Data.Array.Repa.Algorithms.FFT
Description
Fast computation of Discrete Fourier Transforms using the Cooley-Tuckey algorithm. Time complexity is O(n log n) in the size of the input.
This uses a naive divide-and-conquer algorithm, the absolute performance is about 50x slower than FFTW in estimate mode.
Documentation
isPowerOfTwo :: Int -> BoolSource
Check if an Int
is a power of two.
fft3d :: Mode -> Array DIM3 Complex -> Array DIM3 ComplexSource
Compute the DFT of a 3d array. Array dimensions must be powers of two else error
.