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This draft gives insufficient mention to many people who helped imple-
ment LISP and who contributed ideas. Suggestions for improvements in that
directions are particularly welcome. Facts about the history of FUNARG and
uplevel addressing generally are especially needed.

1 Introduction

This paper concentrates on the development of the basic ideas and distin-
guishes two periods - Summer 1956 through Summer 1958 when most of the
key ideas were developed (some of which were implemented in the FOR-
TRAN based FLPL), and Fall 1958 through 1962 when the programming
language was implemented and applied to problems of artificial intelligence.
After 1962, the development of LISP became multi-stranded, and different
ideas were pursued in different places.

Except where I give credit to someone else for an idea or decision, I
should be regarded as tentatively claiming credit for it or else regarding
it as a consequence of previous decisions. However, I have made mistakes
about such matters in the past, and I have received very little response to
requests for comments on drafts of this paper. It is particularly easy to take
as obvious a feature that cost someone else considerable thought long ago.
As the writing of this paper approaches its conclusion, I have become aware
of additional sources of information and additional areas of uncertainty.

As a programming language, LISP is characterized by the following ideas:
computing with symbolic expressions rather than numbers, representation of
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symbolic expressions and other information by list structure in the memory
of a computer, representation of information in external media mostly by
multi-level lists and sometimes by S-expressions, a small set of selector and
constructor operations expressed as functions, composition of functions as a
tool for forming more complex functions, the use of conditional expressions
for getting branching into function definitions, the recursive use of conditional
expressions as a sufficient tool for building computable functions, the use of
λ-expressions for naming functions, the representation of LISP programs as
LISP data, the conditional expression interpretation of Boolean connectives,
the LISP function eval that serves both as a formal definition of the language
and as an interpreter, and garbage collection as a means of handling the
erasure problem. LISP statements are also used as a command language
when LISP is used in a time-sharing environment.

Some of these ideas were taken from other languages, but most were new.
Towards the end of the initial period, it became clear that this combination
of ideas made an elegant mathematical system as well as a practical pro-
gramming language. Then mathematical neatness became a goal and led to
pruning some features from the core of the language. This was partly moti-
vated by esthetic reasons and partly by the belief that it would be easier to
devise techniques for proving programs correct if the semantics were compact
and without exceptions. The results of (Cartwright 1976) and (Cartwright
and McCarthy 1978), which show that LISP programs can be interpreted as
sentences and schemata of first order logic, provide new confirmation of the
original intuition that logical neatness would pay off.

2 LISP prehistory - Summer 1956 through

Summer 1958.

My desire for an algebraic list processing language for artificial intelligence
work on the IBM 704 computer arose in the summer of 1956 during the
Dartmouth Summer Research Project on Artificial Intelligence which was the
first organized study of AI. During this meeting, Newell, Shaw and Simon
described IPL 2, a list processing language for Rand Corporation’s JOHN-
NIAC computer in which they implemented their Logic Theorist program.
There was little temptation to copy IPL, because its form was based on a
JOHNNIAC loader that happened to be available to them, and because the
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FORTRAN idea of writing programs algebraically was attractive. It was
immediately apparent that arbitrary subexpressions of symbolic expressions
could be obtained by composing the functions that extract immediate subex-
pressions, and this seemed reason enough to go to an algebraic language.

There were two motivations for developing a language for the IBM 704.
First, IBM was generously establishing a New England Computation Center
at M.I.T. which Dartmouth would use. Second, IBM was undertaking to
develop a program for proving theorems in plane geometry (based on an idea
of Marvin Minsky’s), and I was to serve as a consultant to that project.
At the time, IBM looked like a good bet to pursue artificial intelligence
research vigorously, and further projects were expected. It was not then clear
whether IBM’s FORTRAN project would lead to a language within which
list processing could conveniently be carried out or whether a new language
would be required. However, many considerations were independent of how
that might turn out.

Apart from consulting on the geometry program, my own research in arti-
ficial intelligence was proceeding along the lines that led to the Advice Taker
proposal in 1958 (McCarthy 1959). This involved representing information
about the world by sentences in a suitable formal language and a reasoning
program that would decide what to do by making logical inferences. Repre-
senting sentences by list structure seemed appropriate - it still is - and a list
processing language also seemed appropriate for programming the operations
involved in deduction - and still is.

This internal representation of symbolic information gives up the familiar
infix notations in favor of a notation that simplifies the task of programming
the substantive computations, e.g. logical deduction or algebraic simplifica-
tion, differentiation or integration. If customary notations are to be used
externally, translation programs must be written. Thus most LISP pro-
grams use a prefix notation for algebraic expressions, because they usually
must determine the main connective before deciding what to do next. In this
LISP differs from almost every other symbolic computation system. COMIT,
FORMAC, and Formula Algol programs all express the computations as op-
erations on some approximation to the customary printed forms of symbolic
expressions. SNOBOL operates on character strings but is neutral on how
character strings are used to represent symbolic information. This feature
probably accounts for LISP’s success in competition with these languages,
especially when large programs have to be written. The advantage is like
that of binary computers over decimal - but larger.
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(In the late 1950s, neat output and convenient input notation was not
generally considered important. Programs to do the kind of input and output
customary today wouldn’t even fit in the memories available at that time.
Moreover, keypunches and printers with adequate character sets didn’t exist).

The first problem was how to do list structure in the IBM 704. This
computer has a 36 bit word, and two 15 bit parts, called the address and
decrement, were distinguished by special instructions for moving their con-
tents to and from the 15 bit index registers. The address of the machine
was 15 bits, so it was clear that list structure should use 15 bit pointers.
Therefore, it was natural to consider the word as divided into 4 parts, the
address part, the decrement part, the prefix part and the tag part. The last
two were three bits each and separated from each other by the decrement so
that they could not be easily combined into a single six bit part.

At this point there was some indecision about what the basic operators
should be, because the operation of extracting a part of the word by masking
was considered separately from the operation of taking the contents of a word
in memory as a function of its address. At the time, it seemed dubious to
regard the latter operation as a function, since its value depended on the
contents of memory at the time the operation was performed, so it didn’t act
like a proper mathematical function. However, the advantages of treating it
grammatically as a function so that it could be composed were also apparent.

Therefore, the initially proposed set of functions included cwr, standing
for “Contents of the Word in Register number” and four functions that ex-
tracted the parts of the word and shifted them to a standard position at the
right of the word. An additional function of three arguments that would also
extract an arbitrary bit sequence was also proposed.

It was soon noticed that extraction of a subexpression involved composing
the extraction of the address part with cwr and that continuing along the list
involved composing the extraction of the decrement part with cwr. Therefore,
the compounds car, standing for “Contents of the Address part of Register
number”, and its analogs cdr, cpr, and ctr were defined. The motivation
for implementing car and cdr separately was strengthened by the vulgar fact
that the IBM 704 had instructions (connected with indexing) that made these
operations easy to implement. A construct operation for taking a word off
the free storage list and stuffing it with given contents was also obviously
required. At some point a cons(a,d,p,t) was defined, but it was regarded as
a subroutine and not as a function with a value. This work was done at
Dartmouth, but not on a computer, since the New England Computation
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Center was not expected to receive its IBM 704 for another year.
In connection with IBM’s plane geometry project, Nathaniel Rochester

and Herbert Gelernter (on the advice of McCarthy) decided to implement a
list processing language within FORTRAN, because this seemed to the the
easiest way to get started, and, in those days, writing a compiler for a new
language was believed to take many man-years. This work was undertaken by
Herbert Gelernter and Carl Gerberich at IBM and led to FLPL, standing for
FORTRAN List Processing Language. Gelernter and Gerberich noticed that
cons should be a function, not just a subroutine, and that its value should
be the location of the word that had been taken from the free storage list.
This permitted new expressions to be constructed out of subsubexpressions
by composing occurrences of cons.

While expressions could be handled easily in FLPL, and it was used suc-
cessfully for the Geometry program, it had neither conditional expressions
nor recursion, and erasing list structure was handled explicitly by the pro-
gram.

I invented conditional expressions in connection with a set of chess le-
gal move routines I wrote in FORTRAN for the IBM 704 at M.I.T. during
1957-58. This program did not use list processing. The IF statement pro-
vided in FORTRAN 1 and FORTRAN 2 was very awkward to use, and it
was natural to invent a function XIF(M,N1,N2) whose value was N1 or N2
according to whether the expression M was zero or not. The function short-
ened many programs and made them easier to understand, but it had to
be used sparingly, because all three arguments had to be evaluated before
XIF was entered, since XIF was called as an ordinary FORTRAN function
though written in machine language. This led to the invention of the true
conditional expression which evaluates only one of N1 and N2 according to
whether M is true or false and to a desire for a programming language that
would allow its use.

A paper defining conditional expressions and proposing their use in Algol
was sent to the Communications of the ACM but was arbitrarily demoted to
a letter to the editor, because it was very short.

I spent the summer of 1958 at the IBM Information Research Department
at the invitation of Nathaniel Rochester and chose differentiating algebraic
expressions as a sample problem. It led to the following innovations beyond
FLPL:

a. Writing recursive function definitions using conditional expressions.
The idea of differentiation is obviously recursive, and conditional expressions
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allowed combining the cases into a single formula.
b. The maplist function that forms a list of applications of a functional

argument to the elements of a list. This was obviously wanted for differenti-
ating sums of arbitrarily many terms, and with a slight modification, it could
be applied to differentiating products. (The original form was what is now
called mapcar).

c. To use functions as arguments, one needs a notation for functions,
and it seemed natural to use the λ-notation of Church (1941). I didn’t
understand the rest of his book, so I wasn’t tempted to try to implement his
more general mechanism for defining functions. Church used higher order
functionals instead of using conditional expressions. Conditional expressions
are much more readily implemented on computers.

d. The recursive definition of differentiation made no provision for erasure
of abandoned list structure. No solution was apparent at the time, but the
idea of complicating the elegant definition of differentiation with explicit
erasure was unattractive. Needless to say, the point of the exercise was not
the differentiation program itself, several of which had already been written,
but rather clarification of the operations involved in symbolic computation.

In fact, the differentiation program was not implemented that summer,
because FLPL allows neither conditional expressions nor recursive use of
subroutines. At this point a new language was necessary, since it was very
difficult both technically and politically to tinker with Fortran, and neither
conditional expressions nor recursion could be implemented with machine
language Fortran functions - not even with “functions” that modify the code
that calls them. Moreover, the IBM group seemed satisfied with FLPL as
it was and did not want to make the vaguely stated but obviously drastic
changes required to allow conditional expressions and recursive definition.
As I recall, they argued that these were unnecessary.

3 The implementation of LISP

In the Fall of 1958, I became Assistant Professor of Communication Sciences
(in the EE Department) at M.I.T., and Marvin Minsky (then an assistant
professor in the Mathematics Department) and I started the M.I.T. Artifi-
cial Intelligence Project. The Project was supported by the M.I.T. Research
Laboratory of Electronics which had a contract from the armed services that
permitted great freedom to the Director, Professor Jerome Wiesner, in ini-
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tiating new projects that seemed to him of scientific interest. No written
proposal was ever made. When Wiesner asked Minsky and me what we
needed for the project, we asked for a room, two programmers, a secretary
and a keypunch, and he asked us to also undertake the supervision of some
of the six mathematics graduate students that R.L.E. had undertaken to
support.

The implementation of LISP began in Fall 1958. The original idea was
to produce a compiler, but this was considered a major undertaking, and we
needed some experimenting in order to get good conventions for subroutine
linking, stack handling and erasure. Therefore, we started by hand-compiling
various functions into assembly language and writing subroutines to provide
a LISP ”environment”. These included programs to read and print list struc-
ture. I can’t now remember whether the decision to use parenthesized list
notation as the external form of LISP data was made then or whether it had
already been used in discussing the paper differentiation program.

The programs to be hand-compiled were written in an informal notation
called M-expressions intended to resemble FORTRAN as much as possible.
Besides FORTRAN-like assignment statements and go tos, the language
allowed conditional expressions and the basic functions of LISP. Allowing
recursive function definitions required no new notation from the function
definitions allowed in FORTRAN I - only the removal of the restriction -
as I recall, unstated in the FORTRAN manual - forbidding recursive defini-
tions. The M-notation also used brackets instead of parentheses to enclose
the arguments of functions in order to reserve parentheses for list-structure
constants. It was intended to compile from some approximation to the M-
notation, but the M-notation was never fully defined, because representing
LISP functions by LISP lists became the dominant programming language
when the interpreter later became available. A machine readable M-notation
would have required redefinition, because the pencil-and-paper M-notation
used characters unavailable on the IBM 026 key punch.

The READ and PRINT programs induced a de facto standard external
notation for symbolic information, e.g. representing x + 3y + z by (PLUS
X (TIMES 3 Y) Z) and (∀x)(P (x) ∨Q(x, y) by (ALL (X) (OR (P X) (Q X
Y))). Any other notation necessarily requires special programming, because
standard mathematical notations treat different operators in syntactically
different ways. This notation later came to be called “Cambridge Polish”,
because it resembled the prefix notation of Lukasiewicz, and because we
noticed that Quine had also used a parenthesized prefix notation.
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The erasure problem also had to be considered, and it was clearly un-
aesthetic to use explicit erasure as did IPL. There were two alternatives.
The first was to erase the old contents of a program variable whenever it
was updated. Since the car and cdr operations were not to copy structure,
merging list structure would occur, and erasure would require a system of
reference counts. Since there were only six bits left in a word, and these were
in separated parts of the word, reference counts seemed infeasible without a
drastic change in the way list structures were represented. (A list handling
scheme using reference counts was later used by Collins (1960) on a 48 bit
CDC computer).

The second alternative is garbage collection in which storage is abandoned
until the free storage list is exhausted, the storage accessible from program
variables and the stack is marked, and the unmarked storage is made into
a new free storage list. Once we decided on garbage collection, its actual
implementation could be postponed, because only toy examples were being
done.

At that time it was also decided to use SAVE and UNSAVE routines
that use a single contiguous public stack array to save the values of variables
and subroutine return addresses in the implementation of recursive subrou-
tines. IPL built stacks as list structure and their use had to be explicitly
programmed. Another decision was to give up the prefix and tag parts of
the word, to abandon cwr, and to make cons a function of two arguments.
This left us with only a single type - the 15 bit address - so that the language
didn’t require declarations.

These simplifications made LISP into a way of describing computable
functions much neater than the Turing machines or the general recursive
definitions used in recursive function theory. The fact that Turing machines
constitute an awkward programming language doesn’t much bother recur-
sive function theorists, because they almost never have any reason to write
particular recursive definitions, since the theory concerns recursive functions
in general. They often have reason to prove that recursive functions with
specific properties exist, but this can be done by an informal argument with-
out having to write them down explicitly. In the early days of computing,
some people developed programming languages based on Turing machines;
perhaps it seemed more scientific. Anyway, I decided to write a paper de-
scribing LISP both as a programming language and as a formalism for doing
recursive function theory. The paper was Recursive functions of symbolic ex-
pressions and their computation by machine, part I (McCarthy 1960). Part
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II was never written but was intended to contain applications to computing
with algebraic expressions. The paper had no influence on recursive function
theorists, because it didn’t address the questions that interested them.

One mathematical consideration that influenced LISP was to express pro-
grams as applicative expressions built up from variables and constants using
functions. I considered it important to make these expressions obey the
usual mathematical laws allowing replacement of expressions by expressions
giving the same value. The motive was to allow proofs of properties of pro-
grams using ordinary mathematical methods. This is only possible to the
extent that side-effects can be avoided. Unfortunately, side-effects are often
a great convenience when computational efficiency is important, and “func-
tions” with side-effects are present in LISP. However, the so-called pure LISP
is free of side-effects, and (Cartwright 1976) and (Cartwright and McCarthy
1978) show how to represent pure LISP programs by sentences and schemata
in first order logic and prove their properties. This is an additional vindi-
cation of the striving for mathematical neatness, because it is now easier to
prove that pure LISP programs meet their specifications than it is for any
other programming language in extensive use. (Fans of other programming
languages are challenged to write a program to concatenate lists and prove
that the operation is associative).

Another way to show that LISP was neater than Turing machines was
to write a universal LISP function and show that it is briefer and more
comprehensible than the description of a universal Turing machine. This was
the LISP function eval[e,a], which computes the value of a LISP expression
e - the second argument a being a list of assignments of values to variables.
(a is needed to make the recursion work). Writing eval required inventing
a notation representing LISP functions as LISP data, and such a notation
was devised for the purposes of the paper with no thought that it would be
used to express LISP programs in practice. Logical completeness required
that the notation used to express functions used as functional arguments be
extended to provide for recursive functions, and the LABEL notation was
invented by Nathaniel Rochester for that purpose. D.M.R. Park pointed out
that LABEL was logically unnecessary since the result could be achieved
using only LAMBDA - by a construction analogous to Church’s Y-operator,
albeit in a more complicated way.

S.R. Russell noticed that eval could serve as an interpreter for LISP,
promptly hand coded it, and we now had a programming language with an
interpreter.

9



The unexpected appearance of an interpreter tended to freeze the form
of the language, and some of the decisions made rather lightheartedly for the
“Recursive functions ...” paper later proved unfortunate. These included
the COND notation for conditional expressions which leads to an unneces-
sary depth of parentheses, and the use of the number zero to denote the
empty list NIL and the truth value false. Besides encouraging pornographic
programming, giving a special interpretation to the address 0 has caused
difficulties in all subsequent implementations.

Another reason for the initial acceptance of awkwardnesses in the internal
form of LISP is that we still expected to switch to writing programs as M-
expressions. The project of defining M-expressions precisely and compiling
them or at least translating them into S-expressions was neither finalized nor
explicitly abandoned. It just receded into the indefinite future, and a new
generation of programmers appeared who preferred internal notation to any
FORTRAN-like or ALGOL-like notation that could be devised.

4 From LISP 1 to LISP 1.5

a. Property lists. The idea of providing each atom with a list of properties
was present in the first assembly language implementation. It was also one
of the theoretical ideas of the Advice Taker, although the Advice Taker (Mc-
Carthy 1959) would have required a property list for any expression about
which information was known that did not follow from its structure. The
READ and PRINT programs required that the print names of atoms be ac-
cessible, and as soon as function definition became possible, it was necessary
to indicate whether a function was a SUBR in machine code or was an EXPR
represented by list structure. Several functions dealing with property lists
were also made available for application programs which made heavy use of
them.

b. Insertion of elements in lists and their deletion. One of the original
advertised virtues of list processing for AI work was the ability to insert
and delete elements of lists. Unfortunately, this facility coexists uneasily
with shared list structure. Moreover, operations that insert and delete don’t
have a neat representation as functions. LISP has them in the form of the
rplaca and rplacd pseudo-functions, but programs that use them cannot be
conveniently represented in logic, because, regarded as functions, they don’t
permit replacement of equals by equals.
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c. Numbers. Many computations require both numbers and symbolic
expressions. Numbers were originally implemented in LISP I as lists of atoms,
and this proved too slow for all but the simplest computations. A reasonably
efficient implementation of numbers as atoms in S-expressions was made
in LISP 1.5, but in all the early LISPs, numerical computations were still
10 to 100 times slower than in FORTRAN. Efficient numerical computation
requires some form of typing in the source language and a distinction between
numbers treated by themselves and as elements of S-expressions. Some recent
versions of LISP allow distinguishing types, but at the time, this seemed
incompatible with other features.

d. Free variables. In all innocence, James R. Slagle programmed the
following LISP function definition and complained when it didn’t work right:

testr[x, p, f, u]← if p[x] then f [x]

else if atom[x] then u[]

else testr[cdr[x], p, f, λ : testr[car[x], p, f, u]].

The object of the function is to find a subexpression of x satisfying p[x]
and return f [x]. If the search is unsuccessful, then the continuation function
u[] of no arguments is to be computed and its value returned. The difficulty
was that when an inner recursion occurred, the value of car[x] wanted was the
outer value, but the inner value was actually used. In modern terminology,
lexical scoping was wanted, and dynamic scoping was obtained.

I must confess that I regarded this difficulty as just a bug and expressed
confidence that Steve Russell would soon fix it. He did fix it but by inventing
the so-called FUNARG device that took the lexical environment along with
the functional argument. Similar difficulties later showed up in Algol 60,
and Russell’s turned out to be one of the more comprehensive solutions to
the problem. While it worked well in the interpreter, comprehensiveness and
speed seem to be opposed in compiled code, and this led to a succession of
compromises. Unfortunately, time did not permit writing an appendix giving
the history of the problem, and the interested reader is referred to (Moses
1970) as a place to start. (David Park tells me that Patrick Fischer also had
a hand in developing the FUNARG device).

e. The “program feature”. Besides composition of functions and con-
ditional expressions, LISP also allows sequential programs written with as-
signment statements and go tos. Compared to the mathematically elegant
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recursive function definition features, the “program feature” looks like a hasty
afterthought. This is not quite correct; the idea of having sequential programs
in LISP antedates that of having recursive function definition. However, the
notation LISP uses for PROGs was definitely an afterthought and is far from
optimal.

f. Once the eval interpreter was programmed, it became available to the
programmer, and it was especially easy to use because it interprets LISP
programs expressed as LISP data. In particular, eval made possible FEX-
PRS and FSUBRS which are ”functions” that are not given their actual
arguments but are given the expressions that evaluate to the arguments and
must call eval themselves when they want the expressions evaluated. The
main application of this facility is to functions that don’t always evaluate all
of their arguments; they evaluate some of them first, and then decide which
others to evaluate. This facility resembles Algol’s call-by-name but is more
flexible, because eval is explicitly available. A first order logic treatment of
“extensional” FEXPRs and FSUBRs now seems possible.

g. Since LISP works with lists, it was also convenient to provide for
functions with variable numbers of arguments by supplying them with a list
of arguments rather than the separate arguments.

Unfortunately, none of the above features has been given a comprehensive
and clear mathematical semantics in connection with LISP or any other
programming language. The best attempt in connection with LISP is Michael
Gordon’s (1973), but it is too complicated.

h. The first attempt at a compiler was made by Robert Brayton, but
was unsuccessful. The first successful LISP compiler was programmed by
Timothy Hart and Michael Levin. It was written in LISP and was claimed
to be the first compiler written in the language to be compiled.

Many people participated in the initial development of LISP, and I haven’t
been able to remember all their contributions and must settle, at this writing,
for a list of names. I can remember Paul Abrahams, Robert Brayton, Daniel
Edwards, Patrick Fischer, Phyllis Fox, Saul Goldberg, Timothy Hart, Louis
Hodes, Michael Levin, David Luckham, Klim Maling, Marvin Minsky, David
Park, Nathaniel Rochester of IBM, and Steve Russell.

Besides work on the LISP system, many applications were programmed,
and this experience affected the system itself. The main applications that I
can remember are a program by Rochester and Goldberg on symbolic com-
putation of impedances and other functions associated with electrical net-
works, J.R. Slagle’s thesis work on symbolic integration directed by Minsky,
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and Paul Abrahams’ thesis on proof-checking.

5 Beyond LISP 1.5

As a programming language LISP had many limitations. Some of the most
evident in the early 1960s were ultra-slow numerical computation, inability
to represent objects by blocks of registers and garbage collect the blocks, and
lack of a good system for input-output of symbolic expressions in conventional
notations. All these problems and others were to be fixed in LISP 2. In the
meantime, we had to settle for LISP 1.5 developed at M.I.T. which corrected
only the most glaring deficiencies.

The LISP 2 project was a collaboration of Systems Development Cor-
poration and Information International Inc., and was initially planned for
the Q32 computer, which was built by IBM for military purposes and which
had a 48 bit word and 18 bit addresses, i.e., it was better than the IBM
7090 for an ambitious project. Unfortunately, the Q32 at SDC was never
equipped with more than 48K words of this memory. When it became clear
that the Q32 had too little memory, it was decided to develop the language
for the IBM 360/67 and the Digital Equipment PDP-6 - SDC was acquir-
ing the former, while III and M.I.T. and Stanford preferred the latter. The
project proved more expensive than expected, the collaboration proved more
difficult than expected, and so LISP 2 was dropped. From a 1970s point of
view, this was regrettable, because much more money has since been spent
to develop LISPs with fewer features. However, it was not then known that
the dominant machine for AI research would be the PDP-10, a successor of
the PDP-6. A part of the AI community, e.g. BBN and SRI made what
proved to be an architectural digression in doing AI work on the SDS 940
computer.

The existence of an interpreter and the absence of declarations makes
it particularly natural to use LISP in a time-sharing environment. It is
convenient to define functions, test them, and re-edit them without ever
leaving the LISP interpreter. A demonstration of LISP in a prototype time-
sharing environment on the IBM 704 was made in 1960 (or 1961). (See
Appendix 2). L. Peter Deutsch implemented the first interactive LISP on
the PDP-1 computer in 1963, but the PDP-1 had too small a memory for
serious symbolic computation.

The most important implementations of LISP proved to be those for
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the PDP-6 computer and its successor the PDP-10 made by the Digital
Equipment Corporation of Maynard, Massachusetts. In fact, the half word
instructions and the stack instructions of these machines were developed with
LISP’s requirements in mind. The early development of LISP at M.I.T. for
this line of machines and its subsequent development of INTERLISP (nee
BBN LISP) and MACLISP also contributed to making these machines the
machines of choice for artificial intelligence research. The IBM 704 LISP was
extended to the IBM 7090 and later led to LISPs for the IBM 360 and 370.

The earliest publications on LISP were in the Quarterly Progress Reports
of the M.I.T. Research Laboratory of Electronics. (McCarthy 1960) was the
first journal publication. The Phyllis Fox was published by the Research
Laboratory of Electronics in 1960 and the LISP 1.5 Programmer’s Manual
by McCarthy, Levin, et. al. in 1962 was published by M.I.T. Press. After
the publication of (McCarthy and Levin 1962), many LISP implementations
were made for numerous computers. However, in contrast to the situation
with most widely used programming languages, no organization has ever at-
tempted to propagate LISP, and there has never been an attempt at agreeing
on a standardization, although recently A.C. Hearn has developed a ”stan-
dard LISP” (Marti, Hearn, Griss and Griss 1978) that runs on a number of
computers in order to support the REDUCE system for computation with
algebraic expressions.

6 Conclusions

LISP is now the second oldest programming language in present widespread
use (after FORTRAN and not counting APT, which isn’t used for program-
ming per se). It owes its longevity to two facts. First, its core occupies
some kind of local optimum in the space of programming languages given
that static friction discourages purely notational changes. Recursive use of
conditional expressions, representation of symbolic information externally by
lists and internally by list structure, and representation of program in the
same way will probably have a very long life.

Second, LISP still has operational features unmatched by other language
that make it a convenient vehicle for higher level systems for symbolic com-
putation and for artificial intelligence. These include its run-time system that
give good access to the features of the host machine and its operating system,
its list structure internal language that makes it a good target for compiling
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from yet higher level languages, its compatibility with systems that produce
binary or assembly level program, and the availability of its interpreter as
a command language for driving other programs. (One can even conjecture
that LISP owes its survival specifically to the fact that its programs are lists,
which everyone, including me, has regarded as a disadvantage. Proposed
replacements for LISP, e.g. POP-2 (Burstall 1968,1971), abandoned this fea-
ture in favor of an Algol-like syntax leaving no target language for higher
level systems).

LISP will become obsolete when someone makes a more comprehensive
language that dominates LISP practically and also gives a clear mathematical
semantics to a more comprehensive set of features.
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Many reports and memoranda of the M.I.T. and Stanford Artificial In-
telligence Laboratories have dealt with various aspects of LISP and higher
level systems built on LISP.

APPENDIX - HUMOROUS ANECDOTE
The first on-line demonstration of LISP was also the first of a precursor

of time-sharing that we called “time-stealing”. The audience comprised the
participants in one of M.I.T.’s Industrial Liaison Symposia on whom it was
important to make a good impression. A Flexowriter had been connected to
the IBM 704 and the operating system modified so that it collected characters
from the Flexowriter in a buffer when their presence was signalled by an
interrupt. Whenever a carriage return occurred, the line was given to LISP
for processing. The demonstration depended on the fact that the memory
of the computer had just been increased from 8192 words to 32768 words so
that batches could be collected that presumed only a small memory.

The demonstration was also one of the first to use closed circuit TV
in order to spare the spectators the museum feet consequent on crowding
around a terminal waiting for something to happen. Thus they were on
the fourth floor, and I was in the first floor computer room exercising LISP
and speaking into a microphone. The problem chosen was to determine
whether a first order differential equation of the form M dx+N dy was exact
by testing whether ∂M/over∂y = ∂M/over∂y, which also involved some
primitive algebraic simplification.

Everything was going well, if slowly, when suddenly the Flexowriter began
to type (at ten characters per second)

“THE GARBAGE COLLECTOR HAS BEEN CALLED. SOME INTER-
ESTING STATISTICS ARE AS FOLLOWS:”

and on and on and on. The garbage collector was quite new at the time,
we were rather proud of it and curious about it, and our normal output was
on a line printer, so it printed a full page every time it was called giving how
many words were marked and how many were collected and the size of list
space, etc. During a previous rehearsal, the garbage collector hadn’t been
called, but we had not refreshed the LISP core image, so we ran out of free
storage during the demonstration.

Nothing had ever been said about a garbage collector, and I could only
imagine the reaction of the audience. We were already behind time on a
tight schedule, it was clear that typing out the garbage collector message
would take all the remaining time allocated to the demonstration, and both
the lecturer and the audience were incapacitated by laughter. I think some
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of them thought we were victims of a practical joker.
John McCarthy Artificial Intelligence Laboratory Computer Science De-

partment Stanford University Stanford, California 94305
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