix Q is orthogonal, sat-
isfying Q! = Q. Thus, Q and Q! are equally straightforward to apply, making orthogonal
matrices strong choices for similarity transformations.

But which orthogonal matrix Q should we choose? Ideally Q should involve the structure
of A while being straightforward to compute. It is unclear how to apply simple transformations
like Householder matrices strategically to reveal multiple eigenvalues,? but we do know how to
generate one such Q simply by factoring A = QR. Then, we could conjugate A by Q to find:

Q'AQ=Q'AQ0=0Q'(QR)Q = (Q'Q)RQ =RQ
Amazingly, conjugating A = QR by the orthogonal matrix Q is identical to writing the product
RQ!
Based on this reasoning, in the 1950s, multiple groups of European mathematicians hypothe-
sized the same elegant iterative algorithm for finding the eigenvalues of a matrix A:

1. Take A1 = A.
2. Fork=1,2,...

(a) Factor Ay = QrRy.
(b) Write Ar 1 = R¢Qx.

By our derivation above, the matrices Ay all have the same eigenvalues as A. Furthermore, sup-
pose the A;’s converge to some A. Then, we can factor Ao = QwRw, and by convergence we
know Aew = QwRe = RewQe. By NUMBER, the eigenvalues of Ro are simply the values along
the diagonal of R, and by NUMBER the product ResQoo = Aeo in turn must have the same eigen-
values. Finally, by construction A has the same eigenvalues as A. So, we have shown that if QR
iteration converges, it reveals the eigenvalues of A in a straightforward way:.

Of course, the derivation above assumes that there exists A, with Ay — A ask — oo. In
fact, QR iteration is a stable method guaranteed to converge in many important situations, and
convergence can even be improved by shifting strategies. We will not derive exact conditions
here but instead can provide some intuition for why this seemingly arbitrary strategy should
converge. We provide some intuition below for the symmetric case A = A", which is easier to
analyze thanks to the orthogonality of eigenvectors in this case.

Suppose the columns of A are given by 4y, . ..,d,, and consider the matrix AF for large k. We
can write: |

Af= AT A= | ARG ARl . ARG,
| | |

2More advanced techniques, however, do exactly this!

95

By our derivation of power iteration, the first column of A in general is parallel to the eigenvector
X1 with largest magnitude |A;| since we took a vector 4; and multiplied it by A many times.
Applying our intuition from deflation, suppose we project @ out of the second column of A¥. This
vector must be nearly parallel to X, since it is the second-most dominant eigenvalue! Proceeding
inductively, factoring A¥ = QR would yield a set of near-eigenvectors as the columns of Q, in
order of decreasing eigenvalue magnitude, with the corresponding eigenvalues along the diagonal
of R.

Of course, computing AF for large k takes the condition number of A to the k-th power, so QR
on the resulting matrix is likely to fail; this is clear to see since all the columns of A* should look
like ¥; for large k. We can make the following observation, however:

A= Q1R
A% = (Q1R1)(Q1Ry)
= Q1 (R1Q1)Ry

= Q1Q2R2R; using the notation of QR iteration above, since A, = R1Q1

A = Q1Q0 - QuRiRi_1 -+ - Ry

Grouping the Q; variables and the R; variables separately provides a QR factorization of Ak Thus,
we expect the columns of Q; - - - Qk to converge to the eigenvectors of A.

By a similar argument, we can find

A=0O1R,
Az = R1Q1 by our construction of QR iteration
= 2R, by definition of the factorization
Az = RyQ» from QR iteration

= Q, A2Q; since Ay = QuRy
= Q) RiQ1Qy since Ay = R1Q;
= Q; Q] AQ1Q; since A = Q1R;

Ars1 = Q) --- Q] AQ: - - - Qy inductively
= (Q1-- Q) TAQ1 - Q)

where Ay is the k-th matrix from QR iteration. Thus, Ay is simply the matrix A conjugated by the
product Qy = Q1 - - - Qk. We argued earlier that the columns of Qy converge to the eigenvectors of
A. Thus, since conjugating by the matrix of eigenvectors yields a diagonal matrix of eigenvalues,
we know Ap 1 = Q_;AQ_ will have approximate eigenvalues of A along its diagonal as k — co.

96

Krylov Subspace Methods

Our justification of QR iteration involved analyzing the columns of A as k — o as an extension
of power iteration. More generally, for a vector b € R", we can examine the so-called Krylov matrix

| | |
Ke=| b Ab A% --- AF1p
| | |

Methods analyzing K} to find eigenvectors and eigenvalues generally are known as Krylov sub-
space methods. For instance, the Arnoldi iteration algorithm uses Gram-Schmidt orthogonalization
to maintain an orthogonal basis {7, ..., §x} for the column space of Kj:

1. Begin by taking 7; to be an arbitrary unit-norm vector
2. Fork=2,3,...

(a) Take @y = Af—1
(b) Project out the §’s you already have computed:

bk = @k — PT%pan (g:....4 1)k
(c) Renormalize to find the next g, = B/ |G-

The matrix Qx whose columns are the vectors found above is an orthogonal matrix with the same
column space as Ky, and eigenvalue estimates can be recovered from the structure of QkTAQk.
The use of Gram-Schmidt makes this technique unstable and timing gets progressively worse
as k increases, however, so many extensions are needed to make it feasible. For instance, one
strategy involves running some iterations of Arnoldi, using the output to generate a better guess
for the initial §;, and restarting. Methods in this class are suited for problems requiring multiple
eigenvectors at one of the ends of the spectrum without computing the complete set.

5.5 Sensitivity and Conditioning

As warned, we have only outlined a few eigenvalue techniques out of a rich and long-standing
literature. Almost any algorithmic technique has been experimented with for finding spectra, from
iterative methods to root-finding on the characteristic polynomial to methods that divide matrices
into blocks for parallel processing.

Just as in linear solvers, we can evaluate the conditioning of an eigenvalue problem indepen-
dently of the solution technique. This analysis can help understand whether a simplistic iterative
scheme will be successful for finding the eigenvectors of a given matrix or if more complex meth-
ods are necessary; it is important to note that the conditioning of an eigenvalue problem is not the
same as the condition number of the matrix for solving systems, since these are separate problems.

Suppose a matrix A has an eigenvector ¥ with eigenvalue A. Analyzing the conditioning of the
eigenvalue problem involves analyzing the stability of ¥ and A to perturbations in A. To this end,
we might perturb A by a small matrix 6 A, thus changing the set of eigenvectors. In particular, we
can write eigenvectors of A 4 JA as perturbations of eigenvectors of A by solving the problem

(A+6A)(Z+6%) = (A + 6A) (¥ + 0%).

97

Expanding both sides yields:
AX + ASX +0A - X+ 0A - 0X = AX + AOX + 6N - X + 0N - 0X

Assuming 6A is small, we will assume?® that X and JA also are small. Products between these
variables then are negligible, yielding the following approximation:

AX + ASX +6A - X =~ AX + AOX + A - X
Since AX = AX, we can subtract this value from both sides to find:
ASX +06A - X = AOX + 0N - X

We now apply an analytical trick to complete our derivation. Since AX = AX, we know (A —
ALysn)X = 0,50 A — ALy, is not full rank. The transpose of a matrix is full-rank only if the matrix
is full-rank, so we know (A — }Unm)T = AT — AL, also has a null space vector ij. Thus AT]}’ =
Ay; we can call jj the left eigenvector corresponding to X. We can left-multiply our perturbation
estimate above by 7'

7 (ASF+0A-X) ~ i (A6X +0A - X)
Since AT = Aij, we can simplify:
G0A ¥~ oAY 7
Rearranging yields:
=T =
O\ ~ y_(ﬁié)x
y'x

Assume || X¥|| = 1 and ||if|| = 1. Then, if we take norms on both sides we find:

[6A]]2
i - X|

[ZS

So in general conditioning of the eigenvalue problem depends on the size of the perturbation § A-
as expected-and the angle between the left and right eigenvectors ¥ and ij. We can use 1/z as
an approximate condition number. Notice that ¥ = i when A is symmetric, yielding a condition
number of 1; this reflects the fact that the eigenvectors of symmetric matrices are orthogonal and
thus maximally separated.

5.6 Problems

3This assumption should be checked in a more rigorous treatment!

98

Chapter 6

Singular Value Decomposition

In Chapter 5, we derived a number of algorithms for computing the eigenvalues and eigenvectors
of matrices A € R"*". Having developed this machinery, we complete our initial discussion of
numerical linear algebra by deriving and making use of one final matrix factorization that exists
for any matrix A € R™*": the singular value decomposition (SVD).

6.1 Deriving the SVD

For A € R™*", we can think of the function ¥ — AX as a map taking points in R” to points in IR™.
From this perspective, we might ask what happens to the geometry of IR" in the process, and in
particular the effect A has on lengths of and angles between vectors.

Applying our usual starting point for eigenvalue problems, we can ask the effect that A has on
the lengths of vectors by examining critical points of the ratio

o _ [1AX]
R(X) = ==
%]
over various values of ¥. Scaling ¥ does not matter, since

R(aX) = IA-ax| _ laf [|AX] _ [[AX]] _
| |a| %] [1%]]

R(%).

Thus, we can restrict our search to X with ||X|| = 1. Furthermore, since R(¥) > 0, we can instead
consider [R(¥)]? = |AX||> = ¥ AT AX. As we have shown in previous chapters, however, critical
points of ¥" AT AX subject to ||¥|| = 1 are exactly the eigenvectors ¥; satisfying AT A% = A;%;;
notice A; > 0 and ¥; - ¥j = 0 when i # j since AT A is symmetric and positive semidefinite.

Based on our use of the function R, the {X;} basis is a reasonable one for studying the geo-
metric effects of A. Returning to this original goal, define ij; = AX;. We can make an additional

observation about ¥j; revealing even stronger eigenvalue structure:
Ailfi = A; - AX; by definition of ¥;
= A(AiX;)
= A(AT A%;) since ¥ is an eigenvector of A" A
= (AAT)(AX;) by associativity
= (AAT)7;

99

Thus, we have two cases:

1. When A; # 0, then ij; # 0. In this case, ¥ is an eigenvector of A" A and ij; = AX is
a corresponding eigenvector of AA" with ||7i|| = ||A%| = V[|AX[? = /¥ TATAX, =
VA

2. When A; = 0,7; =0

An identical proof shows that if 7 is an eigenvector of AA', then ¥ = A7 is either zero or an
eigenvector of AT A with the same eigenvalue.

Take k to be the number of strictly positive eigenvalues A; > 0 discussed above. By our con-
struction above, we can take X1, ..., Xx € R" to be eigenvectors of AT A and corresponding eigen-
vectors iy, . .., Jx € R™ of AAT such that

ATAZ = N
AATG; = A
for eigenvalues A; > 0; here we normalize such that ||¥;|| = ||7i|| = 1 foralli. Followmg traditional

notation, we can define matrices V € R"** and U € R"™*¥ whose columns are ¥;’s and #;’s, resp.
We can examine the effect of these new basis matrices on A. Take €; to be the i-th standard
basis vector. Then,

U"AVE = U' A%, by definition of V

U A(A;X;) since we assumed A; > 0

U"A(AT A%;) since %; is an eigenvector of A" A
U (AAT)AX; by associativity

U (AAT)7; since we rescaled so that ||7;]| = 1

e

1
— \/)TZ-UT% since AA"; = Aiiji

= VA&

Take £ = diag(v/A4, ..., v/Ax). Then, the derivation above shows that UT AV = %.

Complete the columns of U and V to U € R”*" and V € R"*" by adding orthonormal vectors
X; and ; with AT AX; = 0 and AA"#j; = 0, resp. In this case it is easy to show U AV = 0 and/or
EZ.T UTAV =0". Thus, if we take

s = VA i=jandi <k
v 0 otherwise

then we can extend our previous relationship to show U AV = ¥, or equivalently
A=UzV'.

100

This factorization is exactly the singular value decomposition (SVD) of A. The columns of U span
the column space of A and are called its left singular vectors; the columns of V span its row space
and are the right singular vectors. The diagonal elements o; of X are the singular values of A; usually
they are sorted such that oy > 0, > --- > 0. Both U and V are orthogonal matrices.

The SVD provides a complete geometric characterization of the action of A. Since U and V
are orthogonal, they can be thought of as rotation matrices; as a diagonal matrix, X simply scales
individual coordinates. Thus, all matrices A € R™*" are a composition of a rotation, a scale, and
a second rotation.

6.1.1 Computing the SVD

Recall that the columns of V simply are the eigenvectors of A" A, so they can be computed using
techniques discussed in the previous chapter. Since A = ULV, we know AV = UX. Thus, the
columns of U corresponding to nonzero singular values in X simply are normalized columns of
AV; the remaining columns satisfy AA " if; = 0, which can be solved using LU factorization.

This strategy is by no means the most efficient or stable approach to computing the SVD,
but it works reasonably well for many applications. We will omit more specialized approaches
to finding the SVD but note that that many are simple extensions of power iteration and other
strategies we already have covered that operate without forming A" A or AA T explicitly.

6.2 Applications of the SVD

We devote the remainder of this chapter introducing many applications of the SVD. The SVD
appears countless times in both the theory and practice of numerical linear linear algebra, and its
importance hardly can be exaggerated.

6.2.1 Solving Linear Systems and the Pseudoinverse

In the special case where A € R"*" is square and invertible, it is important to note that the SVD
can be used to solve the linear problem AX = b. In particular, we have UxXV'¥=b,or

Xx=vzu'p.

In this case ¥ is a square diagonal matrix, so %! simply is the matrix whose diagonal entries are
;.

Computing the SVD is far more expensive than most of the linear solution techniques we
introduced in Chapter 2, so this initial observation mostly is of theoretical interest. More generally,
suppose we wish to find a least-squares solution to AX ~ I;, where A € R™*" is not necessarily
square. From our discussion of the normal equations, we know that ¥ must satisfy A" AX = ATb.
Thus far, we mostly have disregarded the case when A is “short” or “underdetermined,” that
is, when A has more columns than rows. In this case the solution to the normal equations is
nonunique.

To cover all three cases, we can solve an optimization problem of the following form:

minimize || ¥||?
suchthat ATAX=ATh

101

In words, this optimization asks that X satisfy the normal equations with the least possible norm.
Now, let’'s write A = UXV . Then,

ATA=(uxv")(uzvh)
=Vvx'u'uzv' since (AB)' =B'TA"
= VX2V since U is orthogonal
Thus, asking that AT A% = AThis the same as asking
VE'ZV ¥ =VIU'D
Or equivalently, X = d

if wetaked = U band i/ = VT #. Notice that ||| = ||| since U is orthogonal, so our optimization
becomes:

minimize |||

such that Xij=4d

Since X is diagonal, however, the condition Xjj = d simply states o;y; = d;; so, whenever ¢; # 0
we must have y; = 4i/¢;. When ¢; = 0, there is 10 constraint on y;, so since we are minimizing |||

we might as well take y; = 0. In other words, the solution to this optimization is §/ = >*d, where
¥t € R""™ has the following form:

st — Yo i=j,0i#0, andi <k
Y 0 otherwise

This form in turn yields ¥ = Vij = VEtd = VE+Ub.
With this motivation, we make the following definition:

Definition 6.1 (Pseudoinverse). The pseudoinverse of A = UZV' € R™"is At = VETU' €
anxm.

Our derivation above shows that the pseudoinverse of A enjoys the following properties:
e When A is square and invertible, AT = A~L.
e When A is overdetermined, A*b gives the least-squares solution to AX ~ b.

e When A is underdetermined, A*b gives the least-squares solution to AX ~ b with minimal
(Euclidean) norm.

In this way, we finally are able to unify the underdetermined, fully-determined, and overdeter-
mined cases of A¥ ~ b.

6.2.2 Decomposition into Outer Products and Low-Rank Approximations

If we expand out the product A = UXZV', it is easy to show that this relationship implies:

where ¢ = min{m, n}, and ii; and 7; are the i-th columns of U and V, resp. Our sum only goes to
min{m, n} since we know that the remaining columns of U or V will be zeroed out by X.

This expression shows that any matrix can be decomposed as the sum of outer products of
vectors:

Definition 6.2 (Outer product). The outer product of i € R™ and 7 € R" is the matrix il ® T
g’ e R™.

Suppose we wish to write the product AX. Then, instead we could write:

!
Z O'ib_l‘il_)‘;r X
i=1

0'11/_[1(2_7’1—'—3_6’)

AX

I
™~

Il
—

I
™~
S

Il
=

(Ui - X)iljsince X - = X' if

So, applying A to X is the same as linearly combining the if; vectors with weights o;(7; - ¥). This
strategy for computing AX can provide considerably savings when the number of nonzero ¢; val-
ues is relatively small. Furthermore, we can ignore small values of ¢;, effectively truncating this
sum to approximate AX with less work.

Similarly, from §6.2.1 we can write the pseudoinverse of A as:

At =y 2
oizo i

Obviously we can apply the same trick to evaluate A™X, and in fact we can approximate A*X by
only evaluating those terms in the sum for which o; is relatively small. In practice, we compute
the singular values 0; as square roots of eigenvalues of AT A or AAT, and methods like power
iteration can be used to reveal a partial rather than full set of eigenvalues. Thus, if we are going
to have to solve a number of least-squares problems AX; ~ E,' for different Ei and are satisfied
with an approximation of ¥;, it can be valuable first to compute the smallest ¢; values first and use
the approximation above. This strategy also avoids ever having to compute or store the full A*
matrix and can be accurate when A has a wide range of singular values.

Returning to our original notation A = ULV ", our argument above effectively shows that a
potentially useful approximation of A is A = ULV, where ¥ rounds small values of ¥ to zero.
It is easy to check that the column space of A has dimension equal to the number of nonzero
values on the diagonal of ¥. In fact, this approximation is not an ad hoc estimate but rather solves
a difficult optimization problem post by the following famous theorem (stated without proof):

Theorem 6.1 (Eckart-Young, 1936). Suppose A is obtained from A = ULV by truncating all but the

k largest singular values o; of A to zero. Then A minimizes both |A — A||f,, and | A — A||, subject to the
constraint that the column space of A have at most dimension k.

103

6.2.3 Matrix Norms

Constructing the SVD also enables us to return to our discussion of matrix norms from §3.3.1. For
example, recall that we defined the Frobenius norm of A as

Al = L.
1

If we write A = ULV ", we can simplify this expression:

|Al%, = Z || Ae; ||? since this product is the j-th column of A
]
=) | LIZVTE]- |2, substituting the SVD
j
= ZE’J-TVszTE]- since ||¥||?> = #" ¥ and U is orthogonal
j
= ||IZV T |3, by the same logic
= ||VZ||3,, since a matrix and its transpose have the same Frobenius norm
= Z 1VEE||? = ZUJZHVEsz by diagonality of &
]]

= ZU]-Z since V is orthogonal
i

Thus,the Frobenius norm of A € R™*" is the sum of the squares of its singular values.

This result is of theoretical interest, but practically speaking the basic definition of the Frobe-
nius norm is already straightforward to evaluate. More interestingly, recall that the induced two-
norm of A is given by

| Al|3 = max{A : there exists ¥ € R" with A" AX = A¥}.

Now that we have studied eigenvalue problems, we realize that this value is the square root of the
largest eigenvalue of A" A, or equivalently

|A|l2 = max{c;}.

In other words, we can read the two-norm of A directly from its eigenvalues.

Similarly, recall that the condition number of A is given by cond A = ||Al|2]|A~!|2. By our
derivation of AT, the singular values of A~! must be the reciprocals of the singular values of A.
Combining this with our simplification of ||A||, yields:

1oy
cond A = 2,
Omin

This expression yields a strategy for evaluating the conditioning of A. Of course, computing omin
requires solving systems AX = b,a process which in itself may suffer from poor conditioning of
A; if this is an issue, conditioning can be bounded and approximated by using various approxi-
mations of the singular values of A.

104

6.2.4 The Procrustes Problem and Alignment

Many techniques in computer vision involve the alignment of three-dimensional shapes. For in-
stance, suppose we have a three-dimensional scanner that collects two point clouds of the same
rigid object from different views. A typical task might be to align these two point clouds into a
single coordinate frame.

Since the object is rigid, we expect there to be some rotation matrix R and translation feR®
such that that rotating the first point cloud by R and then translating by f aligns the two data sets.
Our job is to estimate these two objects.

If the two scans overlap, the user or an automated system may mark n corresponding points
that correspond between the two scans; we can store these in two matrices X1, Xo € R3*". Then,
for each column ¥; of X; and X,; of X5, we expect RXj; + f = X,;. We can write an energy function
measuring how much this relationship holds true:

E = Z HRfli —|—?— fzj“z.
i

If we fix R and minimize with respect to f, optimizing E obviously becomes a least-squares prob-
lem. Now, suppose we optimize for R with fixed. This is the same as minimizing ||[RX; — X}||Fro,
where the columns of Xé are those of X, translated by I3 subject to R being a 3 x 3 rotation matrix,
that is, that R' R = I33. This is known as the orthogonal Procrustes problem.

To solve this problem, we will introduce the trace of a square matrix as follows:

Definition 6.3 (Trace). The trace of A € R"*" is the sum of its diagonal:

t}’(A) = Zﬂii.

It is straightforward to check that ||A||2 = tr(AT A). Thus, we can simplify E as follows:

Fro
|RX1 — Xb|o = tr(RX; — X2)T (RX; — X3)
= tr(X] X; — X{ RTX5 — X' RX; + X7 X))
= const. — 2tr(X5 RX;)
since tr(A+B) =trA+trBand tr(A") = tr(A)
Thus, we wish to maximize tr(XéTRXl) with RTR = Iz343. In the exercises, you will prove that
tr(AB) = tr(BA). Thus our objective can simplify slightly to tr(RC) with C = X; X}". Applying
the SVD, if we decompose C = UZV " then we can simplify even more:
tr(RC) = tr(RUXV ") by definition
= tr((V'RU)X) since tr(AB) = tr(BA)
= tr(RX) if we define R = V" RU, which is also orthogonal
= ZUﬂ’ii since ¥ is diagonal
i
Since R is orthogonal, its columns all have unit length. This implies that 7; < 1, since otherwise
the norm of column i would be too big. Since 0; > 0 for all 7, this argument shows that we can
maximize tr(RC) by taking R = I3x3. Undoing our substitutions shows R = VRU" = VU .
More generally, we have shown the following:

105

Theorem 6.2 (Orthogonal Procrustes). The orthogonal matrix R minimizing ||RX — Y||? is given by
VU, where SVD is applied to factor XYT = ULV T,

Returning to the alignment problem, one typical strategy is an alternating approach:
1. Fix R and minimize E with respect to f.

2. Fix the resulting f and minimize E with respect to R subject to RT R = I53.

3. Return to step 1.

The energy E decreases with each step and thus converges to a local minimum. Since we never
optimize f and R simultaneously, we cannot guarantee that the result is the smallest possible value
of E, but in practice this method works well.

6.2.5 Principal Components Analysis (PCA)

Recall the setup from §5.1.1: We wish to find a low-dimensional approximation of a set of data
points, which we can store in a matrix X € R"** for k observations in # dimensions. Previously,
we showed that if we are allowed only a single dimension, the best possible direction is given by
the dominant eigenvector of XX .

Suppose instead we are allowed to project onto the span of d vectors with d < min{k,n} and
wish to choose these vectors optimally. We could write them in an n X d matrix C; since we can
apply Gram-Schmidt to any set of vectors, we can assume that the columns of C are orthonormal,
showing CTC = I;,,. Since C has orthonormal columns, by the normal equations the projection
of X onto the column space of C is given by CC' X.

In this setup, we wish to minimize | X — CC " X||gr subject to C'C = I;.4. We can simplify
our problem somewhat:

|X - CCTX|j3, = tr((X —CCTX)T (X — CCTX)) since ||A||3,, = tr(AT A)
=tr(X'X-2X"cC'x+X'cc'cc'X)
= const. — tr(X ' CC"X) since C'C = I;,4
= —||C"X||3,, + const.

So, equivalently we can maximize ||C ' X||2,; for statisticians, this shows when the rows of X have
mean zero that we wish to maximize the variance of the projection C ' X.

Now, suppose we factor X = UZV . Then, we wish to maximize HCTLIZVT ko = |ICT 2| fro =
|£7 C||pro by orthogonality of V if we take C = CU . If the elements of C are &j;, then expanding

this norm yields
1= Clltr = Y07)65
i j

By orthogonality of the columns of C, we know L Cij &2 = 1 for all j and, since C may have fewer
than 7 columns, Z] i < 1. Thus, the coefficient next to (T is at most 1 in the sum above, so if we

sort such that oy > 0 > - - -, then clearly the maximum is achieved by taking the columns of Cto
beé,...,¢é;. Undoing our change of coordinates, we see that our choice of C should be the first d
columns of U.

106

We have shown that the SVD of X can be used to solve such a principal components analysis
(PCA) problem. In practice the rows of X usually are shifted to have mean zero before carrying
out the SVD; as shown in Figure NUMBER, this centers the dataset about the origin, providing

more meaningful PCA vectors ii;.

6.3 Problems

107

108

Part 111

Nonlinear Techniques

109

Chapter 7

Nonlinear Systems

Try as we might, it simply is not possible to express all systems of equations in the linear frame-
work we have developed over the last several chapters. It is hardly necessary to motivate the
usage of logarithms, exponentials, trigonometric functions, absolute values, polynomials, and so
on in practical problems, but except in a few special cases none of these functions is linear. When
these functions appear, we must employ a more general if less efficient set of machinery.

7.1 Single-Variable Problems

We begin our discussion by considering problems of a single scalar variable. In particular, given
a function f(x) : R — R, we wish to develop strategies for finding points x* € R such that
f(x*) = 0; we call x* a root of f. Single-variable problems in linear algebra are not particularly
interesting; after all we can solve the equation ax — b = 0 in closed form as x* = b/a. Solving a
nonlinear equation like y? + ¢“5¥ — 3 = 0, however, is far less obvious (incidentally, the solution
isy* = £1.30246...).

7.1.1 Characterizing Problems

We no longer can assume f is linear, but without any assumption on its structure we are unlikely
to make headway on solving single-variable systems. For instance, a solver is guaranteed to fail
finding zeros of f(x) given by

-1 x<0

f(x):{ 1 x>0

Or worse:
-1 x€Q
1 otherwise

) = {

These examples are trivial in the sense that a rational client of root-finding software would be
unlikely to expect it to succeed in this case, but far less obvious cases are not much more difficult
to construct.

For this reason, we must add some “regularizing” assumptions about f providing a toehold
into the possibility of designing root-finding techniques. Typical such assumptions are below,
listed in increasing order of strength:

111

e Continuity: A function f is continuous if it can be drawn without lifting up a pen; more
formally, f is continuous if the difference f(x) — f(y) vanishes as x — y.

e Lipschitz: A function f is Lipschitz continuous if there exists a constant C such that |f(x) —
f(y)| < C|x — y|; Lipschitz functions need not be differentiable but are limited in their rates
of change.

e Differentiability: A function f is differentiable if its derivative f’ exists for all x.

e Ck: A function is C¥ if it is differentiable k times and each of those k derivatives is continuous;
C* indicates that all derivatives of f exist and are continuous.

As we add stronger and stronger assumptions about f, we can design more effective algo-
rithms to solve f(x*) = 0. We will illustrate this effect by considering a few algorithms below.

7.1.2 Continuity and Bisection

Suppose all we know about f is that it is continuous. In this case, we can state an intuitive theorem
from standard single variable calculus:

Theorem 7.1 (Intermediate Value Theorem). Suppose f : [a,b] — R is continuous. Suppose f(x) <
u < f(y). Then, there exists z between x and y such that f(z) = u.

In other words, the function f must achieve every value in between f(x) and f(y).

Suppose we are given as input the function f as well as two values ¢ and r such that f(¢) -
f(r) < 0; notice this means that f(¢) and f(r) have opposite sign. Then, by the Intermediate
Value Theorem we know that somewhere between ¢ and r there is a root of f! This provides an
obvious bisection strategy for finding x*:

—_

. Compute ¢ = +7/2.

2. If f(c) = 0, return x* = c.

3. If f(¢)- f(c) <0, take r < c. Otherwise take ¢ < c.
4. If |r — £| < ¢ return x* ~ c.

5. Goback to step 1

This strategy simply divides the interval [/,] in half iteratively, each time keeping the side in
which a root is known to exist. Clearly by the Intermediate Value Theorem it converges uncondi-
tionally, in the sense that so long as f(¢) - f(r) < 0 eventually both ¢ and r are guaranteed converge
to a valid root x*.

7.1.3 Analysis of Root-Finding

Bisection is the simplest but not necessarily the most effective technique for root-finding. As with
most eigenvalue methods, bisection inherently is iterative and may never provide an exact solution
x*. We can ask, however, how close the value ¢, of ¢ in the k-th iteration is to the root x* that we
hope to compute. This analysis will provide a baseline for comparison to other methods.

112

In general, suppose we can establish an error bound Ej such that the estimate x; of the root
x* during the k-th iteration of a root-finding method satisfies |x; — x*| < Ei. Obviously any al-
gorithm with E; — 0 represents a convergent scheme; the speed of convergence, however, can be
characterized by the rate at which Ej approaches 0.

For example, in bisection since both ¢, and x* are in the interval [¢, 7¢], an upper bound of
error is given by Ex = |ryx — {k|. Since we divide the interval in half each iteration, we know
Eyi1 = 1/2E. Since Ey1 is linear in Ey, we say that bisection exhibits linear convergence.

7.1.4 Fixed Point Iteration

Bisection is guaranteed to converge to a root for any continuous function f, but if we know more
about f we can formulate algorithms that can converge more quickly.

As an example, suppose we wish to find x* satisfying g(x*) = x*; of course, this setup is
equivalent to the root-finding problem since solving f(x) = 0 is the same as solving f(x) + x = x.
As additional piece of information, however, we also might know that g is Lipschitz with constant
C<L

The system g(x) = x suggests a potential strategy we might hypothesize:

1. Take xg to be an initial guess of a root.
2. Tterate xp = g(x%_1).

If this strategy converges, clearly the result is a fixed point of g satisfying the criteria above.
Thankfully, the Lipschitz property ensures that this strategy converges to a root if one exists.
If we take Ex = |xx — x*|, then we have the following property:

Ex =[x — x|
= |g(xx_1) — g(x™)| by design of the iterative scheme and definition of x*
< Clxg_1 — x*| since g is Lipschitz
= CEx—

Applying this statement inductively shows E; < CF|Eg| — 0as k — co. Thus, fixed point iteration
converges to the desired x*!

In fact, if g is Lipschitz with constant C < 1 in a neighborhood [x* — 6, x* + 4], then so long as x
is chosen in this interval fixed point iteration will converge. This is true since our expression for
E; above shows that it shrinks each iteration.

One important case occurs when g is C! and |¢/(x*)| < 1. By continuity of ¢’ in this case, we
know that there is some neighborhood N = [x* — §, x* + J] in which |¢/(x)| < 1 —eforany x € N,
for some choice of a sufficiently small ¢ > 0.! Take any x,yy € N. Then, we have

1g(x) — g(y)| =18’ (0)] - |x — y| by the Mean Value Theorem of basic calculus, for some 6 € [x, y]
<(1-¢g)lx—y

This shows that g is Lipschitz with constant 1 — e < 1 in N. Thus, when g is continuously differ-
entiable and g¢’(x*) < 1, fixed point iteration will converge to x* when the initial guess x is close

by.

IThis statement is hard to parse: Make sure you understand it!

113

So far we have little reason to use fixed point iteration: We have shown it is guaranteed to
converge only when g is Lipschitz, and our argument about the E;’s shows linear convergence
like bisection. There is one case, however, in which fixed point iteration provides an advantage.

Suppose g is differentiable with ¢’(x*) = 0. Then, the first-order term vanishes in the Taylor
series for g, leaving behind:

1 * * *
glxx) = g(x*) + 58"(96) (2 — x)? 4+ 0 ((x — x)°) .
Thus, in this case we have:
Ep =[x — x*|
= |g(xx—1) — g(x")| as before

1
= E\g/’(x*) |(x5—1 — x*)? + O((x_1 — x*)?) from the Taylor argument
< %(|g”(x*)| +€)|(x4_1 — x*)? for some ¢ so long as x;_ is close to x*

1 *
= (8" () +e)E

Thus, in this case Ej is quadratic in Ex_1, so we say fixed point iteration can have quadratic con-
vergence; notice this proof of quadratic convergence only holds because we already know E; — 0
from our more general convergence proof. This implies that E, — 0 much faster, so we will need
fewer iterations to reach a reasonable root.

Example 7.1 (Convergence of fixed-point iteration).

7.1.5 Newton’s Method

We tighten our class of functions once more to derive a method that has more consistent quadratic
convergence. Now, suppose again we wish to solve f(x*) = 0, but now we assume that f is C, a
slightly tighter condition than Lipschitz.

At a point x; € IR, since f now is differentiable we can approximate it using a tangent line:

f(x) = f Q) + f () (x = x¢)
Solving this approximation for f(x) ~ 0 yields a root
f(xx)
Xjy1 = Xg — .
k+1 k f, (xk)
Iterating this formula is known as Newton's method for root-finding, and it amounts to iteratively

solving a linear approximation of the nonlinear problem.
Notice that if we define
f(x)

80 =X oy

then Newton’s method amounts to fixed point iteration on g. Differentiating, we find:

g(x) =1~ f’(x)z;(a(;)f”(x) by the quotient rule

f(x)f"(x)

fr(x)?

114

Suppose x* is a simple root, meaning f'(x*) # 0. Then, §'(x*) = 0, and by our derivation of
tixed-point iteration above we know that Newton’s method converges quadratically to x* for a
sufficiently close initial guess. Thus, when f is differentiable with a simple root Newton’s method
provides a fixed-point iteration formula that is guaranteed to converge quadratically; when x* is
not simple, however, convergence can be linear or worse.

The derivation of Newton’s method suggests other methods derived by using more terms in
the Taylor series. For instance, “Halley’s method” adds terms involving f” to the iterations, and
a class of “Householder methods” takes an arbitrary number of derivatives. These techniques
offer even higher-order convergence at the cost of having to evaluate more complex iterations and
the possibility of more exotic failure modes. Other methods replace Taylor series with other basic
forms; for example, linear fractional interpolation uses rational functions to better approximate
functions with asymptote structure.

7.1.6 Secant Method

One efficiency concern we have not addressed yet is the cost of evaluating f and its derivatives.
If f is a very complicated function, we may wish to minimize the number of times we have to
compute f or worse f’. Higher orders of convergence help with this problem, but we also can
design numerical methods that avoid evaluating costly derivatives.

Example 7.2 (Design). Suppose we are designing a rocket and wish to know how much fuel to add to
the engine. For a given number of gallons x, we can write a function f(x) giving the maximum height of
the rocket; our engineers have specified that we wish to the rocket to reach a height h, so we need to solve
f(x) = h. Evaluating f(x) involves simulating a rocket as it takes off and monitoring its fuel consumption,
which is an expensive proposition, and although we might suspect that f is differentiable we might not be
able to evaluate f' in a practical amount of time.

One strategy for designing lower-impact methods is to reuse data as much as possible. For
instance, we easily could approximate:

f/(xk) ~ f(xk) _f(xk—l)‘

Xk — Xk—1

That is, since we had to compute f(x;_1) in the previous iteration, we simply use the slope to
f(xx) to approximate the derivative. Certainly this approximation works well, especially when
X's are near convergence.

Plugging our approximation into Newton’s method reveals a new iterative scheme:

f () (xx — x5-1)

T =T e) — F(xe)

Notice that the user will have to provide two initial guesses x¢ and x_; to start this scheme, or can
run a single iteration of Newton to get it started.

Analyzing the secant method is somewhat more complicated than the other methods we con-
sider because it uses both f(x;) and f(x,_1); proof of its convergence is outside the scope of our
discussion. Interestingly, error analysis reveals that error decreases at a rate of 1+v5/2 (the “Golden
Ratio”), between linear and quadratic; since convergence is close to that of Newton’s method with-
out the need for evaluating f’, the secant method can provide a strong alternative.

115

7.1.7 Hybrid Techniques

Additional engineering can be carried out to attempt to combine the advantages of different root-
finding algorithms. For instance, we might make the following observations about two methods
we have discussed:

e Bisection is guaranteed to converge unconditionally but only does so at a linear rate.

e The secant method converges faster when it does reach a root, but in some cases it may not
converge.

Suppose we have bracketed a root of f(x) in an interval [¢k, (] as in bisection. We can say that
our current estimate of x* is given by x; = ¢, when |f(¢x)| < |f(rx)| and x; = r otherwise. If
we keep track of x; and xj_1, then we could take x;; to be the next estimate of the root given by
the secant method. If x; is outside the interval [¢y, r¢], however, we can replace it with %+7:/2. This
correction guarantees that x;1 € [{, r¢], and regardless of the choice we can update to a valid
bracket [{;1,7x41] as in bisection by examining the sign of f(xx1). This algorithm is known as
“Dekker’s method.”

The strategy above strategy attempts to combine the unconditional convergence of bisection
with the stronger root estimates of the secant method. In many cases it is successful, but its con-
vergence rate is somewhat difficult to analyze; specialized failure modes can reduce this method
to linear convergence or worse—in fact, in some cases bisection surprisingly can converge more
quickly! Other techniques, e.g. “Brent’s method,” make bisection steps more often to avoid this
case and can exhibit guaranteed behavior at the cost of a somewhat more complex implementa-
tion.

7.1.8 Single-Variable Case: Summary

We now have presented and analyzed a number of methods for solving f(x*) = 0 in the single-
variable case. It is probably obvious at this point that we only have scraped the surface of such
techniques; many iterative schemes for root-finding exist, all with different guarantees, conver-
gence rates, and caveats. Regardless, through our experiences we can make a number of observa-
tions:

e Due to the possible generic form of f, we are unlikely to be able to find roots x* exactly and
instead settle for iterative schemes.

e We wish for the sequence x; of root estimates to reach x* as quickly as possible. If Ey is an
error bound, then we can characterize a number of convergence situations assuming E; — 0
as k — co. A complete list of conditions that must hold when k is large enough is below:

1. Linear convergence: Ey1 < CEj for some C < 1

2. Superlinear convergence: Ex,1 < CEj for r > 1 (now we do not require C < 1 since if
Ej is small enough, the r power can cancel the effects of C)

3. Quadratic convergence: E 1 < CE,%
4. Cubic convergence: Ex;q < CE;:’ (and so on)

e A method might converge more quickly but during each individual iteration require addi-
tional computation; for this reason, it may be preferable to do more iterations of a simpler
method than fewer iterations of a more complex one.

116

7.2 Multivariable Problems

Some applications may require solving a more general problem f(¥) = 0 for a function f : R" —
IR™. We have already seen one instance of this problem when solving A% = b, which is equivalent
to finding roots of f(X) = AX — b, but the general case is considerably more difficult. In particu-
lar, strategies like bisection are difficult to extend since we now much guarantee that m different
values are all zero simultaneously.

7.2.1 Newton’s Method

Thankfully, one of our strategies extends in a straightforward way. Recall that for f : R" — R™
we can write the Jacobian matrix, which gives the derivative of each component of f in each of the
coordinate directions:

df;

(Df)ij = i,

We can use the Jacobian of f to extend our derivation of Newton’s method to multiple dimensions.
In particular, the first-order approximation of f is given by:

f(X) = f(%) + Df(%) - (X = %)

Substituting the desired f(¥) = 0 yields the following linear system for the next iterate X;_1:

Df (%) - (X1 — %) = —f (%)

This equation can be solved using the pseudoinverse when m < n; when m > n one can attempt
least-squares but the existence of a root and convergence of this technique are both unlikely. When
Df is square, however, corresponding to f : R" — R", we obtain the typical iteration for Newton's
method:

Xy = % — [DF(Re)] 7 f(Ze),

where as always we do not explicitly compute the matrix [Df(¥)] ! but rather use it to signal
solving a linear system.

Convergence of fixed-point methods like Newton’s method that iterate X1 = ¢(Xy) requires
that the maximum-magnitude eigenvalue of the Jacobian Dg be less than 1. After verifying that
assumption, an argument similar to the one-dimensional case shows that Newton’s method can
have quadratic convergence near roots X* for which D f(X*) is nonsingular.

7.2.2 Making Newton Faster: Quasi-Newton and Broyen

As m and n increase, Newton’s method becomes very expensive. For each iteration, a different
matrix D f(¥;) must be inverted; because it changes so often, pre-factoring Df (%) = LUy does
not help.

Some quasi-Newton strategies attempt to apply different approximation strategies to simplify
individual iterations. For instance, one straightforward approach might reuse Df from previous
iterations while recomputing f(Xj) under the assumption that the derivative does not change very
quickly. We will return to these strategies when we discuss the application of Newton’s method
to optimization.

117

Another option is to attempt to parallel our derivation of the secant method. Just as the secant
method still contains division, such approximations will not necessarily alleviate the need to in-
vert a matrix, but they do make it possible to carry out optimization without explicitly calculating
the Jacobian D f. Such extensions are not totally obvious, since divided differences do not yield a
full approximate Jacobian matrix.

Recall, however, that the directional derivative of f in the direction @ is given by Dzf = Df - .
As with the secant method, we can use this observation to our advantage by asking that our
approximation | of a Jacobian satisfy

J - (X — X1) = f(%) — f(X1)-

Broyden’s method is one such extension of the secant method that keeps track not only of an
estimate Xj of X* but also a matrix J; estimating the Jacobian; initial estimates [y and ¥y both must
be supplied. Suppose we have a previous estimate J;_; of the Jacobian from the previous iteration.
We now have a new data point X at which we have evaluated f(¥x), so we would like to update
Jk—1 to a new Jacobian Ji taking into account this new observation. One reasonable model is to
ask that the new approximation be as similar to the old approximation except in the Xj — X;_;

direction: o 2
minimize;, ||Jx — Ji—1/|%ro

such that Ji - (fk — xk_l) = f(fk) — f(fk—l)
To solve this problem, define A] = Jy — Ji_1, AX = X — X;_1, and d= f(%) — f(Xr_1) — Je1 - OX.
Making these substitutions yields the following form:

minimizen; ||A]H12:ro N
suchthat AJ-AX¥=d

If we take A to be a Lagrange multiplier, this minimization is equivalent to finding critical points
of the Lagrangian A:
A= |[A]|[fo + AT (AT - A% - d)

Differentiating with respect to (A]);; shows:
0— 7\
d(A])ij

Substituting into A] - A¥ = d shows A(A%)T (AX) = —2d, or equivalently A = —2d/||a7|. Finally,
we can substitute to find:

::mADﬁ+A4A@j::»AL:—%MAmT

1 d(A%)T
A - _7/\ A_» T = —
J= 20 = e
Expanding out our substitution shows:
Je = k-1 + 4]
d(Ax)T
= i1+ 5
[Ax||
(f (%) = f(Fh1) = Je—1-A%)
—]k—l —+ f H.;k - J—ka_le (xk . xk—l)T

118

Thus, Broyden’s method simply alternates between this update and the corresponding Newton
step X1 = X —] 1 f(%,). Additional efficiency in some cases can be gained by keeping track of
the matrix [~ 1 explicitly rather than the matrix Ji, which can be updated using a similar formula.

7.3 Conditioning

We already showed in Example 1.7 that the condition number of root-finding in a single variable

is: .
oS =[]

As illustrated in Figure NUMBER, this condition number shows that the best possible situation

for root-finding occurs when f is changing rapidly near x*, since in this case perturbing x* will

make f take values far from 0.

Applying an identical argument when f is multidimensional shows a condition number of
|Df(%*)]|~!. Notice that when Df is not invertible, the condition number is infinite. This oddity
occurs because to first order perturbing X* preserves f(X) = 0, and indeed such a condition can
create challenging root-finding cases like that shown in Figure NUMBER.

7.4 Problems
Many possibilities, including:

e Many possible fixed point iteration schemes for a given root-finding problem, graphical ver-
sion of fixed point iteration

e Mean field iteration in ML

e Muller’s method — complex roots

e Higher-order iterative methods — Householder methods

e Interpretation of eigenstuff as root-finding

e Convergence of secant method

e Roots of polynomials

e Newton-Fourier method (!)

e “Modified Newton’s method in case of non-quadratic convergence”

e Convergence —; spectral radius for multidimensional Newton; quadratic convergence

e Sherman-Morrison update for Broyden

119

120

Chapter 8

Unconstrained Optimization

In previous chapters, we have chosen to take a largely variational approach to deriving standard
algorithms for computational linear algebra. That is, we define an objective function, possibly with
constraints, and pose our algorithms as a minimization or maximization problem. A sampling
from our previous discussion is listed below:

Problem Objective Constraints

Least-squares E(%) = ||AX — |2 None

Project b onto @ E(c) = ||ci — b|| None

Eigenvectors of symmetric matrix | E(¥) = ¥' A% II¥] =1

Pseudoinverse E(X) = ||Z? ATAZT=ATb

Principal components analysis E(C) = ||X —CC"X||fro | CTC = Ijng

Broyden step E(J) = e = Tl | Jeo (B — %) = f(%) — f(%x1)

Obviously the formulation of problems in this fashion is a powerful and general approach. For
this reason, it is valuable to design algorithms that function in the absence of a special form for the
energy E, in the same way that we developed strategies for finding roots of f without knowing
the form of f a priori.

8.1 Unconstrained Optimization: Motivation

In this chapter, we will consider unconstrained problems, that is, problems that can be posed as
minimizing or maximizing a function f : R” — R without any requirements on the input. It is
not difficult to encounter such problems in practice; we list a few examples below.

Example 8.1 (Nonlinear least-squares). Suppose we are given a number of pairs (x;,y;) such that
f(x;) = y;, and we wish to find the best approximating f within a particular class. For instance, we
may expect that f is exponential, in which case we should be able to write f(x) = ce™ for some ¢ and some
a; our job is to find these parameters. One simple strategy might be to attempt to minimize the following

energy:
E(a,c) = Z(yi — ce™i)2,

This form for E is not quadratic in a, so our linear least-squares methods do not apply.

121

Example 8.2 (Maximum likelihood estimation). In machine learning, the problem of parameter esti-
mation involves examining the results of a randomized experiment and trying to summarize them using
a probability distribution of a particular form. For example, we might measure the height of every student
in a class, yielding a list of heights h; for each student i. If we have a lot of students, we might model the
distribution of student heights using a normal distribution:

87(71*14)2/2172

h;/ = 7
g, o) v

where y is the mean of the distribution and o is the standard deviation.

Under this normal distribution, the likelihood that we observe height h; for student i is given by
Q(hi; u,0), and under the (reasonable) assumption that the height of student i is probabilistically inde-
pendent of that of student j, the probability of observing the entire set of heights observed is given by the

product
P({hy,...,h};u,0) = Hg(hi; Wo).

A common method for estimating the parameters y and o of g is to maximize P viewed as a function of p
and o with {h;} fixed; this is called the maximum-likelihood estimate of pt and o. In practice, we usually
optimize the log likelihood ¢(u,0) = log P({h1, ..., hn}; u,0); this function has the same maxima but
enjoys better numerical and mathematical properties.

Example 8.3 (Geometric problems). Many geometry problems encountered in graphics and vision do
not reduce to least-squares energies. For instance, suppose we have a number of points %1,...,% € R3. If
we wish to cluster these points, we might wish to summarize them with a single X minimizing:

E(X) = Y||F - %
1

The % € R® minimizing E is known as the geometric median of {¥1, ..., ¥ }. Notice that the norm of the
difference X — X; in E is not squared, so the energy is no longer quadratic in the components of X.

Example 8.4 (Physical equilibria, adapted from CITE). Suppose we attach an object to a set of springs;
each spring is anchored at point X¥; € R> and has natural length L; and constant k;. In the absence of
gravity, if our object is located at position € R3, the network of springs has potential energy

L1 L
E(F) = 5 ki (1P = Tilla = Lo)*

Equilibria of this system are given by minima of E and reflect points p at which the spring forces are all
balanced. Such systems of equations are used to visualize graphs G = (V, E), by attaching vertices in V
with springs for each pair in E.

8.2 Optimality

Before discussing how to minimize or maximize a function, we should be clear what it is we are
looking for; notice that maximizing f is the same as minimizing — f, so the minimization problem
is sufficient for our consideration. For a particular f : R” — R and ¥* € R", we need to derive
optimality conditions that verify that ¥* has the lowest possible value f(x*).

Of course, ideally we would like to find global optima of f:

122

N

=4l i
37 | | | |
-2 -1 0 1 2

X

Figure 8.1: A function f(x) with multiple optima.

Definition 8.1 (Global minimum). The point ¥* € R”" is a global minimum of f : R* — R if
f(x*) < f(X) forall ¥ € R".

Finding a global minimum of f without any information about the structure of f effectively
requires searching in the dark. For instance, suppose an optimization algorithm identifies the local
minimum near x = —1 in the function in Figure 8.1. It is nearly impossible to realize that there is
a second, lower minimum near x = 1 simply by guessing x values—for all we know, there may
be third even lower minimum of f at x = 1000!

Thus, in many cases we satisfy ourselves by finding a local minimum:

Definition 8.2 (Local minimum). The point X¥* € R" is a local minimum of f : R” — R if f(¥*) <
f(X) forall ¥ € R" satisfying ||X — X*|| < & for some ¢ > 0.

This definition requires that ¥* attains the smallest value in some neighborhood defined by the
radius e. Notice that local optimization algorithms have a severe limitation that they cannot guar-
antee that they yield the lowest possible value of f, as in Figure 8.1 if the left local minimum is
reached; many strategies, heuristic and otherwise, are applied to explore the landscape of possible
X values to help gain confidence that a local minimum has the best possible value.

8.2.1 Differential Optimality

A familiar story from single- and multi-variable calculus is that finding potential minima and
maxima of a function f : R" — R is more straightforward when f is differentiable. Recall that the
gradient vector V f = (9f/ax,,...,9f/ax,) points in the direction in which f increases the most; the
vector —V f points in the direction of greatest decrease. One way to see this is to recall that near a
point ¥y € R", f looks like the linear function

f(X) = f(Xo) + Vf(%o) - (¥ = o).
If we take ¥ — Xp = aV f (X)), then we find:
f(Fo+aVf(%)) ~ f(%o) + ol Vf(Zo)|?

When ||V f(%p)| > 0, the sign of « determines whether f increases or decreases.
It is not difficult to formalize the above argument to show that if Xj is a local minimum, then
we must have V f(Xy) = 0. Notice this condition is necessary but not sufficient: maxima and saddle

123

31 9 ol 1
—~ 27 | _17 |
Na
S~ L i
1 ol |
0 | | | i -3k | | | =

Figure 8.2: Critical points can take many forms; here we show a local minimum, a saddle point,
and a local maximum.

04| .
=
= 02} .
0, |
| | |

Figure 8.3: A function with many stationary points.

points also have V(%) = 0 as illustrated in Figure 8.2. Even so, this observation about minima
of differentiable functions yields a common strategy for root-finding;:

1. Find points ; satisfying V f(%;) = 0.
2. Check which of these points is a local minimum as opposed to a maximum or saddle point.
Given their important role in this strategy, we give the points we seek a special name:

Definition 8.3 (Stationary point). A stationary point of f : R" — R is a point X € R" satisfying
Vf(x) =0.

That is, our strategy for minimization can be to find stationary points of f and then eliminate those
that are not minima.

It is important to keep in mind when we can expect our strategies for minimization to succeed.
In most cases, such as those shown in Figure 8.2, the stationary points of f are isolated, meaning we
can write them in a discrete list {Xp, X1, ...}. A degenerate case, however, is shown in Figure 8.3;
here, the entire interval [—1/2,1/2] is composed of stationary points, making it impossible to con-
sider them one at a time. For the most part, we will ignore such issues as degenerate cases, but
will return to them when we consider the conditioning of the minimization problem.

Suppose we identify a point ¥ € R as a stationary point of f and now wish to check if it is
a local minimum. If f is twice-differentiable, one strategy we can employ is to write its Hessian

124

matrix:

>f f .. Pf

ax% dx10xy dx10x,
2f P o

Hf < f) — axz‘axl az.xZ 8x2.axn
’f f L f
0X,0X] 0X;0X3 9%xy

We can add another term to our Taylor expansion of f to see the role of Hy:

1

f(X) = f(¥) + Vf(Xo) - (X — Xo) + 2(55— Xo) Hf(X — %)

If we substitute a stationary point ¥*, then by definition we know:

F@) ~ F(E) + 5 (7~) Hy(T— 1)

If Hy is positive definite, then this expression shows f(¥) > f(¥*), and thus ¥* is a local minimum.
More generally, one of a few situations can occur:

e If Hy is positive definite, then ¥* is a local minimum of f.

e If Hy is negative definite, then X* is a local maximum of f.

e If Hy is indefinite, then X* is a saddle point of f.

o IfH £ is not invertible, then oddities such as the function in Figure 8.3 can occur.

Checking if a matrix is positive definite can be accomplished by checking if its Cholesky factor-
ization exists or—more slowly—by checking that all its eigenvalues are positive. Thus, when the
Hessian of f is known we can check stationary points for optimality using the list above; many
optimization algorithms including the ones we will discuss simply ignore the final case and notify
the user, since it is relatively unlikely.

8.2.2 Optimality via Function Properties

Occasionally, if we know more information about f : R” — R we can provide optimality condi-
tions that are stronger or easier to check than the ones above.

One property of f that has strong implications for optimization is convexity, illustrated in Fig-
ure NUMBER:

Definition 8.4 (Convex). A function f : R" — R is convex when for all X,ij € R" and « € (0,1) the
following relationship holds:

f(A—a)X+ay) < (1-a)f(X) +af ().
When the inequality is strict, the function is strictly convex.

Convexity implies that if you connect in R" two points with a line, the values of f along the line
are less than or equal to those you would obtain by linear interpolation.
Convex functions enjoy many strong properties, the most basic of which is the following;:

125

07 | | \7
420 2 4
X

Figure 8.4: A quasiconvex function.

Proposition 8.1. A local minimum of a convex function f : R" — R is necessarily a global minimum.

Proof. Take X to be such a local minimum and suppose there exists ¥* # X with f(¥*) < f(¥).
Then, fora € (0,1),

f(@+a(x —X)) < (1—a)f(X)+af(X") by convexity
< f(X) since f(X*) < f(X)

But taking & — 0 shows that X cannot possibly be a local minimum. O

This proposition and related observations show that it is possible to check if you have reached a
global minimum of a convex function simply by applying first-order optimality. Thus, it is valuable
to check by hand if a function being optimized happens to be convex, a situation occurring sur-
prisingly often in scientific computing; one sufficient condition that can be easier to check when f
is twice differentiable is that H is positive definite everywhere.

Other optimization techniques have guarantees under other assumptions about f. For exam-
ple, one weaker version of convexity is quasi-convexity, achieved when

fI(A = @)X + ay) < max(f(%), f(¥))-

An example of a quasiconvex function is shown in Figure 8.4; although it does not have the char-
acteristic “bowl” shape of a convex function, it does have a unique optimum.

8.3 One-Dimensional Strategies

As in the last chapter, we will start with one-dimensional optimization of f : R — R and then
expand our strategies to more general functions f : R" — R.

8.3.1 Newton’s Method

Our principal strategy for minimizing differentiable functions f : R" — R will be to find sta-
tionary points x¥* satisfying V f(¥*) = 0. Assuming we can check whether stationary points are
maxima, minima, or saddle points as a post-processing step, we will focus on the problem of
finding the stationary points x¥*.

126

To this end, suppose f : R — R is differentiable. Then, as in our derivation of Newton’s
method for root-finding, we can approximate:

F) % Flxe) + /() (x = 30) + 3 () (x —)%

The approximation on the right hand side is a parabola whose vertex is located at xj — f'(xx)/ " (x;).
Of course, in reality f is not necessarily a parabola, so Newton’s method simply iterates the for-

mula
Xf+1 = Xk — flx) .
i £ ()

This technique is easily-analyzed given the work we already have put into understanding New-
ton’s method for root-finding in the previous chapter. In particular, an alternative way to derive
the formula above comes from root-finding on f’(x), since stationary points satisfy f'(x) = 0.
Thus, in most cases Newton’s method for optimization exhibits quadratic convergence, provided
the initial guess xy is sufficiently close to x*.

A natural question to ask is whether the secant method can be applied in an analogous way.
Our derivation of Newton’s method above finds roots of f’, so the secant method could be used to
eliminate the evaluation of f” but not f’; situations in which we know f’ but not f” are relatively
rare. A more suitable parallel is to replace the line segments used to approximate f in the secant
method with parabolas. This strategy, known as successive parabolic interpolation, also minimizes a
quadratic approximation of f at each iteration, but rather than using f(x¢), f'(xx), and f”(x¢) to
construct the approximation it uses f(x¢), f(xx_1), and f(xx_»). The derivation of this technique
is relatively straightforward, and it converges superlinearly.

8.3.2 Golden Section Search

We skipped over bisection in our parallel of single-variable root-finding techniques. There are
many reasons for this omission. Our motivation for bisection was that it employed only the weak-
est assumption on f needed to find roots: continuity. The Intermediate Value Theorem does not
apply to minima in any intuitive way, however, so it appears such a straightforward approach
does not exist.

It is valuable, however, to have at least one minimization strategy available that does not re-
quire differentiability of f as an underlying assumption; after all, there are non-differentiable func-
tions that have clear minima, like f(x) = |x| at x = 0. To this end, one alternative assumption
might be that f is unimodular:

Definition 8.5 (Unimodular). A function f : [a,b] — R is unimodular if there exists x* € [a,b] such
that f is decreasing for x € [a, x*| and increasing for x € [x*,b].

In other words, a unimodular function decreases for some time, and then begins increasing; no
localized minima are allowed. Notice that functions like |x| are not differentiable but still are
unimodular.

Suppose we have two values xp and x; such thata < xp < x; < b. We can make two observa-
tions that will help us formulate an optimization technique:

o If f(x9) > f(x1), then we know that f(x) > f(x1) for all x € [a, x¢]. Thus, the interval [a, x¢]
can be discarded in our search for a minimum of f.

127

o If f(x1) > f(x0), then we know that f(x) > f(x¢) for all x € [x1,b], and thus we can discard
[xl, b}

This structure suggests a potential strategy for minimization beginning with the interval |4, b] and
iteratively removing pieces according to the rules above.

One important detail remains, however. Our convergence guarantee for the bisection algo-
rithm came from the fact that we could remove half of the interval in question in each iteration.
We could proceed in a similar fashion, removing a third of the interval each time; this requires two
evaluations of f during each iteration at new xp and x; locations. If evaluating f is expensive,
however, we may wish to reuse information from previous iterations to avoid at least one of those
two evaluations.

For now a = 0 and b = 1; the strategies we derive below will work more generally by shifting
and scaling. In the absence of more information about f, we might as well make a symmetric
choice xg = a and x; = 1 — a for some « € (0,1/2). Suppose our iteration removes the rightmost
interval [x1, b]. Then, the search interval becomes [0,1 — «|, and we know f(«) from the previous
iteration. The next iteration will divide [0,1 — &] such that xo = a(1 — a) and x; = (1 — a)?. If we
wish to reuse f(a) from the previous iteration, we could set (1 — a)? = a, yielding:

1
0625(3—\/5)

1—&2%(\@—1)

The value of 1 —a = T above is the golden ratio! It allows for the reuse of one of the function
evaluations from the previous iterations; a symmetric argument shows that the same choice of «
works if we had removed the left interval instead of the right one.

The golden section search algorithm makes use of this construction (CITE):

1. Take T = 3(+/5 — 1)., and initialize a and b so that f is unimodular on [a, b].
2. Make an initial subdivision xo = a+ (1 —7)(b —a) and x; = a+ t(b — a).
3. Initialize fo = f(xo) and f1 = f(x1).

4. Iterate until b — a is sufficiently small:

(@) If fo > f1, then remove the interval [a, x¢] as follows:
e Move left side: a + xg
e Reuse previous iteration: xy < x1, fo < f1
e Generate new sample: x1 <—a+t(b—a), f1 < f(x1)
(b) If f1 > fo, then remove the interval [x1, b] as follows:
e Move right side: b + x;
e Reuse previous iteration: x; < xo, f1 < fo
e Generate new sample: xg <— a+ (1 —7)(b —a), fo < f(xo)

This algorithm clearly converges unconditionally and linearly. When f is not globally unimodal,
it can be difficult to find [a, b] such that f is unimodal on that interval, limiting the applications of
this technique somewhat; generally [a, b] is guessed by attempting to bracket a local minimum of

f.

128

8.4 Multivariable Strategies

We continue in our parallel of our discussion of root-finding by expanding our discussion to mul-
tivariable problems. As with root-finding, multivariable problems are considerably more difficult
than problems in a single variable, but they appear so many times in practice that they are worth
careful consideration.

Here, we will consider only the case that f : R” — R is differentiable. Optimization methods
more similar to golden section search for non-differentiable functions are of limited applications
and are difficult to formulate.

8.4.1 Gradient Descent

Recall from our previous discussion that V f(X) points in the direction of “steepest ascent” of f at
X; similarly, the vector —V f(X) is the direction of “steepest descent.” If nothing else, this definition
guarantees that when V f(¥) # 0, for small « > 0 we must have

f(E=aVf(X)) < f(3).

Suppose our current estimate of the location of the minimum of f is Xy. Then, we might wish
to choose Xy 1 so that f(¥y1) < f(Xk) for an iterative minimization strategy. One way to simplify
the search for Xj,; would be to use one of our one-dimensional algorithms from §8.3 on a simpler
problem. In particular, consider the function gx(t) = f(¥x — tV f(%)), which restricts f to the line
through ¥y parallel to V f(¥y). Thanks to our discussion of the gradient, we know that small ¢t will
yield a decrease in f.

The gradient descent algorithm iteratively solves these one-dimensional problems to improve
our estimate of X:

1. Choose an initial estimate X

2. Iterate until convergence of Xj:

(a) Take gx(t) = f(Xx — tVf(%))
(b) Use a one-dimensional algorithm to find t* minimizing g over all t > 0 (“line search”)
(C) Take fk+1 = fk — t*Vf(fk)

Each iteration of gradient descent decreases f(X), so the objective values converge. The algorithm
only terminates when Vf(¥) ~ 0, showing that gradient descent must at least reach a local
minimum; convergence is slow for most functions f, however. The line search process can be
replaced by a method that simply decreases the objective a non-negligible if suboptimal amount,
although it is more difficult to guarantee convergence in this case.

8.4.2 Newton’s Method

Paralleling our derivation of the single-variable case, we can write a Taylor series approximation
of f : R" — R using its Hessian Hy:

—_

f(X) ~ f(X)+ V) (F—%) +5(@F—%)" - He (%) (¥— %)

N |

Differentiating with respect to ¥ and setting the result equal to zero yields the following iterative
scheme:

Tepr = Xk — [Hp (%)) 7 V()

It is easy to double check that this expression is a generalization of that in §8.3.1, and once again it
converges quadratically when X is near a minimum.

Newton’s method can be more efficient than gradient descent depending on the optimization
objective f. Recall that each iteration of gradient descent potentially requires many evaluations of
f during the line search procedure. On the other hand, we must evaluate and invert the Hessian
Hy during each iteration of Newton’s method. Notice that these factors do not affect the number of
iterations but do affect runtime: this is a tradeoff that may not be obvious via traditional analysis.

It is intuitive why Newton’s method converges quickly when it is near an optimum. In partic-
ular, gradient descent has no knowledge of Hy; it proceeds analogously to walking downhill by
looking only at your feet. By using Hy, Newton’s method has a larger picture of the shape of f
nearby.

When Hy is not positive definite, however, the objective locally might look like a saddle or peak
rather than a bowl. In this case, jumping to an approximate stationary point might not make sense.
Thus, adaptive techniques might check if Hy is positive definite before applying a Newton step; if
it is not positive definite, the methods can revert to gradient descent to find a better approximation
of the minimum. Alternatively, they can modify Hy by, e.g., projecting onto the closest positive
definite matrix.

8.4.3 Optimization without Derivatives: BFGS

Newton’s method can be difficult to apply to complicated functions f : R” — IR. The second
derivative of f might be considerably more involved than the form of f, and H; changes with
each iteration, making it difficult to reuse work from previous iterations. Additionally, Hy has
size n X n, so storing Hy requires O(n?) space, which can be unacceptable.

As in our discussion of root-finding, techniques for minimization that imitate Newton’s method
but use approximate derivatives are called quasi-Newton methods. Often they can have similarly
strong convergence properties without the need for explicit re-evaluation and even factorization
of the Hessian at each iteration. In our discussion, we will follow the development of (CITE NO-
CEDAL AND WRIGHT).

Suppose we wish to minimize f : R” — R using an iterative scheme. Near the current estimate
Xy of the root, we might estimate f with a quadratic model:

FlEet0%) f(T) + V() 67+ 5 (67) T Bul6).

Notice that we have asked that our approximation agrees with f to first order at X; as in Broyden’s
method for root-finding, however, we will allow our estimate of the Hessian By to vary.
This quadratic model is minimized by taking 6X¥ = —B,_ 'V f(#%). In case ||6¥]|, is large and we
do not wish to take such a considerable step, we will allow ourselves to scale this difference by a
step size ay, yielding
Bps1 = T — B 'V (Z).

Our goal is to find a reasonable estimate By ; by updating By, so that we can repeat this process.

130

The Hessian of f is nothing more than the derivative of V f, so we can write a secant-style
condition on By 1:

Bii1 (X1 — %) = Vf(Xi1) — V(%)
We will substitute 5y = X1 — % and iy = Vf(Xy1) — Vf(Xx), yielding an equivalent condition

Bi+15k = Y-
Given the optimization at hand, we wish for By to have two properties:

e By should be a symmetric matrix, like the Hessian Hy.

e Bj should be positive (semi-)definite, so that we are seeking minima rather than maxima or
saddle points.

The symmetry condition is enough to eliminate the possibility of using the Broyden estimate we
developed in the previous chapter.

The positive definite constraint implicitly puts a condition on the relationship between sy and
¥k In particular, premultiplying the relationship By, 15 = ¥, by 5] shows 5, By 15, = 5} . For
By to be positive definite, we must then have 5 - iy > 0. This observation can guide our choice
of ay; it is easy to see that it holds for sufficiently small a; > 0.

Assume that Sy and i satisfy our compatibility condition. With this in place, we can write
down a Broyden-style optimization leading to a possible approximation By 1:

minimizep,, ||Bx11 — Byl
such that B ; = By
Bi+15k = ¥k

For appropriate choice of norms || - ||, this optimization yield the well-known DFP (Davidon-
Fletcher-Powell) iterative scheme.

Rather than work out the details of the DFP scheme, we move on to a more popular method
known as the BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula, which appears in many mod-
ern systems. Notice that—ignoring our choice of a; for now—our second-order approximation
was minimized by taking 6¥ = —B,_ IV f(%;). Thus, in the end the behavior of our iterative scheme
is dictated by the inverse matrix B, '. Asking that ||Bj,1 — Bi|| is small can still imply relatively
bad differences between the action of B, !'and that of B, +11!

With this observation in mind, the BEGS scheme makes a small alteration to the above deriva-
tion. Rather than computing By at each iteration, we can compute its inverse Hy = B, ! directly.
Now our condition By 15k = i) gets reversed to 5 = Hj1¥); the condition that By is symmetric is
the same as asking that Hj is symmetric. We solve an optimization

minimizey, , ||Hi+1 — Hl|
such that HkTJrl = Hyq
Sk = Hip1k

This construction has the nice side benefit of not requiring matrix inversion to compute 6X¥ =
—HiVf(%).

To derive a formula for Hy,1, we must decide on a matrix norm || - ||. As with our previous
discussion, the Frobenius norm looks closest to least-squares optimization, making it likely we can
generate a closed-form expression for Hy, 1 rather than having to solve the minimization above as
a subroutine of BFGS optimization.

131

The Frobenius norm, however, has one serious drawback for Hessian matrices. Recall that the
Hessian matrix has entries (Hy);; = 9/i/ax;. Often the quantities x; for different i can have different
units; e.g. consider maximizing the profit (in dollars) made by selling a cheeseburger of radius
r (in inches) and price p (in dollars), leading to f : (inches, dollars) — dollars. Squaring these
different quantities and adding them up does not make sense.

Suppose we find a symmetric positive definite matrix W so that Wsy = 1j;; we will check in
the exercises that such a matrix exists. Such a matrix takes the units of 5y = ¥;,1 — X to those
of x = Vf(%11) — Vf(X). Taking inspiration from our expression ||A||% = Tr(ATA), we can
define a weighted Frobenius norm of a matrix A as

|Al|Z, = Tr(ATWT AW)

It is straightforward to check that this expression has consistent units when applied to our opti-
mization for Hy1. When both W and A are symmetric with columns @; and 4, resp., expanding

the expression above shows:
AN = }_(@; - a@))(@; -).

ij
This choice of norm combined with the choice of W yields a particularly clean formula for Hj4
given Hy, Sk, and i:

Hicr1 = (Inn = pxSii) Hi(Insen — Py) + Pisi

where p; = 1/7.5. We show in the Appendix to this chapter how to derive this formula.

The BFGS algorithm avoids the need to compute and invert a Hessian matrix for f, but it still
requires O(n?) storage for Hi. A useful variant known as L-BFGS (“Limited-Memory BFGS”)
avoids this issue by keeping a limited history of vectors i, and 5; and applying Hj by expanding
its formula recursively. This approach actually can have better numerical properties despite its
compact use of space; in particular, old vectors ix and sy may no longer be relevant and should be
ignored.

8.5 Problems

List of ideas:

e Derive Gauss-Newton

Stochastic methods, AdaGrad

VSCG algorithm

Wolfe conditions for gradient descent; plug into BFGS

Sherman-Morrison-Woodbury formula for By for BFGS

Prove BEGS converges; show existence of a matrix W

(Generalized) reduced gradient algorithm

e Condition number for optimization

132

Appendix: Derivation of BFGS Update!

Our optimization for Hy 1 has the following Lagrange multiplier expression (for ease of notation
we take Hy,1 = H and Hy = H*):

A=Y (@ (h— ﬁf))(wj - (hi — k) — Y aij(Hij — Hji) — AT (Hij — 5)
7 i<

=Y (@ (h; - ﬁ;f))(wj 2061] ij — AT (Hyjy — 5¢) if we assume a;; = —a;

-

Taking derivatives to find critical points shows (for i = ¥, = 5):

=Y 2wi(@; - (e — 7)) — wij — Ay

=2Y wi (W' (H—H"))je — aij — Ay

=2 E(WT(H - H*))]‘ewei — aj; — Ajy; by symmetry of W
‘

=2(W'(H— H")W)ji — ajj — Ay
2(W(H — H*)W);; — a;j — Ajy; by symmetry of W and H

So, in matrix form we have the following list of facts:

0=2W(H—H")W—A— 1", where A;; = a;;
Al =AW ' =W,H' =H,(H")" = H*
Hij=5Ws=4j

We can achieve a pair of relationships using transposition combined with symmetry of H and W
and asymmetry of A:

0=2W(H-H)W—-A—-Aj"
0=2WH-H)W+A—-7jA"
— 0=4W(H - H" YW - Aj" —jA"

Post-multiplying this relationship by § shows:
0= 4(j — WH')) —1(7-5) — 7(X-5)

Now, take the dot product with s

This shows:
A5 =207 (5~ H'Y), for p = 1/

1Special thanks to Tao Du for debugging several parts of this derivation.

133

Now, we substitute this into our vector equality:

Aj" =407 - WH'D)F" —20%F" (5 - H'§)77"
Taking the transpose,
AT = 457"~ §THW) = 20%7" (5 - H'])7y '

Combining these results and dividing by four shows:

(AF" +FAT) = (2§ " — WH'GF" — 5 ' H'W) —p*F" (5 — H'§)j7 "

NG

Now, we will pre- and post-multiply by W~!. Since Ws = #/, we can equivalently write § = W~13;
furthermore, by symmetry of W we then know 7' W~ = §T. Applying these identities to the
expression above shows:

AT+ AW = 20887 — pH ST — o5y T H* — p*(§78)5T + p* (5 H')55 "
= 2035 — pH*js" — psy" H* — p58" +50*(i" H*#)§" by definition of p
= 055" — pH'yS" — o5y H* +50°(§ H'§)5"
Finally, we can conclude our derivation of the BEGS step as follows:

0=4W(H — H*)W — Aj" — AT from before
= H:}l VAT + AT YW + H*
= ps8" — pH*YS" — psy' H* +50*(§ H*))§" + H* from the last paragraph
= H*(I—pys") + 35" — p37" H" + (55") H* (0Fs")
= H'(I - p§5") + 55" — p5§ " H*(I - pjs")
= 35" + (I —psy ")H* (I —pys")

This final expression is exactly the BFGS step introduced in the chapter.

134

Chapter 9

Constrained Optimization

We continue our consideration of optimization problems by studying the constrained case. These
problems take the following general form:

minimize f(X)
such that g(¥) =
h(%)

Here, f : R" =+ R, g : R" — R”, and h : R" — R?. Obviously this form is extremely generic, so
it is not difficult to predict that algorithms for solving such problems in the absence of additional
assumptions on f, g, or h can be difficult to formulate and are subject to degeneracies such as local
minima and lack of convergence. In fact, this optimization encodes other problems we already
have considered; if we take f(X) = 0, then this constrained optimization becomes root-finding on
g, while if we take g(%) = h(¥) = 0 then it reduces to unconstrained optimization on f.

Despite this somewhat bleak outlook, optimizations for general constrained case can be valu-
able when f, g, and / do not have useful structure or are too specialized to merit specialized treat-
ment. Furthermore, when f is heuristic anyway, simply finding a feasible X for which f(X) < f(X)
for an initial guess Xy is valuable. One simple application in this domain would be an economic
system in which f measures costs; obviously we wish to minimize costs, but if X represents the
current configuration, any ¥ decreasing f is a valuable output.

Ry
v
ol ol

9.1 Motivation

It is not difficult to encounter constrained optimization problems in practice. In fact, we already
listed many applications of these problems when we discussed eigenvectors and eigenvalues,
since this problem can be posed as finding critical points of ¥' AX subject to ||¥|» = 1; of course,
the particular case of eigenvalue computation admits special algorithms that make it a simpler
problem.

Here we list other optimizations that do not enjoy the structure of eigenvalue problems:

Example 9.1 (Geometric projection). Many surfaces S in R® can be written implicitly in the form
g(X) = 0 for some g. For example, the unit sphere results from taking g(%) = ||¥||5 — 1, while a cube can

135

be constructed by taking g(X) = ||X||1 — 1. In fact, some 3D modeling environments allow users to specify
“blobby” objects, as in Figure NUMBER, as sums

g(®) = c+ Y ae vl
i

Suppose we are given a point ij € R® and wish to find the closest point on S to ij. This problem is solved by
using the following constrained minimization:

minimizez | X — if||2
such that g(X) =0

Example 9.2 (Manufacturing). Suppose you have m different materials; you have s; units of each material
i in stock. You can manufacture k different products; product j gives you profit p; and uses c;; of material i
to make. To maximize profits, you can solve the following optimization for the total amount x; you should
manufacture of each item j:

k
maximizez Y _ pjx;
=1
such that x; > 0Vj € {1,...,k}
k
CijXj < SiVi S {1,. . .,m}
=1

]

The first constraint ensures that you do not make negative numbers of any product, and the second ensures
that you do not use more than your stock of each material.

Example 9.3 (Nonnegative least-squares). We already have seen numerous examples of least-squares
problems, but sometimes negative values in the solution vector might not make sense. For example, in
computer graphics, an animated model might be expressed as a deforming bone structure plus a meshed
“skin;” for each point on the skin a list of weights can be computed to approximate the influence of the
positions of the bone joints on the position of the skin vertices (CITE). Such weights should be constrained
to be nonnegative to avoid degenerate behavior while the surface deforms. In such a case, we can solve the
“nonnegative least-squares” problem:

minimizez | AZ — D||
such that x; > 0 Vi

Recent research involves characterizing the sparsity of nonnegative least squares solutions, which often
have several values x; satisfying x; = 0 exactly (CITE).

Example 9.4 (Bundle adjustment). In computer vision, suppose we take a picture of an object from several
angles. A natural task is to reconstruct the three-dimensional shape of the object. To do so, we might mark
a corresponding set of points on each image; in particular, we can take %;; € IR? to be the position of feature
point j on image i. In reality, each feature point has a position yj; € IRé in space, which we would like to
compute. Additionally, we must find the positions of the cameras themselves, which we can represent as

136

unknown projection matrices P;. This problem, known as bundle adjustment, can be approached using an
optimization strategy:

minimizegﬁpf Z ||Pig]' — f1]||%
1
such thatP; is orthogonal Vi

The orthogonality constraint ensures that the camera transformations are reasonable.

9.2 Theory of Constrained Optimization

In our discussion, we will assume that f, g, and & are differentiable. Some methods exist that only
make weak continuity or Lipschitz assumptions, but these techniques are quite specialized and
require advanced analytical consideration.

Although we have not yet developed algorithms for general constrained optimization, we im-
plicitly have made use of the theory of such problems in considering eigenvalue methods. Specif-
ically, recall the method of Lagrange multipliers, introduced in Theorem 0.1. In this technique,
critical points f(X) subject to g(X) are characterized as critical points of the unconstrained La-
grange multiplier function A(X, 1) = f(¥) — A - §(¥) with respect to both A and ¥ simultaneously.
This theorem allowed us to provide variational interpretations of eigenvalue problems; more gen-
erally, it gives an alternative (necessary but not sufficient) criterion for X to be a critical point of an
equality-constrained optimization.

Simply finding an ¥ satisfying the constraints, however, can be a considerable challenge. We
can separate these issues by making a few definitions:

Definition 9.1 (Feasible point and feasible set). A feasible point of a constrained optimization problem
is any point X satisfying g(X) = 0 and h(X) > 0. The feasible set is the set of all points X satisfying these
constraints.

Definition 9.2 (Critical point of constrained optimization). A critical point of a constrained optimiza-
tion is one satisfying the constraints that also is a local maximum, minimum, or saddle point of f within
the feasible set.

Constrained optimizations are difficult because they simultaneously solve root-finding prob-
lems (the g(X) = 0 constraint), satisfiability problems (the /(¥) > 0 constraint), and minimization
(the function f). This aside, to push our differential techniques to complete generality, we must
find a way to add inequality constraints to the Lagrange multiplier system. Suppose we have
found the minimum of the optimization, denoted x¥*. For each inequality constraint ;(¥*) > 0,
we have two options:

e 11;(X*) = 0: Such a constraint is active, likely indicating that if the constraint were removed
the optimum might change.

e h1;(X*) > 0: Such a constraint is inactive, meaning in a neighborhood of ¥* if we had removed
this constraint we still would have reached the same minimum.

Of course, we do not know which constraints will be active or inactive at ¥* until it is computed.

137

If all of our constraints were active, then we could change our h(X) > 0 constraint to an equal-
ity without affecting the minimum. This might motivate studying the following Lagrange multi-
plier system:

A(X A) = f(R) = A-g(F) — - h(x)
We no longer can say that X* is a critical point of A, however, because inactive constraints would
remove terms above. Ignoring this (important!) issue for the time being, we could proceed blindly
and ask for critical points of this new A with respect to ¥, which satisfy the following:

0= Vf(¥) - Y AiVei(®) = YouViy(%)
! J
Here we have separated out the individual components of ¢ and & and treated them as scalar
functions to avoid complex notation.
A clever trick can extend this optimality condition to inequality-constrained systems. Notice
that if we had taken y; = 0 whenever £; is inactive, then this removes the irrelevant terms from
the optimality conditions. In other words, we can add a constraint on the Lagrange multipliers:

With this constraint in place, we know that at least one of y; and k;(X) must be zero, and therefore
our first-order optimality condition still holds!

So far, our construction has not distinguished between the constraint h](ic') > 0 and the con-
straint /;(¥) < 0. If the constraint is inactive, it could have been dropped without affecting the
outcome of the optimization locally, so we consider the case when the constraint is active. Intu-
itively,! in this case we expect there to be a way to decrease f by violating the constraint. Lo-
cally, the direction in which f decreases is —V f(X*) and the direction in which ; decreases is
—Vh;(%*). Thus, starting at ¥* we can decrease f even more by violating the constraint /;(¥) > 0
when Vf(¥*) - Vh;(X*) > 0.

Of course, products of gradients of f and h; are difficult to work with. However, recall that at
X* our first-order optimality condition tells us:

VAE) = LAVEE) + Y V()

j active

The inactive y; values are zero and can be removed. In fact, we can remove the ¢(X¥) = 0 con-
straints by adding inequality constraints ¢(¥) > 0 and g(¥) < O to k; this is a mathematical con-
venience for writing a proof rather than a numerically-wise maneuver. Then, taking dot products
with Vhy for any fixed k shows:

Y W V(R VIg(TF) = VF(F) - Vig(F*) > 0

j active

Vectorizing this expression shows Dh(¥*)Dh(x*) T ji* > 0. Since Dh(¥*)Dh(x*) " is positive semidef-
inite, this implies #* > 0. Thus, the V f(X*) - Vhi(¥*) > 0 observation manifests itself simply by
the fact that uj > 0.

Our observations can be formalized to prove a first-order optimality condition for inequality-
constrained optimizations:

You should not consider our discussion a formal proof, since we are not considering many boundary cases.

138

Theorem 9.1 (Karush-Kuhn-Tucker (KKT) conditions). The vector X* € IR" is a critical point for
minimizing f subject to g(¥) = 0 and h(X) > 0 when there exists A € R™ and ji € RP such that:

e 0=VFx) - ANV -) 1;jVhi(X*) (“stationarity”)

o g(¥*) = Oand h(x*) > 0 (“primal feasibility”)

o 1;hi(¥*) = 0 for all j (“complementary slackness”)

e ;> 0 forall j (“dual feasibility”)
Notice that when & is removed this theorem reduces to the Lagrange multiplier criterion.
Example 9.5 (Simple optimization?). Suppose we wish to solve

maximize xy
such that x + y2 <2
x,y>0

In this case we will have no A’s and three u’s. We take f(x,y) = —xy, hi(x,y) =2 —x—y? hy(x,y) = x,
and h3(x,y) = y. The KKT conditions are:

Stationarity: 0 = —y + yup — p2

0=—x+21y—us
Primal feasibility: x +y* < 2

x,y>0
Complementary slackness: y1 (2 — x —y*) =0

pox =0

pay =0

Dual feasibility: uy, po, pz > 0

Example 9.6 (Linear programming). Consider the optimization:
minimizez b - X
such that AX > ¢

Notice Example 9.2 can be written this way. The KKT conditions for this problem are:

—

Stationarity: A" ji = b
Primal feasibility: AX > €

Complementary slackness: y;(@; - ¥ — ¢;) = 0 Vi, where @, is row i of A

1
Dual feasibility: ji > 0

As with the Lagrange multipliers case, we cannot assume that any ¥* satisfying the KKT con-
ditions automatically minimizes f subject to the constraints, even locally. One way to check for
local optimality is to examine the Hessian of f restricted to the subspace of R" in which ¥ can
move without violating the constraints; if this “reduced” Hessian is positive definite then the op-
timization has reached a local minimum.

2From http://www.math.ubc.ca/~israel/m340/kkt2. pdf

139

http://www.math.ubc.ca/~israel/m340/kkt2.pdf

9.3 Optimization Algorithms

A careful consideration of algorithms for constrained optimization is out of the scope of our dis-
cussion; thankfully many stable implementations exist of these techniques and much can be ac-
complished as a “client” of this software rather than rewriting it from scratch. Even so, it is useful
to sketch some potential approaches to gain some intuition for how these libraries function.

9.3.1 Sequential Quadratic Programming (SQP)

Similar to BFGS and other methods we considered in our discussion of unconstrained optimiza-
tion, one typical strategy for constrained optimization is to approximate f, ¢, and h with simpler
functions, solve the approximated optimization, and iterate.

Suppose we have a guess ¥ of the solution to the constrained optimization problem. We could
apply a second-order Taylor expansion to f and first-order approximation to g and / to define a
next iterate as the following:

1 — Ed
X1 = ¥+ argmin Ed’r Hy (%) d + V(%) - d+ f(%)
d

such that g;(X) + Vgi(Xx) -d =0
hi (%) + Vhi(%) tiz 0

The optimization to find dhasa quadratic objective with linear constraints, for which optimization
can be considerably easier using one of many strategies. It is known as a quadratic program.

Of course, this Taylor approximation only works in a neighborhood of the optimal point. When
a good initial guess Xy is unavailable, these strategies likely will fail.

Equality constraints When the only constraints are equalities and / is removed, the quadratic
program for d has Lagrange multiplier optimality conditions derived as follows:

A R) = 207 Hp(G)d + Vf (%) -0+ f(x0) + 1T (8(5) + Dg(%)d)

Combining this with the equality condition yields a linear system:

(He (%) [Dg(%)]") d\ _ (— V£ (%) >
Dg(¥) 0 A —8(%)
Thus, each iteration of sequential quadratic programming in the presence of only equality con-
straints can be accomplished by solving this linear system at each iteration to get X1 = Xy + d. 1t
is important to note that the linear system above is not positive definite, so on a large scale it can
be difficult to solve.

Extensions of this strategy operate as BFGS and similar approximations work for unconstrained

optimization, by introducing approximations of the Hessian H. Stability also can be introduced
by limiting the distance traveled in a single iteration.

140

Inequality Constraints Specialized algorithms exist for solving quadratic programs rather than
general nonlinear programs, and these can be used to generate steps of SQP. One notable strategy
is to keep an “active set” of constraints that are active at the minimum with respect to d; then the
equality-constrained methods above can be applied by ignoring inactive constraints. Iterations of
active-set optimization update the active set of constraints by adding violated constraints to the
active set and removing those inequality constraints /; for which V f - Vh; < 0 as in our discussion
of the KKT conditions.

9.3.2 Barrier Methods

Another option for minimizing in the presence of constraints is to change the constraints to energy
terms. For example, in the equality constrained case we could minimize an “augmented” objective
as follows:

fo(2) = f(®) +pllg(®)|I5

Notice that taking p — oo will force g(X) to be as small as possible, so eventually we will reach
¢(¥) ~ 0. Thus, the barrier method of constrained optimization applies iterative unconstrained opti-
mization techniques to fp and checks how well the constraints are satisfied; if they are not within
a given tolerance, p is increased and the optimization continues using the previous iterate as a
starting point.

Barrier methods are simple to implement and use, but they can exhibit some pernicious failure
modes. In particular, as p increases, the influence of f on the objective function diminishes and
the Hessian of f, becomes more and more poorly conditioned.

Barrier methods can be applied to inequality constraints as well. Here we must ensure that
hi(X) > 0 for all i; typical choices of barrier functions might include 1/,(%) (the “inverse barrier”)
or —log h;(X) (the “logarithmic barrier”).

9.4 Convex Programming

Generally speaking, methods like the ones we have described for constrained optimization come
with few if any guarantees on the quality of the output. Certainly these methods are unable to
obtain global minima without a good initial guess ¥y, and in certain cases, e.g. when the Hessian
near X* is not positive definite, they may not converge at all.

There is one notable exception to this rule, which appears in any number of important op-
timizations: convex programming. The idea here is that when f is a convex function and the
feasible set itself is convex, then the optimization possesses a unique minimum. We already have
defined a convex function, but need to understand what it means for a set of constraints to be
convex:

Definition 9.3 (Convex set). A set S C R" is convex if for any X, ij € S, the point tX 4 (1 — t)ij is also
inS forany t € [0,1].

As shown in Figure NUMBER, intuitively a set is convex if its boundary shape cannot bend both
inward and outward.

Example 9.7 (Circles). The disc {X¥ € R" : ||X||» < 1} is convex, while the unit circle {X € R" : ||X||, =
1} is not.

141

It is easy to see that a convex function has a unique minimum even when that function is restricted
to a convex domain. In particular, if the function had two local minima, then the line of points
between those minima must yield values of f not greater than those on the endpoints.

Strong convergence guarantees are available for convex optimizations that guarantee finding
the global minimum so long as f is convex and the constraints on ¢ and # make a convex feasible
set. Thus, a valuable exercise for nearly any optimization problem is to check if it is convex, since
such an observation can increase confidence in the solution quality and the chances of success by
a large factor.

A new field called disciplined convex programming attempts to chain together simple rules about
convexity to generate convex optimizations (CITE CVX), allowing the end user to combine simple
convex energy terms and constraints so long as they satisfy criteria making the final optimization
convex. Useful statements about convexity in this domain include the following:

e The intersection of convex sets is convex; thus, adding multiple convex constraints is an
allowable operation.

e The sum of convex functions is convex.
e If f and g are convex, so is h(X) = max{f(X), g(X)}.
e If f is a convex function, the set {X : f(X) < c} is convex.

Tools such as the CVX library help separate implementation of assorted convex objectives from
their minimization.

Example 9.8 (Convex programming).

e The nonnegative least squares problem in Example 9.3 is convex because ||AX — b||y is a convex
function of X and the set X > 0 is convex.

o The linear programming problem in Example 9.6 is convex because it has a linear objective and linear
constraints.

e We can include || X||1 in a convex optimization objective by introducing a variable ij. To do so, we add
constraints y; > x; and y; > —x; for each i and an objective Y ; y;. This sum has terms that are at
least as large as |x;| and that the energy and constraints are convex. At the minimum we must have
yi = |x;| since we have constrained y; > |x;| and we wish to minimize the energy. “Disciplined”
convex libraries can do such operations behind the scenes without revealing such substitutions to the
end user.

A particularly important example of a convex optimization is linear programing from Example 9.6.
The famous simplex algorithm keeps track of the active constraints, solves for the resulting ¥* using
a linear system, and checks if the active set must be updated; no Taylor approximations are needed
because the objective and feasible set are given by linear machinery. Interior point linear program-
ming strategies such as the barrier method also are successful for these problems. For this reason,
linear programs can be solved on a huge scale—up to millions or billions of variables!—and often
appear in problems like scheduling or pricing.

142

9.5 Problems

e Derive simplex?

e Linear programming duality

143

144

Chapter 10

Iterative Linear Solvers

In the previous two chapters, we developed strategies for solving a new class of problems in-
volving minimizing a function f(¥) with or without constraints on ¥. In doing so, we relaxed
our viewpoint from numerical linear algebra and in particular Gaussian elimination that we must
find an exact solution to a system of equations and instead turned to iterative schemes that are
guaranteed to approximate the minimum of a function better and better as they iterate more and
more. Even if we never find the minimum exactly, we know that eventually we will find an X
with f(¥)) ~ 0 with arbitrary levels quality, depending on the number of iterations we run.

We now have a reprise of our favorite problem from numerical linear algebra, solving AX = b
for X, but apply an iterative approach rather than expecting to find a solution in closed form. This
strategy reveals a new class of linear system solvers that can find reliable approximations of X in
amazingly few iterations. We already have suggested how to approach this in our discussion of
linear algebra, by suggesting that solutions to linear systems are minima of the energy || AX — EH%,
among others.

Why bother deriving yet another class of linear system solvers? So far, most of our direct
approaches require us to represent A as a full n X n matrix, and algorithms such as LU, QR, or
Cholesky factorization all take around O(n?) time. There are two cases to keep in mind for poten-
tial reasons to try iterative schemes:

1. When A is sparse, methods like Gaussian elimination tend to induce fill, meaning that even
if A contains O(n) nonzero values, intermediate steps of elimination may introduce O(n?)
nonzero values. This property rapidly can cause linear algebra systems to run out of mem-
ory. Contrastingly, the algorithms in this chapter require only that you can apply A to vectors,
which can be done in time proportional to the number of nonzero values in a matrix.

2. We may wish to defeat the O(n?) runtime of standard matrix factorization techniques. In
particular, if an iterative scheme can uncover a fairly accurate solution to AX = b in a few
iterations, runtimes can be decreased considerably.

Also, notice that many of the nonlinear optimization methods we have discussed, in particular
those depending on a Newton-like step, require solving a linear system in each iteration! Thus,
formulating the fastest possible solver can make a considerable difference when implementing
large-scale optimization methods that require one or more linear solves per iteration. In fact, in
this case an inaccurate but fast solve to a linear system might be acceptable, since it feeds into a
larger iterative technique anyway:.

145

Please note that much of our discussion is due to CITE, although our development can be
somewhat shorter given the development in previous chapters.

10.1 Gradient Descent

We will focus our discussion on solving AX = b where A has three properties:
1. A € R"™"issquare
2. Ais symmetric, that is, AT =A
3. Ais positive definite, that is, for all ¥ # 0, AX >0

Toward the end of this chapter we will relax these assumptions. For now, notice that we can
replace AX¥ = b with the normal equations AT AX = A'b to satisfy these criteria, although as we
have discussed this substitution can create numerical conditioning issues.

10.1.1 Deriving the Iterative Scheme

In this case, it is easy to check that solutions of AX = b are minima of the function f(¥) given by
the quadratic form

£(7) = %fTAz _BTE4c
for any c € R. In particular, taking the derivative of f shows
Vf(%) = AX—b,

and setting V f(¥) = 0 yields the desired result.
Rather than solving V f(X¥) = 0 directly as we have done in the past, suppose we apply the
gradient descent strategy to this minimization. Recall the basic gradient descent algorithm:

1. Compute the search direction d; =-Vf(%) = b— AXp_q.
2. Define Xy = %1 + axdy, where ay is chosen such that (%) < f(Z_1)

For a generic function f, deciding on the value of a; can be a difficult one-dimensional “line
search” problem, boiling down to minimizing f(X_1 + axdy) as a function of a single variable
a; > 0. For our particular choice of the quadratic form f(¥) = 1¥T A% — b7 % + ¢, however, we can
do line search in closed form. In particular, define

g(a) = f(¥ + ad)
- %(m ad)T A +ad) — BT (¥ + ad) + ¢

1 . . R
= (X" AT + 207" Ad + a%d" Ad) — "X — ab' d + c by symmetry of A

2
= %ocijAcf+ a(X"Ad —b"d) + const.
s dﬁ(a) — ad' Ad+d" (A% —b)

do

146

Thus, if we wish to minimize g with respect to , we simply choose
Ve A’ (b— AX)
drAd
In particular, for gradient descent we chose dy = b — A%y, so in fact &y takes a nice form:
_ did,
d] Ady

Xk

In the end, our formula for line search yields the following iterative gradient descent scheme
for solving AX = b in the symmetric positive definite case:

dy = b— A%
i
g

X = Xp_1 + agdy

K

10.1.2 Convergence

By construction our strategy for gradient descent decreases f(¥y) as k — oo. Even so, we have
not shown that the algorithm reaches the minimal possible value of f, and we have not been able
to characterize how many iterations we should run to reach a reasonable level of confidence that
Afk ~ E

One simple strategy for understanding the convergence of the gradient descent algorithm for
our choice of f is to examine the change in backward error from iteration to iteration.! Suppose
X* is the solution that we are seeking, that is, AX* = b. Then, we can study the ratio of backward
error from iteration to iteration:

R = SE) =)

~ G - F(@)
Obviously bounding Ry < B < 1 for some B shows that gradient descent converges.
For convenience, we can expand f(%y):

f(%) = f(X_1+ (xkafk) by our iterative scheme
1. - . o -
= E(xkq + apdi) " A(F1 + agdy) — b (Feq + agdy) + ¢

= f(Xr_1) + OckthJ_c’k_l + 1thZJTAd_;(— DékBTJ;(by definition of
k > Yk y

- o 1 - SR - o
= f(fkfl) + Dékci;:(b — k) + E“%@Adk — zxkadk since dk =b— Afk,l

S 2 1 7
= f(xk_l) — Oékli,:rdk + EOC%(;Z—Adk

1This argument is presented e.g. in http://www-personal.umich.edu/~mepelman/teaching/I0E511/Handouts/
511notes07-7.pdf.

147

http://www-personal.umich.edu/~mepelman/teaching/IOE511/Handouts/511notes07-7.pdf
http://www-personal.umich.edu/~mepelman/teaching/IOE511/Handouts/511notes07-7.pdf

B A N .
= f(X1) — —d dp + = d, Ady by definition of ay

d Ady 2\ d! Ad
:f(fk71> _ (cfl;rdk)Z 1<d_2—dk)2 :f<fk71) N (d_;rdk)z
dl Ady 2 d] Ady 24 Ad,

Thus, we can return to our fraction:

flEer) - S — f (@)
f(%1) — f(¥)
B (4, di)?
24 Ady(f (%1) — f(74))

Ry = by our formula for f(Xy)

Notice that AX* = I;, SO we can write:

= —k 1—» = 7T = 1 2\ 17 7T =%
fEe) = () = | 34T TR+ = [0 5T e

1 = Tor 4=
= 5*,111437,(,1 —b"F_ — EbTA—lb

1 - -
= E(Aa_c'k_l —b)" ATY(A%_; — b) by symmetry of A

= %cﬁr A~'d}, by definition of d

Thus,
(d d)?
Rk - - —#T =3 — —.
2d, Adi(f(Xk—1) — f(%*))
(d} d)?

— = — by our latest simplification
i Ady-dT A, P

dh 4,
dl Ady d] A-dy

1] =1 AT A-1d

-1 -1
=1- (n}ax fAc?) <rr}ax jTA‘%T)
lldll=1 [d]=1

-1_ Omin

<1-— | min L_, min % since this makes the second term smaller
ldi=1d"Ad) \ d|=1

where 0iin and omax are the minimum and maximum singular values of A
Umax

B 1
cond A

It took a considerable amount of algebra, but we proved an important fact:
Convergence of gradient descent on f depends on the conditioning of A.

148

That is, the better conditioned A is, the faster gradient descent will converge. Additionally, since
cond A > 1, we know that our gradient descent strategy above converges unconditionally to X*,
although convergence can be slow when A is poorly-conditioned.

Figure NUMBER illustrates behavior of gradient descent for well- and poorly-conditioned ma-
trices. As you can see, gradient descent can struggle to find the minimum of our quadratic function
f when the eigenvalues of A have a wide spread.

10.2 Conjugate Gradients

Recall that solving A¥ = b for A € R™" took O(n®) time. Reexamining the gradient descent
strategy above, we see each iteration takes O(n?) time, since we must compute matrix-vector
products between A, X;_1 and Jk. Thus, if gradient descent takes more than n iterations, we
might as well have applied Gaussian elimination, which will recover the exact solution in the
same amount of time. Unfortunately, we are not able to show that gradient descent has to take a
finite number of iterations, and in fact in poorly-conditioned cases it can take a huge number of
iterations to find the minimum.

For this reason, we will design an algorithm that is guaranteed to converge in at most n steps,
preserving the O(n®) worst-case timing for solving linear systems. Along the way, we will find
that this algorithm in fact exhibits better convergence properties overall, making it a reasonable
choice even if we do not run it to completion.

10.2.1 Motivation

Our derivation of the conjugate gradients algorithm is motivated by a fairly straightforward ob-
servation. Suppose we knew the solution X* to AX* = b. Then, we can write our quadratic form f
in a different way:

f(x) = %_)TAJ_C’ — b X + ¢ by definition

_ %(z— VAR —) + ¥ AT — %(a‘c’*)TAJ?* TR 4c

by adding and subtracting the same terms

1 o1 B B
=5 (% - X)TAR-—X)+x"b— E(f*)Tb —b"¥ 4 csince AX* =D
1 bnd
= 5(— #)TA(X — ¥*) + const. since the ¥ ' b terms cancel

Thus, up to a constant shift f is the same as the product 1 (¥ — #*) T A(¥ — ¥*). Of course, we do
not know Xx*, but this observation shows us the nature of f; it is simply measuring the distance
from ¥ to X¥* with respect to the “A-norm” ||7]|4 = 7' A7.

In fact, since A is symmetric and positive definite, even if it might be slow to carry out in
practice, we know that it can be factorized using the Cholesky strategy as A = LL". With this
factorization in hand, f takes an even nicer form:

— 1 — —k
f(%) = §||LT(x —X)|]%+const.

149

Since L' is an invertible matrix, this norm truly is a distance measure between ¥ and ¥*.

Define iy = L"¥ and i/* = L' %*. Then, from this new standpoint, we are minimizing f(ij) =
|7 — 77*||3. Of course, if we truly could get to this point via Cholesky factorization, optimizing f
would be exceedingly easy, but to derive a scheme for this minimization without L we consider
the possibility of minimizing f using only line searches derived in §10.1.1.

We make a simple observation about minimizing our simplified function f using such a strat-
egy, illustrated in Figure NUMBER:

Proposition 10.1. Suppose {@1, ..., @y} are orthogonal in R". Then, f is minimized in at most n steps
by line searching in direction @1, then direction Wy, and so on.

Proof. Take the columns of Q € R"*" to be the vectors @;; Q is an orthogonal matrix. Since Q
is orthogonal, we can write f(7) = | — 7*||5 = [|Q "7 — Q"%*||3; in other words, we rotate so
that w; is the first standard basis vector, W, is the second, and so on. If we write Z = QT]7 and
z* = Q'¥*, then clearly after the first iteration we must have z; = z}, after the second iteration
zp = z3, and so on. After n steps we reach z,, = z;, yielding the desired result.]

So, optimizing f can always be accomplished using 7 line searches so long as those searches are
in orthogonal directions.

All we did to pass from f to f is rotate coordinates using L'. Such a linear transformation
takes straight lines to straight lines, so doing a line search on f along some vector @ is equivalent
to doing a line search along (L") '@ on our original quadratic function f. Conversely, if we do
n line searches on f on directions 7; such that L' 7; = @; are orthogonal, then by Proposition 10.1
we must have found X*. Notice that asking @; - @; = 0 is the same as asking

0=w;-w; = (L'%) (L'3) =75/ (LL")7; = 5, Ad;.

We have just argued an important corollary to Proposition 10.1. Define conjugate vectors as fol-
lows:

Definition 10.1 (A-conjugate vectors). Two vectors T, @ are A-conjugate if 3 A = 0.
Then, based on our discussion we have shown:

Proposition 10.2. Suppose {01, ..., T, } are A-conjugate. Then, f is minimized in at most n steps by line
searching in direction U1, then direction U, and so on.

At a high level, the conjugate gradients algorithm simply applies this proposition, generating
and searching along A-conjugate directions rather than moving along —V f. Notice that this result
might appear somewhat counterintuitive: We do not necessarily move along the steepest descent
direction, but rather ask that our set of search directions satisfies a global criterion to make sure
we do not repeat work. This setup guarantees convergence in a finite number of iterations and
acknowledges the structure of f in terms of f discussed above.

Recall that we motivated A-conjugate directions by noting that they are orthogonal after ap-
plying LT from the factorization A = LL'. From this standpoint, we are dealing with two dot
products: X; - ¥jand i; - ; = (L' %;) - (L"%;) = x/ LLTX; = % A%;. These two products will figure
into our subsequent discussion in equal amounts, so we denote the “A-inner product” as

(i,)4 = (LTil) - (L77) = il | AG.

150

10.2.2 Suboptimality of Gradient Descent

So far, we know that if we can find n A-conjugate search directions, we can solve AX = binn steps
via line searches along these directions. What remains is to uncover a strategy for finding these
directions as efficiently as possible. To do so, we will examine one more property of the gradient
descent algorithm that will inspire a more refined approach.

Suppose we are at Xy during an iterative line search method on f(¥); we will call the direction
of steepest descent of f at ¥ the residual 7, = b — AX;. We may not decide to do a line search
along 7y as in gradient descent, since the gradient directions are not necessarily A-conjugate. So,
generalizing slightly, we will find ¥;_; via line search along a yet-undetermined direction 7y ;.

From our derivation of gradient descent, we should choose ¥;1 = X + aj110k+1, where a1
is given by

— 5kT+17k
X1 = 7 ATy
k+1 +1

Applying this expansion of ¥i;1, we can write an alternative update formula for the residual:

Tkr1 =b— AXep

S S

— A(Xg + a11TUk41) by definition of Xy 4
b — AXy) — a1 ATk

—

& — Wg+1ATUr1 by definition of 7

—~

This formula holds regardless of our choice of 7,1 and can be applied to any iterative line search
method.
In the case of gradient descent, however, we chose 7,1 = 7. This choice gives a recurrence
relation:
i1 = Tk — Qg1 AT

This simple formula leads to an instructive proposition:
Proposition 10.3. When performing gradient descent on f, span{7y, ..., %} = span{7o, A7y, ..., AF7y}.
Proof. This statement follows inductively from our formula for 7 above.]

The structure we are uncovering is beginning to look a lot like the Krylov subspace methods
mentioned in Chapter 5: This is not a mistake!

Gradient descent gets to ¥; by moving along 7, then 74, and so on through 7. Thus, in
the end we know that the iterate ¥; of gradient descent on f lies somewhere in the plane X +
span {7, 71,...,%_1} = Xy + span {7y, A7, ..., A¥"1%y}, by Proposition 10.3. Unfortunately, it is
not true that if we run gradient descent, the iterate Xy is optimal in this subspace. In other words,
in general it can be the case that

X —Xo # arg min f (X +7)
vespan {7, A%y,..., Ak- 17}

Ideally, switching this inequality to an equality would make sure that generating ¥;.1 from ¥y
does not “cancel out” any work done during iterations 1 to k — 1.

151

If we reexamine our proof of Proposition 10.1 with this fact in mind, we can make an observa-
tion suggesting how we might use conjugacy to improve gradient descent. In particular, once z;
switches to z7, it never changes value in a future iteration. In other words, after rotating from z to
X the following proposition holds:

Proposition 10.4. Take Xj to be the k-th iterate of the process from Proposition 10.1 after searching along
Uy. Then,
X —Xo= argmin f(Xo+7)
vespan {v1,...,0¢ }

Thus, in the best of all possible worlds, in an attempt to outdo gradient descent we might hope
to find A-conjugate directions {%, ..., %, } such thatspan {7, ..., %} = span {7y, A%y, ..., AF" 1%}
for each k; then our iterative scheme is guaranteed to do no worse than gradient descent during
any given iteration. But, greedily we wish to do so without orthogonalization or storing more
than a finite number of vectors at a time.

10.2.3 Generating A-Conjugate Directions

Of course, given any set of directions, we can make them A-orthogonal using a method like Gram-
Schmidt orthogonalization. Unfortunately, orthogonalizing {7, A7), ...} to find the set of search
directions is expensive and would require us to maintain a complete list of directions 7y; this con-
struction likely would exceed the time and memory requirements even of Gaussian elimination.
We will reveal one final observation about Gram-Schmidt that makes conjugate gradients tractable
by generating conjugate directions without an expensive orthogonalization process.

Ignoring these issues, we might write a “method of conjugate directions” as follows:

(A%, T)a
/= =\ Y

Update search direction (bad Gram-Schmidt step): 7, = A~ 17, — Z ——
= (0,0)a

T
5] AT,

Update estimate: X = X1 + a0

Line search: o) =

Update residual: 7 = 71 — a, AT

Here, we compute the k-th search direction 7y simply by projecting 7, ..., U1 out of the vector
A*17%,. This algorithm obviously has the property span {7, ..., %} = span {7y, A7, ..., AF"17}
suggested in §10.2.2, but has two issues:

1. Similar to power iteration for eigenvectors, the power A%, s likely to look mostly like the
first eigenvector of A, making the projection more and more poorly conditioned

2. We have to keep 7, ..., 01 around to compute ; thus, each iteration of this algorithm
needs more memory and time than the last.

We can fix the first issue in a relatively straightforward manner. In particular, right now we project
the previous search directions out of A*~'7, but in reality we can project out previous directions
from any vector @ so long as

@ € span {7o, Af, ..., A" 'Fo}\span {70, Af, ..., A*"*Fo},

152

that is, as long as @ has some component in the new part of the space.

An alternative choice of @ with this property is the residual 7;_;. This property follows from
the residual update 7, = 7x_1 — axATj; in this expression, we multiply ¥y by A, introducing the
new power of A that we need. This choice also more closely mimics the gradient descent algo-
rithm, which took @y = 7_;. Thus we can update our algorithm a bit:

L, T—1,Ti)A o
Update search direction (bad Gram-Schmidt on residual): 7 = 71 — Z Mvi
i<k <Ui/ Ui>A
T

Line search: o = ———
U, ATy

Update estimate: X = ¥x_1 + ;0

Update residual: 7 = 71 — a, AT

Now we do not do arithmetic involving the poorly-conditioned vector A¥~'7; but still have the
“memory” problem above.

In fact, the surprising observation about the orthogonalizing step above is that most terms in
the sum are exactly zero! This amazing observation allows each iteration of conjugate gradients
to happen without increasing memory usage. We memorialize this result in a proposition:

Proposition 10.5. In the “conjugate direction” method above, (tx, U)o = 0 for all £ < k.

Proof. We proceed inductively. There is nothing to prove for the base case k = 1, so assume k > 1
and that the result holds for all k¥’ < k. By the residual update formula, we know:

(Pr, Ue)a = (Fk1,00) a — 0k (ATx, Up) a = (Fx—1,U¢) a4 — 0k (Ok, ATp) 4,

where the second equality follows from symmetry of A.

First, suppose ¢ < k — 1. Then the first term of the difference above is zero by induction.
Furthermore, by construction A7, € span {7, ..., 7,1}, so since we have constructed our search
directions to be A-conjugate we know the second term must be zero as well.

To conclude the proof, we consider the case ¢/ = k — 1. Using the residual update formula, we
know:

" 1 2
ATg—y = ——(Fe—2 — Tx-1)
X
Premultiplying by 7 shows:

S - 1 . S
(Pr, k1) A = 7&?(%4 —7_1)
Kp—1

The difference 7x_, — 7_1 lives in span {7y, A7y, .. .,Ak_l?g}, by the residual update formula.
Proposition 10.4 shows that ¥ is optimal in this subspace. Since 7y = —V f(X), this implies
that we must have 7 L span {7y, A7y, ..., Ak_l?o}, since otherwise there would exist a direction
in the subspace to move from X to decrease f. In particular, this shows the inner product above
(P, Uk_1)a = 0, as desired. O

153

Thus, our proof above shows that we can find a new direction 7 as follows:

L Pr—1,Ti) A .
k= Thk—1 — Mvi by the Gram-Schmidt formula
= (U,7i)a
. -1, Uk—1) A - .. .
= Tr_1 — <_,k1'—kl>Avk,1 because the remaining terms vanish

(Tk—1,Tk-1)a

Since the summation over i disappears, the cost of computing 7 has no dependence on k.

10.2.4 Formulating the Conjugate Gradients Algorithm

Now that we have a strategy that yields A-conjugate search directions with relatively little com-
putational effort, we simply apply this strategy to formulate the conjugate gradients algorithm.
In particular, suppose ¥ is an initial guess of the solution to AX¥ = b, and take 7y = b — AX,.
For convenience take 7y = 0. Then, we iteratively update Xy_; to X; using a series of steps for
k=1,2,...

(Px—1,Tk-1)A -

Update search direction: 0y =71 — -————— 01
(Tk—1,Tk-1)a
==
. U Tk—1
Line search: o) = _,kT —
U, AU

Update estimate: X = X1 + a0
Update residual: 7y = 71 — a ATy

This iterative scheme is only a minor adjustment to the gradient descent algorithm but has many
desirable properties by construction:

e f(Xy) is upper-bounded by that of the k-th iterate of gradient descent
e The algorithm converges to X* in n steps
e At each step, the iterate ¥ is optimal in the subspace spanned by the first k search directions

In the interests of squeezing maximal numerical quality out of conjugate gradients, we can try to
simplify the numerics of the expressions above. For instance, if we plug search direction update
into the formula for «y, by orthogonality we can write:

—»T —
1Tk

A = —=——
7} ATy

The numerator of this fraction now is guaranteed to be nonnegative without numerical precision
issues.
Similarly, we can define a constant pj to split the search direction update into two steps:

Br=— (Fr—1,Tk-1)a
(Tk—1,Tk-1) A
Ty = Tr—1 + PrTk—1

154

We can simplify our formula for f:
{1, Tk-1)a

k=73 -
P (Tk—1,Tk—1) A

Te_1AT)— .
—% by definition of (-,-) 4
Up_1 AU
T - -
Feq (P2 —Tx1)

= — since 7, = Pr_1 — ATy
—»T —
Q10 _1 ATk 1

?;_1?k71 .
= — - by acalculation below
Q10,1 ATk
71?—17%1
= ——— by our last formula for aj

T =
Te—2Tk—2

This expression reveals that B > 0, a property which might not have held after numerical preci-
sion issues. We do have one remaining calculation below:

7 oF1 =74 o (fx_2 — ax_1ATy_1) by our residual update formula

—»T —
Tk—2tk—2 7

= oTk2— —————Tx_pAT_1 by our formula for ay

Up_1 ATk

=T =
—7 7 "k2"k=2_ 5T A%, by the update for 7 and A-coni f the 3’
= Ty _olk—2 — ==———7U,_1AUs_1 by the update for ¥ and A-conjugacy of the T}’s

T Al
= 0, as needed.
With these simplifications, we have an alternative version of conjugate gradients:

—»T —

Te1Tk—1
>T =
Py—2Tk-2

Update search direction: i =
g = Tk—1 + Prlk—1
=T =
. Te—1"k—1
Line search: o) = %
U, AT

Update estimate: X = X1 + a0y

Update residual: 7 = 71 — a, AT
For numerical reasons, occasionally rather than using the update formula for 7 it is advisable to
use the residual formula 7, = b — AX. This formula requires an extra matrix-vector multiply but
repairs numerical “drift” caused by finite-precision rounding. Notice that there is no need to store
a long list of previous residuals or search directions: Conjugate gradients takes a constant amount
of space from iteration to iteration.

10.2.5 Convergence and Stopping Conditions

By construction the conjugate gradients (CG) algorithm is guaranteed to converge no more slowly
than gradient descent on f, while being no harder to implement and having a number of other

155

positive properties. A detailed discussion of CG convergence is out of the scope of our discussion,
but in general the algorithm behaves best on matrices with evenly-distributed eigenvalues over a
small range. One rough estimate paralleling our estimate in §10.1.2 shows that the CG algorithm

satisfies:

f(E) —F(F) _, (ﬁ— 1)"

fo) = f(F) = \Vr+1
where ¥ = cond A. More generally, the number of iterations needed for conjugate gradient to
reach a given error value usually can be bounded by a function of \/x, whereas bounds for con-
vergence of gradient descent are proportional to x.

We know that conjugate gradients is guaranteed to converge to X¥* exactly in n steps, but when

n is large it may be preferable to stop earlier than that. In fact, the formula for B, will divide
by zero when the residual gets very short, which can cause numerical precision issues near the
minimum of f. Thus, in practice CG usually his halted when the ration I7ll/|7] is sufficiently
small.

10.3 Preconditioning

We now have two powerful iterative schemes for finding solutions to A¥ = b when A is sym-
metric and positive definite: gradient descent and conjugate gradients. Both strategies converge
unconditionally, meaning that regardless of the initial guess Xy with enough iterations we will get
arbitrarily close to the true solution X¥*; in fact, conjugate gradients guarantees we will reach x*
exactly in a finite number of iterations. Of course, the time taken to reach a solution of AX = b
for both of these methods is directly proportional to the number of iterations needed to reach X*
within an acceptable tolerance. Thus, it makes sense to tune a strategy as much as possible to
minimize the number of iterations for convergence.

To this end, we notice that we are able to characterize the convergence rates of both algorithms
and many more related iterative techniques in terms of the condition number cond A. That is, the
small the value of cond A, the less time it should take to solve AX = b. Notice that this situation
is somewhat different for Gaussian elimination, which takes the same amount of steps regardless
of A; in other words, the conditioning of A affects not only the quality of the output of iterative
methods but also the speed at which ¥* is approached.

Of course, for any invertible matrix P, it is the case that solving PAX = Pb is equivalent to
solving AX = b. The trick, however, is that the condition number of PA does not need to be the
same as that of A; in the (unachievable) extreme, of course if we took P = A~ we would remove
conditioning issues altogether! More generally, suppose P ~ A~!. Then, we expect cond PA <
cond A, and thus it may be advisable to apply P before solving the linear system. In this case, we
will call P a preconditioner.

While the idea of preconditioning appears attractive, two issues remain:

1. While A may be symmetric and positive definite, the product PA in general will not enjoy
these properties.

2. We need to find P ~ A~ that is easier to compute than A~! itself.

We address these issues in the sections below.

156

10.3.1 CG with Preconditioning

We will focus our discussion on conjugate gradients since it has better convergence properties,
although most of our constructions will apply fairly easily to gradient descent as well. From this
standpoint, if we look over our constructions in §10.2.1 it is clear that our construction of CG
depends strongly on both the symmetry and positive definiteness of A, so running CG on PA
usually will not converge out of the box.

Suppose, however, that the preconditioner P is itself symmetric and positive definite. This
is a reasonable assumption since A~! must satisfy these properties. Then, we again can write a
Cholesky factorization of the inverse P~! = EE". We make the following observation:

Proposition 10.6. The condition number of PA is the same as that of E-TAE~T.

Proof. We show that PA and E-'AE~ T have the same singular values; the condition number is the
ratio of the maximum to the minimum singular value, so this statement is more than sufficient. In
particular, it is clear that E"!AE~ T is symmetric and positive definite, so its eigenvectors are its
singular values. Thus, suppose E-'AE- "X = AX. Weknow P! = EET,so P = E-TE~1, Thus,
if we pre-multiply both sides of our eigenvector expression by E~ ' we find PAE~'X¥ = AE~ " X.
Defining 7 = E~ "X shows PAj = Ajj. Thus, PA and E"'!AE~T both have full eigenspaces and
identical eigenvalues. O

This proposition implies that if we do CG on the symmetric positive definite matrix E-1AE~T,
we will receive the same conditioning benefits we would have if we could iterate on PA. As in our
proof of Proposition 10.6, we could accomplish our new solve for i = ET ¥ in two steps:

1. Solve EYAE~Tij = E~1b.
2. Solve ¥ = E~ .

Finding E would be integral to this strategy but likely is difficult, but we will prove shortly that it
is unnecessary.
Ignoring the computation of E, we could accomplish step 1 using CG as follows:

—»T —
T _1Tk—1

—»T—»

Update search direction: By =
Te—2Tk—-2

—

Uk = k-1 + BTk
=T —
Te1tk—1

T r_ T

¥, E-TAE~ T3

Update estimate: iy = /51 + a0

Update residual: 7, = 71 — axE TAE~ "5

Line search: o) =

This iterative scheme will converge according to the conditioning of our matrix E-1AE~".
Define 7, = E7, 0y = E~ ' ¥, and ¥ = Eijy. If we recall the relationship P = E~TE~!, we can

rewrite our preconditioned conjugate gradients iteration using these new variables:

o P Pl

Update search direction: fy = ————

Tkizprk_z

157

O = Pfr_1 + Br0x—1
ST —
71 P71

~T ~

0, ATy

Update estimate: X = X1 + a; 0y

Line search: o) =

Update residual: 7, = 751 — a A%

This iteration does not depend on the Cholesky factorization of P~! at all, but instead can be
carried out using solely applications of P and A. It is easy to see that ¥y — X*, so in fact this
scheme enjoys the benefits of preconditioning without the need to factor the preconditioner.

As a side note, even more effective preconditioning can be carried out by replacing A with
PAQ for a second matrix Q, although this second matrix will require additional computations to
apply. This example represents a common trade-off: If a preconditioner itself takes too long to
apply in a single iteration of CG or another method, it may not be worth the reduced number of
iterations.

10.3.2 Common Preconditioners

Finding good preconditioners in practice is as much an art as it is a science. Finding the best
approximation P of A~! depends on the structure of A, the particular application at hand, and
so on. Even rough approximations, however, can help convergence considerably, so rarely do
applications of CG appear that do not use a preconditioner.

The best strategy for formulating P often is application-specific, and an interesting engineering
approximation problem involves designing and testing assorted P’s for the best preconditioner.
Two common strategies are below:

o A diagonal (or “Jacobi”) preconditioner simply takes P to be the matrix obtained by inverting
diagonal elements of A; that is, P is the diagonal matrix with entries 1/4;. This strategy can
alleviate nonuniform scaling from row to row, which is a common cause of poor condition-
ing.

e The sparse approximate inverse preconditioner is formulated by solving a subproblem minp¢g || AP —

I||pro, where P is restricted to be in a set S of matrices over which it is less difficult to opti-
mize such an objective. For instance, a common constraint is to prescribe a sparsity pattern
for P, e.g. only nonzeros on the diagonal or where A has nonzeros.

e The incomplete Cholesky precondtioner factors A ~ L.L] and then approximates A~! by
solving the appropriate forward- and back-substitution problems. For instance, a popular
strategy involves going through the steps of Cholesky factorization but only saving the out-
put in positions (i, j) where a;; # 0.

e The nonzero values in A can be considered a graph, and removing edges in the graph
or grouping nodes may disconnect assorted components; the resulting system is block-
diagonal after permuting rows and columns and thus can be solved using a sequence of
smaller solves. Such a domain decomposition strategy can be effective for linear systems aris-
ing from differential equations such as those considered in Chapter NUMBER.

158

Some preconditioners come with bounds describing changes to the conditioning of A after re-
placing it with PA, but for the most part these are heuristic strategies that should be tested and
refined.

10.4 Other Iterative Schemes

The algorithms we have developed in detail this chapter apply for solving AX = b when A is
square, symmetric, and positive definite. We have focused on this case because it appears so often
in practice, but there are cases when A is asymmetric, indefinite, or even rectangular. It is out of
the scope of our discussion to derive iterative algorithms in each case, since many require some
specialized analysis or advanced development, but we summarize some techniques here from a
high-level (CITE EACH):

Splitting methods decompose A = M — N and note that A¥ = b is equivalent to MX =
NX + b. If M is easy to invert, then a fixed-point scheme can be derived by writing M¥; =
NX;_1 + b (CITE); these techniques are easy to implement but have convergence depending
on the spectrum of the matrix G = M~ N and in particular can diverge when the spectral
radius of G is greater than one. One popular choice of M is the diagonal of A. Methods such
as successive over-relaxation (SOR) weight these two terms for better convergence.

The conjugate gradient normal equation residual (CGNR) method simply applies the CG al-
gorithm to the normal equations AT AX = ATb. This method is simple to implement and
guaranteed to converge so long as A is full-rank, but convergence can be slow thanks to
poor conditioning of AT A as discussed in Chapter NUMBER.

The conjugate gradient normal equation error (CGNE) method similarly solves AA T = b; then
the solution of A¥ = b is simply A .

Methods such as MINRES and SYMMLQ apply to symmetric but not necessarily positive
definite matrices A by replacing our quadratic form f(%) with g(¥) = ||b — A|2; this func-
tion g is minimized at solutions to AX = b regardless of the definiteness of A.

Given the poor conditioning of CGNR and CGNE, the LSQR and LSMR algorithms also
minimize g(¥) with fewer assumptions on A, in particular allowing for solution of least-
squares systems..

Generalized methods including GMRES, QMR, BiCG, CGS, and BiCGStab solve AX = b with
the only caveat that A is square and invertible. They optimize similar energies but often have
to store more information about previous iterations and may have to factor intermediate
matrices to guarantee convergence with such generality.

Finally, the Fletcher-Reeves, Polak-Ribiere, and other methods return to the more general prob-
lem of minimizing a non-quadratic function f, applying conjugate gradient steps to finding
new line search directions. Functions f that are well-approximated by quadratics can be
minimized very effectively using these strategies, although they do not necessarily make
use of the Hessian; for instance, the Fletcher-Reeves method simply replaces the residual in
CG iterations with the negative gradient —V f. It is possible to characterize convergence of
these methods when they are accompanied with sufficiently effective line search strategies.

159

Many of these algorithms are nearly as easy to implement as CG or gradient descent, and many
implementations exist that simply require inputting A and b. Many of the algorithms listed above
require application of both A and A", which can be a technical challenge in some cases. As a rule
of thumb, the more generalized a method is—that is, the fewer the assumptions a method makes
on the structure of the matrix A—the more iterations it is likely to take to compensate for this lack
of assumptions. This said, there are no hard-and-fast rules simply by looking at A most successful
iterative scheme, although limited theoretical discussion exists comparing the advantages and
disadvantages of each of these methods (CITE).

10.5 Problems
e Derive CGNR and/or CGNE
e Derive MINRES
e Derive Fletcher-Reeves

e Slide 13 of http://math.ntnu.edu.tw/~min/matrix_computation/Ch4_Slide4_CG_2011.
pdf

160

http://math.ntnu.edu.tw/~min/matrix_computation/Ch4_Slide4_CG_2011.pdf
http://math.ntnu.edu.tw/~min/matrix_computation/Ch4_Slide4_CG_2011.pdf

Part IV

Functions, Derivatives, and Integrals

161

Chapter 11

Interpolation

So far we have derived methods for analyzing functions f, e.g. finding their minima and roots.
Evaluating f(X) at a particular ¥ € R"” might be expensive, but a fundamental assumption of the
methods we developed in previous chapters is that we can obtain f(X¥) when we want it, regardless
of X.

There are many contexts when this assumption is not realistic. For instance, if we take a pho-
tograph with a digital camera, we receive an n x m grid of pixel color values sampling the contin-
uum of light coming into a camera lens. We might think of a photograph as a continuous function
from image position (x,y) to color (r,g,b), but in reality we only know the image value at nm
separated locations on the image plane. Similarly, in machine learning and statistics, often we
only are given samples of a function at points where we collected data, and we must interpolate
it to have values elsewhere; in a medical setting we may monitor a patient’s response to different
dosages of a drug but only can predict what will happen at a dosage we have not tried explicitly.

In these cases, before we can minimize a function, find its roots, or even compute values f () at
arbitrary locations ¥, we need a model for interpolating f(¥) to all of R"” (or some subset thereof)
given a collection of samples f(X;). Of course, techniques solving this interpolation problem are
inherently approximate, since we do not know the true values of f, so instead we seek for the
interpolated function to be smooth and serve as a “reasonable” prediction of function values.

In this chapter, we will assume that the values f(¥;) are known with complete certainty; in this
case we might as well think of the problem as extending f to the remainder of the domain without
perturbing the value at any of the input locations. In Chapter NUMBER (WRITE ME IN 2014), we
will consider the regression problem, in which the value f(¥;) is known with some uncertainty, in
which case we may forgo matching f(X;) completely in favor of making f more smooth.

11.1 Interpolation in a Single Variable

Before considering the most general case, we will design methods for interpolating functions of
a single variable f : R — R. As input, we will take a set of k pairs (x;,y;) with the assumption
f(x;) = y;; ourjobis to find f(x) for x & {x1,...,x¢}.

Our strategy in this section and others will take inspiration from linear algebra by writing
f(x) in a basis. That is, the set of all possible functions f : R — R is far too large to work with
and includes many functions that are not practical in a computational setting. Thus, we simplify
the search space by forcing f to be written as a linear combination of simpler building block

163

basis functions. This strategy is already familiar from basic calculus: The Taylor expansion writes
functions in the basis of polynomials, while Fourier series use sine and cosine.

11.1.1 Polynomial Interpolation

Perhaps the most straightforward interpolant is to assume that f(x) is in R[x], the set of polynomi-
als. Polynomials are smooth, and it is straightforward to find a degree k — 1 polynomial through
k sample points.

In fact, Example 3.3 already works out the details of such an interpolation technique. As a
reminder, suppose we wish to find f(x) = ag + a1x + arx% + - - + ag_1x*71; here our unknowns
are the values ay, . .., a;_1. Plugging in the expression y; = f(x;) for each i shows that the vector 7
satisfies the k x k Vandermonde system:

2 k—1
1 X1 xl s xl ap yo
k—1
1 X2 x% Xy a1 n
1 2 k—1 a
Xk—1 X1 0 X k—1 Yk—1

Thus, carrying out degree-k polynomial interpolation can be accomplished using a k x k linear
solve by applying our generic strategies from previous chapters, but in fact we can do better.

One way to think about our form for f(x) is that it is written in a basis. Just like a basis for
R" is a set of n linearly-independent vectors @y, ..., 7,, here the space of polynomials of degree
k — 1 is written in the span of monomials {1, x, x2,..., xk_l}. It may be the most obvious basis for
R[x], but our current choice has few properties that make it useful for the interpolation problem.
One way to see this problem is to plot the sequence of functions 1, x, x%, x3, . .. for x € [0,1]; in this
interval, it is easy to see that as k gets large, the functions x* all start looking similar.

Continuing to apply our intuition from linear algebra, we may choose to write our polyno-
mial in a basis that is more suited to the problem at hand. This time, recall that we are given k
pairs (x1,y1), - .., (X, yx). We will use these (fixed) points to define the Lagrange interpolation basis
¢1,. .., ¢ by writing:

_ [Tjzi(x — xj)

[Tjzi(xi — xj)
Although it is not written in the basis 1, x, x2,. .., 2k tis easy to see that each ¢; is still a poly-
nomial of degree k — 1. Furthermore, the Lagrange basis has the following desirable property:

1 whent¢ =i
$i(xe) = { 0 otherwise.

¢i(x)

Thus, finding the unique degree k — 1 polynomial fitting our (x;, y;) pairs is easy in the Lagrange

basis:
fx) = Y yidi(x)
In particular, if we substitute x = Xjwe find:
fxp) = L yidi(x))

= y; by our expression for ¢;(x,) above.

164

Thus, in the Lagrange basis we can write a closed formula for f(x) that does not require solving
the Vandermonde system. The drawback, however, is that each ¢;(x) takes O(k) time to evaluate
using the formula above for a given x, so finding f(x) takes O(n?) time; if we find the coefficients
a; from the Vandermonde system explicitly, however, the evaluation time can be reduced to O(n).

Computation time aside, the Lagrange basis has an additional numerical drawback. Notice
that the denominator is the product of a number of terms. If the x;’s are close together, then the
product may include many terms close to zero, so we are dividing by a potentially small number.
As we have seen this operation can create numerical issues that we wish to avoid.

One basis for polynomials of degree k — 1 that attempts to compromise between the numerical
quality of the monomials and the efficiency of the Lagrange basis is the Newton basis, defined as
follows: .

Pi(x) = H(x - xj)
j=1
We define 1 (x) = 1. Notice that ¢;(x) is a degree i — 1 polynomial. By definition of y;, it is clear
that ;(xy) = 0 for all ¢ < i. If we wish to write f(x) = Y, c;i;(x) and write out this observation
more explicitly, we find:

f(x1) = c11(x1)
f(x2) = c1p1(x2) + c29p2(x2)
f(x3) = c19p1(x3) + catpa(x3) + cap3(x3)

In other words, we can solve the following lower triangular system for ¢:

%EXI; <O) o o €1 N
Py (x P (x 0 e 0

gbi(xz) lPi(Xi) P3(x3) - 0 C:Z _ y:2
P (.xk) l[Jz(.xk) 1[]3(.xk) wk('xk) Ck Yk

This system can be solved in O(n?) time using forward substitution, rather than the O(n3) time
needed to solve the Vandermonde system.

We now have three strategies of interpolating k data points using a degree k — 1 polynomial
by writing it in the monomial, Lagrange, and Newton bases. All three represent different compro-
mises between numerical quality and speed. An important property, however, is that the resulting
interpolated function f(x) is the same in each case. More explicitly, there is exactly one polynomial
of degree k — 1 going through a set of k points, so since all our interpolants are degree k — 1 they
must have the same output.

11.1.2 Alternative Bases

Although polynomial functions are particularly amenable to mathematical analysis, there is no
fundamental reason why our interpolation basis cannot consist of different types of functions. For
example, a crowning result of Fourier analysis implies that a large class of functions are well-
approximated by sums of trigonometric functions cos(kx) and sin(kx) for k € IN. A construction

165

like the Vandermonde system still applies in this case, and in fact the Fast Fourier Transform
algorithm (which merits a larger discussion) shows how to carry out such an interpolation even
faster.

A smaller extension of the development in §11.1.1 is to rational functions of the form:

f(x)

Notice that if we are given k pairs (x;,y;), then we will need m +n + 1 = k for this function to
be well-defined. One additional degree of freedom must be fixed to account for the fact that the
same rational function can be expressed multiple ways by identical scaling of the numerator and
the denominator.

Rational functions can have asymptotes and other patterns not achievable using only polyno-
mials, so they can be desirable interpolants for functions that change quickly or have poles. In
fact, once m and n are fixed, the coefficients p; and g; still can be found using linear techniques by
multiplying both sides by the denominator:

_ potprx 4 pax 4+ pux
Go + q1x + g2x? + - - - + g x"

Yi(qo + quxi + q2x7 4 - -+ quX]') = po + prxi + pax; 4+ pux]’

Again, the unknowns in this expression are the p’s and ¢’s.
The flexibility of rational functions, however, can cause some issues. For instance, consider the
following example:

Example 11.1 (Failure of rational interpolation, Bulirsch-Stoer §2.2). Suppose we wish to find f(x)
with the following data points: (0,1), (1,2), (2,2). We could choose m = n = 1. Then, our linear
conditions become:

90 = po
2(qo +q1) = po+p1
2(q0 +2q1) = po +2p1

One nontrivial solution to this system is:

po=0

p1=2

q0 =0

n=1

This implies the following form for f(x):)
x

This function has a degeneracy at x = 0, and in fact canceling the x in the numerator and denominator
does not yield f(0) = 1 as we might desire.

This example illustrates a larger phenomenon. Our linear system for finding the p’s and g’s
can run into issues when the resulting denominator Y, p,x’ has a root at any of the fixed x;’s.
It can be shown that when this is the case, no rational function exists with the fixed choice of
m and n interpolating the given values. A typical partial resolution in this case is presented in
(CITE), which increments m and n alternatingly until a nontrivial solution exists. From a practical
standpoint, however, the specialized nature of these methods is a good indicator that alternative
interpolation strategies may be preferable when the basic rational methods fail.

166

11.1.3 Piecewise Interpolation

So far, we have constructed our interpolation strategies by combining simple functions on all of R.
When the number k of data points becomes high, however, many degeneracies become apparent.
For example, Figure NUMBER shows examples in which fitting high-degree polynomials to input
data can yield unexpected results. Furthermore, Figure NUMBER illustrates how these strategies
are nonlocal, meaning that changing any single value y; in the input data can change the behavior
of f for all x, even those that are far away from the corresponding x;. Somehow this property is
unrealistic: We expect only the input data near a given x to affect the value of f(x), especially
when there is a large cloud of input points.

For these reasons, when we design a set of basis functions ¢y, ..., ¢, a desirable property is
not only that they are easy to work with but also that they have compact support:

Definition 11.1 (Compact support). A function g(x) has compact support if there exists C € R such
that g(x) = 0 for any x with |x| > C.

That is, compactly supported functions only have a finite range of points in which they can take
nonzero values.

A common strategy for constructing interpolating bases with compact support is to do so in
a piecewise fashion. In particular, much of the literature on computer graphics depends on the
construction of piecewise polynomials, which are defined by breaking R into a set of intervals and
writing a different polynomial in each interval. To do so, we will order our data points so that
x1 < xp < -+ - < x¢. Then, two simple examples of piecewise interpolants are the following:

e Piecewise constant (Figure NUMBER): For a given x, find the data point x; minimizing |x —
x;| and define f(x) = y;.

e Piecewise linear (Figure NUMBER): If x < x; take f(x) = y, and if x > x take f(x) = ys.
Otherwise, find an interval with x € [x;, x;11] and define

X — X X — X
ey (1- 2,
Xit1 — X Xit1 — X

More generally, we can write a different polynomial in each interval [x;, x;;1]. Notice our pattern
so far: Piecewise constant polynomials are discontinuous, while piecewise linear functions are
continuous. It is easy to see that piecewise quadratics can be C!, piecewise cubics can be C?, and
so on. This increased continuity and differentiability occurs even though each y; has local sup-
port; this theory is worked out in detail in constructing “splines,” or curves interpolating between
points given function values and tangents.

This increased continuity, however, has its own drawbacks. With each additional degree of
differentiability, we put a stronger smoothness assumption on f. This assumption can be unreal-
istic: Many physical phenomena truly are noisy or discontinuous, and this increased smoothness
can negatively affect interpolatory results. One domain in which this effect is particularly clear
is when interpolation is used in conjunction with physics simulation tools. Simulating turbulent
fluid flows with oversmoothed functions can remove discontinuous phenomena like shock waves
that are desirable as output.

f(x) =yit1-

167

These issues aside, piecewise polynomials still can be written as linear combinations of basis
functions. For instance, the following functions serve as a basis for the piecewise constant func-

tions: ' ‘ L
Pi(x) = 1 whenx’%ﬂgx<%
! 0 otherwise

This basis simply puts the constant 1 near x; and 0 elsewhere; the piecewise constant interpolation
of a set of points (x;, ;) is written as f(x) = }_; yi¢;(x). Similarly, the so-called “hat” basis shown
in Figure NUMBER spans the set of piecewise linear functions with sharp edges at our data points
X;.

T8l whenxj_q < x < xj
A
. [i+1— . .
Pi(x) = o when x; < x < x4
0 otherwise

Once again, by construction the piecewise linear interpolation of the given data points is f(x) =

> Yii(x).

11.1.4 Gaussian Processes and Kriging

Not covered in CS 205A, Fall 2013.

11.2 Multivariable Interpolation

Many extensions of the strategies above exist for interpolating a function given datapoints (X;, y;)
where X¥; € R"” now can be multidimensional. Strategies for interpolation in this case, however,
are not quite as clear, however, because it is less obvious to partition IR” into a small number of
regions around the x;. For this reason, a common pattern is to interpolate using relatively low-order
functions, that is, to prefer simplistic and efficient interpolation strategies over ones that output
C* functions.

If all we are given is the set of inputs and outputs (¥;, y;), then one piecewise constant strategy
for interpolation is to use nearest-neighbor interpolation. In this case f(X) simply takes the value y;
corresponding to ¥; minimizing ||X¥ — X;||2; simple implementations iterate over all i to find this
value, although data structures like k-d trees can find nearest neighbors more quickly. Just as
piecewise constant interpolations divided R into intervals about the data points x;, the nearest-
neighbor strategy divides IR” into a set of Voronoi cells:

Definition 11.2 (Voronoi cell). Given a set of points S = {¥X1,%2,..., %} C R", the Voronoi cell
corresponding to a specific X; is the set V; = {¥ : [|¥ — Xj||2 < ||¥ — Xj||2 for all j # i}. That is, it is the set
of points closer to X; than to any other X; in S.

Figure NUMBER shows an example of the Voronoi cells about a set of data points in R?. These
cells have many favorable properties; for example, they are convex polygons and are localized
about each ¥;. In fact, the connectivity of Voronoi cells is a well-studied problem in computational
geometry leading to the construction of the celebrated Delaunay triangulation.

There are many options for continuous interpolation of functions on R", each with its own
advantages and disadvantages. If we wish to extend our nearest-neighbor strategy above, for
example, we could compute multiple nearest neighbors of ¥ and interpolate f(x) based on ||X —

168

Xi||2 for each nearest neighbor X;. Certain “k-nearest neighbor” data structures can accelerate
queries where you want to find multiple points in a dataset closest to a given X.

Another strategy appearing frequently in the computer graphics literature is barycentric inter-
polation. Suppose we have exactly n + 1 sample points (¥1,¥1),.-., (¥4+1, Yu+1), Where X; € R",
and as always we wish to interpolate the y values to all of R”; for example, on the plane we would
be given three values associated with the vertices of a triangle. Any point ¥ € R” can be written
uniquely as a linear combination ¥ = Z?jll a;X; with an additional constraint that } ;a;, = 1; in
other words, we write X as a weighted average of the points ¥;. Barycentric interpolation in this
case simply writes f(X) = Y a;(X)y;.

On the plane R?, barycentric interpolation has a straightforward geometric interpolation in-
volving triangle areas, illustrated in Figure NUMBER. Furthermore, it is easy to check that the
resulting interpolated function f(¥) is affine, meaning it can be written f(¥) = ¢ +d - x for some
cc€Randd € R".

In general, the system of equations we wish to solve for barycentric interpolation at some

X € R" is:
Zaifi =X

i
Zﬂlizl
i

In the absence of degeneracies, this system for 4 is invertible when there are n + 1 points ¥;. In the
presence of more X;’s, however, the system for @ becomes underdetermined. This means that there
are multiple ways of writing a given X as a weighted average of the X;’s.

One resolution of this issue is to add more conditions on the vector of averaging weights 4. This
strategy results in generalized barycentric coordinates, a topic of research in modern mathematics and
engineering. Typical constraints on @ ask that it is smooth as a function on R” and nonnegative on
the interior of the set of ¥;’s when these points define a polygon or polyhedron. Figure NUMBER
shows an example of generalized barycentric coordinates computed from data points on a polygon
with more than n + 1 points.

An alternative resolution of the underdetermined problem for barycentric coordinates relates
to the idea of using piecewise functions for interpolation; we will restrict our discussion here
to ¥; € R? for simplicity, although the extensions to higher dimensions are relatively obvious.
Many times, we are given not only the set of points ¥; but also a decomposition of the domain we
care about (in this case some subset of IR?) into 1 + 1-dimensional objects using those points as
vertices. For example, Figure NUMBER shows such a tessellation of a part of R? into triangles.
Interpolation in this case is straightforward: the interior of each triangle is interpolated using
barycentric coordinates.

Example 11.2 (Shading). In computer graphics, one of the most common representations of a shape is as
a set of triangles in a mesh. In the per-vertex shading model, one color is computed for each vertex on
a mesh. Then to render the image to the screen, those per-vertex values are interpolated using barycentric
interpolation to the interiors of the triangles. Similar strategies are used for texturing and other common
tasks. Figure NUMBER shows an example of this simple shading model. As an aside, one issue spe-
cific to computer graphics is the interplay between perspective transformations and interpolation strategies.
Barycentric interpolation of color on a 3D surface and then projecting that color to the image plane is not the
same as projecting triangles to the image plane and subsequently interpolating colors to the interior of the
triangle; thus algorithms in this domain must apply perspective correction to account for this mistake.

169

Given a set of points in IR?, the problem of triangulation is far from trivial, and algorithms for
doing this sort of computation often extend poorly to R”. Thus, in higher dimensions nearest-
neighbor or regression strategies become preferable (see Chapter NUMBER).

Barycentric interpolation leads to a generalization of the piecewise linear hat functions from
§11.1.3 illustrated in Figure NUMBER. Recall that our interpolatory output is determined com-
pletely by the values y; at the vertices of the triangles. In fact, we can think of f(X) as a linear com-
bination }; y;¢;(X), where each ¢;(X) is the piecewise barycentric function obtained by putting a 1
on ¥; and 0 everywhere else, as in Figure NUMBER. These triangular hat functions form the basis
of the “first-order finite elements method,” which we will explore in future chapters; specialized
constructions using higher-order polynomials are known as “higher-order elements” can can be
used to guarantee differentiability along triangle edges.

An alternative and equally important decomposition of the domain of f occurs when the
points ¥; occur on a regular grid in R". The following examples illustrate situations when this
is the case:

Example 11.3 (Image processing). As mentioned in the introduction, a typical digital photograph is
represented as an m X n grid of red, green, and blue color intensities. We can think of these values as
living on a lattice in Z x Z. Suppose we wish to rotate the image by an angle that is not a multiple of 90°,
however. Then, as illustrated in Figure NUMBER, we must look up image values at potentially non-integer
positions, requiring the interpolation of colors to R x IR.

Example 11.4 (Medical imaging). The typical output of a magnetic resonance imaging (MRI) device is
am X n X p grid of values representing the density of tissue at different points; theoretically the typical
model for this function is as f : R®> — R. We can extract the outer surface of a particular organ, showed in
Figure NUMBER, by finding the level set {X : f(X) = c} for some c. Finding this level set requires us to
extend f to the entire voxel grid to find exactly where it crosses c.

Grid-based interpolation strategies typically apply the one-dimensional formulae from §11.1.3
one dimension at a time. For example, bilinear interpolation schemes in R? linearly interpolate one
dimension at a time to obtain the output value:

Example 11.5 (Bilinear interpolation). Suppose f takes on the following values:

o £(0,0)=1

o £(0,1)= -3
o f(1,0)=5

o f(1,1) =11

and that in between f is obtained by bilinear interpolation. To find f(3, 3), we first interpolate in x1 to find:

f <10> = %f(O,O)Jr%f(l,O) —

f<i,1) . Zf(O,l)Jr%f(l,l) _ 5

170

Next, we interpolate in xy:

11 1. /1 1./1 3
-2 == - - 1) =_-=
f<4'2> Zf <4'0> +2f <4') 2
An important property of bilinear interpolation is that we receive the same output interpolating first in x,
and second in x.

Higher-order methods like bicubic and Lanczos interpolation once again use more polynomial
terms but are slower to compute. In particular, in the case of interpolating images, bicubic strate-
gies require more data points than the square of function values closest to a point ¥; this additional
expense can slow down graphical tools for which every lookup in memory incurs additional com-
putation time.

11.3 Theory of Interpolation

So far our treatment of interpolation has been fairly heuristic. While relying on our intuition
for what a “reasonable” interpolation for a set of function values for the most part is an accept-
able strategy, subtle issues can arise with different interpolation methods that are important to
acknowledge.

11.3.1 Linear Algebra of Functions

We began our discussion by posing assorted interpolation strategies as different bases for the set
of functions f : R — R. This analogy of to vector spaces extends to a complete geometric theory of
functions, and in fact early work in the field of functional analysis essentially extends the geometry
of R" to sets of functions. Here we will discuss functions of one variable, although many aspects
of the extension to more general functions are easy to carry out.

Just as we can define notions of span and linear combination for functions, for fixed a,b € R
we can define an inner product of functions f(x) and g(x) as follows:

(f.8) = /:f(x)g(x) dx.

Just as the A-inner product of vectors helped us derive the conjugate gradients algorithm and
had much in common with the dot product, the functional inner product can be used to define
linear algebra methods for dealing with spaces of functions and understanding their span. We
also define a norm of a function to be || || = \/(f, f)-

Example 11.6. Function inner product Take p,(x) = x" to be the n-th monomial. Then, for a = 0 and
b = 1 we have:

1
(Pn, Pm) :/0 x™ - x™dx

1
:/ xn-i—mdx
0

1
n+m+1

171

Notice that this shows:

< Pn_ Pm > _ (Pns pm)
[Pl 1 pm]| [pnlll[pmll
V(2n+1)2m +1)
n+m+1
This value is approximately 1 when n ~ m but n # m, substantiating our earlier claim that the monomials
“overlap” considerably on [0, 1].

Given this inner product, we can apply the Gram-Schmidt algorithm to find an orthonormal
basis for the set of polynomials. If we take 2 = —1 and b = 1, we get the Legendre polynomials,
plotted in Figure NUMBER:

Po(x) =1

P(x)=x

Py(x) = %(sz 1)

Py(x) = 5(5° ~3x)

Py(x) = é(35x4 —30x% 4 3)

These polynomials have many useful properties thanks to their orthogonality. For example, sup-
pose we wish to approximate f(x) with a sum Y; a;P;(x). If we wish to minimize ||f — Y; a;P;||
in the functional norm, this is a least squares problem! By orthogonality of the Legendre basis for
R[x], a simple extension of our methods for projection shows:

{f, Pi)
{Pi, Pi)
Thus, approximating f using polynomials can be accomplished simply by integrating f against
the members of the Legendre basis; in the next chapter we will learn how this integral might be

carried out approximately.
Given a positive function w(x), We can define a more general inner product (-, -}, by writing

b
(.80 = [wlx)f(x)3(x)dx.
Ifwe take w(x) = \/ﬁ witha = —1and b = 1, then applying Gram-Schmidt yields the Chebyshev

a; =

polynomials:
To(x) =1
Ti(x) = x
To(x) = 2x* — 1
Ts(x) = 4x° — 3x
Ty(x) = 8x* —8x2 + 1

172

In fact, a surprising identity holds for these polynomials:
Tr(x) = cos(karccos(x)).

This formula can be checked by explicitly checking it for Ty and T, and then inductively applying
the observation:

Try1(x) = cos((k + 1) arccos(x))
= 2x cos(karccos(x)) — cos((k — 1) arccos(x)) by the identity
cos((k+1)8) = 2cos(k) cos(8) — cos((k —1)0)
= 2xTi(x) — Ti1(x)

This “three-term recurrence” formula also gives an easy way to generate the Chebyshev polyno-
mials.

As illustrated in Figure NUMBER, thanks to the trigonometric formula for the Chebyshev
polynomials it is easy to see that the minima and maxima of Tj oscillate between +1 and —1.
Furthermore, these extrema are located at cos(i7r/k) (the so-called “Chebyshev points”) for i from
0 to k; this nice distribution of extrema avoids oscillatory phenomena like that shown in Figure
NUMBER when using a finite number of polynomial terms to approximate a function. In fact,
more technical treatments of polynomial interpolation recommend placing x;’s for interpolation
near Chebyshev points to obtain smooth output.

11.3.2 Approximation via Piecewise Polynomials

Suppose we wish to approximate a function f(x) with a polynomial of degree n on an interval
[a,]]. Define Ax to be the spacing b — a. One measure of error of an approximation is as a function
of Ax, which should vanish as Ax — 0. Then, if we approximate f with piecewise polynomials,
this type of analysis tells us how far apart we should space the polynomials to achieve a desired
level of approximation.

For example, suppose we approximate f with a constant c = f (“T”’), as in piecewise constant
interpolation. If we assume |f/(x)| < M for all x € [a, b], we have:

max |f(x) — c| < Ax max M by the mean value theorem
x€a,b] x€[a,b]

< MAx

Thus, we expect O(Ax) error when using piecewise constant interpolation.
Suppose instead we approximate f using piecewise linear interpolation, that is, by taking

~ b—x X—a

F(x) = g f(@) + 51 ()

By the mean value theorem, we know f’(x) = f'(8) for some 6 € [a, b]. Writing the Taylor expan-
sion about 6 shows f(x) = f(0) + f'(6)(x —) + O(Ax?) on [a, b], while we can rewrite our linear
approximation as f(x) = f(6) + f'(6)(x — 0). Thus, subtracting these two expressions shows that
the approximation error of f decreases to O(Ax?). It is not difficult to predict that approximation
with a degree n polynomial makes O(Ax"*!) error, although in practice the quadratic convergence
of piecewise linear approximations suffices for most applications.

173

11.4 Problems

Ideas:
e Horner’s method for evaluating polynomials
e Recursive strategy for Newton polynomial coefficients.
e Splines, deCasteljeau

e Check triangle area interpolation of barycentric interpolation

174

Chapter 12

Numerical Integration and
Differentiation

In the previous chapter, we developed tools for filling in reasonable values of a function f(X)
given a sampling of values (¥}, f(¥;)) in the domain of f. Obviously this interpolation problem
is useful in itself for completing functions that are known to be continuous or differentiable but
whose values only are known at a set of isolated points, but in some cases we then wish to study
properties of these functions. In particular, if we wish to apply tools from calculus to f, we must
be able to approximate its integrals and derivatives.

In fact, there are many applications in which numerical integration and differentiation play
key roles in computation. In the most straightforward instance, some well-known functions are
defined as integrals. For instance, the “error function” used as the cumulative distribution of a
Gaussian or bell curve is written:

X

erf(x) = 2 e dt

7T JO

Approximations of erf(x) are needed in many statistical contexts, and one reasonable approach to
finding these values is to carry out the integral above numerically.

Other times, numerical approximations of derivatives and integrals are part of a larger system.
For example, methods we develop in future chapters for approximating solutions to differential
equations will depend strongly on these approximations. Similarly, in computational electrody-
namics, integral equations solving for an unknown function ¢ given a kernel K and output f appear
in the relationship:

@) = [KEDe()di.

These types of equations must be solved to estimate electric and magnetic fields, but unless the ¢
and K are very special we cannot hope to find such an integral in closed form, yet alone solve this
equation for the unknown function ¢.

In this chapter, we will develop assorted methods for numerical integration and differentiation
given a sampling of function values. These algorithms are usually fairly straightforward approx-
imations, so to compare them we will also develop some strategies that evaluate how well we
expect different methods to perform.

175

12.1 Motivation

It is not hard to formulate simple applications of numerical integration and differentiation given
how often the tools of calculus appear in the basic formulae and techniques of physics, statistics,
and other fields. Here we suggest a few less obvious places where integration and differentiation

appear.

Example 12.1 (Sampling from a distribution). Suppose we are given a probability distribution p(t) on
the interval [0, 1]; that is, if we randomly sample values according to this distribution, we expect p(t) to be
proportional to the number of times we draw a value near t. A common task is to generate random numbers
distributed like p(t).

Rather than develop a specialized method to do so every time we receive a new p(t), it is possible to make
a useful observation. We define the cumulative distribution function of p to be

F(t) = /Otp(x) dax.

Then, if X is a random number distributed evenly in [0,1], one can show that F~1(X) is distributed like
p, where F~1 is the inverse of F. Thus, if we can approximate F or F~1, we can generate random numbers
according to an arbitrary distribution p; this approximation amounts to integrating p, which may have to
be done numerically when the integrals are not known in closed form.

Example 12.2 (Optimization). Recall that most of our methods for minimizing and finding roots of a
function f depended on having not only values f(X) but also its gradient V f (X) and even Hessian Hy. We
have seen that algorithms like BFGS and Broyden’s method build up rough approximations of the deriva-
tives of f during the process of optimization. When f has high frequencies, however, it may be better to
approximate N f near the current iterate Xy rather than using values from potentially far-away points X,
for £ < k.

Example 12.3 (Rendering). The rendering equation from ray tracing and other algorithms for high-
quality rendering is an integral stating that the light leaving a surface is equal to the integral of the light
coming into the surface over all possible incoming directions after it is reflected and diffused; essentially it
states that light energy must be conserved before and after light interacts with an object. Algorithms for
rendering must approximate this integral to compute the amount of light emitted from a surface reflecting
light in a scene.

Example 12.4 (Image processing). Suppose we think of an image as a function of two variables I(x,y).
Many filters, including Gaussian blurs, can be thought of as convolutions, given by

(Ixg)(x,y) = // I(u,v)g(x —u,y —v) dudo.

For example, to blur an image we could take g to be a Gaussian; in this case (I *) (x,y) can be thought of
as a weighted average of the colors of I near the point (x,vy). In practice images are discrete grids of pixels,
so this integral must be approximated.

Example 12.5 (Bayes’ Rule). Suppose X and Y are continuously-valued random variables; we can use
P(X) and P(Y) to express the probabilities that X and Y take particular values. Sometimes, knowing X
may affect our knowledge of Y. For instance, if X is a patient’s blood pressure and Y is a patient’s weight,

176

then knowing a patient has high weight may suggest that they also have high blood pressure. We thus can
also write conditional probability distributions P(X|Y') (read “the probability of X given Y”) expressing
such relationships.

A foundation of modern probability theory states that P(X|Y) and P(Y|X) are related as follows:

_ _ PYIX)P(X)
PIX|Y) = [P(Y|X)P(X)dY

Estimating the integral in the denominator can be a serious problem in machine learning algorithms where
the probability distributions take complex forms. Thus, approximate and often randomized integration
schemes are needed for algorithms in parameter selection that use this value as part of a larger optimization
technique.

12.2 Quadrature

We will begin by considering the problem of numerical integration, or quadrature. This problem—in
a single variable— can be expressed as, “Given a sampling of #n points from some function f(x),

find an approximation of [ab f(x) dx.” In the previous section, we presented several situations that
boil down to exactly this technique.

There are a few variations of the problem that require slightly different treatment or adapta-
tion:

e The endpoints 2 and b may be fixed, or we may wish to find a quadrature scheme that
efficiently can approximate integrals for many (a,b) pairs.

e We may be able to query f(x) at any x but wish to approximate the integral using relatively
few samples, or we may be given a list of precomputed pairs (x;, f(x;)) and are constrained
to using these data points in our approximation.

These considerations should be kept in mind as we design assorted algorithms for the quadrature
problem.

12.2.1 Interpolatory Quadrature

Many of the interpolation strategies developed in the previous chapter can be extended to meth-
ods for quadrature using a very simple observation. Suppose we write a function f(x) in terms of

a set of basis functions ¢;(x):
flx) = Y aigi(x).
1
Then, we can find the integral of f as follows:
b b
/ F(x)dx = / Y aii(x) | dx by definition of f
a a i
b
- Z”i [/ ¢i(x) dx}
i a
b
= Zciai if we make the definition ¢; = / ¢i(x) dx
i a

177

In other words, integrating f simply involves linearly combining the integrals of the basis func-
tions that make up f.

Example 12.6 (Monomials). Suppose we write f(x) = ¥\ axx*. We know

1kd 1
/Ox x_ik—l—l’

so applying the derivation above we know

1 e a
f, 1@ S My

In other words, in our notation above we have defined c; = kJ%l

Schemes where we integrate a function by interpolating samples and integrating the interpo-
lated function are known as interpolatory quadrature rules; nearly all the methods we will present
below can be written this way. Of course, we can be presented with a chicken-and-egg problem,
if the integral f ¢i(x) dx itself is not known in closed form. Certain methods in higher-order finite
elements deal with this problem by putting extra computational time into making a high-quality
numerical approximation of the integral of a single ¢;, and then since all the ¢’s have similar form
apply change-of-coordinates formulas to write integrals for the remaining basis functions. This
canonical integral can be approximated offline using a high-accuracy scheme and then reused.

12.2.2 Quadrature Rules

If we are given a set of (x;, f(x;)) pairs, our discussion above suggests the following form for a
quadrature rule for approximating the integral of f on some interval:

Qlf] = Y wif (xi).

Different weights w; yield different approximations of the integral, which we hope become in-
creasingly similar as we sample the x;’s more densely.

In fact, even the classical theory of integration suggests that this formula is a reasonable start-
ing point. For example, the Riemann integral presented in many introductory calculus classes takes
the form: ,

[76 = Jim Y0 (ke =30
Here, the interval [a,b] is partitioned into pieces @ = x1 < x2 < --- < x, = b, where Ax;, =
Xk+1 — Xx and Xy is any point in [xi, xx;1]. For a fixed set of x;’s before taking the limit, this
integral clearly can be written in the Q[f] form above.

From this perspective, the choices of {x; } and {w; } completely determine a strategy for quadra-
ture. There are many ways to determine these values, as we will see in the coming section and as
we already have seen for interpolatory quadrature.

Example 12.7 (Method of undetermined coefficients). Suppose we fix x1,...,x, and wish to find a
reasonable set of accompanying weights w; so that }_; w; f(x;) is a suitable approximation of the integral

178

of f. An alternative to the basis function strategy listed above is to use the method of undetermined
coefficients. In this strategy, we choose n functions f1(x),..., fu(x) whose integrals are known, and ask
that our quadrature rule recover the integrals of these functions exactly:

/abfl(x) dx = w1 f1(x1) + waf1(x2) + -+ + wnf1(xn)
/abfz(x) dx = w1 fo(x1) + wafa(x2) + -+ - + W fa(xn)

/:fn(X)dx = wifu(x1) +wafu(x2) + -+ Wy fu(xn)

This creates an n x n linear system of equations for the w’s.
One common choice is to take fy(x) = x*=1 that is, to make sure that the quadrature scheme recovers
the integrals of low-order polynomials. We know

b k+1 k+1
/ g
a k+1

Thus, we get the following linear system of equations for the w;’s:

witwrt - +w, =b—a

b2 — 42
X1W1 + XoWo + - - - + XpWy = >

3 3

2 2 o b’—a
X{W1 + X5wy + -+ - - + X Wy, = >

_ _ _ b? — a2
X7 Yy + 3 wa + -+ 2 w, = 5

This system is exactly the Vandermonde system discussed in §11.1.1.

12.2.3 Newton-Cotes Quadrature

Quadrature rules when the x/s are evenly spaced in [a, b] are known as Newton-Cotes quadrature
rules. As illustrated in Figure NUMBER, there are two reasonable choices of evenly-spaced sam-
ples:

o Closed Newton-Cotes quadrature places x;’s at 2 and b. In particular, for k € {1,...,n} we
take
_, (k=1)(b—a)
Xy =a+ 1 .

179

e Open Newton-Cotes quadrature does not place an x; at a or b:

k(b —a)
n+1°

a—+

After making this choice, the Newton-Cotes formulae simply apply polynomial interpolation to
approximate the integral from a to b; the degree of the polynomial obviously must be n — 1 to keep
the quadrature rule well-defined.

In general, we will keep n relatively small. This way we avoid oscillatory and noise phe-
nomena that occur when fitting high-degree polynomials to a set of data points. As in piecewise
polynomial interpolation, we will then chain together small pieces into composite rules when inte-
grating over a large interval [a,].

Closed rules. Closed Newton-Cotes quadrature strategies require n > 2 to avoid dividing by
zero. Two strategies appear often in practice:

e The trapezoidal rule is obtained for n = 2 (so x; = a and x, = b) by linearly interpolating
from f(a) to f(b). It states that

b - f(a) + f(b)
/a flxydx ~ (b —) R,

e Simpson’s rule comes from taking n = 3, so we now have

X1 =4a

xZ:cH—b
2

.X‘3:b

Integrating the parabola that goes through these three points yields

[=Tt () +ar (0) + 0)).

Open rules. Open rules for quadrature allow the possibility of n = 1, giving the simplistic mid-

point rule:
/abf(x)dxz (b—a)f (”;b> .

Larger values of n yield rules similar to Simpson’s rule and the trapezoidal rule.

Composite integration. Generally we might wish to integrate f(x) with more than one, two, or
three values x;. It is obvious how to construct a composite rule out of the midpoint or trapezoidal
rules above, as illustrated in Figure NUMBER; simply sum up the values along each interval. For
example, if we subdivide [a, b] into k intervals, then we can take Ax = b%” and x; = a + iAx. Then,
the composite midpoint rule is:

/abf(x)dx%lgk%f(x’Jrl;_xl> Ax

180

Similarly, the composite trapezoid rule is:

" e Y (Lt o) o

2

1 1
= e (3700 + F) 4 f(x) 4+ fli) + 5/0))
by separating the two averaged values of f in the first line and re-indexing

An alternative treatment of the composite midpoint rule is to apply the interpolatory quadra-
ture formula from §12.2.1 to piecewise linear interpolation; similarly, the composite version of the
trapezoidal rule comes from piecewise linear interpolation.

The composite version of Simpson’s rule, illustrated in Figure NUMBER, chains together three
points at a time to make parabolic approximations. Adjacent parabolas meet at even-indexed x;’s
and may not share tangents. This summation, which only exists when 7 is even, becomes:

n—2-—1 n/2

fla)+2 Y, flxn) +4§f<xzi_1) + f(b)

i=1

/abf(x)dsz?,x

= ZEF(@) + 4 () + 26 (02) + 4 (319) + 2 (x) -+ 4f (10 1) + £ (D)

Accuracy. So far, we have developed a number of quadrature rules that effectively combine the
same set of f(x;)’s in different ways to obtain different approximations of the integral of f. Each
approximation is based on a different engineering assumption, so it is unclear that any of these
rules is better than any other. Thus, we need to develop error estimates characterizing their respec-
tive behavior. We will use our Newton-Cotes integrators above to show how such comparisons
might be carried out, as presented in CITE.

First, consider the midpoint quadrature rule on a single interval [a, b]. Define ¢ = %(u +Db). The
Taylor series of f about c is:

1 1 1
fx) = f) + f(e)(x =)+ Sf" () (x =) + f(e)(x =) + o, f " (e)(x =) 4
Thus, by symmetry about c the odd terms drop out:

[FGd = (6= a)f(6) + e f(0) (b~)+ o (€ (b —)+ -

Notice that the first term of this sum exactly the estimate of [ab f(x) dx provided by the midpoint
rule, so this rule is accurate up to O(Ax?).
Now, plugging a and b into our Taylor series for f about ¢ shows:

F@) = F(©) + f()a =) + 3F"()a—)+ gf"(c)(a—cf + -

1 1
f(0) = fle) + f1(e)(b =) + 51 ()b =) + f"(e) (b =)’ + -
Adding these together and multiplying both sides by —4/2 shows:

-2l DO _ 0y + L0 -0+ -0+

181

The f'(c) term vanishes by definition of c. Notice that the left hand side is the trapezoidal rule
integral estimate, and the right hand side agrees with our Taylor series for | ub f(x)dx up to the
cubic term. In other words, the trapezoidal rule is also O(Ax®) accurate in a single interval.

We pause here to note an initially surprising result: The trapezoidal and midpoint rules have
the same order of accuracy! In fact, examining the third-order term shows that the midpoint rule
is approximately two times more accurate than the trapezoidal rule. This result seems counterin-
tuitive, since the trapezoidal rule uses a linear approximation while the midpoint rule is constant.
As illustrated in Figure NUMBER, however, the midpoint rule actually recovers the integral of
linear functions, explaining its extra degree of accuracy.

A similar argument applies to finding an error estimate for Simpson’s rule. [WRITE EXPLA-
NATION HERE; OMIT FROM 205A]. In the end we find that Simpson’s rule has error like O(Ax?).

An important caveat applies to this sort of analysis. In general, Taylor’s theorem only applies
when Ax is sufficiently small. If samples are far apart, then the drawbacks of polynomial inter-
polation apply, and oscillatory phenomena as discussed in Section NUMBER can cause unstable
results for high-order integration schemes.

Thus, returning to the case when a and b are far apart, we now divide [4,b] into intervals
of width Ax and apply any of our quadrature rules inside these intervals. Notice that our total
number of intervals is ¥—4/Ax, so we must multiply our error estimates by 1/ax in this case. In
particular, the following orders of accuracy hold:

e Composite midpoint: O(Ax?)
e Composite trapezoid: O(Ax?)

e Composite Simpson: O(Ax*)

12.2.4 Gaussian Quadrature

In some applications, we can choose the locations x; at which f is sampled. In this case, we can
optimize not only the weights for the quadrature rule but also the locations x; to get the highest
quality. This observation leads to challenging but theoretically appealing quadrature rules.

The details of this technique are outside the scope of our discussion, but we provide one simple
path toits derivation. In particular, as in Example 12.7, suppose that we wish to optimize x, ..., x,
and wy, ..., w, simultaneously to increase the order of an integration scheme. Now we have 2n
instead of n knowns, so we can enforce equality for 2n examples:

/:fl(x) dx = w1 fi(x1) + w2 fi(x2) + - - + W f1(xn)
[Pl dx = wifale) + wafale) + -+ wifa()
b | ‘

[o) dx = w01 fu (1) 4 wafu(a) + -+ 0 fu(xa)

Now both the x;’s and the w;’s are unknown, so this system of equations is no longer linear. For
example, if we wish to optimize these values for polynomials on the interval [—1,1] we would

182

have to solve the following system of polynomials (CITE):

1
w1+w2:/ ldx =2
-1

1

w1X1 + waXxy :/ xdx =0
1

1 2
w13 + wox3 = / x*dx = 3
-1

1
wlx% +w2x§ = / ¥dx =0
-1

It can be the case that systems like this have multiple roots and other degeneracies that depend not
only on the choice of f;’s (typically polynomials) but also the interval over which we are approxi-
mating an integral. Furthermore, these rules are not progressive, in the sense that the set of x;’s for
n data points has nothing in common with those for k data points when k # n, so it is difficult
to reuse data to achieve a better estimate. On the other hand, when they are applicable Gaussian
quadrature has the highest possible degree for fixed n. The Kronrod quadrature rules attempt to
avoid this issue by optimizing quadrature with 2n + 1 points while reusing the Gaussian points.

12.2.5 Adaptive Quadrature

As we already have shown, there are certain functions f whose integrals are better approximated
with a given quadrature rule than others; for example, the midpoint and trapezoidal rules inte-
grate linear functions with full accuracy while sampling issues and other problems can occur if f
oscillates rapidly.

Recall that the Gaussian quadrature rule suggests that the placement of the x;’s can have an
effect on the quality of a quadrature scheme. There still is one piece of information we have not
used, however: the values f(x;). After all, these determine the quality of our quadrature scheme.

With this in mind, adaptive quadrature strategies examine the current estimate and generate
new x; where the integrand is more complicated. Strategies for adaptive integration often com-
pare the output of multiple quadrature techniques, e.g. trapezoid and midpoint, with the assump-
tion that they agree where sampling of f is sufficient (see Figure NUMBER). If they do not agree
with some tolerance on a given interval, an additional sample point is generated and the integral
estimates are updated.

ADD MORE DETAIL OR AN EXAMPLE; DISCUSS RECURSIVE ALGORITHM; GANDER
AND GAUTSCHI

12.2.6 Multiple Variables

Many times we wish to integrate functions f(X) where ¥ € R". For example, when n = 2 we
might integrate over a rectangle by computing

/ﬂb /Cdf(x,y) dx dy.

More generally, as illustrated in Figure NUMBER; we might wish to find an integral [f(¥) d¥,
where () is some subset of IR".

183

A “curse of dimensionality” makes integration exponentially more difficult as the dimension
increases. In particular, the number of samples of f needed to achieve comparable quadrature
accuracy for an integral in R¥ increases like O(n*). This observation may be disheartening but is
somewhat reasonable: the more input dimensions for f, the more samples are needed to under-
stand its behavior in all dimensions.

The simplest strategy for integration in R is the integrated integral. For example, if f is a func-

tion of two variables, suppose we wish to find | ab J Cd f(x,y) dx dy. For fixed y, we can approximate
the inner integral over x using a one-dimensional quadrature rule; then, we integrate these values
over y using another quadrature rule. Obviously both integration schemes induce some error, so
we may need to sample X;’s more densely than in one dimension to achieve desired output quality.

Alternatively, just as we subdivided [g, b] into intervals, we can subdivide () into triangles and
rectangles in 2D, polyhedra or boxes in 3D, and so on and use simple interpolatory quadrature
rules in each piece. For instance, one popular option is to integrate the output of barycentric
interpolation inside polyhedra, since this integral is known in closed form.

When n is high, however, it is not practical to divide the domain as suggested. In this case, we
can use the randomized Monte Carlo method. In this case, we simply generate k random points X; €
Q) with, for example, uniform probability. Averaging the values f(¥;) yields an approximation of
Jq f (%) dX that converges like 1/ vk — independent of the dimension of Q! So, in large dimensions
the Monte Carlo estimate is preferable to the deterministic quadrature methods above.

MORE DETAIL ON MONTE CARLO CONVERGENCE AND CHOICE OF DISTRIBUTIONS
OVER O

12.2.7 Conditioning

So far we have considered the quality of a quadrature method using accuracy values O(Ax*);
obviously by this metric a set of quadrature weights with large k is preferable.

Another measure, however, balances out the accuracy measurements obtained using Taylor
arguments. In particular, recall that we wrote our quadrature rule as Q[f] = Y_; w; f(x;). Suppose
we perturb f to some other f. Define ||f — f||o = maXye(p |f(x) — f(x)|. Then,

Q1 - QU _ [Siwi(f(xi) — f(x))]

If = flleo If = Fllea.
< Y, |w1:|| jj[r (XZ} H— fxi)] by the triangle inequality

< ||| oo since | f(x;) — f(x;)| < ||f = flleo by definition.

Thus, the stability or conditioning of a quadrature rule depends on the norm of the set of weights
w.

In general, it is easy to verify that as we increase the order of quadrature accuracy, the con-
ditioning ||@|| gets worse because the w;’s take large negative values; this contrasts with the all-
positive case, where conditioning is bounded by b — a because) ; w; = b — a for polynomial in-
terpolatory schemes and most low-order methods have only positive coefficients (CHECK). This
fact is a reflection of the same intuition that we should not interpolate functions using high-order
polynomials. Thus, in practice we usually prefer composite quadrature to high-order methods,
that may provide better estimates but can be unstable under numerical perturbation.

184

12.3 Differentiation

Numerical integration is a relatively stable problem. in that the influence of any single value

f(x) on fab f(x)dx shrinks to zero as a4 and b become far apart. Approximating the derivative
of a function f’(x), on the other hand, has no such stability property. From the Fourier analysis
perspective, one can show that the integral [f(x) generally has lower frequencies than f, while
differentiating to produce f’ amplifies the high frequencies of f, making sampling constraints,
conditioning, and stability particularly challenging for approximating f”.

Despite the challenging circumstances, approximations of derivatives usually are relatively
easy to compute and can be stable depending on the function at hand. In fact, while developing
the secant rule, Broyden’s method, and so on we used simple approximations of derivatives and
gradients to help guide optimization routines.

Here we will focus on approximating f” for f : R — R. Finding gradients and Jacobians
often is accomplished by differentiating in one dimension at a time, effectively reducing to the
one-dimensional problem we consider here.

12.3.1 Differentiating Basis Functions

The simplest case for differentiation comes for functions that are constructed using interpolation
routines. Just as in §12.2.1, if we can write f(x) = }_; a;¢;(x) then by linearity we know

f1(x) = L aig(v).

In other words, we can think of the functions ¢/ as a basis for derivatives of functions written in
the ¢; basis!

An example of this procedure is shown in Figure NUMBER. This phenomenon often connects
different interpolatory schemes. For example, piecewise linear functions have piecewise constant
derivatives, polynomial functions have polynomial derivatives of lower degree, and so on; we
will return to this structure when we consider discretizations of partial differential equations. In
the meantime, it is valuable to know in this case that f’ is known with full certainty, although as
in Figure NUMBER its derivatives may exhibit undesirable discontinuities.

12.3.2 Finite Differences

A more common case is that we have a function f(x) that we can query but whose derivatives are
unknown. This often happens when f takes on a complex form or when a user provides f(x) as a
subroutine without analytical information about its structure.

The definition of the derivative suggests a reasonable approach:

(6) =t FE 1) = £

h—0

As we might expect, for a finite 1 > 0 with small || the expression in the limit provides a possible
value approximating f'(x).
To substantiate this intuition, we can use Taylor series to write:

flx+h) = f(x)+ f'(x)h + %f”(x);ﬂ T

185

Rearranging this expression shows:

h) —
po = LEEB =16 o
Thus, the following forward difference approximation of f’ has linear convergence:

i = LM =)

Similarly, flipping the sign of & shows that backward differences also have linear convergence:

) FI =)

We actually can improve the convergence of our approximation using a trick. By Taylor’s
theorem we can write:

Flr+B) = F(2) + QR+ "G+ Lf" ()R + -+

Flor=h) = F(x) = QR+ "GP — Lf" ()R + -+

= fx+h)—f(x—h) :2f’(x)h+%f”’(x)h3+...

f(x_}'h)z_hf(x_h) :f’(x)+O(h2)

Thus, this centered difference gives an approximation of f’(x) with quadratic convergence; this is the
highest order of convergence we can expect to achieve with a divided difference. We can, however,
achieve more accuracy by evaluating f at other points, e.g. x + 25, although this approximation is
not used much in practice in favor of simply decreasing h.

Constructing estimates of higher-order derivatives can take place by similar constructions. For
example, if we add together the Taylor expansions of f(x + k) and f(x — h) we see

flx+h)+ f(x—h) =2f(x) + f"(x)h* + O(h°)

— f(x+h)_2él(2x)+f(x_h) :f//(x)+o<h2)

To predict similar combinations for higher derivatives, one trick is to notice that our second
derivative formula can be factored differently:

Flxh) = 2f(x) + fla—) LI ffan
2 I

That is, our approximation of the second derivative is a “finite difference of finite differences.”
One way to interpret this formula is shown in Figure NUMBER. When we compute the forward
difference approximation of f’ between x and x + h, we can think of this slope as living at x + 1/2;
we similarly can use backward differences to place a slope at x — /2. Finding the slope between
these values puts the approximation back on x.

186

One strategy that can improve convergence of the approximations above is Richardson extrap-
olation. As an example of a more general pattern, suppose we wish to use forward differences to
approximate f’. Define

D(h) Ef(x+h})l_f(x).

Obviously D(h) approaches f'(x) as h — 0. More specifically, however, from our discussion in
§12.3.2 we know that D(h) takes the form:

D) = /(x) + 3 f"(x)h+ O(R)
Suppose we know D(h) and D(ah) for some 0 < & < 1. We know:
D(ah) = f'(x) + %f”(x)och +0(h?)

We can write these two relationships in a matrix:

(1 8)(F3)- (8o

(FE)=(dh) (o) e

That is, we took an O(h) approximation of f'(x) using D(h) and made it into an O(h?) approx-
imation! This clever technique is a method for sequence acceleration, since it improves the order
of convergence of the approximation D(/). The same trick is applicable more generally to many
other problems by writing an approximation D(h) = a + bh"™ + O(h™) where m > n, where a is the
quantity we hope to estimate and b is the next term in the Taylor expansion. In fact, Richardson
extrapolation even can be applied recursively to make higher and higher order approximations.

Or equivalently,

12.3.3 Choosing the Step Size

Unlike quadrature, numerical differentiation has a curious property. It appears that any method
we choose can be arbitrarily accurate simply by choosing a sufficiently small &. This observation
is appealing from the perspective that we can achieve higher-quality approximations without ad-
ditional computation time. The catch, however, is that we must divide by & and compare more
and more similar values f(x) and f(x + h); in finite-precision arithmetic, adding and/or dividing
by near-zero values induces numerical issues and instabilities. Thus, there is a range of / values
that are not large enough to induce significant discretization error and not small enough to make
for numerical problems; Figure NUMBER shows an example for differentiating a simple function
in IEEE floating point arithmetic.

12.3.4 Integrated Quantities
Not covered in CS 205A, fall 2013.

187

12.4 Problems

e Gaussian quadrature — always contains midpoints, strategy using orthogonal polynomials
e Adaptive quadrature

e Applications of Richardson extrapolation elsewhere

188

Chapter 13

Ordinary Differential Equations

We motivated the problem of interpolation in Chapter 11 by transitioning from analzying to finding
functions. That is, in problems like interpolation and regression, the unknown is a function f, and
the job of the algorithm is to fill in missing data.

We continue this discussion by considering similar problems involving filling in function val-
ues. Here, our unknown continues to be a function f, but rather than simply guessing missing
values we would like to solve more complex design problems. For example, consider the follow-
ing problems:

e Find f approximating some other function fy but satisfying additional criteria (smoothness,
continuity, low-frequency, etc.).

e Simulate some dynamical or physical relationship as f(t) where ¢ is time.

e Find f with similar values to fo but certain properties in common with a different function

80-

In each of these cases, our unknown is a function f, but our criteria for success is more involved
than “matches a given set of data points.”

The theories of ordinary differential equations (ODEs) and partial differential equations (PDEs)
study the case where we wish to find a function f(¥) based on information about or relationships
between its derivatives. Notice we already have solved a simple version of this problem in our
discussion of quadrature: Given f’(t), methods for quadrature provide ways of approximating
f(t) using integration.

In this chapter, we will consider the case of an ordinary differential equations and in particular
initial value problems. Here, the unknown is a function f(t) : R — R", and we given an equation
satisfied by f and its derivatives as well as f(0); our goal is to predict f(t) for t > 0. We will
provide several examples of ODEs appearing in the computer science literature and then will
proceed to describe common solution techniques.

As a note, we will use the notation f’ to denote the derivative df/dt of f : [0,00) — R". Our
goal will be to find f(t) given relationships between t, f(t), f'(t), f’(t), and so on.

189

13.1 Motivation

ODE:s appear in nearly any part of scientific example, and it is not difficult to encounter practical
situations requiring their solution. For instance, the basic laws of physical motion are given by an
ODE:

Example 13.1 (Newton’s Second Law). Continuing from §5.1.2, recall that Newton’s Second Law of
Motion states that F = ma, that is, the total force on an object is equal to its mass times its acceleration.
If we simulate n particles simultaneously, then we can think of combining all their positions into a vector
X € R%. Similarly, we can write a function F(t,% %) € R taking the time, positions of the particles,
and their velocities and returning the total force on each particle. This function can take into account
interrelationships between particles (e.g. gravitational forces or springs), external effects like wind resistance
(which depends on X'), external forces varying with time t, and so on.

Then, to find the positions of all the particles as functions of time, we wish to solve the equation X" =
E(t, %, %) /m. We usually are given the positions and velocities of all the particles at time t = 0 as a starting
condition.

Example 13.2 (Protein folding). On a smaller scale, the equations governing motions of molecules also
are ordinary differential equations. One particularly challenging case is that of protein folding, in which
the geometry structure of a protein is predicted by simulating intermolecular forces over time. These forces
take many often nonlinear forms that continue to challenge researchers in computational biology.

Example 13.3 (Gradient descent). Suppose we are wishing to minimize an energy function E(X) over all
X. We learned in Chapter 8 that —V E(X) points in the direction E decreases the most at a given X, so we
did line search along that direction from X to minimize E locally. An alternative option popular in certain
theories is to solve an ODE of the form X' = —V E(X); in other words, think of X as a function of time X(t)
that is attempting to decrease E by walking downbhill.

For example, suppose we wish to solve AX = b for symmetric positive definite A. We know from §10.1.1

that this is equivalent to minimizing E(¥) = 3% A% — bT X 4 c. Thus, we could attempt to solve the ODE

X = —Vf(X) = b— AX. Ast — oo, we expect X(t) to better and better satisfy the linear system.

Example 13.4 (Crowd simulation). Suppose we are writing video game software requiring realistic sim-
ulation of virtual crowds of humans, animals, spaceships, and the like. One strategy for generating plausible
motion, illustrated in Figure NUMBER, is to use differential equations. Here, the velocity of a member of
the crowd is determined as a function of its environment; for example, in human crowds the proximity of
other humans, distance to obstacles, and so on can affect the direction a given agent is moving. These rules
can be simple, but in the aggregate their interaction is complex. Stable integrators for differential equations
underlie this machinery, since we do not wish to have noticeably unrealistic or unphysical behavior.

13.2 Theory of ODEs

A full treatment of the theory of ordinary differential equations is outside the scope of our discus-
sion, and we refer the reader to CITE for more details. This aside, we mention some highlights
here that will be relevant to our development in future sections.

190

13.2.1 Basic Notions
The most general ODE initial value problem takes the following form:
Find f(t) : R — R"
Satisfying F[t, f(t), f'(t), f'(t),..., f®(t)] =0
Given £(0), f(0), f(0),..., f*"1(0)

Here, F is some relationship between f and all its derivatives; we use f() to denote the /-th
derivative of f. We can think of ODEs as determining evolution of f over time t; we know f and
its derivatives at time zero and wish to predict it moving forward.

ODEs take many forms even in a single variable. For instance, denote y = f(t) and suppose
y € RL. Then, examples of ODEs include:

e ¥/ = 1+ cost: This ODE can be solved by integrating both sides e.g. using quadrature
methods

e y' = ay: This ODE is linear in y

e iy = ay + ¢': This ODE is time and position-dependent

e y” + 3y —y = t: This ODE involves multiple derivatives of y
e y’siny = e!': This ODE is nonlinear in y and ¢.

Obviously the most general ODEs can be challenging to solve. We will restrict most of our discus-
sion to the case of explicit ODEs, in which the highest-order derivative can be isolated:

Definition 13.1 (Explicit ODE). An ODE is explicit if can be written in the form

FO) = Flt, £(0), £/ (8), £ (1), ..., fEV(#)):

For example, an explicit form of Newton’s second law is ¥ (t) = La(t, X(t), ¥'(t)).

Surprisingly, generalizing the trick in §5.1.2, in fact any explicit ODE can be converted to a
first-order equation f'(t) = F[t, f(t)], where f has multidimensional output. This observation
implies that we need no more than one derivative in our treatment of ODE algorithms. To see
this relationship, we simply recall that @*v/a2 = d/at(dy/at). Thus, we can define an intermediate
variable z = dy/at, and understand #*y/a? as 4z/ar with the constraint z = 4y/ar. More generally, if
we wish to solve the explicit problem

FO) = Flt f(0, £ (0, £ (1), ..., D ()],
where f : R — R”, then we define g(t) : R — R*" using the first-order ODE:

g1(t) $2(t)
p 2(t) g3(t)
dt : - ‘
Sk—1(t) Sk(t)
Sk (t) Flt,g1(t),g2(t), ..., gk—1(t)]

191

Here, we denote g;(t) : R — R”" to contain n components of g. Then, g1(t) satisfies the original
ODE. To see so, we just check that our equation above implies g (t) = g (t), g3(t) = g5(t) = g/ (t),
and so on. Thus, making these substitutions shows that the final row encodes the original ODE.

The trick above will simplify our notation, but some care should be taken to understand that
this approach does not trivialize computations. In particular, in may cases our function f () will
only have a single output, but the ODE will be in several derivatives. We replace this case with
one derivative and several outputs.

Example 13.5 (ODE expansion). Suppose we wish to solve y"" = 3y" — 2y’ +y where y(t) : R — R.

This equation is equivalent to:
J y 0 1 0 y
rr U 0 0 1 z
w 1 -2 3 w

Just as our trick above allows us to consider only first-order ODEs, we can restrict our notation
even more to autonomous ODEs. These equations are of the form f'(t) = F[f(t)], that is, F no
longer depends on t. To do so, we could define

0=(5)

Then, we can solve the following ODE for g instead:

(1) Flf(£),3(t)]
- (5)- (),
In particular, g(t) = t assuming we take $(0) = 0.
It is possible to visualize the behavior of ODEs in many ways, illustrated in Figure NUMBER.
For instance, if the unknown f(t) is a function of a single variable, then we can think of F[f(t)] as
providing the slope of f(t), as shown in Figure NUMBER. Alternatively, if f(¢) has output in R?,

we no longer can visualize the dependence on time t, but we can draw phase space, which shows
the tangent of f(t) at each (x,y) € R>.

13.2.2 Existence and Uniqueness

Before we can proceed to discretizations of the initial value problem, we should briefly acknowl-
edge that not all differential equation problems are solvable. Furthermore, some differential equa-
tions admit multiple solutions.

Example 13.6 (Unsolvable ODE). Consider the equation y' = 2y /t, with y(0) # 0 given; notice we are
not dividing by zero because y(0) is prescribed. Rewriting as

ldy 2

ydt
and integrating with respect to t on both sides shows:
Inly| =2Int+c¢

Or equivalently, y = Ct? for some C € R. Notice that y(0) = 0 in this expression, contradicting our
initial conditions. Thus, this ODE has no solution with the given initial conditions.

192

Example 13.7 (Nonunique solutions). Now, consider the same ODE with y(0) = 0. Consider y(t) given
by y(t) = Ct? for any C € R. Then, y'(t) = 2Ct. Thus,

2
Yy _ 2 =2Ct =1v(t),
t t
showing that the ODE is solved by this function regardless of C. Thus, solutions of this problem are
nonunique.

Thankfully, there is a rich theory characterizing behavior and stability of solutions to differen-
tial equations. Our development in the next chapter will have a stronger set of conditions needed
for existence of a solution, but in fact under weak conditions on f it is possible to show that an
ODE f'(t) = F[f(t)] has a solution. For instance, one such theorem guarantees local existence of a
solution:

Theorem 13.1 (Local existence and uniqueness). Suppose F is continuous and Lipschitz, that is, || F[ij] —
F[X]||2 < L||ij — X||2 for some L. Then, the ODE f'(t) = F[f(t)] admits exactly one solution for all t > 0
regardless of initial conditions.

In our subsequent development, we will assume that the ODE we are attempting to solve
satisfies the conditions of such a theorem; this assumption is fairly realistic in that at least locally
there would have to be fairly degenerate behavior to break such weak assumptions.

13.2.3 Model Equations

One way to gain intuition for the behavior of ODEs is to examine behavior of solutions to some
simple model equations that can be solved in closed form. These equations represent linearizations
of more practical equations, and thus locally they model the type of behavior we can expect.

We start with ODEs in a single variable. Given our simplifications in §13.2.1, the simplest
equation we might expect to work with would be y' = F[y|, where y(t) : R — R. Taking a
linear approximation would yield equations of type y’ = ay + b. Substituting 7 = y + ¢/a shows:
7 =y =ay+0b = a(j—"/4a)+b = ay. Thus, in our model equations the constant b simply
induces a shift, and for our phenomenological study in this section we can assume b = 0.

By the argument above, we locally can understand behavior of y’ = F[y] by studying the linear
equation iy’ = ay. In fact, applying standard arguments from calculus shows that

y(t) = Ce™.
Obviously, there are three cases, illustrated in Figure NUMBER:

1. a > 0: In this case solutions get larger and larger; in fact, if y(¢) and 7(¢) both satisfy the
ODE with slightly different starting conditions, as t — oo they diverge.

2. a = 0: The system in this case is solved by constants; solutions with different starting points
stay the same distance apart.

3. a < 0: Then, all solutions of the ODE approach 0 as t — co.

193

We say cases 2 and 3 are stable, in the sense that perturbing y(0) slightly yields solutions that get
close and close over time; case 1 is unstable, since a small mistake in specifying the input param-
eter y(0) will be amplified as time ¢ advances. Unstable ODEs generate ill-posed computational
problems; without careful consideration we cannot expect numerical methods to generate usable
solutions in this case, since even theoretical outputs are so sensitive to perturbations of the input.
On the other hand, stable problems are well-posed since small mistakes in y(0) get diminished
over time.
Advancing to multiple dimensions, we could study the linearized equation

7 = Aj.

As explained in §5.1.2, if i/, - - - , i) are eigenvectors of A with eigenvalues A4, ..., A; and (0) =
C1g1 + -+ Ckgk/ then
y(t) = C1€A1t]71 +---+ Cke)\ktﬁk.

In other words, the eigenvalues of A take the place of a in our one-dimensional example. From
this result, it is not hard to intuit that a multivariable system is stable exactly when its spectral
radius is less than one.

In reality we wish to solve i’ = F[ij] for general functions F. Assuming F is differentiable, we
can write F[ij] = F[ijo] + Je(io) (¥ — ¥o), yielding the model equation above after a shift. Thus,
for short periods of time we expect behavior similar to the model equation. Additionally, the
conditions in Theorem 13.1 can be viewed as a bound on the behavior of Jr, providing a connection
to less localized theories of ODE.

13.3 Time-Stepping Schemes

We now proceed to describe several methods for solving the nonlinear ODE i/’ = F[jj] for po-
tentially nonlinear functions F. In general, given a “time step” h, our methods will be used to
generate estimates of i/(f 4 h) given i/(f). Applying these methods iteratively generates estimates
of jo = ¥(t), 1 = y(t+h), j» = §(t + 2h), ij3 = §j(t + 3h), and so on. Notice that since F has
no t dependence the mechanism for generating each additional step is the same as the first, so for
the most part we will only need to describe a single step of these methods. We call methods for
generating approximations of j(t) integrators, reflecting the fact that they are integrating out the
derivatives in the input equation.

Of key importance to our consideration is the idea of stability. Just as ODEs can be stable or
unstable, so can discretizations. For example, if is too large, some schemes will accumulate error
at an exponential rate; contrastingly, other methods are stable in that even if / is large the solutions
will remain bounded. Stability, however, can compete with accuracy; often time stable schemes are
bad approximations of (), even if they are guaranteed not to have wild behavior.

13.3.1 Forward Euler

Our first ODE strategy comes from our construction of the forward differencing scheme in §12.3.2:

Fljil = () = 2= 1 o(h)

194

Solving this relationship for j1 shows
G = i+ HE[G] + O(h?) ~ G + hF[F].

Thus, the forward Euler scheme applies the formula on the right to estimate i 1. It is one of the
most efficient strategies for time-stepping, since it simply evaluates F and adds a multiple of the
result to ijx. For this reason, we call it an explicit method, that is, there is an explicit formula for
Vk+1 in terms of i and F.

Analyzing the accuracy of this method is fairly straightforward. Notice that our approximation
of 41 is O(h?), so each step induces quadratic error. We call this error localized truncation error
because it is the error induced by a single step; the word “truncation” refers to the fact that we
truncated a Taylor series to obtain this formula. Of course, our iterate i/ already may be inaccurate
thanks to accumulated truncation errors from previous iterations. If we integrate from t to t with
O(1/n) steps, then our total error looks like O(h); this estimate represents global truncation error,
and thus we usually write that the forward Euler scheme is “first-order accurate.”

The stability of this method requires somewhat more consideration. In our discussion, we will
work out the stability of methods in the one-variable case y' = ay, with the intuition that similar
statements carry over to multidimensional equations by replacing a with the spectral radius. In
this case, we know

Yir1 = Yk + ahyy = (1 + ah)yx.

In other words, yx = (1 + ah)kyo. Thus, the integrator is stable when |1 4 ah| < 1, since otherwise
|yk| — oo exponentially. Assuming a < 0 (otherwise the problem is ill-posed), we can simplify:

[14+ah| <1 < -1<1+4ah<1
— —2<ah<0

2
<~ 0<h< —, sincea <0

|a]

Thus, forward Euler admits a time step restriction for stability given by our final condition on /4. In
other words, the output of forward Euler can explode even when ' = ay is stable if /1 is not small
enough. Figure NUMBER illustrates what happens when this condition is obeyed or violated.
In multiple dimensions, we can replace this restriction with an analogous one using the spectral
radius of A. For nonlinear ODEs this formula gives a guide for stability at least locally in time;
globally h may have to be adjusted if the Jacobian of F becomes worse conditioned.

13.3.2 Backward Euler

Similarly, we could have applied the backward differencing scheme at ij;1 to design an ODE inte-
grator:

Flfir] =7/ (1) = 225 1 o(h)

Thus, we solve the following potentially nonlinear system of equations for i 1:
Yk = Yrs1 — hE[Firal].
Because we have to solve this equation for i1, backward Euler is an implicit integrator.

195

This method is first-order accurate like forward Euler by an identical proof. The stability of this
method, however, contrasts considerably with forward Euler. Once again considering the model
equation iy’ = ay, we write:

Yk = Yir1 — hayirn == Y1 = 5 zkha'
Paralleling our previous argument, backward Euler is stable under the following condition:
1
<1 1—ha|>1
T S -t 2

< 1-ha<-lorl—ha>1
<— hgzorhzo,fora<0

Obviously we always take i > 0, so backward Euler is unconditionally stable.

Of course, even if backward Euler is stable it is not necessarily accurate. If & is too large,
¥ will approach zero far too quickly. When simulating cloth and other physical materials that
require lots of high-frequency detail to be realistic, backward Euler may not be an effective choice.
Furthermore, we have to invert F[-] to solve for 1.

Example 13.8 (Backward Euler). Suppose we wish to solve ij' = Aij for A € R"*". Then, to find i1
we solve the following system:

13.3.3 Trapezoidal Method

Suppose ik is known at time t; and ;1 represents the value at time ¢, = t; + h. Suppose we
also know 1/, halfway in between these two steps. Then, by our derivation of the centered
differencing we know:

Gi1 = Ji + hEF[Fiyr] + O (%)

From our derivation of the trapezoidal rule:

Fltxy1] + Flvi]
2

Substituting this relationship yields our first second-order integration scheme, the trapezoid method
for integrating ODEs:

= F[jks172] + O(H?)

Fljii1] + Fl¥]
2
Like backward Euler, this method is implicit since we must solve this equation for ;1.
Once again carrying out stability analysis on ¥’ = ay, we find in this case time steps of the
trapezoidal method solve

Y1 =Yxt+h

1
Y1 = Yr + Eha(ylﬂ-l + k)

B 1+%ha g
Y= 1—%ha yo-

196

In other words,

The method is thus stable when
1+ %hu
1— %ha

It is easy to see that this inequality holds whenever 2 < 0 and & > 0, showing that the trapezoid
method is unconditionally stable.

Despite its higher order of accuracy with maintained stability, the trapezoid method, however,
has some drawbacks that make it less popular than backward Euler. In particular, consider the
ratio

R = Ykl _ 1+ 3ha
Wk — Jha

When a < 0, for large enough & this ratio eventually becomes negative; in fact, as h — oo, we
have R — —1. Thus, as illustrated in Figure NUMBER, if time steps are too large, the trapezoidal
method of integration tends to exhibit undesirable oscillatory behavior that is not at all like what
we might expect for solutions of i’ = ay.

13.3.4 Runge-Kutta Methods

A class of integrators can be derived by making the following observation:

bt At
Vo1 = Uk + / ‘ i/ (t) dt by the Fundamental Theorem of Calculus
te

o te+At .
=+ Fly(t)] dt

Of course, using this formula outright does not work for formulating a method for time-stepping
since we do not know ¥(t), but careful application of our quadrature formulae from the previous
chapter can generate feasible strategies.

For example, suppose we apply the trapezoidal method for integration. Then, we find:

. L h, .
Vi1 = Vi + E(F[]/k] + Flijis1]) + O(1?)

This is the formula we wrote for the trapezoidal method in §13.3.3.

If we do not wish to solve for i1 implicitly, however, we must find an expression to approxi-
mate F[iji,1]. Using Euler’s method, however, we know that 7,1 = i + hF[7;] + O(h?). Making
this substitution for i1 does not affect the order of approximation of the trapezoidal time step
above, so we can write:

. L h, . .
Ykp1 = Yx + E(F[]/k] + F[ij + hF[iji]]) + O(h)

Ignoring the O(h3) terms yields a new integration strategy known as Heun’s method, which is
second-order accurate and explicit.

197

If we study stability behavior of Heun’s method for y' = ay for a < 0, we know:

h
Yiert = Ve + 5 (ayi + aye + hayy))
h
= <1 + Ea(Z + ha)) Yk
1.5,
= (1+ha+ Eh as | v
Thus, the method is stable when

1
—1§1+ha+§h2a2§l
— —4<2ha+Hha*<0

The inequality on the right shows h < ‘2—|, and the one on the left is always true for & > 0 and

a < 0, so the stability condition is i < I%\

Heun’s method is an example of a Runge-Kutta method derived by applying quadrature meth-
ods to the integral above and substituting Euler steps into F[-]. Forward Euler is a first-order ac-
curate Runge-Kutta method, and Heun’s method is second-order. A popular fourth-order Runge-

Kutta method (abbreviated “RK4”) is given by:

. L h, - > o
Yi+1 = Yk + g(kl + 2k + 2k + kyg)

where k1 = F []

— 1 —
k2 - F]?k + 2hk1:|
. 1.
ks = F |y + 2hkz]

ky=F _Vk + hE3:|

This method can be derived by applying Simpson’s rule for quadrature.

Runge-Kutta methods are popular because they are explicit and thus easy to evaluate while
providing high degrees of accuracy. The cost of this accuracy, however, is that F[-] must be eval-
uated more times. Furthermore, Runge-Kutta strategies can be extended to implicit methods that
can solve stiff equations.

13.3.5 Exponential Integrators

One class of integrators that achieves strong accuracy when F|-] is approximately linear is to use
our solution to the model equation explicitly. In particular, if we were solving the ODE ' =
Ay, using eigenvectors of A (or any other method) we could find an explicit solution #(t) as
explained in §13.2.3. We usually write ;1 = e"ij;, where e encodes our exponentiation of the
eigenvalues (in fact we can find a matrix e/ from this expression that solves the ODE to time h).
Now, if we write
7 = A7+ Clyl,

198

where G is a nonlinear but small function, we can achieve fairly high accuracy by integrating the A
part explicitly and then approximating the nonlinear G part separately. For example, the first-order
exponential integrator applies forward Euler to the nonlinear G term:

Ferr = e — A7 (1~ ") G

Analysis revealing the advantages of this method is more complex than what we have written,
but intuitively it is clear that these methods will behave particularly well when G is small.

13.4 Multivalue Methods

The transformations in §13.2.1 enabled us to simplify notation in the previous section considerably
by reducing all explicit ODEs to the form i’ = F[/]. In fact, while all explicit ODEs can be written
this way;, it is not clear that they always should.

In particular, when we reduced k-th order ODEs to first-order ODEs, we introduced a number
of variables representing the first through k — 1-st derivatives of the desired output. In fact, in
our final solution we only care about the zeroth derivative, that is, the function itself, so orders of
accuracy on the temporary variables are less important.

From this perspective, consider the Taylor series

» . iy P
Flte+ 1) = Gt + 1y (b)) + 57" (k) + O(1)

If we only know i’ up to O(h?), this does not affect our approximation, since i gets multiplied
by h. Similarly, if we only know i’ up to O(h), this approximation will not affect the Taylor series
terms above because it will get multiplied by #*/2. Thus, we now consider “multivalue” meth-
ods, designed to integrate i) (t) = F[t,i'(t), i (t), . .., %V (t)] with different-order accuracy for
different derivatives of the function .

Given the importance of Newton’s second law F = ma, we will restrict to the case i’ =
F[t,7,7']; many extensions exist for the less common k-th order case. We introduce a “velocity”
vector 7(t) = i/ (t) and an “acceleration” vector 4. By our previous reduction, we wish to solve the

following first-order system:

Our goal is to derive an integrator specifically tailored to this system.

13.4.1 Newmark Schemes

We begin by deriving the famous class of Newmark integrators.! Denote i, T, and d; as the

position, velocity, and acceleration vectors at time t;; our goal is to advance to time ;1 = t; + h.

IWe follow the development in http://wuw.stanford.edu/group/frg/course_work/AA242B/CA-AA242B-Ch7.
pdf.

199

http://www.stanford.edu/group/frg/course_work/AA242B/CA-AA242B-Ch7.pdf
http://www.stanford.edu/group/frg/course_work/AA242B/CA-AA242B-Ch7.pdf

Use #/(t), 9(t), and 4(t) to denote the functions of time assuming we start at t;. Then, obviously
we can write

— — tk+1 —
Tri1 = Uk —l—/ a(t)dt
tx

We also can write 1j; ;1 as an integral involving 4(t), by following a few steps:
. N b1
Vkt1 = Yk —|—/t U(t)dt
k

t
= iy + [tz‘;’(t)]t"“ — /t o td(t) dt after integration by parts
k

tr

fr+1
= Y + ter10k1 — b0k — / . td(t) dt by expanding the difference term
t
tr+1
= iy + hOx + tk10k+1 — bk 10k — / . td(t) dt by adding and subtracting ho
te

frt1
= Yk + hog + tip1(Tp1 — k) — / tda(t) dt after factoring
ty
te+1 .

t
= Yk + hx + t / a(t)dt — / o ta(t) dt since ' (t) = a(t)

t t
— — tk+l —
= yk+hvk+/ (oot — D)(t) dt
Jt

Suppose we choose T € [t, tr11]. Then, we can write expressions for gy and 4y 1 using the Taylor
series about T:

iy =d(t) +ad (1) (k — 7) + O(h?)
i1 = d(7) + @ (7) (b1 —) + O(H?)

For any constant v € IR, if we scale the first equation by 1 — 7y and the second by <y and sum the
results, we find:

d(7) = (1= 1)+ 71 + 8 (1) (v = Dt — 1) = 7t — 7)) + O (1)
= (1 —9)d + ydry1 + @ (7)(T — hy — t;) + O(h?) after substituting t ., =ty +h
In the end, we wish to integrate from t; to f;, 1 to get the change in velocity. Thus, we compute:

t t
/t Ay dt = (1=)k + Yhide + / U F () (T = hy —) de+ O(H?)
t

k k
= (1 — y)hid) + yhi 1 + O(h?),

where the second step holds because the integrand is O(h) and the interval of integration is of
width h. In other words, we now know:

Teyr = Bk + (1=)hily + Yhigr + O(H?)

To make a similar approximation for i1, we can write

tet1 b+
| b =00t = [(b = D1 = 1)t A + 7 ()5 ey — 1)) dT 4+ O(F)
k k

1

1
= 5(1 — Y)h%a; + E’yhzﬁkﬂ + O(h?) by a similar argument.

200

Thus, we can use our earlier relationship to show:

tet
(

Vi1 = Y + htx + / tryq — t)d(t) dt from before
t

k
- - 1 - -
= Yx + hvy + (2 - ﬁ) Wdy + B’ 1 + O(h?)

Here, we use f instead of <y (and absorb a factor of two in the process) because the v we choose for
approximating ijx1 does not have to be the same as the one we choose for approximating vy 1.

After all this integration, we have derived the class of Newmark schemes, with two input
parameters y and B, which has first-order accuracy by the proof above:

1_

gk+1 —]7k —|— hﬁk + <2 ’B> hZﬁk + ﬁhzﬁk+1

U1 = T + (1 — y)hidy + Yhdrq
[_ik = F[tkl]7k/ 51(]

Different choices of f and <y lead to different schemes. For instance, consider the following exam-
ples:

e B = = 0 gives the constant acceleration integrator:
Vrp1 = Vi + hx + %hzﬁk
U1 = O + hdy
This integrator is explicit and holds exactly when the acceleration is a constant function.
e B =1/2,v = 1 gives the constant implicit acceleration integrator:
Yre1 = Y + M0 + %hzﬁk+1
Tk y1 = U + higyq

Here, the velocity is stepped implicitly using backward Euler, giving first-order accuracy.
The update of i, however, can be written

q T
Yer1 =Yk + Eh(vk + Tey1),
showing that it locally is updated by the midpoint rule; this is our first example of a scheme

where the velocity and position updates have different orders of accuracy. Even so, it is
possible to show that this technique, however, is globally first-order accurate in .

o B =1/4,4v = 1/2 gives the following second-order trapezoidal scheme after some algebra:
> R
Xk41 = X+ Eh(vk + Tr11)

- R
Oky1 = G + Eh(”k + i y1)

201

e B = 0,7 = 1/2 gives a second-order accurate central differencing scheme. In the canonical
form, we have

- - - 1,
Xk41 = X + hvy + Ehzﬂk
- I
Oky1 = Uk + Eh(ﬂk + dyy1)

The method earns its name because simplifying the equations above leads to the alternative

form:
7 _]7k+2 - gk
k+1 h
L Yk — 2Uk T Tk

It is possible to show that Newmark’s methods are unconditionally stable when 4 > 2y > 1 and
that second-order accuracy occurs exactly when y = 1/2 (CHECK).
13.4.2 Staggered Grid

A different way to achieve second-order accuracy in i/ is to use centered differences about the time
tkrin =t + /2
Vi1 = Y+ M0y

Rather than use Taylor arguments to try to move @y1/,, we can simply store velocities ¥ at half
points on the grid of time steps.
Then, we can use a similar update to step forward the velocities:

Z_jk+3/2 = Z_jk+1/2 + hﬁk+1-
Notice that this update actually is second-order accurate for ¥ as well, since if we substitute our
expressions for Ty 1/, and Uy,3/, we can write:
- 1 . ﬁ -
A1 = ﬁ(ykﬂ — 2¥j41 + Tk)

Finally, a simple approximation suffices for the acceleration term since it is a higher-order term:

S R .
dip1 = F tp1, Xk, E(Uk+1/z + Trg3/2)

This expression can be substituted into the expression for ¥y s,.
When F|-] has no dependence on 7, the method is fully explicit:
Yier1 = Yk + hiiy
i1 = Flterr, Yiia]

Tky3/2 = Tkqryn + hidgiq

This is known as the leapfrog method of integration, thanks to the staggered grid of times and the
fact that each midpoint is used to update the next velocity or position.

202

Otherwise, if the velocity update has dependence on ¥ then the method becomes implicit.
Often times, dependence on velocity is symmetric; for instance, wind resistance simply changes
sign if you reverse the direction you are moving. This property can lead to symmetric matrices in
the implicit step for updating velocities, making it possible to use conjugate gradients and related
fast iterative methods to solve.

13.5 To Do

e Define stiff ODE
¢ Give table of time stepping methods for F[t; i/]

e Use ij notation more consistently

13.6 Problems

e TVDRK
e Multistep/multivalue methods a la Heath
e Verlet integration

e Symplectic integrators

203

204

Chapter 14

Partial Differential Equations

Our intuition for ordinary differential equations generally stems from the time evolution of phys-
ical systems. Equations like Newton’s second law determining the motion of physical objects
over time dominate the literature on such initial value problems; additional examples come from
chemical concentrations reacting over time, populations of predators and prey interacting from
season to season, and so on. In each case, the initial configuration—e.g. the positions and veloc-
ities of particles in a system at time zero—are known, and the task is to predict behavior as time
progresses.

In this chapter, however, we entertain the possibility of coupling relationships between different
derivatives of a function. It is not difficult to find examples where this coupling is necessary. For
instance, when simulating smoke or gases quantities like “pressure gradients,” the derivative of
the pressure of a gas in space, figure into how the gas moves over time; this structure is reasonable
since gas naturally diffuses from high-pressure regions to low-pressure regions. In image process-
ing, derivatives couple even more naturally, since measurements about images tend to occur in
the x and y directions simultaneously.

Equations coupling together derivatives of functions are known as partial differential equations.
They are the subject of a rich but strongly nuanced theory worthy of larger-scale treatment, so
our goal here will be to summarize key ideas and provide sufficient material to solve problems
commonly appearing in practice.

14.1 Motivation

Partial differential equations (PDEs) arise when the unknown is some function f : R" — R”. We
are given one or more relationship between the partial derivatives of f, and the goal is to find an
f that satisfies the criteria. PDEs appear in nearly any branch of applied mathematics, and we list
just a few below.

As an aside, before introducing specific PDEs we should introduce some notation. In particu-
lar, there are a few combinations of partial derivatives that appear often in the world of PDEs. If
f:R3 — Rand 7: R® — RR?, then the following operators are worth remembering:

Gradient: Vf = (E)f 9 8f>

ox1’ 0xy” dx3

205

. . o 8’01 vy 803
Divergence: V - 7 = o Ton, T om

Uwg (9% 9v2 dor dvy dup du
Curl: Vx7= <ax2 ax3'8x3 aX1/ax1 ax2>

02 f 92 f 92 f
Laplacian: V2f = — 2 + — 2 4+ — 7/
aplacian f 8x% + 8x§ + axg

Example 14.1 (Fluid simulation). The flow of fluids like water and smoke is governed by the Navier-
Stokes equations, a system of PDEs in many variables. In particular, suppose a fluid is moving in some
region Q) C R3. We define the following variables, illustrated in Figure NUMBER:

o t €[0,00): Time
F(t) : QO — R3: The velocity of the fluid
t

) :
) : QO — R: The density of the fluid
t):

o(
p(t) : QO — R: The pressure of the fluid
o F(t) : O — R3: External forces like gravity on the fluid

If the fluid has viscosity u, then if we assume it is incompressible the Navier-Stokes equations state:

97 L
p(at +7- Vv) = -Vp+uV*+f

Here, V2T = 9v1/a:2 4 °02/ax3 + 9*v3/ax2; we think of the gradient V as a gradient in space rather than
time,ie. Vf = (%, %, %). This system of equations determines the time dynamics of fluid motion and
actually can be constructed by applying Newton's second law to tracking “particles” of fluid. Its statement,

however, involves not only derivatives in time % but also derivatives in space V, making it a PDE.

Example 14.2 (Maxwell’s equations). Maxwell’s equations determine the interaction of electric fields E
and magnetic fields B over time. As with the Navier-Stokes equations, we think of the gradient, divergence,
and curl as taking partial derivatives in space (and not time t). Then, Maxwell’s system (in “strong” form)
can be written:

Gauss'’s law for electric fields: V - E = eﬁ
0
Gauss's law for magnetism: V - B = 0
Faraday’s law: V x E = _Z;If

Ampere’s law: V X B= Ho <T+ €o>

Here, £9 and pg are physical constants and] encodes the density of electrical current. Just like the Navier-
Stokes equations, Maxwell’s equations related derivatives of physical quantities in time t to their derivatives
in space (given by curl and divergence terms).

206

Example 14.3 (Laplace’s equation). Suppose Q) is a domain in R* with boundary 0Q) and that we are
given a function g : 0Q) — R, illustrated in Figure NUMBER. We may wish to interpolate g to the interior
of Q). When Q) is an irreqular shape, however, our strategies for interpolation from Chapter 11 can break
down.

Suppose we define f(X) : QO — R to be the interpolating function. Then, one strategy inspired by our
approach to least-squares is to define an energy functional:

= [IVf@)3az

That is, E[f] measures the “total derivative” of f measured by taking the norm of its gradient and integrat-
ing this quantity over all of Q). Wildly fluctuating functions f will have high values of E[f] since the slope
V f will be large in many places; smooth and low-frequency functions f, on the other hand, will have small
E[f] since their slope will be small everywhere.! Then, we could ask that f interpolates g while being as
smooth as possible in the interior of () using the following optimization:

minimizes E[f]
such that f(X) = g(¥) Vx € 9Q)

This setup looks like optimizations we have solved in previous examples, but now our unknown is a function
f rather than a point in R"!

If f minimizes E, then E[f + h] > E[f] for all functions h(X). This statement is true even for small
perturbations E[f + ¢h)] as ¢ — 0. Dividing by ¢ and taking the limit as ¢ — 0, we must have $E[f +
eh||.—o = 0; this is just like setting directional derivatives of a function equal to zero to find its mznzma We
can simplify:

E[f + eh] :/ IVF(R) +eVh(T)|2dF
—/ IVF@)3 +2eVf (%) - VA(X) + || VA(Z)|3) d%
Differentiating shows:
—ELf +eh] Z/Q(ZVf(f)'Vh(%) + 2¢|| VA(%)|[3) 4%

CEf +ehlo =2 [[VF(%)- Vh(@)|d¥

This derivative must equal zero for all h, so in particular we can choose h(X) = 0 for all X € 0Q). Then,
applying integration by parts, we have:

SEU el = =2 | h(¥)V2f(%) ¥

This expression must equal zero for all (all!) perturbations h, so we must have V>f (%) = 0 for all % €
Q\IQ) (a formal proof is outside of the scope of our discussion). That is, the interpolation problem above

I The notation E[-] used here does not stand for “expectation” as it might in probability theory, but rather simply is
an “energy” functional; it is standard notation in areas of functional analysis.

207

can be solved using the following PDE:
V2f(X) =0
f(¥) = g(¥) V¥ € 9O

This equation is known as Laplace’s equation, and it can be solved using sparse positive definite linear
methods like what we covered in Chapter 10. As we have seen, it can be applied to interpolation problems for
irreqular domains Q); furthermore, E[f] can be augmented to measure other properties of f, e.g. how well f
approximates some noisy function fo, to derive related PDEs by paralleling the argument above.

Example 14.4 (Eikonal equation). Suppose (2 C IR" is some closed region of space. Then, we could take
d(X) to be a function measuring the distance from some point Xy to X completely within (). When () is
convex, we can write d in closed form:

d(X) = [|X = Zoll2-
As illustrated in Figure NUMBER, however, if () is non-convex or a more complicated domain like a surface,
distances become more complicated to compute. In this case, distance functions d satisfy the localized
condition known as the eikonal equation:

|Vd|2 =1.

If we can compute it, d can be used for tasks like planning paths of robots by minimizing the distance they
have to travel with the constraint that they only can move in Q).

Specialized algorithms known as fast marching methods are used to find estimates of d given Xy and
Q) by integrating the eikonal equation. This equation is nonlinear in the derivative Vd, so integration
methods for this equation are somewhat specialized, and proof of their effectiveness is complex. Interestingly
but unsurprisingly, many algorithms for solving the eikonal equation have structure similar to Dijkstra’s
algorithm for computing shortest paths along graphs.

Example 14.5 (Harmonic analysis). Different objects respond differently to vibrations, and in large part
these responses are functions of the geometry of the objects. For example, cellos and pianos can play the
same note, but even an inexperienced musician easily can distinguish between the sounds they make. From
a mathematical standpoint, we can take QO C R3 to be a shape represented either as a surface or a volume.
If we clamp the edges of the shape, then its frequency spectrum is given by solutions of the following
differential eigenvalue problem:

Vi =Af

f(x) =0Vx € 9Q),
where V2 is the Laplacian of Q) and 9Q) is the boundary of Q. Figure NUMBER shows examples of these
functions on different domains Q).

1t is easy to check that sin kx solves this problem when) is the interval [0,27t], for k € Z. In particular,
the Laplacian in one dimension is 9°/ax2, and thus we can check:

2
aax2 sinkx = aaxkcos kx
= —kZsinkx
sink-0=0
sink-2mr =0

Thus, the eigenfunctions are sin kx with eigenvalues —k>.

208

14.2 Basic definitions

Using the notation of CITE, we will assume that our unknown is some function f : R” — IR. For
equations of up to three variables, we will use subscript notation to denote partial derivatives:

_of
Jo= o

_of
fy = @/

_of
fo = 5xay’

and so on.
Partial derivatives usually are stated as relationships between two or more derivatives of f, as
in the following:

e Linear, homogeneous: fyy + fuy — fy =0

o Linear: fux — yfyy + f = xy?
e Nonlinear: f2, = f,

Generally, we really wish to find f : O — R for some () C R”. Just as ODEs were stated as
initial value problems, we will state most PDEs as boundary value problems. That is, our job will be
to fill in f in the interior of () given values on its boundary. In fact, we can think of the ODE initial
value problem this way: the domain is Q) = [0, 00), with boundary 9Q) = {0}, which is where we
provide input data. Figure NUMBER illustrates more complex examples. Boundary conditions
for these problems take many forms:

e Dirichlet conditions simply specify the value of f(X) on 0Q)
e Neumann conditions specify the derivatives of f(X) on 90}

e Mixed or Robin conditions combine these two

14.3 Model Equations

Recall from the previous chapter that we were able to understand many properties of ODEs by ex-
amining a model equation y' = ay. We can attempt to pursue a similar approach for PDEs, although
we will find that the story is more nuanced when derivatives are linked together.

As with the model equation for ODEs, we will study the single-variable linear case. We also will
restrict ourselves to second-order systems, that is, systems containing at most the second derivative
of u; the model ODE was first-order but here we need at least two orders to study how derivatives
interact in a nontrivial way.

A linear second-order PDE has the following general form:

of of

di:
—] axiaxj
1]

209

Formally, we might define the “gradient operator” as:

I d
V: <ax1,ax2,,axn>

You should check that this operator is reasonable notation in that expressions like V£, V - 7, and
V x @ all provide the proper expressions. In this notation, the PDE can be thought of as taking a
matrix form:

(VIAV 4V -b+o)f =0.

This form has much in common with our study of quadratic forms in conjugate gradients, and in
fact we usually characterize PDEs by the structure of A:

o If A is positive or negative definite, system is elliptic.

o If A is positive or negative semidefinite, the system is parabolic.

e If A has only one eigenvalue of different sign from the rest, the system is hyperbolic.
o If A satisfies none of the criteria, the system is ultrahyperbolic.

These criteria are listed approximately in order of the difficulty level of solving each type of equa-
tion. We consider the first three cases below and provide examples of corresponding behavior;
ultrahyperbolic equations do not appear as often in practice and require highly specialized tech-
niques for their solution.

TODO: Reduction to canonical form via eigenstuff of A (not in 205A)

14.3.1 Elliptic PDEs

Just as positive definite matrices allow for specialized algorithms like Cholesky decomposition
and conjugate gradients that simplify their inversion, elliptic PDEs have particularly strong struc-
ture that leads to effective solution techniques.

The model elliptic PDE is the Laplace equation, given by V?f = ¢ for some given function ¢ as
in Example 14.3. For instance, in two variables the Laplace equation becomes

fxx + fyy = &

Figure NUMBER illustrates some solutions of the Laplace equation for different choices of u and
f on a two-dimensional domain.

Elliptic equations have many important properties. Of particular theoretical and practical im-
portance is the idea of elliptic regularity, that solutions of elliptic PDEs automatically are smooth
functions in C*(Q)). This property is not immediately obvious: a second-order PDE in f only
requires that f be twice-differentiable to make sense, but in fact under weak conditions they au-
tomatically are infinitely differentiable. This property lends to the physical intuition that elliptic
equations represent stable physical equilbria like the rest pose of a stretched out rubber sheet.
Second-order elliptic equations in the form above also are guaranteed to admit solutions, unlike
PDEs in some other forms.

Example 14.6 (Poisson in one variable). The Laplace equation with ¢ = 0 is given the special name
Poisson’s equation. In one variable, it can be written " (x) = 0, which trivially is solved by f(x) =
ax + B. This equation is sufficient to examine possible boundary conditions on [a, b]:

210

e Dirichlet conditions for this equation simply specify f(a) and f(b); there is obviously a unique line
that goes through (a, f(a)) and (b, f (b)), which provides the solution to the equation.

o Neumann conditions would specify f'(a) and f'(b). But, f'(a) = f'(b) = a for f(x) = ax+ B.In
this way, boundary values for Neumann problems can be subject to compatibility conditions needed
to admit admit a solution. Furthermore, the choice of B does not affect the boundary conditions, so
when they are satisfied the solution is not unique.

14.3.2 Parabolic PDEs

Continuing to parallel the structure of linear algebra, positive semidefinite systems of equations
are only slightly more difficult to deal with than positive definite ones. In particular, positive
semidefinite matrices admit a null space which must be dealt with carefully, but in the remaining
directions the matrices behave the same as the definite case.

The heat equation is the model parabolic PDE. Suppose f(0; x,y) is a distribution of heat in
some region () C R? at time t = 0. Then, the heat equation determines how the heat diffuses over
time f as a function f(t; x,y):

)

ai; = aV?f,

where & > 0 and we once again think of V2 as the Laplacian in the space variables x and y, that is,
V2 = & /ax2 + /3,2, This equation must be parabolic, since there is the same coefficient « in front
of fxy and f,y, but f; does not figure into the equation.

Figure NUMBER illustrates a phenomenological interpretation of the heat equation. We can
think of V2f as measuring the convexity of f, as in Figure NUMBER(a). Thus, the heat equa-
tion increases u with time when its value is “cupped” upward, and decreases f otherwise. This
negative feedback is stable and leads to equilibrium as t — co.

There are two boundary conditions needed for the heat equation, both of which come with
straightforward physical interpretations:

e The distribution of heat f(0; x, y) at time t = 0 at all points (x,y) € Q

e Behavior of f when t > 0 at points (x,y) € dQ). These boundary conditions describe behav-
ior at the boundary of the domain. Dirichlet conditions here provide f(t;x,y) for all t > 0
and (x,y) € 9Q), corresponding to the situation in which an outside agent fixes the temper-
atures at the boundary of the domain. These conditions might occur if () is a piece of foil
sitting next to a heat source whose temperature is not significantly affected by the foil like a
large refrigerator or oven. Contrastingly, Neumann conditions specify the derivative of f in
the direction normal to the boundary d(), as in Figure NUMBER; they correspond to fixing
the flux of heat out of () caused by different types of insulation.

14.3.3 Hyperbolic PDEs

The final model equation is the wave equation, corresponding to the indefinite matrix case:

82
at{ — C2V2f =0

211

The wave equation is hyperbolic because the second derivative in time has opposite sign from the
two spatial derivatives. This equation determines the motion of waves across an elastic medium
like a rubber sheet; for example, it can be derived by applying Newton’s second law to points on
a piece of elastic, where x and y are positions on the sheet and f(f; x,y) is the height of the piece
of elastic at time .

Figure NUMBER illustrates a one-dimensional solution of the wave equation. Wave behavior
contrasts considerably with heat diffusion in that as t — co energy may not diffuse. In particular,
waves can bounce back and forth across a domain indefinitely. For this reason, we will see that
implicit integration strategies may not be appropriate for integrating hyperbolic PDEs because
they tend to damp out motion.

Boundary conditions for the wave equation are similar to those of the heat equation, but now
we must specify both f(0; x,y) and f;(0; x, y) at time zero:

e The conditions at t = 0 specify the position and velocity of the wave at the initial time.

e Boundary conditions on () determine what happens at the ends of the material. Dirichlet
conditions correspond to fixing the sides of the wave, e.g. plucking a cello string, which is
held flat at its two ends on the instrument. Neumann conditions correspond to leaving the
ends of the wave untouched like the end of a whip.

14.4 Derivatives as Operators

In PDEs and elsewhere, we can think of derivatives as operators acting on functions the same way
that matrices act on vectors. Our choice of notation often reflects this parallel: The derivative 4f/dx
looks like the product of an operator 4/dx and a function f. In fact, differentiation is a linear operator
just like matrix multiplication, since for all f,¢: R — Randa,b € R

D af(x) + bg(x) = a () + b g(x).

In fact, when we discretize PDEs for numerical solution, we can carry this analogy out com-
pletely. For example, consider a function f on [0, 1] discretized using n + 1 evenly-spaced samples,
as in Figure NUMBER. Recall that the space between two samples is h = 1/x. In Chapter 12, we
developed an approximation for the second derivative f”(x) :

i = LG 2@ £ £ o

Suppose our n samples of f(x) on [0,1] are yo = f(0),y1 = f(h),y2 = f(2h),...,yn = f(nh).
Then, applying our formula above gives a strategy for approximating f " at each grid point:

n— Ykl — 2Yk + Yk
Yy = L2

That is, the second derivative of a function on a grid of points can be computed using the 1— —

2—1 stencil illustrated in Figure NUMBER(a).

One subtlety we did not address is what happens at y(and y;,, since the formula above would
require y_; and y,41. In fact, this decision encodes the boundary conditions introduced in §14.2.
Keeping in mind that yo = f(0) and y,, = f(1), examples of possible boundary conditions for f
include:

212

e Dirichlet boundary conditions: y_; = y,4+1 = 0, that is, simply fix the value of y beyond the
endpoints

e Neumann boundary conditions: y_1 = yo and y,4+1 = y», encoding the boundary condition
f1(0) = f'(1) = 0.
e Periodic boundary conditions: y_1 = y, and y,+1 = Yo, making the identification f(0) =

f(1)

Suppose we stack the samples y; into a vector ¥ € R"™! and the samples y} into a second

vector @ € R"*!. Then, our construction above it is easy to see that #*@ = L;i, where L, is one of
the choices below:

-2 1 -1 1 -2 1 1
1 -2 1 1 -2 1 1 -2 1
1 -2 1 1 -2 1 1 -2 1
1 -2 1 1 -2 1 1 -2 1
1 -2 1 -1 1 1 -2
Dirichlet Neumann Periodic
. 2 .
That is, the matrix L can be thought of as a discretized version of the operator dd? acting on

i € R"*! rather than functions f : [0,1] — R.

We can write a similar approximation for V2f when we sample f : [0,1] x [0,1] — R with a
grid of values, as in Figure NUMBER. In particular, recall that in this case V2f = fix + fyy, 0 in
particular we can sum up x and y second derivatives as we did in the one-dimensional example
above. This leads to a doubled-over 1— — 2—1 stencil, as in Figure NUMBER. If we number our
samples as vy ¢ = f(kh, (h), then our formula for the Laplacian of f is in this case:

1
(V2Y)ie = 2 (Y—1),0 + Yie,(=1) T Y1), + Yoo e41) — 4Yke)

If we once again combine our samples of y and y” into i/ and @, then using a similar construction
and choice of boundary conditions we can once again write h?@ = L,jj. This two-dimensional
grid Laplacian L, appears in many image processing applications, where (k, £) is used to index
pixels on an image.

A natural question to ask after the discussion above is why we jumped to the second derivative
Laplacian in our discussion above rather than discretizing the first derivative f'(x). In principle,
there is no reason why we could not make similar matrices D implementing forward, backward,
or symmetric difference approximations of f’. A few technicalities, however, make this task some-
what more difficult, as detailed below.

Most importantly, we must decide which first derivative approximation to use. If we write v,
as the forward difference %(ykﬂ — k), for example, then we will be in the unnaturally asymmetric
position of needing a boundary condition at y, but not at y9. Contrastingly, we could use the
symmetric difference ﬁ(yk+1 — Yk—1), but this discretization suffers from a more subtle fencepost
problem illustrated in Figure NUMBER. In particular, this version of y, ignores the value of y;
and only looks at its neighbors yx_; and y;1, which can create artifacts since each row of D only
involves yj for either even or odd k but not both.

If we use forward or backward derivatives to avoid the fencepost problems, we lose an order of
accuracy and also suffer from the asymmetries described above. As with the leapfrog integration

213

algorithm in §13.4.2, one way to avoid these issues is to think of the derivatives as living on half
gridpoints, illustrated in Figure NUMBER. In the one-dimensional case, this change corresponds
to labeling the difference 7 (yx+1 — ¥k) as Yk+1/,. This technique of placing different derivatives
on vertices, edges, and centers of grid cells is particularly common in fluid simulation, which
maintains pressures, fluid velocities, and so on at locations that simplify calculations.

These subtleties aside, our main conclusion from this discussion is that if we discretize a func-
tion f(X) by keeping track of samples (x;, y;) then most reasonable approximations of derivatives
of f will be computable as a product LX for some matrix L. This observation completes the anal-
ogy: “Derivatives act on functions as matrices act on vectors.” Or in standardized exam notation:

Derivatives : Functions :: Matrices : Vectors

14.5 Solving PDEs Numerically

Much remains to be said about the theory of PDEs. Questions of existence and uniqueness as well
as the possibility of characterizing solutions to assorted PDEs leads to nuanced discussions using
advanced aspects of real analysis. While a complete understanding of these properties is needed
to prove effectiveness of PDE discretizations rigorously, we already have enough to suggest a few
techniques that are used in practice.

14.5.1 Solving Elliptic Equations

We already have done most of the work for solving elliptic PDEs in §14.4. In particular, suppose
we wish to solve a linear elliptic PDE of the form £f = g. Here L is a differential operator; for
example, to solve the Laplace’s equation we would take £ = V?, the Laplacian. Then, in §14.4
we showed that if we discretize f by taking a set of samples in a vector i with y; = f(x;), then a
corresponding approximation of £f can be written Lij for some matrix L. If we also discretize g
using samples in a vector b, then solving the elliptic PDE Lf = g is approximated by solving the
linear system Lij = b.

Example 14.7 (Elliptic PDE discretization). Suppose we wish to approximate solutions to f"(x) = g(x)
on [0,1] with boundary conditions f(0) = f(1) = 0. We will approximate f(x) with a vector ij € R"
sampling f as follows:

v f(h)
va| f(2h)
Y f(nh)

where h = 1/n+1. We do not add samples at x = 0 or x = 1 since the boundary conditions determine values
there. We will use b to hold an analogous set of values for g(x).

214

Given our boundary conditions, we discretize " (x) as ;5 Lij, where L is given by:

-2 1

Thus, our approximate solution to the PDE is given by j = W2L-1p.

Just as elliptic PDEs are the most straightforward PDEs to solve, their discretizations using
matrices as in the above example are the most straightforward to solve. In fact, generally the
discretization of an elliptic operator L is a positive definite and sparse matrix perfectly suited for the
solution techniques derived in Chapter 10.

Example 14.8 (Elliptic operators as matrices). Consider the matrix L from Example 14.7. We can show
L is negative definite (and hence the positive definite system —Lj = —h®b can be solved using conjugate
gradients) by noticing that —L = D' D for the matrix D € RU")*" given by:

This matrix is nothing more than the finite-differenced first derivative, so this observation parallels the
fact that #f/ax? = d/dax(df/dx). Thus, ¥' L¥ = —X'D'DX = —||DX||3 < 0, showing L is negative
semidefinite. It is easy to see DX = 0 exactly when X = 0, completing the proof that L is in fact negative
definite.

14.5.2 Solving Parabolic and Hyperbolic Equations

Parabolic and hyperbolic equations generally introduce a time variable into the formulation, which
also is differentiated but potentially to lower order. Since solutions to parabolic equations admit
many stability properties, numerical techniques for dealing with this time variable often are stable
and well-conditioned; contrastingly, more care must be taken to treat hyperbolic behavior and
prevent dampening of motion over time.

Semidiscrete Methods Probably the most straightforward approach to solving simple time-
dependent equations is to use a semidiscrete method. Here, we discretize the domain but not the
time variable, leading to an ODE that can be solved using the methods of Chapter 13.

Example 14.9 (Semidiscrete heat equation). Consider the heat equation in one variable, given by f; =
fxx, where f(t;x) represents the heat at position x and time t. As boundary data, the user provides a

215

function fo(x) such that f(0;x) = fo(x); we also attach the boundary x € {0,1} to a refrigerator and
thus enforce f(t;0) = f(;1) = 0.
Suppose we discretize the x variable by defining:

() = f(lt)
fa(t) = f(2h;t)
fu(t) = f(nh;t),

where as in Example 14.7 we take h = 1/n+1 and omit samples at x € {0,1} since they are provided by the
boundary conditions.

Combining these f;'s, we can define f(t) : R — R" to be the semidiscrete version of f where we have
sampled in space but not time. By our construction, the semidiscrete PDE approximation is the ODE given

by f'(t) = Lf(#).

The previous example shows an instance of a very general pattern for parabolic equations.
When we simulate continuous phenomena like heat moving across a domain or chemicals diffusing
through a membrane, there is usually one time variable and then several spatial variables that are
differentiated in an elliptic way. When we discretize this system semidiscretely, we can then use
ODE integration strategies for their solution. In fact, in the same way that the matrix used to solve
a linear elliptic equation as in §14.5.1 generally is positive or negative definite, when we write a
semidiscrete parabolic PDE f = Lf, the matrix L usually is negative definite. This observation
implies that f solving this continuous ODE is unconditionally stable, since negative eigenvalues
are damped out over time.

As outlined in the previous chapter, we have many choices for solving the ODE in time re-
sulting from a spatial discretization. If time steps are small and limited, explicit methods may
be acceptable. Implicit solvers often are applied to solving parabolic PDEs; diffusive behavior
of implicit Euler may generate inaccuracy but behaviorally speaking appears similar to diffusion
provided by the heat equation and may be acceptable even with fairly large time steps. Hyper-
bolic PDEs may require implicit steps for stability, but advanced integrators such as “symplectic
integrators” can prevent oversmoothing caused by these types of steps.

One contrasting approach is to write solutions of semidiscrete systems f' = Lf in terms of
eigenvectors of L. Suppose @y, ..., U, are eigenvectors of L with eigenvalues Ay,..., A, and that
we know f(0) = ¢17; + - - - + ¢, Ty Then, recall that the solution of f' = Lf is given by:

f(t) = Z ciei's,;

This formula is nothing new beyond §5.1.2, which we introduced during our discussion of eigen-
vectors and eigenvalues. The eigenvectors of L, however, may have physical meaning in the case
of a semidiscrete PDE, as in Example 14.5, which showed that eigenvectors of Laplacians L cor-
respond to different resonant vibrations of the domain. Thus, this eigenvector approach can be
applied to develop, for example, “low-frequency approximations” of the initial value data by trun-
cating the sum above over i, with the advantage that t dependence is known exactly without time

stepping.

216

Example 14.10 (Eigenfunctions of the Laplacian). Figure NUMBER shows eigenvectors of the matrix
L from Example 14.7. Eigenvectors with low eigenvalues correspond to low-frequency functions on [0, 1]
with values fixed on the endpoints and can be good approximations of f(x) when it is relatively smooth.

Fully Discrete Methods Alternatively, we might treat the space and time variables more demo-
cratically and discretize them both simultaneously. This strategy yields a system of equations to
solve more like §14.5.1. This method is easy to formulate by paralleling the elliptic case, but the
resulting linear systems of equations can be large if dependence between time steps has a global
reach.

Example 14.11 (Fully-discrete heat diffusion). Explicit, implicit, Crank-Nicolson. Not covered in CS
205A.

It is important to note that in the end, even semidiscrete methods can be considered fully
discrete in that the time-stepping ODE method still discretizes the t variable; the difference is
mostly for classification of how methods were derived. One advantage of semidiscrete techniques,
however, is that they can adjust the time step for t depending on the current iterate, e.g. if objects
are moving quickly in a physical simulation it might make sense to take more time steps and
resolve this motion. Some methods even adjust the discretization of the domain of x values in
case more resolution is needed near local discontinuities or other artifacts.

14.6 Method of Finite Elements

Not covered in 205A.

14.7 Examples in Practice

In lieu of a rigorous treatment of all commonly-used PDE techniques, in this section we provide
examples of where they appear in practice in computer science.

14.7.1 Gradient Domain Image Processing
14.7.2 Edge-Preserving Filtering
14.7.3 Grid-Based Fluids

14.8 To Do
e More on existence/uniqueness
e CFL conditions
e Lax equivalence theorem

e Consistency, stability, and friends

217

14.9 Problems

e Show 1d Laplacian can be factored as D' D for first derivative matrix D

e Solve first-order PDE

218

Acknowledgments

[Discussion goes here]

I owe many thanks to the students of Stanford’s CS 205A, Fall 2013 for catching numerous
typos and mistakes in the development of this book. The following is a no-doubt incomplete list
of students who contributed to this effort: Tao Du, Lennart Jansson, Miles Johnson, Luke Knepper,
Minjae Lee, Nisha Masharani, John Reyna, William Song, Ben-Han Sung, Martina Troesch, Ozhan
Turgut, Patrick Ward, Joongyeub Yeo, and Yang Zhao.

Special thanks to Jan Heiland and Tao Du for helping clarify the derivation of the BFGS algo-
rithm.

[More discussion here]

219

	I Preliminaries
	Mathematics Review
	Preliminaries: Numbers and Sets
	Vector Spaces
	Defining Vector Spaces
	Span, Linear Independence, and Bases
	Our Focus: Rn

	Linearity
	Matrices
	Scalars, Vectors, and Matrices
	Model Problem: A=

	Non-Linearity: Differential Calculus
	Differentiation
	Optimization

	Problems

	Numerics and Error Analysis
	Storing Numbers with Fractional Parts
	Fixed Point Representations
	Floating Point Representations
	More Exotic Options

	Understanding Error
	Classifying Error
	Conditioning, Stability, and Accuracy

	Practical Aspects
	Larger-Scale Example: Summation

	Problems

	II Linear Algebra
	Linear Systems and the LU Decomposition
	Solvability of Linear Systems
	Ad-Hoc Solution Strategies
	Encoding Row Operations
	Permutation
	Row Scaling
	Elimination

	Gaussian Elimination
	Forward Substitution
	Back Substitution
	Analysis of Gaussian Elimination

	LU Factorization
	Constructing the Factorization
	Implementing LU

	Problems

	Designing and Analyzing Linear Systems
	Solution of Square Systems
	Regression
	Least Squares
	Additional Examples

	Special Properties of Linear Systems
	Positive Definite Matrices and the Cholesky Factorization
	Sparsity

	Sensitivity Analysis
	Matrix and Vector Norms
	Condition Numbers

	Problems

	Column Spaces and QR
	The Structure of the Normal Equations
	Orthogonality
	Strategy for Non-Orthogonal Matrices

	Gram-Schmidt Orthogonalization
	Projections
	Gram-Schmidt Orthogonalization

	Householder Transformations
	Reduced QR Factorization
	Problems

	Eigenvectors
	Motivation
	Statistics
	Differential Equations

	Spectral Embedding
	Properties of Eigenvectors
	Symmetric and Positive Definite Matrices
	Specialized PropertiesThis section can be skipped if readers lack sufficient background but is included for completeness.

	Computing Eigenvalues
	Power Iteration
	Inverse Iteration
	Shifting
	Finding Multiple Eigenvalues

	Sensitivity and Conditioning
	Problems

	Singular Value Decomposition
	Deriving the SVD
	Computing the SVD

	Applications of the SVD
	Solving Linear Systems and the Pseudoinverse
	Decomposition into Outer Products and Low-Rank Approximations
	Matrix Norms
	The Procrustes Problem and Alignment
	Principal Components Analysis (PCA)

	Problems

	III Nonlinear Techniques
	Nonlinear Systems
	Single-Variable Problems
	Characterizing Problems
	Continuity and Bisection
	Analysis of Root-Finding
	Fixed Point Iteration
	Newton's Method
	Secant Method
	Hybrid Techniques
	Single-Variable Case: Summary

	Multivariable Problems
	Newton's Method
	Making Newton Faster: Quasi-Newton and Broyen

	Conditioning
	Problems

	Unconstrained Optimization
	Unconstrained Optimization: Motivation
	Optimality
	Differential Optimality
	Optimality via Function Properties

	One-Dimensional Strategies
	Newton's Method
	Golden Section Search

	Multivariable Strategies
	Gradient Descent
	Newton's Method
	Optimization without Derivatives: BFGS

	Problems

	Constrained Optimization
	Motivation
	Theory of Constrained Optimization
	Optimization Algorithms
	Sequential Quadratic Programming (SQP)
	Barrier Methods

	Convex Programming
	Problems

	Iterative Linear Solvers
	Gradient Descent
	Deriving the Iterative Scheme
	Convergence

	Conjugate Gradients
	Motivation
	Suboptimality of Gradient Descent
	Generating A-Conjugate Directions
	Formulating the Conjugate Gradients Algorithm
	Convergence and Stopping Conditions

	Preconditioning
	CG with Preconditioning
	Common Preconditioners

	Other Iterative Schemes
	Problems

	IV Functions, Derivatives, and Integrals
	Interpolation
	Interpolation in a Single Variable
	Polynomial Interpolation
	Alternative Bases
	Piecewise Interpolation
	Gaussian Processes and Kriging

	Multivariable Interpolation
	Theory of Interpolation
	Linear Algebra of Functions
	Approximation via Piecewise Polynomials

	Problems

	Numerical Integration and Differentiation
	Motivation
	Quadrature
	Interpolatory Quadrature
	Quadrature Rules
	Newton-Cotes Quadrature
	Gaussian Quadrature
	Adaptive Quadrature
	Multiple Variables
	Conditioning

	Differentiation
	Differentiating Basis Functions
	Finite Differences
	Choosing the Step Size
	Integrated Quantities

	Problems

	Ordinary Differential Equations
	Motivation
	Theory of ODEs
	Basic Notions
	Existence and Uniqueness
	Model Equations

	Time-Stepping Schemes
	Forward Euler
	Backward Euler
	Trapezoidal Method
	Runge-Kutta Methods
	Exponential Integrators

	Multivalue Methods
	Newmark Schemes
	Staggered Grid

	To Do
	Problems

	Partial Differential Equations
	Motivation
	Basic definitions
	Model Equations
	Elliptic PDEs
	Parabolic PDEs
	Hyperbolic PDEs

	Derivatives as Operators
	Solving PDEs Numerically
	Solving Elliptic Equations
	Solving Parabolic and Hyperbolic Equations

	Method of Finite Elements
	Examples in Practice
	Gradient Domain Image Processing
	Edge-Preserving Filtering
	Grid-Based Fluids

	To Do
	Problems

