
 i

Design and Implementation of
Distributed Game Engine

- A Cognitive Simulation Approach

by

Xizhi Li

Shenzhen, P.R. China, 2006

©Xizhi Li, 2006

All rights reserved

 ii

Preface

This book is about the design and implementation of a distributed 3D computer game engine,
called ParaEngine. Game engines encompass the richest and most advanced technologies in
computer science, such as 3D visualization, physics simulation, scripting, networking and AI
etc. The composition of these technologies is diverse and constantly evolving. Despite of the
relatively large number of game engine implementations, there are no two of them that are
alike. This book allows readers to see deep into a unique and commercial quality game engine.
Not only does it cover the common and today’s popular architectures adopted by many game
engines, but it also shows a proven valid framework of a complete game engine
implementation.

Many general game development books cover game engine implementation to some extent,
but not specific enough to cover details in real world situations, i.e. given a fundamental
algorithm or method, how to design efficient software architecture to handle gigabytes of
game data at real time. On the other hand, many specialized books cover greater details of a
certain aspect of game engine, but novices still need to make risky choices as for which
method and how to apply it in their own game engine implementations.

 Our book sacrifices some of the completeness on the narration of various game
technologies, but saves the space for extra explanation to allow readers to grasp the big idea
of each one, examine and evaluate a concrete implementation which have been proven valid
in our own game engine. To complement it, most chapters of this book come with a
discussion and comparison of various other algorithms not adopted in our implementation, yet
can be very useful in different situations. Also, most chapters end with an outlook, which
might be a starting point for the next generation engine programmers.

Who Needs This Book
Anyone who wants to understand computer game engine can read this book, because each
chapter begins with a carefully written narrative section. It gives the background and
methodologies of the chapter subject in plain language and goes into as much depth as
possible without much math and source code. Programmers will benefit most from this book,
because this is one of the few books that cover commercial-quality game engine to the code
level. Researchers and students who want to apply their innovative ideas in the game
domain will find the right spot by reading the outlook section at the end of most chapters. We
also hope this book could be used as an educational book teaching game technologies. The
author started his first game engine on a university game course without a good book of
teaching how. Chapter 2 of the book is thus designed to teach zealous students to build their
own game engine from scratch in a few days and to extend its functionalities in a spiral
development path. However, a complete game engine usually took years and great patience to
build.

Assumptions for Programmers
The game engine implemented in this book uses DirectX9.0c and C++. The book does not
cover DirectX and 3D math fundamentals, because these things are well documented in
DirectX SDK and many places on the Internet. Neither does it require novice engine
programmers to know DirectX 3D API and 3D math very well when they read this book. It is

 iii

only necessary for them to learn such things when they are doing the actual coding. In fact,
even if you think you know the math and DirectX API for a certain program module, you
should always hesitate on whether you reinvent the code yourself or doing some research first
as directed in this book. Using commercial third-party modules usually saves time and
improves quality; and sometimes, even a solution based on open source project is better than
writing your own ones. What we are trying to imply to you is that the cost of writing
everything from scratch is really high and that some stable game engine modules may be
optimized using assembly language six months before their release.

Writing Style
The text in this book is written as concise as possible, which give readers the holistic idea of a
computer game engine. The code and logics in this book, however, try to give programmers
the concrete picture of how a game engine is written. An engine programmer still need to do
its own research as directed in the book in order to implement, but he or she should feel
confident enough to apply its knowledge.

About This Book
The book is divided into two volumes. Volume I covers mainly the client side technologies of
a computer game engine; volume II covers network related technologies and the cognitive
simulation framework of ParaEngine realized through a special language system. Volume I is
fit for the design and implementation of a general game engine. Here is a summary of what
we covered in volume I of the book.

Chapter 1. Game Engine Introduction

After a short introduction to game engine, it dissects game engine architecture, explains the
functions of the different modules of a computer game engine. At the end, it will propose
ParaEngine architecture, which will be examined in greater details by chapters 4-19.

Chapter 2. Spiral Development Path

It gives a possible game engine development path. It begins at the spiral center by building
up the skeleton of a basic game engine, and then gives the sequence of adding more
functionalities and modules to the primitive game engine. This chapter is very useful for
people building their own game engine from scratch. In the shortest time possible, it guides
you to establish a serious game engine development platform for later extension.

Chapter 3. Files and File formats

To programmers, a software system can be quickly demystified by examine its protocols
and file formats. Even for programmers without former game programming experience, it is
quite helpful to glance over all file formats used by a game engine. We not only covers the
file formats, but also tell you the average file size, average number of each file types
processed by a moderate 3D game, and file distributions. Novice programmers and designers
can prepare their minds and start reflecting on how large volumes of game data can be
managed efficiently at real time. This is a special and independent chapter that we designed
to get you very close to a complete computer game engine in a bottom up manner before you
even know their implementations.

Chapter 4 – 19. <Content chapters>

 iv

Each of the content chapters writes about a specific module of ParaEngine in details and is
fairly independent of each other. Each chapter is approximately comprised of the following
sections.

1. Foundation: It gives, in plain language, the general idea of the module, basic
principles, algorithms and possible solutions, etc. This section usually has sub-sections
for sub-systems of the module.

2. Architecture: It only gives the one architecture which is used in ParaEngine, yet in
more details.

3. Code and Performance Analysis: It details the architecture section by code or code
templates. It also points out the performance critical spots in the code and how to
implement them efficiently.

4. Outlooks: It discusses the state of the art of the technology, how newly developed
technologies might affect the current implementation of the system and the outlook. It
also directs researchers and practitioners to useful resources on the web.

Appendix

We suggest readers read Appendix B to get a quick feel of what a game engine is, before
diving into this book.

Using Code in This Book
In general, you can use the code in this book in your programs and documentation. You do

not need to contact us for permission unless you are reproducing a significant portion of the
code.

We appreciate attribution. An attribution usually includes the author, title, publisher and
ISBN. For example: “Xizhi, Li. Design and implementation of distributed game engine. ISBN
XXX. ”

How to Contact Us
Mail address Room A811, Shenzhen Tech-Innovation International,

Shenzhen,518057, P. R. China

Author’s Email lixizhi@yeah.net

Author’s website www.lixizhi.net

To English Version Readers
When you are reading the English version of this book, you may find that it is not written

by a native English speaker. Well, I do hope readers can focus on the content. Yet I apologize
for any inconvenience of reading, due to the language. I am the developer of ParaEngine. At
the time of writing, I am also the project manager of our game studio. I wrote this book
mostly in my spare time, with great patience, using the English language, which is foreign to
me. But I find that English is also the only language for this book to be finished in time,
because all my former programming notes and reference materials of ParaEngine are in
English.

mailto:lixizhi@yeah.net
http://www.lixizhi.net/

 v

Acknowledgements
First of all, I would like to thank my family for their faith in me. Although father and I both

work over twelve hours a day, seven days a week; we can still find plenty of time talking
together every day. Father has given me continous supply of inspirations. And it is my great
mother who has given both father and me wisdom and strength.

I would also like to thank all formal and informal team members of ParaEngine Dev Studio.
They are Li Lixuan, Wang Tian, Liu Weili, Li Yu, Liu He, Zhang Yu and dozens of friends
from college. They have contributed time and ideas to ParaEngine as well as to its first few
application demos. Many thanks to professors and crews at Shenzhen Tech-Innovation
International (STI). They have provided me the workplace of our studio and financial support
since my graduation.

During the past years, I have introduced my ideas and works to quite a few University
professors as well as experienced game developers. They have given me valuable opinions.
They are Prof. Shu Wenhao, Prof. He Qinming (my advisor at Zhejiang University), Mr. Xu
Zhendong. (TODO: add more reviewers to this list)

Finally, I would like to thank my tutor Lu Yang, who had given me great teachings on
computer programming for ten consecutive years since 1989.

 vi

Table of Contents

Who Needs This Book... ii

Assumptions for Programmers .. ii

Writing Style .. iii

About This Book .. iii

Using Code in This Book ... iv

How to Contact Us ... iv

To English Version Readers ... iv

Acknowledgements ... v

Chapter 1 Game Engine Introduction.. 1

1.1 Game Engine Technology and Related Research.. 1

1.1.1 A Glance at Computer Game Engine ... 2

1.1.2 Games as a Driving Force .. 3

1.2 Introduction to Distributed Computer Game Engine... 5

1.3 ParaEngine Overview.. 5

1.3.1 Foundation Modules... 5

1.3.2 The Game Loop.. 7

1.3.3 Summary .. 8

Chapter 2 Spiral Development Path .. 10

2.1 A Basic Skeleton of Computer Game Engine ... 10

2.2 Spiral Development Path... 11

2.3 Building Game Engine Skeleton ... 12

2.3.1 Preparation.. 12

2.3.2 Writing the Game Loop.. 13

2.3.3 Time Controller .. 16

2.3.4 Log System... 17

2.3.5 Memory Leak Detection... 18

2.3.6 Using Mini-Dump .. 19

2.3.7 File Manager... 19

2.3.8 Asset Manager .. 20

2.3.9 Scene Manager ... 25

2.3.10 Scripting System... 26

 vii

2.4 Summary and Outlook... 28

Chapter 3 Files and File formats ... 29

3.1 File Format from Game Requirement ... 29

3.2 ParaEngine File Formats Overview... 30

3.3 ParaEngine File Formats ... 32

3.3.1 World Config File... 32

3.3.2 Terrain Config File ... 33

3.3.3 Terrain Elevation File... 34

3.3.4 Terrain Mask File ... 34

3.3.5 Terrain On Load Script... 35

3.3.6 Texture File .. 36

3.3.7 Mesh and Animation File ... 36

3.3.8 Archive File .. 41

3.3.9 NPL Script File... 42

3.4 Summary and Outlook... 43

Chapter 4 Scene Management ... 44

4.1 Foundation... 44

4.1.1 Hierarchical Scene Management .. 44

4.1.2 Scene Graph.. 47

4.1.3 Using Scene Manager... 47

4.1.4 Dynamic Scene Loading and Unloading .. 48

4.2 Scene Manager Architecture ... 50

4.2.1 The Scene Root Object ... 50

4.2.2 Relative Position VS Absolute Position ... 51

4.2.3 Quad Tree Terrain Tiles ... 51

4.3 Code and Performance Discussion .. 52

4.3.1 Quad-tree Balance Discussion.. 53

4.4 Summary and Outlook... 53

Chapter 5 Rendering Pipeline.. 55

5.1 Foundation... 55

5.1.1 Render Pipeline Basics ... 55

5.1.2 Object Level Clipping with Bounding Volumes .. 57

5.1.3 Object Visible Distance .. 57

 viii

5.1.4 Coordinate System for Render Pipeline ... 58

5.1.5 Hardware Occlusion Testing .. 59

5.2 Building the Render Pipeline... 60

5.3 Shader Program Management ... 62

5.3.1 Effect File Manager .. 62

5.3.2 Wrapping the Render API .. 64

5.4 Code and Performance .. 65

5.4.1 Traversing Quad Tree... 65

5.4.2 Render Coordinate System Transformation ... 66

5.4.3 Hardware Occlusion Testing .. 67

5.4.4 Effect Management .. 67

5.4.5 Performance Discussion ... 70

5.5 Summary and outlook.. 71

Chapter 6 Special Scene Objects ... 73

6.1 Sky... 73

6.2 Sun and Sun Light ... 73

6.3 Particle System .. 74

6.3.1 Defining a Particle System ... 74

6.3.2 Animating Particles .. 76

6.3.3 Drawing Particles ... 79

6.4 Weather System... 81

Chapter 7 Picking .. 82

7.1 Foundations ... 82

7.1.1 Background... 82

7.1.2 Picking Mathematics .. 83

7.2 Architecture and Code... 87

7.2.1 Ray Picking in the Scene .. 87

7.2.2 Collision Detection Math Code .. 89

7.3 Summary and Outlook... 91

Chapter 8 Simulating the Game World ... 92

8.1 Foundation... 92

8.1.1 Rigid Body Dynamics .. 92

8.1.2 Sensor Ray based Physics .. 95

 ix

8.1.3 Motion Blending... 100

8.1.4 Autonomous Animation ... 101

8.2 Architecture and Code... 102

8.2.1 Integrating the Physics Engine ... 103

8.2.2 Environment Simulator .. 104

8.2.3 Sensor Ray Structure .. 107

8.2.4 Ray based Character Simulation... 108

8.3 Summary and Outlook... 114

Chapter 9 Terrain... 116

9.1 Foundation... 116

9.1.1 Understanding Terrain Data ... 116

9.1.2 Level of Detail Terrain Algorithm.. 118

9.1.3 The Hybrid Terrain Algorithm ... 121

9.1.4 Painting the Terrain .. 126

9.1.5 Miscellaneous Functions .. 127

9.1.6 Latticed Terrain .. 128

9.2 Architecture and Code... 130

9.2.1 Tessellation Code ... 130

9.2.2 Building Triangle Buffer .. 133

9.3 Summary and Outlook... 135

Chapter 10 Ocean .. 136

10.1 Foundation... 136

10.1.1 Simulation of Water Surface .. 136

10.1.2 Rendering of Water Surface ... 140

10.2 Architecture and Code... 145

10.2.1 Ocean Rendering Pipeline .. 145

10.2.2 Shader code for Reflection and Refraction mapping.. 146

10.3 Summary and Outlook... 150

10.3.1 Shorelines ... 150

Chapter 11 Special Effects .. 152

11.1 Shadows... 152

11.1.1 Static Shadow ... 152

11.1.2 Dynamic Shadow.. 152

 x

11.1.3 Code.. 159

11.2 Light Mapping ... 163

11.2.1 Light Mapping Basics... 163

11.2.2 Consider Baked Texture First... 164

11.2.3 When to Use Light Map ... 164

11.2.4 Cost of Using Light Maps .. 165

11.2.5 Retrieving Light Map Texture Coordinates from 3dsmax 165

11.3 Cubic Environment Mapping .. 168

11.4 Billboarding... 169

11.5 Reflective Surfaces .. 170

11.6 Local Lights... 171

11.7 Full Screen Glow Effect .. 172

11.7.1 Code.. 175

11.7.2 Discussion... 179

11.8 Fog Effect .. 180

11.8.1 Fog and Sky.. 180

11.8.2 Fog with Global Sun Lighting .. 183

11.8.3 Fog underwater ... 184

11.8.4 Fog with Large Mesh Objects .. 184

11.9 Conclusion... 184

Chapter 12 Character and Animation .. 186

12.1 Foundation... 186

12.1.1 Background of Motion Synthesis ... 186

12.1.2 Introduction to Skeletal Animation .. 187

12.1.3 Motion Blending... 190

12.1.4 Character State Manager .. 193

12.1.5 Attachment and Custom Appearance ... 195

12.2 Architecture ... 196

12.2.1 Model File .. 196

12.2.2 Animation Instance... 196

12.2.3 State Manager... 197

12.3 Code and Performance Discussion .. 197

12.3.1 Spherical Linear Interpolation of Quaternion... 197

 xi

12.3.2 Retrieving Animation Keys.. 198

12.3.3 Animation Instance Interface.. 201

12.3.4 Character State Manager .. 202

12.4 Summary and Outlook... 204

Chapter 13 Writing Model Exporters .. 206

13.1 Foundation... 206

13.1.1 Terminologies... 206

13.1.2 Exporting Mesh .. 211

13.1.3 Exporting Animation Data ... 211

13.1.4 Importing Animation .. 213

13.2 Architecture ... 215

13.2.1 Exporter Interface ... 216

13.2.2 Scene Data Extraction .. 217

13.2.3 Serialization of Model Data.. 217

13.3 Code and Performance Discussion .. 218

13.3.1 Sampling Bone Animation ... 218

13.3.2 BVH Serialization Code ... 220

13.3.3 Performance Discussion ... 223

13.4 Summary and Outlook... 223

Chapter 14 AI in Game World .. 225

14.1 Foundation... 225

14.1.1 Reactive Character.. 225

14.1.2 Movie Character ... 226

14.1.3 Perceptive Character... 226

14.1.4 Character Simulation and Sensor Events.. 226

14.1.5 AI Controllers... 232

14.1.6 Frame Rate of AI Logics .. 234

14.1.7 Summary of AI ... 236

14.2 Architecture ... 236

14.2.1 Game Object Base Class .. 236

14.2.2 AI Controller .. 237

14.2.3 Other AI Modules... 239

14.3 Code and Performance Discussion .. 239

 xii

14.3.1 Follow Controller ... 239

14.3.2 Sequence Controller ... 241

14.4 Summary and Outlook... 247

Chapter 15 Navigating in 3D world .. 249

15.1 Camera Control ... 249

15.1.1 Background... 249

15.1.2 Occlusion Constraint .. 249

15.2 Generic Path Finding Algorithms.. 253

15.2.1 Object Level Path Finding.. 253

15.2.2 Path-finding and Physics .. 255

15.2.3 Code.. 255

15.3 Summary and Outlook... 258

Chapter 16 NPL Scripting System .. 259

16.1 Foundation... 259

16.1.1 Using LuaBind.. 259

16.1.2 Exporting C++ Attributes to Script .. 261

16.1.3 Runtime State Management.. 263

16.1.4 Using Namespace ... 264

16.1.5 Using Directory and Domain Name ... 265

16.1.6 Script File Activation Mechanism.. 266

16.2 Architecture and Code... 267

16.2.1 Attribute Field .. 267

16.2.2 Attribute Class .. 269

16.2.3 Attribute Field Interface ... 270

16.2.4 Attribute Class Script Wrapper... 272

16.2.5 Script Examples.. 273

16.3 Summary and Outlook... 273

16.3.1 NPL Feature Overview... 273

16.3.2 Summary and Outlook of NPL... 274

Chapter 17 File System ... 275

17.1 Foundation... 275

17.2 Architecture ... 276

17.3 Code... 278

 xiii

17.4 Summary and Outlook... 280

Chapter 18 Frame Rate Control... 281

18.1 Foundation... 281

18.1.1 Overview .. 281

18.1.2 Decoupling Graphics and Computation ... 282

18.1.3 I/O... 282

18.1.4 Frame Rate and Level of Detail.. 283

18.1.5 Network servers.. 283

18.1.6 Physics Engine.. 284

18.2 Architecture ... 284

18.2.1 Definition of Frame Rate and Problem Formulation.. 285

18.2.2 Integrating Frame Rate Control to the Game Engine ... 286

18.3 Evaluation.. 287

18.3.1 Frame Rate Control in Video Capturing... 288

18.3.2 Coordinating Character Animations ... 288

18.4 Summary and Outlook... 289

Chapter 19 Summary and Outlook of Game Engine ... 290

19.1 Age of Middleware.. 290

19.2 World Editing .. 290

19.2.1 In-game Editing .. 290

19.2.2 Customizing over Professional 3D Authoring Tools.. 290

19.2.3 Writing Special Tools for Game... 291

19.2.4 Outlook ... 291

19.3 Next Generation Game Engine.. 291

Appendix A : Code Optimization.. 292

Appendix B : Da Vinci World... 294

B.1 Game Proposal and Design... 294

B.2 Prepare Your Work Environment ... 295

B.3 Getting Used to ParaEngine SDK... 295

B.4 Creating a New World .. 297

B.5 Making Game Scene... 299

B.6 Do It Yourself: Advanced Terrain .. 301

B.7 Do It Yourself: Static Models ... 302

 xiv

B.8 Do It Yourself: Characters .. 305

B.8.1 Special Rules.. 306

B.9 Adding Artificial Intelligence ... 308

B.9.1 Do it yourself: Artificial Intelligence... 308

B.9.2 Do it yourself: Using AI Controllers ... 311

B.10 Do It Yourself: User Interface .. 314

B.10.1 Game Loop File ... 314

B.10.2 UI Controls .. 314

B.10.3 IDE libraries... 315

B.11 Release .. 315

B.12 Conclusion .. 315

Appendix C About ParaEngine ... 316

C.1 Introduction... 316

C.2 ParaEngine Specifications .. 316

C.3 About ParaEngine Dev Studio .. 319

Appendix D Figures in the Book... 320

 1

Chapter 1
Game Engine Introduction

Game engine is an all encompassing subject in computer science. In the narrow sense, a game
engine is a fairly general game development platform which can be used to build many games.
A modern game engine can be regarded as a virtual reality framework running not only on a
standalone computer, but also on a computer network. It interacts with human users with
multimedia input and output, simulates the networked virtual environment with laws similar
to the real world, and animates characters which exhibit approaching human-level intelligence.
Beneath the interface, a game engine does almost everything that a computer is capable to do
and it must do it in the fastest way possible. Game technology represents the richest virtual
reality implementation that present day hardware could afford at real time.

In recent years, game engine related technology has drawn increasing academic attention
from a wide range of research areas. People come to realize that game engine may naturally
evolve in to the most widely used virtual reality platform in the future. The topic of the book
is on the design and implementation of a distributed computer game engine called ParaEngine.
ParaEngine is a commercial quality game engine aiming to bring interactive networked virtual
environment to the Internet through game technologies. In ParaEngine, game worlds and
logics on individual computers can be linked together like web pages to form an interactive
and extensible gaming environment.

In a computer game engine, there are tremendous number of wisdoms and choices in
putting all its components into one piece of working software. During the past years, new
algorithms and hardware evolutions have made several big impacts on the integration of game
technologies in a computer game engine. It is safe to predict that game technology will
continue to be a rapidly reforming area in the future.

1.1 Game Engine Technology and Related Research
Since early 1990s, game engine has evolved to become a standard platform for constructing
and running 3D virtual game worlds of high complexity and interactivity. In recent years,
game engine research has drawn increasing academic attention to it, not only because it is
highly demanding by quick industrial forces, but also because it offers mature and extensible
platform support for a wide range of researches in computer science and engineering. These
includes computer graphics, autonomous animations, web avatars, artificial intelligence,
virtual reality (VR) and augmented reality (AR), networked VR, stereo vision, HCI, web 3D
technologies, multi-agent framework, distributed computing and simulation, education and
military training, robotics, etc.

The term "game engine" arose in the mid-1990s, especially in connection with 3D games
such as first-person shooters (FPS). Such was the popularity of id Software's Doom and
Quake games that rather than work from scratch, other developers licensed the core portions
of the software and designed their own graphics, characters, weapons and levels—the "game
content" or "game assets." Later games, such as Doom 3 and Epic's Unreal were designed
with this approach in mind, with the engine and content developed separately. The continued
refinement of game engines has allowed a strong separation between rendering, scripting,
artwork, and level design. Modern game engines are some of the most complex applications

 2

written, frequently featuring dozens of finely tuned systems interacting to ensure a finely
controlled user experience.

1.1.1 A Glance at Computer Game Engine
Game engine is a very broad subject. The part that deals with graphic storage and displaying
is often called 3D engine or rendering engine. Rendering engine is usually the core
component in a present day game engine; but a game engine usually includes support for
many more aspects of a game's architecture than just the 3D rendering. Some part of game
engine may be implemented by “middleware”. Middleware developers attempt to "pre-invent
the wheel" by developing robust software suites which include many elements a game
developer may need to build a game. Most middleware solutions provide facilities that ease
development, such as graphics, sound, physics, biped animation, networking and AI functions.
E.g. physics engines such as Novodex1 and Havok2 are commonly used by top commercial
game engines to construct physically convincing games. In the viewpoint of a game
development corporation, integrating middleware in their game engine is usually called
outsourcing3.

The continued refinement of game engines has allowed a strong separation between
rendering, scripting, artwork, and level design. It is now common (as of 2006), for example,
for a typical game development team to be composed of artists and programmers in an 80/20
ratio. Hence, game engine should also include a complete suite of virtual world constructing
tools, which are used mostly by artists. For example, 3D models, key framed animations,
physical specification of game objects, etc are usually made by professional tools such as
3DsMax and Maya, and then exported to engine digestible file format by exporters provided
by the game engine; cinematic, game levels, etc may also be made in a similar way, whereas
some game engine provides more specialized tools, such as visual script editor, audio editor,
model editor, level editor, et., which allow artists and level designers to compose game scenes
on the fly (i.e. graphics attained at design time appear exactly as in the final game). For
example, Quake series level editing tools are popular among hobbyists and also used
optionally by some open source game engines4.

Table 1.1 shows a quick a quick jot-down list of game engine technologies.

Table 1.1 A quick jot-down list of game engine technologies

Category Items

Graphics scene hierarchy, skinning, shadow / lighting model, particle systems,
shader model / material system / associated tools, vertex and skeletal
animation, alpha/texture sorting, terrain, clipping/culling/occlusion, frame
buffer post-processing effects, split-screen support, mirrors/reflection,

1 Novodex physics engine, http://www.ageia.com/novodex.html

2 Havok solutions, http://www.havok.com

3 Outsourcing Reality: Integrating a Commercial Physics Engine, Game Developer Magazine, 2002.

4 3D Engines Database, http://www.devmaster.net/engines/

 3

procedural geometry, 2D GUI (buttons, text rendering/font issues,
scrolling windows, etc), level of detail, projected textures, …

Resource
management

Dynamic loading, resource lifetimes/garbage collection, streaming
resource scheduling, rendering device change management, file access
(virtual files)…

sound/music 3D, 2D, looping, looping sub range, effects, …

in-game UI also related to graphics and scripting.

I/O key remapping, force feedback (haptic devices)

time management frame rate control: time synchronizations with various engine modules

Scripting Lua/python/?, saving and loading game state, security, performance,
profiling, compiler and debugging, in-game cinematic, …

Tools level editor, terrain editor, particle system editor, model/animation
viewers

trigger system tool, cinematic tool, MAX plug-ins – exporter, …

Console In game: debugging, in-game editor,

recording/playback: frame-based, time-based

compatibility: cross-platform compatibility, graphic device support

Networking distributed client/server, single client/server, peer-to-peer,
security/hacking issues, package misordering, time synchronization,
delay, bandwidth usage, error handling …

Physics stable physics integration, frame rate control, outsourcing physics
engine?, collision detection (continuous or discrete) , collision response
(approximation or impulse-based), integration with key framed
animation, line of sight/ray queries, …

Animation inverse kinematics, key framed animation, motion warping/blending,

AI fuzzy logic, machine learning, state machines, path-finding, tools
(scripting)…

General memory management, exception handling, localization, enhancing
concurrency/multi-threading, …

The four major modules in game engine are 3D rendering (graphics), scripting, physics
simulation and networking, as shown in bold text in the table. This framework design as well
as individual component implementations decides the general type of games that could be
composed by it.

1.1.2 Games as a Driving Force
The study of a game engine framework is now gaining increasing popularity among the
academic community for at least the following reasons.

 4

- The knowledge of a computer game engine will greatly help the design and
implementation of a multimedia application in the future, since user interface
application will become more and more playable and user-friendly like computer
games. Moreover, a game engine framework has many good design patterns and
common libraries which developers can reuse.

- It is an area of research where software and hardware developers work closely
together. In other words, it has many hardware peripherals which it depends on, such
as the network server facilities, the haptic devices, the stereo glasses, the
graphics/physics acceleration cards, and other parallel architecture that increases the
computing power of a modern personal computer. Most hardware improvements made
could immediately be put to use in a computer game engine.

- It is industrial demanding. As people have more time and less space, they turn to the
virtual world for resorts and accomplishment. The biggest benefit that computers
bring to mankind is likely to be virtual reality. More and more real world services will
be built in to future virtual reality framework. Hence, the mastery of game engine
tools and framework will be as important in the future as building web pages today.

- Games are the driving force to push computer technologies and to bring the Internet
from 2D to 3D. Unlike other industrials, games and game technologies are exposed to
the largest number of users and it is especially favored by young people. Both playing
and developing games are community based activities that last for a long time. All
these attributes make game engine a promising research area to push computer
technologies in a variety of fields.

- Game engine is a highly interdisciplinary study. It evaluates the performances and
effects of several candidate approaches in a certain research area, and designs the
combinations of the best choices from many areas of study, which in turn will help
refining the approaches in separate disciplines.

- Game technologies are being applied to a number of other fields, such as remote
education, digital learning, augmented reality guidance system, military training,
medical treatment, vehicle training, scientific simulation and monitoring, and
animations in movies, etc.

- Games are also a driving force for a variety of other serious research areas, such as
parallel and concurrent computing and programming, artificial neural networks,
autonomous character animations, human computer interface, human cognitions,
robotics, etc.

Finally,“Computer Science alone was not sufficient to build our future modeling and
simulation systems.” (Zyda). Game content developers must acquire other cross-disciplinary
skills to build well-qualified virtual environment. Game development is both technology and
art intensive. The 2004 game report5 provides timely analysis and actionable insights into
emerging game technologies and their potential impacts on existing and new technical
education curricula.

5 Jim Brodie Brazell, Digital Games: A Technology Forecast, Texas State Technical College, 2004.

 5

1.2 Introduction to Distributed Computer Game Engine
 “Distributed Game Engine is a game engine framework which allows virtual world content
and game world logics to be distributed on a large scale and extensible computer network,
such as the Internet.”

ParaEngine is a distributed computer game engine. But it does not complicate the issue of
introducing game engine technologies, because it shares all the common features of a general
computer game engine and have more flexible and extensible architecture design.

The game genre that distributed game engine advocates is open games, of which the
gaming environment extends as far as the network could reach. For example, initially a
publisher may host a 3D game world on a small cluster of servers on the Internet; as more
users are playing its game, the publisher may frequently increase the size of the game world
and the scale of game servers; meantime, players may also help to extend the gaming
environment with its own computers. In the future, games will be as open as the Internet; its
supporting framework may be called distributed game engine.

Plainly speaking, if we compare web pages to 3D game worlds, hyperlinks and services in
web pages to active objects in 3D game worlds, and web browsers and client/server side
runtime environments to computer game engines, we will obtain the simplified picture of
distributed computer games. It is likely that one day the entire Internet might be inside one
huge virtual reality game world.

1.3 ParaEngine Overview
This section shows one possible division of game engine functionalities into fairly
independent program modules. It also shows the game loop that calls these modules.
Programmers who are new to engine programming need not fear about the number of
modules presented here, since we will guide you in a spiral development path to build a
serious game engine from the very beginning.

1.3.1 Foundation Modules
The core of ParaEngine is comprised of the following modules.

- Asset Manager: It manages all kinds of game resources and device objects used in the
game engine, such as textures, geometries, sounds, effects, buffers, etc. As a general rule,
the manager provides a unified interface to automatically load an asset from disk file only
when they are used and remove those that are not needed.

- Scene Manager: It manages all game objects which comprises the local 3D game world.
Usually, all game scene objects are organized in a tree hierarchy (usually called scene
graph), with a root node on top called scene root. The rendering pipeline usually builds
objects seen in a frame by traversing the scene graph. The following modules are also
child objects of the scene manager.

 Global Terrain Engine: For efficient rendering of an infinitely large terrain surface.
It also provides physics query interface, such as getting the height of terrain at a
specified location.

 6

 Ocean Manager: For realistic and efficient rendering of water and ocean from under
and/or above the water surface. It provides physics query interface.

 Physics World: It is a wrapper of physics engine. All other physical objects except
the terrain and ocean are managed in this place. These are usually solid mesh objects
and basic geometries for collision detection and response in the virtual world.

 Biped State Manager: It generates smooth and valid animations (actions) for a
character according to its physical interaction with the environment, such as
jumping, walking, swimming, etc.

 Biped Controllers (or AI modules): Some higher level character behaviors, such as
object following, face tracking, action recording and replaying, etc are encapsulated
in several biped controllers, which can be dynamically assigned to characters at
runtime.

 Camera system: The camera system provides a view into the game world. It can be
made to automatically position itself to avoid collision with the physical
environment and focused on a scene object, such as the current player.

- GUI Engine: It manages 2D GUI objects such as buttons, text, edit boxes, scrollable
windows, etc. It also handles mouse and keyboard events in the GUI.

- Environment Simulator: At each time step, the environment simulator advances the game
state by a small interval. It takes input from the user, AI modules, and the scripting
system, validates actions issued by mobile game entities, updates their impacts in the
local virtual world, computes the new game states according to some predefined laws, and
feeds environmental perception data to AI modules and the scripting system, etc.

- Scripting system (or NPL runtime environment as called in ParaEngine): Game contents
and logics can be expressed in external files, which are compiled and executed on the fly
without modifying the game engine itself. We call this technique scripting. The language
we used in ParaEngine’s script files is called NPL. The module that parses and executes
these script files is called NPL runtime environment. Game content, such as 3D scenes
and graphic user interface, and logics such as character AI and user IO, can all be written
and controlled entirely from script files. In NPL, network behaviors are also implemented
in this module, which makes writing and deploying distributed games easy.

- Game Loop: It drives the flow of the engine, providing a heartbeat for synchronizing
object motion and rendering of frames in a steady, consistent manner.

 Frame rate controller: it is a time management module which supplies other game
engine modules with a steady time step.

 7

Figure 1.1 Overview of the major engine modules

1.3.2 The Game Loop
When designing the functioning core of an interactive software system, we usually start from
its main loop. This has not changed much even with the use of multi-threading, message
driven and event based system. The main loop in a computer game engine is called game loop,
which drives the flow of the engine, providing a heartbeat for synchronizing object motion
and rendering of frames in a steady, consistent manner. A general game loop is given in Table
1.2. It has been extended to include more details of the engine framework.

Notes: A TIMER is a special object that decides how many times that a dependent module
should be executed in that loop iteration. For example, one can customize a timer to produce
30 beats per second with equal time steps. We will cover it in more detail in the frame rate
control chapter.

Table 1.2 Game loop

Main game loop callback function {

Time management: update and pre calculate all timers used in this frame.

Process queued I/O commands (IO_ TIMER) {

Mouse key commands: ray-picking, 2D UI input

Key stroke commands

Animate Camera (IO_ TIMER): Camera shares the same timer as IO

}

Environment simulation (SIM_TIMER) {

Fetch last simulation result of dynamic objects

Scene manager

Render

Asset Manager

Environment
simulator

Human player

NPL runtime

Script
file

Network

Script
file

GUI Engine

Human player

I/O

Game loop

 8

Validate simulation result and update scene object parameters, accordingly.

Update simulation data set for the next time step:

Load necessary physics data to the physics engine; unload unused ones.

Calculate kinematic scene objects parameters, such as player controlled character
(this usually results from user input or AI strategies.).

Update necessary simulation data affected by kinematic scene objects.

Start simulating for the next time step (this may run in a separate thread than the game
loop).

Run AI module (SIM_TIMER) {

Run game scripts (SIM_TIMER): Currently networking is handled transparently
through the scripting system.

}

}

Render the current frame (RENDER_TIMER) {

Advance local animation (RENDER_TIMER)

Render scene (RENDER_TIMER)

Render 2D UI: windows, buttons …

}

In-game video capturing (RENDER_TIMER)

}

Besides the game loop, there may be other game threads running. These include: the
Windows message handler, NPL runtime environment, network threads and physics engine.
In most cases, Windows message handler and NPL runtime are running in the same thread as
the game loop.

1.3.3 Summary
This chapter briefly reviews game engine and its applications. It immediately proposes our
game engine architecture and explains the functions of each major program module. Details
of the game engine architecture will be examined in later chapters.

This book, together with its cited works, is described at a level of detail that allows for
researchers and practitioners to design and build the next generation distributed computer
game engine. We hope that the concept of distributed game engine can be accepted and more
people will continue this concrete work with their updated visions.

The code and architecture presented in this book is based on a formal game engine
implementation called ParaEngine. Therefore, they are guaranteed to function well with
current computer hardware.

The major contributions of this book (for volume I and II), we hope, are the following:

 9

- A big picture of distributed game engine platform from a practitioner’s viewpoint,
explained in plain language.

- A concrete introduction to game engine with a proven implementation covering every
corner of a formal game engine.

- Accurate redirections to other game programming and research resources on the web.

- Addressing a few rarely discussed problems in distributed game engine design, such as:

 Simultaneous visualization and simulation of distributed game world content and
logic

 Scripting language runtimes in distributed virtual environment
 Time management in distributed game worlds
 Autonomous character animation generation

 10

Chapter 2 Spiral Development Path

This chapter gives a possible game engine development path. It begins at the spiral center by
building up the skeleton of a basic game engine, and then gives the sequence of adding more
functionalities and modules to the skeleton game engine. This section is useful for people
building their own game engine from scratch. In the shortest time possible, it guides you to
establish a serious game engine development platform for later extension.

Unlike other software system, during the development of a computer game engine, many
modules and functions may need to be rewritten several times, not only because the
requirement of a game engine changes fast but also because game technologies are evolving
faster. This is one reason why game engine development team, even the most successful ones,
is relatively small, with only one or two chief programmers.

2.1 A Basic Skeleton of Computer Game Engine
Figure 2.1 shows a very basic skeleton of computer game engine. Although its only function
is displaying mesh object via script interface, it has the most basic modules as in a formal
game engine. Starting from the beginning, we need a game loop and a time controller. We
need an asset manager to manage textures and meshes. We need a log system for debugging
and performance analysis. We will have a unified file access interface for file management.
We need a scene manager to store mesh objects in a game scene. We need a camera system to
store camera parameters, such as eye position and orientation. We need a scripting system, so
that we can design some script interface to allow loading scene mesh objects from script.
Finally, we need two dummy modules, called GUI Engine and Environment Simulator, which
do nothing in this first implementation.

Time Controller Asset Manager

Textures Entity

Mesh Entity

File Manager File read

Scene Manager Mesh object

Global Terrain

Environment
Simulator

Game Loop

NPL Runtime
Environment

GUI Engine

Camera System

Log system

Lua / Luabind ?

 11

Figure 2.1 Basic Skeleton of a Computer Game Engine

In this chapter, we will guide you to build this skeleton engine. But before that, we will first
take a look at a more complete version of the spiral development path, that this book will
guide you to complete.

2.2 Spiral Development Path

Managed

Particle system

Time Controller Asset Manager

Textures Entity

Mesh Entity

Other types

Other entities

File Manager
Archiver

File read File write

Scene Manager

Mesh object

Global Terrain Terrain

Latticed terrain

Biped object

Holes

Texture brush

Morphing

Sky object

Animation Controller

Biped State Manager

Shadow support

Environment
Simulator

Ocean manager

Physics Mesh object

Missile object

Other objects

Game Loop

NPL Runtime
Environment

GUI Engine

Camera System

Client database

Camera modes

Physics constraints

Text

Physics world

Physics Engine

Ray picking support

Button

IME Edit Box

Tool tips

Slider bar

Container List box

Painter

Log system

Effect file manager

Network Layer Lua / Luabind ?

Script interface

Log & debug

TCP

UDP

NPL basics

Asset, Scene, GUI,
Camera, Terrain, IO

AI modules

 12

Figure 2.2 Spiral development path

Figure 2.2 is an extension of Figure 2.1. Generally speaking, engine developers can start from
the center game loop and then adding new functionalities following the lines in the figure.
The longer the horizontal lines, the later the connected module may be developed. For
example, after having implemented a basic Scene Manager, one can build the Global Terrain;
then a single height field based Terrain; then a Latticed Terrain; and then adding terrain holes,
texture brushes and terrain morphing functionalities, etc. The implementation details for the
extension parts can be found in the corresponding chapters of this book.

2.3 Building Game Engine Skeleton
This section guides you to build the game engine skeleton in Figure 2.1. We use C++ as the
main programming language, so that we can take advantage of object oriented design, C++
template and namespace support. DirectX is assumed as the rendering device API. One can
download all source code covered in this section from our website: www.paraengine.com

2.3.1 Preparation
The following things are almost absolutely necessary if you are a reader who wants to start
building a modern game engine with C++. These things will not be explained in this book, but
worth learning elsewhere.

- C++ Namespace is very useful for a big game engine project, since we may later use
third-party libraries which might have name collisions with our own classes or data types.
So we advise engine developers to put every class, function or global object that belongs
to the game engine to a namespace. Our sample game engine is called ParaEngine, so we
put everything in namespace ParaEngine.

- Getting familiar with STL, we will need its implementations for a number of data
structures and algorithms. Alternatively, one should at least prepare its own efficient and
safe counterparts for STL string, list, vector, map and set, etc.

- Getting familiar with string safety. Game engine will do lots of IO and string
manipulations. And one should make sure how to use functions like scanf, printf, string
length, etc in a secure and efficient way. More information can be found at Microsoft
MSDN on code security.

- Learn to document your source code. Game engine will evolve to a huge project and
always subject to changes; code documentation can provide timely updates to function
usage for the programmer itself and other users. In ParaEngine, we use doxygen6 format
and only document in the header files and the function bodies.

- DirectX basic programming. One does NOT need to be very familiar with DirectX or
OpenGL API to begin his or her first game engine. But at least, one should be able to
understand the basic pipeline and math to render a simple 3D triangle anywhere in the
window. This is the pre-requisite of this book for programmer readers.

6 Doxygen, a documentation system: http://sourceforge.net/projects/doxygen/

http://www.paraengine.com/

 13

- Scripting. This is not necessary for every game engine. But since we use an open source
language called Lua in our scripting implementation, it becomes necessary for
programmers to download and learn something about Lua and LuaBind. Lua is a hidden
secrete in the game industry for decade and has been used in a number of successful
games. We will cover more on it both in this chapter and the chapter for scripting.

- Math library. 3D game engine will do lots of vector, quaternion and matrix math, etc.
Many game engines have their own math libraries. DirectX SDK also provides a bunch of
inline helper functions (prefixed with D3DX) to perform math functions. Although
DirectX’s math functions are not of object oriented design, it is general enough to be used
together with other math libraries. Hence, most math of ParaEngine is done with DirectX
helper functions, except for special conditions. ParaEngine’s own math library can be
found at the book’s website; other good object-oriented math libraries can be found in
some open source projects, such as the ODE physics engine7.

2.3.2 Writing the Game Loop
Do not use the operating system’s timer for your game loop. Game engine will need its own
more accurate timing module. Usually, it is good practice to put your game loop in your main
application’s while (true) {} block and let it be called as often as possible. In a Win32
application, it looks like the following code:
class CMyD3DApplication : CParaEngineApp {
…
INT run(){

While(if app does not quit){
if(got a message){

… Translate and dispatch the message
}else{

Render3DEvironment(); // game loop in this function
}

}
};
};
INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT){
 CMyD3DApplication d3dApp;
 InitCommonControls();
 if(FAILED(d3dApp.Create(hInst)))
 return 0;
 return d3dApp.Run();
}
A real game loop takes more code than that, we advice novice programmers to refer to
DirectX samples or the code provided in our book’s website. In case, one wants to use the
same game engine for different applications, we use a special class called CParaEngineApp to
enclose all application specific functions. In future, we can optionally build our project as a
library file to be used in many game projects, which call the CParaEngineApp’ class API in
their own game loops. See the code sample below.
class CParaEngineApp{
public:

7 Open Dynamics Engine: www.ode.org/

 14

/** this function should be called when the application is created. I.e. the windows HWND is valid.*/
HRESULT OnCreateWindow();

/** Called during device initialization, this code checks the device for some minimum set of capabilities,
and rejects those that don't pass by returning false.*/
HRESULT ConfirmDevice(LPDIRECT3D9,D3DCAPS9*,DWORD,D3DFORMAT,D3DFORMAT);

/** This function should be called only once when the application start, one can initialize game objects
here.*/
HRESULT OneTimeSceneInit(HWND* pHWND);

/** This function will be called immediately after the Direct3D device has been created, which will happen
during application initialization and windowed/full screen toggles. This is the best location to create
D3DPOOL_MANAGED resources since these resources need to be reloaded whenever the device is
destroyed. Resources created here should be released in the OnDestroyDevice(). */
HRESULT InitDeviceObjects(LPDIRECT3DDEVICE9 pd3dDevice);

/** This function will be called immediately after the Direct3D device has been reset, which will happen
after a lost device scenario. This is the best location to create D3DPOOL_DEFAULT resources since
these resources need to be reloaded whenever the device is lost. Resources created here should be
released in the OnLostDevice.*/
HRESULT RestoreDeviceObjects();

/** This function will be called at the end of every frame to perform all the rendering calls for the scene,
and it will also be called if the window needs to be repainted. After this function has returned, application
should call IDirect3DDevice9::Present to display the contents of the next buffer in the swap chain*/
HRESULT Render(float fTime);

/** This function will be called once at the beginning of every frame. This is the best location for your
application to handle updates to the scene, but is not intended to contain actual rendering calls, which
should instead be placed in the Render. */
HRESULT FrameMove(float fTime);

/** This function will be called immediately after the Direct3D device has entered a lost state and before
IDirect3DDevice9::Reset is called. Resources created in the OnResetDevice should be released here,
which generally includes all D3DPOOL_DEFAULT resources. See the "Lost Devices" section of the
documentation for information about lost devices. */
HRESULT InvalidateDeviceObjects();

/** This callback function will be called immediately after the Direct3D device has been destroyed, which
generally happens as a result of application termination or windowed/full screen toggles. Resources
created in the OnCreateDevice()should be released here, which generally includes all
D3DPOOL_MANAGED resources. */
HRESULT DeleteDeviceObjects();

/** This function should be called only once when the application end, one can destroy game objects
here.*/
HRESULT FinalCleanup();

/** process game input.*/
void HandleUserInput();

/** Before handling window messages, application should pass incoming windows messages to the
application through this callback function. */
LRESULT MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

protected:
// … members here

 15

};

CParaEngineApp does not create the Win32 window, but it need to know the current window
handle associated with the render device; neither does it create the Direct3D devices, instead
it saves the device pointer and use it to draw 3D objects. Although we will not create a game
engine that supports multiple render device types, it is good practice to use a simple wrapper
for our device object. Because there is usually only one valid device at any given time, we can
use a global singleton class to store the device object. We will write a class called CGlobal
and save the device object in it. In future, we will put other global objects that can only have
one instance in the game engine to it, such as the scene manager, the GUI engine, the global
terrain object, etc. The following is an example of CGlobal class.
/** prestored device parameters for the directX device. */
struct DirectXEngine
{
 LPDIRECT3D9 m_pD3D; // The main D3D object
 LPDIRECT3DDEVICE9 m_pd3dDevice; // The D3D rendering device
 D3DCAPS9 m_d3dCaps; // Caps for the device
 D3DSURFACE_DESC m_d3dsdBackBuffer;
… // others members and functions
}

// forward declarations
…
class CGlobals{
public:
 static IDirect3DDevice9 * GetRenderDevice();
 /** get directX engine parameters */
 static DirectXEngine& GetDirectXEngine();
public:
 static CSceneObject* GetScene();
 static SceneState*GetSceneState();
 static CPhysicsWorld* GetPhysicsWorld();
 static CParaWorldAsset* GetAssetManager();
 static CAISimulator* GetAISim();
 static CEnvironmentSim* GetEnvSim();
 static CGUIRoot* GetGUI();
 static CReport* GetReport();
 static CFileManager* GetFileManager();
 static CGlobalTerrain* GetGlobalTerrain();
 static COceanManager* GetOceanManager();
 static float GetGameTime();
 static HWND GetAppHWND();
 static const D3DXMATRIX* GetIdentityMatrix();
};
Whenever we need to use the device object, we can call CGlobal::GetRenderDevice() or
CGlobal:: GetDirectXEngine() for more pre-stored information about the device. Please note
that CGlobal is not a formal singleton class, it is actually a bunch of static functions. When
using it, it looks like a namespace called CGlobal.

Some people may argue that global members and functions are not good in C++ and they
should be passed as parameters instead. The reason that global objects are used quite often in
a game engine is given below.

 16

- Global objects do not need to be passed as parameters. Many source files in the game
engine will use these global objects, and they do not need to include them in the
parameter list.

- It makes other C++ header files clean, i.e. without the ugly name like IDirect3DDevice9*
and it also saves many forward declaration lines in the header files.

However, global objects should not be used without consideration. The above code already
lists all major global objects that will be used in the entire game engine.

2.3.3 Time Controller
In ParaEngine, several global timers are used to synchronize engine modules that need to be
timed. Figure 2.3 shows a circuitry of such modules running under normal state. The darker
the color of the module is, the higher the frequency of its evaluation.

Figure 2.3 Timing and I/O in ParaEngine

One of the first jobs that a game loop does is to decide how often a certain module should be
called and the actual and/or logical time delta between two successive calls. E.g. the Render()
function may be called 30 times per second, with a time step of approximately 1/30 second.

Time management is an advanced topic. We will cover it by an entire chapter. But so far, let
us just do a most simple time controller which outputs actual (unprocessed) time step. In
ParaEngine, we call it frame rate controller.
class CFrameRateController
{
public:
enum ControllerType{
FRC_NONE = 0,// output delta time without interpolation
FRC_CONSTANT,// output a constant delta time disregarding the input time
FRC_CONSTANT_OR_ABOVE,// output a constant delta time or a smaller one
FRC_FIRSTORDER,// interpolating using a linear function
FRC_SECONDORDER // interpolating using a second order function

Environment
simulator

Script engine:
NPL runtime

IO event handler

Render Scene

Physics & Biped
positions

AI modules
Strategies

Local triggers

Remote script
Network modules

Keyboard &
mouse response

Smooth local
animations

Camera and player
control

As fast as possible
<=1/60 sec

Faster than the user input
<= 1/30 sec

Faster than the user’s brain
<= 1/30 sec

Faster than user’s eyes
<= 1/30 sec

2D GUI engine

Game Loop

 17

};
ControllerType m_nType;/// Frame Rate Controller Type
float m_fTime; /// current time

// other members and functions
…

float FrameMove(float time){
switch(m_nType){
case FRC_NONE:

float fElapsedTime = fTime – m_time;
m_fTime = time;
return fElapsedTime;

}
}

};
In the game loop, we can use the frame rate controller class as below. Please note that we
instantiate the frame rate controllers as global (static) objects. Different modules of the game
engine may depend on different time controllers with different parameters.
static CFrameRateController g_simFRC;
static CFrameRateController g_renderFRC;
Game loop (){

fTime = GetTime (); // better use QueryPerformanceFrequency() internally.
call Framemove(fTime)
call Render(fTime)

}
Framemove(float fTime){

float fTimeDelta = g_simFRC.FrameMove(fTime);
… TODO

}
Render(float fTime){

float fTimeDelta = g_renderFRC.FrameMoveDelta(fTime);
… TODO

}
To get the current time, it is advised to use the more advanced version of time functions
provided by the operating system, such as QueryPerformanceFrequency, or at least
timeGetTime().

2.3.4 Log System
Log system is used to output messages during the program execution. The basic log function
opens a file, appends text to it and then closes the file.
void CLog::AddLogStr(const char * pStr)
{
 if (pStr==NULL) {
 return;
 }
 if (gLogFileHandle==NULL) {
 gLogFileHandle = fopen(sLogFile.c_str(),"w");
 }

 if(gLogFileHandle){
 fprintf(gLogFileHandle, pStr);
 fflush(gLogFileHandle);
 }
}
void CLog::WriteFormated(const char * zFormat,...)
{

 18

 va_list args;
 va_start(args, zFormat);
 vsnprintf(buf, MAX_DEBUG_STRING_LENGTH, zFormat, args);
 va_end(args);
 CLog::AddLogStr(buf_);
}
Programmers can write many versions of the log function, such as providing formatted
version that optionally outputs file and line number, etc. Some people like to use it with
macros, so that log behavior may be different for debug and release build. The book’s website
contains source code of a log system and a performance analyzer used in our game engine.

Log system can be very useful for debugging as well as game development. A game engine
will need to deal with tens of thousands of files, and be fault-tolerance to script and missing
files. Logging proves to be useful not only for programmers, but also for game content
developers to trace the problems. Hence, it is good practice to output all warnings and errors
through the log interface.

2.3.5 Memory Leak Detection
Memory leak is one of the common C++ problems that could be traced by employing some
debugging measures. In our game engine, we use the recommended operator new and delete
for dynamic memory allocation and de-allocation. Undiscovered memory leak problems in a
computer game engine can deteriorate its performance easily. Memory leak usually results
from unmatched new and delete calls. There is a trick in C++ which replaces the traditional
new and delete operators with a debug version that detects unmatched calls. The system
already has these functions in <crtdbg.h>. All we need to do is to include this header as
shown below.
#pragma once

// VC++ uses this macro as debug/release mode indicator
#ifdef _DEBUG
// Need to undef new if including crtdbg.h which redefines new itself
#ifdef new
#undef new
#endif

// we need this to show file & line number of the allocation that caused
// the leak
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#ifndef _CRTBLD
// Need when builded with pure MS SDK
#define _CRTBLD
#endif

#include <crtdbg.h>

// this define works around a bug with inline declarations of new, see
//
// http://support.microsoft.com/support/kb/articles/Q140/8/58.asp
//
// for the details
#define new new(_NORMAL_BLOCK, __FILE__, __LINE__)

 19

#endif

2.3.6 Using Mini-Dump
When your application crashes either in release or debug build, we can generate a mini-dump
file, which can usually accurately bring developers to the line of source code that caused the
crash. Please refer to the Direct X SDK technical article for details.

2.3.7 File Manager
A unified file interface is very useful in a computer game engine. A game engine usually
contains tens of thousands of resource files, most of which are read-only. In recent days, it is
common to selectively compress and put large number of files in a single package file, such
as in a zip archive. This will save disk space, allow multiple versions of a file to coexist, and
increase file searching speed. The details of the file system will be covered in an entire
chapter. But in this chapter, we will develop the basic file interface and an implementation
using the traditional operating system’s file API.

In ParaEngine, most resource files are loaded through the CParaFile interface, as given below.
class CParaFile{
 FileHandle m_handle;
 bool eof :1;
 bool bIsOwner:1;
 bool bDiskFileOpened:1; // whether a disk file handle is opened
 char *buffer;
 size_t pointer,size;
 string m_filename;
public:
CParaFile();
/** Open a file for immediate reading.*/
CParaFile(const char* filename);

/** no longer release the file buffer when this file object is destroyed. */
void GiveupBufferOwnership();

/** read byte stream from file at its current location. The buffer pointer will be advanced.*/
size_t read(void* dest, size_t bytes);
size_t getSize();
size_t getPos();
char* getBuffer();
char* getPointer();
bool isEof();
void seek(int offset);
void seekRelative(int offset);
void close();
}
The above is a primitive file interface with read-only access. It is easy to implement. The
interesting part of this special implementation is that when the file object is created, it reads
the entire file to a memory buffer, and when the file object is released it also releases the
buffer. However, it allows the user to keep the buffer by calling GiveupBufferOwnership().

To use the file interface, e.g. opening a texture bitmap file, one can use the following code:
void LoadTexture(){
 CParaFile myFile(“c:\\picture.bmp”);
 char* buffer = myFile.getBuffer();

 20

 if(buffer != 0){
 … // use the buffer
 }
 // no need to close the file or release the file buffer.
}

2.3.8 Asset Manager
A computer game engine needs to deal with tens of thousands of game assets, such as textures,
meshes, sounds, etc. It is time consuming to preload them in to memory. ParaEngine’s asset
management uses lazy-loading scheme, i.e. when an asset is created, it is not initialized until
it is used for the first time. Of course, we can force initializing an asset, but using the lazy-
loading scheme can make us load big continuous game scenes without noticeable real-time
delays.

Let us first develop a common base class called AssetEntity. In ParaEngine, other asset
entities such as texture and mesh are all derived from this base class. In this book, we call
resource objects entity, and call scene objects object. For example, a mesh object may need a
mesh entity and several texture entities to render it in the scene. We will make a clear
distinction of object and entity in the next section. The following code is AssetEntity
implementation.
/** Base class for managed asset entity in ParaEngine. We allow each entity to have one name shortcut
of string type, so that the entity can be easily referenced in script files through this name. we allow each
asset to be associated with only one name, if multiple names are assigned to the name entity, the latest
assigned names will override previous names. This could be limitation, and will be removed in later
version. However, in the game engine runtime, scene node stores asset entity as pointer to them. Entity
is by default lazily initialized, unless they are called to be initialized. */
struct AssetEntity {
private:

/** reference count of the asset. Asset may be referenced by scene objects. Once the reference
count drops to 0, the asset may be unloaded, due to asset garbage collection. however, the asset is
not completed removed. Pointers to this object will still be valid. only resources (such as texture,
mesh data, etc) are unloaded.*/
int m_refcount;

public:
enum AssetType {
 base=0,
 texture=1,
 mesh=2,
 multianimation=3,
 spritevertex = 4,
 font=5,
 sound=6,
 mdx=7,
 parax=8,
 database=9
};
virtual AssetType GetType(){return base;};

/** this is the unique key object. */
AssetKey m_key;

/** whether this entity is initialized;Entity is by default lazily initialized */
bool bIsInitialized:1;

/** whether this is a valid resource object. */

 21

bool m_bIsValid:1;

/** whether this is a valid resource object. An invalid object may result from a non-exist resource file.*/
bool IsValid() { return m_bIsValid; };

/** add reference count of the asset. One may later order the asset manager to remove all asset whose
reference count has dropped to 0 */
void addref() { ++m_refcount; }

/** decrease reference count of the asset. One may later order the asset manager to remove all asset
whose reference count has dropped to 0.
@return : return true if the the reference count is zero after decreasing it*/
bool delref() { return --m_refcount<=0; }

/** get the reference count */
int GetRefCount() { return m_refcount; }

AssetEntity():m_bIsValid(true),bIsInitialized(false),m_refcount(0) {}
AssetEntity(const AssetKey& key): m_bIsValid(true),bIsInitialized(false),m_refcount(0),m_key(key)
{}
virtual ~AssetEntity(){};
/** call this function to safely release this asset. If there is no further reference to this object, it will
actually delete itself (with "delete this"). So never keep a pointer to this class after you have released it.*/
virtual void Release();

/** return the key object. */
AssetKey& GetKey() { return m_key; }

virtual HRESULT InitDeviceObjects(){bIsInitialized =true;return S_OK;};
virtual HRESULT RestoreDeviceObjects(){return S_OK;};
virtual HRESULT InvalidateDeviceObjects(){return S_OK;};
virtual HRESULT DeleteDeviceObjects(){bIsInitialized =false;return S_OK;};
/** Clean up additional resources. This function will only be called before the destructor function.*/
virtual void Cleanup(){};

/** load asset. This function will only load the asset if it has not been initialized. Since ParaEngine uses
lazy loading, it is highly advised that user calls this function as often as possible to ensure that the asset
is active; otherwise, they may get invalid resource pointers. Some derived class will call this function
automatically, during resource pointer retrieval function. E.g. During each frame render routine, call this
function if the asset is used.*/
void LoadAsset(){
 if(!bIsInitialized){
 InitDeviceObjects();
 RestoreDeviceObjects();
 bIsInitialized = true;
 }
};
/** unload asset. Normally this function is called automatically by resource manager. So never call this
function manually, unless you really mean it. */
void UnloadAsset(){
 if(bIsInitialized){
 InvalidateDeviceObjects();
 DeleteDeviceObjects();
 bIsInitialized = false;
 }
}
/** if its reference count is zero, unload this asset object. any reference holder of this object can call this
function to free its resources, if they believe that it will not be needed for quite some time in future.*/
void GarbageCollectMe(){

 22

 if(m_refcount<=0){
 UnloadAsset();
 m_refcount = 0;
 }
}
};
Each asset entity is associated with a key which uniquely identifies the entity with others of
the same type. It has an internal attribute which marks whether the object has been initialized.
An entity is defined to be initialized if the entity is loaded from disk file and ready to be used
by the render device. It has two pairs of virtual functions, which can be called to
initialize/delete or restore/invalidate the asset entity. It also maintains a reference count for
each asset instance. It is a counter to record how many objects are using this asset entity. For
example, if there are two mesh objects that reference the same texture entity, then the
reference count of the texture entity should be two.

The following program shows the Texture and Mesh asset entity which derives from the base
entity class. Please note that for simplicity, we use the class CDXUTMesh which can be
found in the DirectX9.0c SDK sample for the mesh entity. In future, you may replace it with
one of your own class that parses the mesh data file and renders the mesh.
struct TextureEntity : public AssetEntity{
private:
 /// DirectX texture object
 LPDIRECT3DTEXTURE9 m_pTexture;
 TextureInfo* m_pTextureInfo;
public:
 virtual AssetEntity::AssetType GetType(){return AssetEntity::texture;};
 /// the texture can be initialized from an image file
 string sTextureFileName;

 virtual HRESULT InitDeviceObjects();
 virtual HRESULT RestoreDeviceObjects();
 virtual HRESULT InvalidateDeviceObjects();
 virtual HRESULT DeleteDeviceObjects();

 TextureEntity(const AssetKey& key);
 TextureEntity();
 virtual ~TextureEntity();
 LPDIRECT3DTEXTURE9 GetTexture(){
 LoadAsset();
 return m_pTexture;
 };
… // other members and functions omitted.
};

struct MeshEntity : public AssetEntity{
private:
 /// For simplicity, use the mesh class provided by DirectX SDK sample
 CDXUTMesh m_mesh;
public:
 virtual AssetEntity::AssetType GetType(){return AssetEntity::mesh ;};
 /// name of the x file name holding the mesh object
 string sMeshFileName;

 /// the view culling object used for object-level culling when rendering this mesh Entity.
 /// Generally it contains the bounding box of the mesh.
 CViewCullingObject m_pViewClippingObject;

 23

 MeshEntity(const AssetKey& key):AssetEntity(key) {}
 virtual ~MeshEntity(){};

 virtual HRESULT InitDeviceObjects();
 virtual HRESULT RestoreDeviceObjects();
 virtual HRESULT InvalidateDeviceObjects();
 virtual HRESULT DeleteDeviceObjects();
 CDXUTMesh* GetMesh(){
 LoadAsset();
 if(IsValid()){ return &m_mesh; } else { return NULL; }
 };

 /** init the asset entity object. compute and save the bounding box of the mesh*/
 void Init(const char* sFilename);
… // other members and functions omitted.
};
To use the TextureEntity and MeshEntity, we simply call GetTexture() and GetMesh() which
will initialize the entity if not done so yet.

ParaEngine have many other entity types given in Figure 2.4. But for our skeleton engine, we
only need to implement the texture and mesh entity to some extent so far.

Figure 2.4 Asset entities in ParaEngine

So far, we have shown how individual texture and mesh is wrapped in the unified AssetEntity
class. However, in the game engine, we will need to manage thousands of game resource
entities. We need a central place to create, store and manage all kinds of asset entities. We can
use a C++ template class called AssetManager which keeps a certain kind of asset entities in a
hash table (using the STL set template), so that we can locate an asset entity by its key in

 24

log(n) time. The canonical name of the asset file is usually chosen as the asset key. However,
a name shortcut can be optionally assigned to an asset entity, so that it can be easily
referenced in script files via this short name. This can be done by using a STL map object to
index asset entities by its short name string. Only one short name can be associated with an
asset, if multiple names are assigned to the same entity, the latest assigned name will override
previous ones. The template code for AssetManager is too long to be included here; one can
refer to the source code published on our website. Below is the code outline.
/** AssetManager manages a set of asset entities of a certain type. IDTYPE must be AssetEntity derived
class. */
template <class IDTYPE>
class AssetManager {
public:
 struct Compare_less{
 // functor for operator<
 bool operator()(const AssetEntity* _Left, const AssetEntity* _Right) const {
 // apply operator< to operands
 return (_Left->m_key.Compare(_Right->m_key)<0);
 }
 };
/** human readable name of asset object, which can be used as short cut to retrieve entity from its
manager. Internally we use the key object to uniquely identify an asset. Short cut can be nil “”. */
std::map<std::string, AssetEntity*> m_names;

/** A set of all asset entities.*/
std::set<AssetEntity*, Compare_less> m_items;

void Cleanup ();
virtual void DeleteEntity (AssetEntity *entity)
void DeleteByName (std::string name)
/** Check if there is a object with a specified name, and return the pointer to it. */
AssetEntity * get (std::string name)
AssetEntity * get (const AssetKey &key)
/** Create a new entity object and add it to the manager. */
pair< IDTYPE *, bool > CreateEntity (const string &name, const AssetKey &key)
/** get the entity by its string name */
IDTYPE * GetEntity (const string &name)

void LoadAsset ()
void UnloadAsset ()
void GarbageCollectAll ()
virtual void InitDeviceObjects ()
virtual void RestoreDeviceObjects ()
virtual void InvalidateDeviceObjects ()
virtual void DeleteDeviceObjects ()
… // other members and functions omitted.
}
Finally, we use another singleton class called CParaWorldAsset to store all asset managers for
different kinds of assets as below.
class CParaWorldAsset
{
 AssetManager <MeshEntity> m_MeshesManager;
 AssetManager <TextureEntity> m_TexturesManager;
public:
MultiAnimationEntity* GetAnimation(const string& sIdentifier);
TextureEntity* GetTexture(const string& sIdentifier);

 25

MeshEntity* LoadMesh(const string& sIdentifier,const string& sMeshFileName);
TextureEntity* LoadTexture(const string& sIdentifier,const string& sTextureFileName, _SurfaceType);
… // other members and functions omitted.
}
In the section “Writing the Game Loop”, we have shown how to retrieve global singleton
object in the CGlobal class. Thus, to load a mesh, we call
AssetEntity* pAssetEntity = CGlobals::GetAssetManager()->LoadMesh(strAssetName, strFilePath);

2.3.9 Scene Manager
The entire 3D game world in ParaEngine is composed of two sets of objects. The first set is
called scene objects and the second set is called asset entities. The scene objects have little to
do with graphics; it is usually just a mathematical presentation of an object in the game world,
such as the size and position of a character. A scene object usually does not render itself
directly. Instead, it is usually associated with one or several asset entities. These asset entities
are usually textures, mesh and animation data that contains the actual artwork for rendering
and methods of drawing them.

Throughout this book, we will create several kinds of scene objects. In this section, we will
write the root scene object and the mesh object. The root scene object is just a container of
various kinds of objects in the game scene, such as the global terrain, the camera, the global
bipeds, the physics world, the asset manager, the render states, the sky boxes, the quad tree
terrain tiles for holding all 3D scene objects, the AI simulator, and 2D GUI root, etc. But so
far, it only needs a camera object and a list of mesh objects for our skeleton game engine.

Most scene objects are derived from a common base class called CBaseObject. See the code
below. The actual base object class contains far more functions than in the given code.
class CBaseObject{
 enum _SceneObjectType{
 BaseObject=0,
 MeshObject=2,
 SceneRoot=6,
 … // others
 };
 virtual CBaseObject::_SceneObjectType GetType(){return CBaseObject::BaseObject;};
 string m_sIdentifer; /// unit name used in the scripting language
 ObjectType m_objType; /// type of the object
 ObjectShape m_objShape; /// shape of the object

 /// object shape parameters
 …

 list<CBaseObject*> m_children;
 list<ObjectEvent> m_objEvents;
public:
 CBaseObject(void);
 virtual ~CBaseObject(void);
 const std::string& GetName();
 void SetMyType(ObjectType t);
 ObjectType GetMyType();

 virtual void GetPosition(D3DXVECTOR3 *pV);
 virtual void SetPosition(const D3DXVECTOR3 *pV) {};
 virtual void GetOBB(CShapeOBB* obb);
 virtual void GetAABB(CShapeAABB* aabb);

 26

 /// used as KEY for batch rendering
 virtual AssetEntity* GetPrimaryAsset(){return NULL;};

 virtual CBaseObject* GetViewClippingObject() { return this;};

 virtual void Animate(double dTimeDelta);
 virtual HRESULT Draw(SceneState * sceneState);

…// many virtual functions and members omitted here
}
The base object keeps the object identifier, object type, a list of child objects and a number of
virtual functions, etc. It has two important methods draw() and animate (). The draw method
render the object (not including its children), and the animate method advance the animation
of the object by a time delta if it contains animation.

Both our root scene object (CSceneObject) and the mesh object (CMeshObject) are derived
from the base class. CMeshObject has a mesh entity class member. The detailed
implementation of these two classes can be found in our website.

2.3.10 Scripting System
Before we go into the depth of a scripting system in Chapter 16; let us first set up a basic
scripting system with Lua and Luabind in the skeleton game engine. There are many choices
for game scripting system implementation, such as Lua, Python, etc.

The scripting system or NPL runtime environment in ParaEngine is built on top of Lua.

Lua is a popular light-weighted extensible language. It offers good support for object-oriented
programming, functional programming and data-driven programming.

Luabind is a library that helps you create bindings between C++ and Lua. It has the ability to
expose functions and classes, written in C++, to Lua. For example, if you have a C++
function that creates a mesh object as shown in the left, Luabind will automatically generate
code at compile time to register a Lua function, so that one can immediately use the same
function in a script file. The binding code in C++ looks magical, and is implemented utilizing
C++ template meta programming.

C++ code Script code

/** a scene object for scripting*/
struct ParaObject {
public:

CBaseObject* m_pObj; // a pointer to the object
ParaObject(CBaseObject* pObj):m_pObj(pObj) {};
string GetName(){return m_pObj GetName(); };

};

/** a table of static functions */
class ParaScene{
public:

static static ParaObject CreateMesh (){
return ParaObject(new CMeshObject());

}
};
… // register using luabind
void CNPLRuntimeState::LoadHAPI_SceneManager(){

-- create a mesh and print its name

local obj = ParaScene.CreateMesh();
local tmp = obj:GetName();

if (tmp == “”) then
 io.print(“object has no name”);
else
 io.print(tmp);
end

 27

using namespace luabind;
lua_State* L = GetLuaState();
module(L)
[

namespace_("ParaScene")
[
class_<ParaObject>("ParaObject")

.def(constructor<>())

.def("GetName", &ParaObject::GetName),

def("CreateMesh ", &ParaScene:: CreateMesh)
]

];
}
A fairly complete implementation can be found at our website. Whenever we add new
functions to the game engine, we might consider expose them through the scripting interface.
Functionalities can be organized in tables. In the above example, ParaScene is a table. In the
future, it will include all functions related to scene objects. ParaObject is a data object in
script; it could represent any scene object derived from the base object class.

Throughout the design of ParaEngine, we will have the following tables and data objects in
the scripting interface (see Table 2.1 NPL Scripting Interface Overview).

Table 2.1 NPL Scripting Interface Overview

Table Name Description

ParaScene ParaScene contains a list of functions to create and modify scene objects

ParaAsset ParaAsset contains a list of functions to manage resources (asset) used in game
world composing, such as 3d models, textures, animations, sounds, etc.

ParaUI ParaUI contains a list of functions to create user interface controls, such as
windows, buttons, as well as event triggers.

ParaCamera The camera controller.

ParaMisc Contains miscellaneous functions.

NPL NPL foundation.

Object Name Description

ParaObject It represents a scene object.

ParaCharacter It represents a character object.

ParaAssetObject It represents an assert entity

ParaUIObject It represents a GUI object

 28

2.4 Summary and Outlook
This chapter guides you to build a skeleton game engine, which has a potential architecture to
be extended to a formal game engine. But it is not mandatory that you write your first game
engine using exactly same methods. As we have mentioned at the very beginning of the book,
game engine implementation is diverse and subject to constant changes. In the future, the
computer will become faster and that the API of the operating system and DirectX, etc will
evolve to handle more sophisticated functions internally. Writing a modern computer game
engine needs to consider such changes seriously. Lots of traditional algorithms and
architectures used in game engines 3 or 5 years ago are losing popularities in today’s
implementations. The following trends are already changing game engine architecture.

- Multiprocessors: In fact, game platform such as Xbox 360 is already using multiple CPUs
and supports parallel programming to some extend.

- GPU: GPU is getting faster and more parallel. Video memory is getting as cheap as
system memory. GPU is doing more tasks than its traditional rendering pipeline.

- Hardware accelerated game modules: Other game engine modules besides the graphics
module may be hardware accelerated. Physics simulation, for example, are now supported
by special hardware. See www.agia.com.

- Internet: game technologies are making the web 3D. It requires game engines to host
distributed virtual game worlds. Game engines based on traditional client/server
architecture needs evolution.

Finally, we direct you to a number of open source game engines, whose architecture may be
useful to you.

- OGRE: very good object oriented game engine framework with a large user community.

- Irrlicht: a good clean implementation of computer game engine.

http://www.agia.com/

 29

Chapter 3 Files and File formats

To programmers, a software system can be quickly demystified by examining its protocols
and file formats. Even for programmers without former game programming experience, it is
quite helpful to glance over all file formats used by a game engine. We not only covers the
file formats, but also tell you the average file size, average number of each file types
processed by a moderate 3D game, as well as file distributions. Novice programmers and
designers can prepare their minds and start reflecting on how large volumes of game data can
be managed efficiently at real time. This is a special and independent chapter that we
designed to get you very close to a complete computer game engine in a bottom up manner
before you even know their implementations.

Please note that this chapter is NOT written so that one can understand everything, but it tries
to give the big picture of a computer game engine in a bottom up manner.

3.1 File Format from Game Requirement
The game engine usually does not contain game data. Instead all game content are read from
the file system, database or network on the fly. General game data that consumes most
memory space is textures, model meshes, animations, terrain elevations, sounds, strings, and
scripts. All of them are read by the game engine through the file interface. And there are
unlimited ways to format them in files. The basic principle is to avoid data duplications in
multiple files.

The file formats that a game engine support usually depends on game requirement. Engine
designers should make choices based on a number of requirements.

- Data reuse: if the game engine needs the data in a number of places, then it should be put
in a separate file. E.g. if the key frames of skeleton animations should be used by multiple
mesh characters, then animation data and mesh data needs to be put in separate files; if a
terrain height field is used at multiple places of the terrain surface, then they may also be
put in a separate file.

- Performance: By designing new file format that matches the internal data structure of the
game engine, we can get high performance and low memory uses. For example, the most
effective texture format in DirectX is DDS file format. Please also note that, one does not
need to put too much effort on file format performance issues, because the performance
gain of many such optimizations are not as noticeable as the programmers might expect.

- Eligibility: XML or other text based encoding is more eligible than binary encoding.
Some very good game engine prefers text encoding for models, animations and almost
everything except for texture bitmaps, while still having very good performance. The
bottleneck of game performance is usually not at how one decodes data in files (in fact,
disk file I/O takes more time than that). Some descriptive languages such as XML,
DirectX X file, VRML have binary equivalent to their text encoding.

- Internet: For data to be passed in the Internet, it needs to be eligible and ideally self-
descriptive. Most importantly, it has to be small or even streamed. So far, very few game
engines make this a requirement in their design.

 30

- Protection: By encoding in a proprietary and binary file format, it will increase the
difficulty for others to extract game data from the file. The downside is that we will need
to design specific tools to build these files from other public file format or software
system. For example, we can use the public “tga” or “dds” as the texture file format, or
we can slightly modify the file header to create a new texture format, so that users will
not easily open these files with a traditional image browser.

- Extensibility: Many old public file formats for describing mesh and animation, etc, lacks
extensibility. When we want to add new data fields to a file, it will not be very
comfortable with these old file formats. There may be some workarounds, such as
utilizing the comment lines supported by the file format; but generally it is not an elegant
solution. Some newer file formats have very good extensibility, such as XML and
DirectX X file. But sometimes, using them will not be easier than defining a new file
format.

- Generality: Most game engines supports multiple file formats for the same game data. For
example, most game engine supports two or more public texture file formats and one or
more public mesh file formats.

If you are the reader who wants to start a new game engine project, it is worth spending some
time on game requirements from the file perspective, and making the decision of which file
formats to use or plan to use at an early stage of your development.

3.2 ParaEngine File Formats Overview
This section describes the file format requirement derived from the requirement of
ParaEngine. In ParaEngine, we want to build a game world on a continuous and infinitely
large terrain; we wants to user to be able to manipulate everything in the virtual game world
without any noticeable delay in graphics or physics. More specifically, we need the user to
create and modify terrain and ocean, to lay and transform objects such as trees and buildings
in the game world, and to create live characters and sequences of animations, all in real time.
We want to derive a new virtual world from one or several existing game worlds without
duplicating data, so that users can publish a large personal virtual world in very small size to
the Internet and that large number of people could share a single virtual world with data
distributed on each person’s computer. We need game data to be packed in smaller files for
network transfer and accumulative display.

 From the above requirement listing, we can design the outline of ParaEngine file format.
File relationships is given in Figure 3.1. The basic file types are given below.

- World Config file: the entry file for a virtual world; it contains references to a number of
terrain config files.

- Terrain Config file: the entry file for a fixed sized square terrain; it contains references to
terrain elevation file, base terrain texture files, texture mask files, and on load script, etc.

- Terrain Elevation file: height maps of terrain surface.

- Terrain texture Mask file: the alpha maps for different texture layers on the terrain surface.

- Terrain On load script file: a script file for loading different kinds of scene objects (such
as meshes, lights, levels, characters, water, etc) to the game world.

 31

- Mesh & Animation file: 3D meshes and animation data, etc.

- Texture files: all kinds of textures used in the game engines.

- Movie file: a movie sequence of a character.

- Script files: script files in NPL, which are compiled and executed by the NPL runtime
environment on the fly.

- Game loop file: user specified script files which are executed repeatedly.

- Log: the text file for log result.

- Effect files: small pieces of code used by GPU.

- Sound files.

- Database file: client side database file for some game specific logics.

- Archive file: a package file that contains a number of compressed or uncompressed files.
E.g. Zip file is a most frequently used archive file.

Figure 3.1 File relationships in ParaEngine

Please note that we did not list files used by the NPL network engine and files used in game
engine configuration. We will cover network related issues in volume II.

One of the characteristics of this file design is that it breaks game data into many small and
reusable files. For a 1600 (km*km) continuous and non-repeated 3D game world filled with
forests, villages and cities. The file sizes are approximately given in Figure 3.2. We have

World Config

NPL Runtime
Environment

World Config

Terrain ConfigTerrain Config

On load scriptElevation file Elevation file

Mask file Mask file

Mesh& Animation file

Texture files

Movie file

Texture files

Log

Many script files

Game loop script

NPL Runtime
Environment

Networking

Effect file

Database file

Archive file

 32

shown both compressed and uncompressed size. But it is the compressed size that we care
most. Non-listed files are too trivial in size to be listed.

Figure 3.2 File relationships in ParaEngine

The uncompressed size of a single file is given below:

- On load script: approx. 0-100KB.

- Mesh & animation: approx. 10KB-1000KB

- Texture file: 43KB, 86KB (256*256 pixels with alpha), etc

- Elevation file: 64KB

- Mask file: approx. 64KB-1024KB

You can estimate the number of files from the above information. The total files are approx.
10, 000. The data given above could differ greatly from game to game. It just helps engine
programmers without actual game development experience to get an impression of the scale
of a moderate sized 3D game today.

3.3 ParaEngine File Formats
In this section, we will give the detailed specification of file formats used in the game engine.
We use a casual way to describe the file format, so that readers can get the outline of a file
format more vividly. Typically, we use /** x */, --x and --[[x]] to denote comment lines; use
[x] to denote optional field in text encoded file, {} for scoping in binary encoding, and we
mix actual file examples with their definitions for most text encoded file formats.

3.3.1 World Config File
The game world is partitioned in to many equal sized squares as shown in Figure 3.3. Each
square is called a terrain tile, and is specified by a 2D coordinate. Each terrain tile contains a
terrain surface, and scene objects which are on that terrain. The world config file is an entry
file for a virtual world, defining the attributes of the game world and the distribution of terrain
tiles.
Name: World Config File Specification
Encoding: plain text
Desc: Lattice Terrain Specification. (Pay attention to spaces between characters).It consists of the size

0 100 200 300 400 500 600 700

mask file

elevation file

texture file

mesh& animation

on load script

compressed size

uncompressed size

MB

 33

of a terrain tile and a mapping from tile position to their single terrain configuration file. Please note the
first line "type = lattice" is mandatory, otherwise it will be mistreated as a single terrain configuration. If
there are multiple single configuration files for the same tile position, the first one will be used. if there
are multiple tile positions referring the same single terrain configuration file, copies of the same terrain
will be created at these tile positions
Notes: The order of tiles is not important.
type = lattice
TileSize = 500
-- tile0_0.txt refers to a single terrain configuration file.
(0,0) = terrain/data/tile0_0.txt
(2,2) = terrain/data/tile2_2.txt
(3,3) = terrain/data/tile3_3.txt
(4,2) = terrain/data/tile4_2.txt

In a typical world, the number of tiles is 64*64 and the tile size is 500 meters, which could
describe a continuous world of 32*32(km.km).

Figure 3.3 Grid-based virtual world partition

3.3.2 Terrain Config File
Terrain config file is the entry file for a fixed sized square terrain, which is usually referenced
by the world config file. It contains references to terrain elevation file, base terrain texture
files, texture mask files, and on load script, etc. On load script contains scene objects on the
terrain tile.
Name: Terrain Config File Specification
Encoding: plain text
Desc: A single terrain object can be loaded from a configuration file.
the following file format is expected from the file, pay attention to spaces between characters:
Notes: Some fields of the config file are optional. And some fields may be neglected or overridden. E.g.
the size of terrain square could be overridden by the one defined in the world config file.
-- The script file to be executed after the terrain is loaded. It is optional.
OnLoadFile = script/loader.lua
-- the height map file, it can either be a gray-scale image or a Para-RAW elevation file.
Heightmapfile = texture/data/elevation.raw
-- The main or base texture. this is optional.
[MainTextureFile = texture/data/main.jpg]
-- The common texture. this is optional.
[CommonTextureFile = texture/data/dirt.jpg]
-- size of this terrain in meters
Size = 512
-- the height value read from the height map will be scaled by this factor.

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

(1, 3) (1, 5)

(2, 6)(2, 5)

Width: 500 meters

Tile Pos X: 1
Tile Pos Y: 3

The actual tile position is:
(1x500, 3x500) = (500, 1500)
The actual tile size is 500

t
“Sample/sample_1_3.lua”: A loading script file for (1, 3)

 34

ElevScale = 1.0
-- whether the image is vertically swapped. It takes effects on gray-scale height map image
Swapvertical = 1
-- hight resolution radius, within which the terrain is drawn in detail.this is optional.
[HighResRadius = 30]
-- we will use a LOD block to approximate the terrain at its location, if the block is smaller than
fDetailThreshold pixels when projected to the 2D screen.
DetailThreshold = 9.0
--[[When doing LOD with the height map, the max block size must be smaller than this one. This will be
(nMaxBlockSize*nMaxBlockSize) sized region on the height map]]
MaxBlockSize = 8
-- the matrix size of high-resolution textures.
DetailTextureMatrixSize = 64
--[[the terrain holes specified in relative positions. There can be any number of holes following the
"hole". This section is optional.]]
hole
(10,10)
(200,300)
-- number of texture files used in the mask file .
NumOfDetailTextures = 3
texture/data/detail1.jpg
texture/data/detail2.jpg
texture/data/detail3.jpg

3.3.3 Terrain Elevation File
The engine will assume that the elevation file is of raw terrain elevation type; otherwise it is
treated as a gray scale image. In a gray scale image, a pixel RGB(0.5,0.5,0.5) is of height 0.
However, gray scale image has only 8-bits for the height levels, which is insufficient for most
game application. That is why we need another high resolution terrain height map file format
called Raw Terrain Elevation file, given below.
Name: Terrain Elevation File Specification
Encoding: binary file with file extension “.raw”
Desc: height map of a terrain surface. The content of RAW elevation file is just a buffer of
"float[nSize][nSize]", please note that nSize must be power of 2 or power of 2 plus 1. i.e. nSize =
(2*...*2) | (2*...*2+1); E.g. if the height map is a grid of 129*129, then the uncompressed file size will be
129*129*4 bytes=65KB.
Notes: The file name must end with ".raw", for example. in the single terrain configuration file:
Heightmapfile = terrain/data/LlanoElev.raw
FLOAT (4 bytes)
FLOAT (4 bytes)
…
FLOAT (4 bytes)
FLOAT (4 bytes)

3.3.4 Terrain Mask File
Terrain mask file stores the alpha maps for different texture layers on the terrain surface. It
describes how multiple layers of textures are blended on the terrain surface. Please Figure 3.4
for a demo of the terrain surface. In the figure, the terrain surface is painted by blending
several detailed textures over a base texture. For more information, please see Chapter 9.
Name: Terrain Detailed Texture Mask File Specification
Encoding: binary file with file extension “.mask”
Desc: It stores the alpha maps for different texture layers on the terrain surface.
Notes: the name of the mask file is computed as below:
the fold of terrain configure file + folder with terrain config file name+".mask"

 35

e.g. if the terrain configure file is "sample/config/sample_0_0.config.txt"
then the mask file name will be "sample/config/sample_0_0.mask"
DWORD nDetailTextures; // number of detailed textures in the texture set of the terrain
// following nDetailTextures number of texture string block each of the following format
{
 DWORD nStrLen; // length of the string, do not count the "\0"
 BYTE str[nStrLen]; the string without the trailing "\0"
}
DWORD nCellCount; // number of cells , usually 8x8=64
// following nCellCount block of texture cell data, each has the following format
{
 DWORD numDetails; // number of detail textures in the cell
 // following numDetails blocks of detail texture data, each has the following format
 {
 DWORD nSharedIndex; // index into the texture set of the associated terrain.
 // if nSharedIndex is 0xffffffff, there are no data following this block, otherwise it
 // is a raw alpha mask in the following format.
 BYTE MaskData[256*256]; // raw mask data
 }
}

Figure 3.4 Alpha blending of multiple textures on the terrain surface

3.3.5 Terrain On Load Script
Terrain On load script is a script file for loading different kinds of scene objects (such as
meshes, lights, levels, characters, water, etc) to the game world. It is referenced by the terrain
config file, so that when that terrain tile is loaded to the game world, the game engine can
load scene objects that should appear on that piece of terrain. The syntax of the script file is
based on Lua, and its function APIs are defined in NPL. We will only give an example here.
Name: Terrain On Load Script
Encoding: script file
Desc: loading scene objects to the scene
Notes:
… (lots of code omitted)
-- The following code shows the creation of a static 3D tree on a specified position of the terrain.
local asset = ParaAsset.LoadStaticMesh("", "sample/trees/tree1.x")
local player = ParaScene.CreateMeshPhysicsObject("",asset, 1,1,1, true, "0.193295,0,0,0,0.187032,-
0.0488078,0,0.0488078,0.187032,0,0,0");
player:SetPosition(148,120.156,95);player:SetFacing(0);sceneLoader:AddChild(player);

 36

… (lots of code omitted, that create other scene objects)

Figure 3.5 shows a 3D scene which is constructed by on load script. Usually an on load script
contains the creation code for a few hundreds or over a thousand scene objects in a certain
terrain tile.

Figure 3.5 From On Load Script to 3D scenes

3.3.6 Texture File
Usually, a game engine does not need to define its own texture file format. The internal
presentation of a general texture in most game engines are the same, which is the default file
format consumed by your graphics card. Hence what the game engine does is to convert
whatever file formats from the disk to this internal file formats. Some game engine prefers
DirectX’s DDS file format, because it is the closest format to the internal one. Popular texture
file formats are DDS, TGA, BMP, JPG, PNG, etc. A game engine usually supports all of them
and specially favours one or two of them. For example, in ParaEngine, we advice all 3D
model textures to be in dds file format, and that all 2D UI textures are in png file format.

3.3.7 Mesh and Animation File
Mesh and animation file format is a very flexible format defining mesh and animation data.
Because of its flexibility, it is used in a number of places, such as defining static meshes with
physics, meshes with level of details, simple animated meshes, characters with complex
skeletons and many animations, particle systems, etc. It is the most complex file format in
ParaEngine. In other game engines, separate file formats may be used for different kinds of
purposes. However, in our implementation, we use a unified file format defined in DirectX’s
X file format. X file format is an extensible file format which supports both text and binary
encoding. Its file structure and extensibility is similar to XML, but is more compact and faster
to parse. We use the default X file serializer provided in the DirectX’s helper functions. The

 37

file format presented here is optimized for the parser provided in the DirectX9.0c SDK. If one
is not familiar with the way DirectX’s parser works, it is advised to write one’s own file
parser.
Name: Mesh and Animation file specification
Encoding: text or binary file defined in DirectX’s X file format
Desc: storing mesh and animations.
Notes: Defined in DirectX X file template. The template is registered by the parser for file parsing. Data
is in a tree hierarchy as shown below. All nodes are optionally.

-- Overview of the file

ParaXHeader{…}
ParaXBody {

[XGlobalSequences{…}]
[XVertices{…}]
[XTextures{…}]
[XAttachments{…}]
[XViews{…}]
[XIndices0{…}]
[XGeosets{…}]
[XRenderPass{…}]
[XBones{…}]
[XCameras{…}]
[XLights{…}]
[XAnimations{…}]

}
XDWORDArray “ParaXRawData” {…}

-- x file in DirectX retained mode

-- X File Template

xof 0303txt 0032
date: 2006.1.5
template ParaEngine{
 <00000000-0000-0000-0000-123456789000>
 [...]
}
template ParaXHeader {
<10000000-0000-0000-0000-123456789000>
DWORD id;
array UCHAR version[4];
DWORD type;
DWORD AnimationBitwise;# boolean animBones,animTextures
Vector minExtent;
Vector maxExtent;
DWORD nReserved;
}

template ModelAnimation{
<10000002-0000-0000-0000-123456789000>
DWORD animID;
DWORD timeStart;
DWORD timeEnd;
FLOAT moveSpeed;
DWORD loopType;

 38

DWORD flags;
DWORD playSpeed;
Vector boxA;
Vector boxB;
FLOAT rad;
}
template AnimationBlock {
<10000003-0000-0000-0000-123456789000>
WORD type;
WORD seq;
DWORD nRanges;
DWORD ofsRanges;
DWORD nTimes;
DWORD ofsTimes;
DWORD nKeys;
DWORD ofsKeys;
}
template ModelBoneDef {
<10000004-0000-0000-0000-123456789000>
DWORD animid;
DWORD flags;
WORD parent;
WORD geoid;
AnimationBlock translation;
AnimationBlock rotation;
AnimationBlock scaling;
Vector pivot;
}
template ModelVertex {
<10000006-0000-0000-0000-123456789000>
Vector pos;
array UCHAR weights[4];
array UCHAR bones[4];
Vector normal;
Coords2d texcoords;
DWORD Color;
}
template ModelView {
<10000007-0000-0000-0000-123456789000>
DWORD nIndex;
DWORD ofsIndex;
DWORD nTris;
DWORD ofsTris;
DWORD nTex;
DWORD ofsTex;
}
template ModelGeoset {
<10000008-0000-0000-0000-123456789000>
WORD id;
WORD vstart;
WORD vcount;
WORD istart;
WORD icount;
Vector v;
}
template ModelTexUnit{
<10000009-0000-0000-0000-123456789000>
WORD flags;
WORD order;

 39

WORD textureid;
}
template ModelTextureDef {
<1000000d-0000-0000-0000-123456789000>
DWORD type;
DWORD flags;
STRING name;
}
template ModelLightDef {
<1000000e-0000-0000-0000-123456789000>
WORD type;
WORD bone;
Vector pos;
AnimationBlock ambColor;
AnimationBlock ambIntensity;
AnimationBlock color;
AnimationBlock intensity;
AnimationBlock attStart;
AnimationBlock attEnd;
AnimationBlock unk1;
}
template ModelCameraDef {
<1000000f-0000-0000-0000-123456789000>
DWORD id;
FLOAT fov;
FLOAT farclip;
FLOAT nearclip;
AnimationBlock transPos;
Vector pos;
AnimationBlock transTarget;
Vector target;
AnimationBlock rot;
}
template ModelAttachmentDef {
<10000014-0000-0000-0000-123456789000>
DWORD id;
DWORD bone;
Vector pos;
AnimationBlock unk;
}
template ModelRenderPass {
<10000015-0000-0000-0000-123456789000>
WORD indexStart;
WORD indexCount;
WORD vertexStart;
WORD vertexEnd;
DWORD tex;
float p;
WORD color;
WORD opacity;
WORD blendmode;
DWORD order;
DWORD geoset;
DWORD renderstateBitWise; # usetex2, useenvmap, cull, trans, unlit, nozwrite
}
ParaXBody contains array blocks
template ParaXBody{
 <20000000-0000-0000-0000-123456789000>
 [...]

 40

}
####### array blocks #######
template XVertices {
<20000001-0000-0000-0000-123456789000>
DWORD nType;
DWORD nVertexBytes;
DWORD nVertices;
DWORD ofsVertices;
}
template XTextures {
<20000002-0000-0000-0000-123456789000>
DWORD nTextures;
array ModelTextureDef textures[nTextures];
}
template XAttachments{
<20000003-0000-0000-0000-123456789000>
DWORD nAttachments;
DWORD nAttachLookup;
array ModelAttachmentDef attachments[nAttachments];
array DWORD attLookup[nAttachLookup];
}
template XViews{
<20000005-0000-0000-0000-123456789000>
DWORD nView;
array ModelView views[nView];
}
XIndices0 only for view0 ###
template XIndices0{
<20000006-0000-0000-0000-123456789000>
DWORD nIndices;
DWORD ofsIndices;
}
template XGeosets{
<20000007-0000-0000-0000-123456789000>
DWORD nGeosets;
array ModelGeoset geosets[nGeosets];
}
template XRenderPass{
<20000008-0000-0000-0000-123456789000>
DWORD nPasses;
array ModelRenderPass passes[nPasses];
}
template XBones{
<20000009-0000-0000-0000-123456789000>
DWORD nBones;
array ModelBoneDef bones[nBones];
}
template XCameras{
<2000000d-0000-0000-0000-123456789000>
DWORD nCameras;
array ModelCameraDef cameras[nCameras];
}
template XLights{
<2000000e-0000-0000-0000-123456789000>
DWORD nLights;
array ModelLightDef lights[nLights];
}
template XAnimations{
<2000000f-0000-0000-0000-123456789000>

 41

DWORD nAnimations;
array ModelAnimation anims[nAnimations];
}
template XDWORDArray{
<20000010-0000-0000-0000-123456789000>
DWORD nCount;
array DWORD dwData[nCount];
}

3.3.8 Archive File
Archive file is a package file that contains a number of compressed or uncompressed files.
E.g. Zip file is a most frequently used archive file. When a game is released, people like to put
all files in several archive files by file type or file usage. Big package file may contain tens of
thousands of files. File searching in an archive file is made faster by loading and keeping the
entire file directory of the archive file in memory. Below is the ZIP file format illustration,
which is a popular archive file format used by many game engines.
Name: Zip File
Encoding: Binary file
Desc: chunks of compressed or uncompressed files. Files are stored in arbitrary order. Large .ZIP files
can span multiple diskette media or be split into user-defined segment sizes.
Notes: Zip file is a chunked file format with a directory at the end of the file.
Overall .ZIP file format:

 [local file header 1]
 [file data 1]
 [data descriptor 1]
 …
 [local file header n]
 [file data n]
 [data descriptor n]
 [archive decryption header]
 [archive extra data record]
 [central directory]
 [zip64 end of central directory record]
 [zip64 end of central directory locator]
 [end of central directory record]

 A. Local file header:

 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes

 file name (variable size)
 extra field (variable size)

 B. File data

 42

Immediately following the local header for a file is the compressed or stored data for the file. The
series of [local file header][file data][data descriptor] repeats for each file in the .ZIP archive.

3.3.9 NPL Script File
Scripting will be covered in greater detail in volume II of the book as well as in Chapter 16
of the book. We will only give some code examples of NPL script, here.
Outline of Script file
local function activate()

if (state == nil) then --state is a global variable
local playname = “abc”;
-- activate another script on remote machine.
NPL.activate("ABC: /pol_intro.lua", "state=nil;");
-- activate another script on local machine.
NPL.activate(“(gl)polintro.lua”,””);

else
… …
end

end
state={}; -- a global variable (table), usually for passing and share states among NPL files.
NPL.this (activate); --tell NPL which function is used as the activation function of this file.

A sample script that creates a “hello world!” dialog
local function activate()
 local window, button, text; --declare local variables
 --create a new window called "mainwindow" at (50,20) with size 600*400
 window=ParaUI.CreateUIObject("container","mainwindow","_lt",50,20,600,400);
 --attach the UI object to screen (root)
 window:AttachToRoot();
 --create a new button called "btnok" at (50,350) with size 70*30
 button=ParaUI.CreateUIObject("button","btnok","_lt",50,350,70,30);
 --attach the button to the window
 window:AddChild(button);
 --set text of the button
 button.text="OK";
 --if the button is clicked, delete the window
 button.onclick=[[(gl)script/empty.lua; ParaUI.Destroy("mainwindow");]];
 --create a new text box called "txt" at (50,50) with size 500*300
 text=ParaUI.CreateUIObject("text","txt","_lt",50,50,500,300);
 --attach the text to the window
 window:AddChild(text);
 text.text="Hello world!!!";
end
NPL.this(activate);

 43

3.4 Summary and Outlook
This chapter examines the major file formats used by a computer game engine. When reading
the rest of the book, one may frequently goes back to this chapter for reevaluations. During
the development of a special game, several new file formats may be created. Major updates to
file specification can be disastrous, but they are sometimes inevitable. Our suggestion is to
prepare for such occasions from the very beginning. Using general and extensible file formats
is a wise practice for most occasions.

Table 3.1 is a list of public file formats that one may consider to use in a game engine. All
of them have been used successfully in existing games.

Table 3.1 File Formats in Game Engine

File types Description

DDS, TGA, JPG, BMP,PNG Textures file formats

X, LWO, M2, 3DS, XML, X3D(VRML) Mesh and animations

Raw, grey scale image Terrain Height map

LUA, PYTHON, C sharp(CS) Script files

Txt, XML Configuration files

Sqlite (DB), XML Client database or data set files

Zip, 7zip Archive files

Wav, mp3, ogg Sound files

Fx, cg Shader files

 44

Chapter 4 Scene Management

From this chapter, we will begin our formal journey into computer game engine architecture.
We already covered some scene management and asset management in Chapter 1 and 2. In
this chapter, we will take a closer look at it.

4.1 Foundation
3D Scene management is about the organization of scene objects, such as static meshes, sky
boxes, characters, terrain, ocean, lights, etc. In games, scene objects are vegetations on the
terrain, props and buildings, a table, a glass of water, birds flying in the sky, fish swimming in
water, creatures lurked in the forest, controllable characters, etc. Some of these scene objects
are static; others are mobile. Some of them contain physics, others reacts to physics. Because
an engine can not efficiently load and simulate the entire game world, some objects are loaded
only when they are potentially visible or related to the current game logics. E.g. in a typical
role playing game, only the regions near the active players are loaded to the scene manager.

Scene management is about a dynamic data structure of game objects in the scene, where
the graphics rendering pipeline, the physics simulation engine, the game AI modules, etc
could quickly get the objects they need for further processing. Most of these modules that use
data in the scene manager share a common requirement: that is querying by spatiality. E.g. the
rendering pipeline wants to get a list of objects near the current camera position, so that
objects in the camera view frustum can be rendered; the physics engine wants to know what
other objects are in contact with any dynamic object; the AI modules wants to know all other
creatures which are within the view radius of any creature. Also, most scene objects,
regardless of its internal presentations, can be abstracted by a simpler shape such as box and
sphere. This shared property of scene objects are often used by the scene manager for
managing the dynamic data structure of game objects.

According to game requirement, there are many ways to organize scene objects. Sometimes,
simple structure can be more effective if used properly. For example, if the game is small,
such as scroll screen fighter games, one can put everything in a list; if the game map is small,
one can put all objects in a grid, i.e. a single two dimensional array. In this book, however,
we will only deal with the situation when the game world is too large to be loaded at once and
contains too many objects to be traversed linearly in a list. The solution that most game
engine adopts involves the use of a tree-based hierarchical data structure.

4.1.1 Hierarchical Scene Management
Instead of covering several solutions, we will only give one hierarchical scene management
solution which is used in ParaEngine. Other methods can be found in the outlook section of
this chapter.

In our implementation, we use a single root object called scene root object (CSceneObject)
as the entry point to the scene, then we organize all scene objects spatially in it. We design a
special dummy scene object called terrain tile object (CTerrainTile) for that purposes, the data
structure that we use is called quad-tree. Here is how it works. At the root of the quad tree is a
CTerrainTileRoot object, which represents the entire game world. The root node contains up

 45

to four child terrain tile nodes, which divides the game world into four equal sized square
regions; each child terrain tile nodes can contain another four terrain tiles, which further
divides the region into four smaller equal-sized square region. Figure 4.1 shows the partition
of a game world into gradually smaller square regions.

Figure 4.1 Quad-tree of Terrain Tiles

Initially, there is only one terrain tile, i.e. the root terrain tile. As new scene objects are
dynamically loaded or added to the scene, a hierarchy of terrain tiles will be created, to which
new scene objects are attached. The rule to spawn new terrain tile and attaching scene objects
to it is given below.

- Two of the important attributes of the root terrain tile are the size of the game world and
the maximum depth of the quad tree. E.g. if the game world is 32000 *32000 (m.m) and
the maximum tree depth is set to 8, then the smallest terrain tile is a square of
(32000/28=128 m) in length.

- When the scene is emptied, the quad tree has only a root node without any child terrain
nodes.

- When a new scene object is attached to the scene. The bounding volume of the scene
object is computed (the basic bounding volume is usually a 3D bounding box which
contains the object); the bounding volume is projected to a 2D plane (i.e. ignoring the
height of the object).

- The projected bounding volume is tested from the root of the terrain tile. It first tests if the
bounding volume falls in to one of the four regions of its child terrain tile. If the bounding
volume does not fall into any of the sub regions, the object is attached to the current
terrain tile; otherwise we will create the sub terrain tile which contains the bounding
volume if it has not been created before and try to attach the new object to that sub terrain
tile. This process continues recursively until either the object has been attached to a

CSceneObject

CTerrainTileRoot

1/4

1/8
1/16

CTerrainTile
(sub terrain tile)

Other scene objects, such as global
terrain, ocean, cameras, missiles, etc

chair & tables

shelf

door

camp Objects are attached to a terrain tile
only if its child terrain tile can not

accommodate its bounding volume.

 46

terrain tile, or we have reached the maximum depth of the quad tree. In the latter case, the
scene object will be attached to the leaf terrain tile anyway.

Figure 4.2 illustrates objects on the hierarchy of quad tree. The quad-tree will automatically
expand itself as new objects are attached to it. Although most objects are dynamically inserted
into the scene graph tree according to their geographical locations, there are some special
objects that do not follow this rule. These objects are active objects that need global
simulations. For example, some mobile creatures are attached to the Terrain Tile in which
they are patrolling, instead of to the smallest tile that contains its bounding volume.

Figure 4.2 Objects on Quad-tree

The reason to use a quad tree as the top level scene hierarchy is that, in a big and extensible
3D world (excluding outer space games), most scene objects are located horizontally in a
large plane. Quad tree is thus the most efficient structure to locate a group of objects around a
certain 3D position. Please note that quad tree is just one of the many scene organization
structures. Other spatial organizational structure includes Octree, BSP tree, Portals, etc, which
divides the space according to different rules. They are used elsewhere in the game engine.
E.g. a specific object (such as an in-door castle, physics triangle meshes, etc) which is
attached to the quad-tree may organize its internal objects (such as sub-geomerty, triangles,
etc) by these other structures. But the top-level organization of scene objects we advise to use
is a quad-tree.

CTerrainTileRoot

Biped-list
e.g.

players

Solid-list
e.g. global

objects

CTerrainTile

Biped-list
Patrolling
creatures

Solid-list
castles,etc

CTerrainTile

Biped-list

NPC,etc

Mesh-list
smaller
meshes

Middle tiles

CSceneObject

Global scene objects are
attached to the root tile.

Regional active scene objects can be
attached to any terrain tile in the

middle of quad-tree provided they use
absolute values for their positions.

The most versatile objects are in the leaf nodes of
terrain tiles, such as smaller mesh objects, static and

reactive characters, etc.

Terrain tiles will
automatically grow

(subdivide) as the scene
expands.

 47

4.1.2 Scene Graph
Some people call scene management, scene graph management. What we have gone

through (i.e. the quad-tree terrain tile structure in the scene manager) can also be called a
scene graph. A scene graph is a tree where the nodes are scene objects and their sub objects
are arranged in some sort of hierarchy. These nodes may be abstract objects, physical objects,
meshes, characters, body parts of characters, triangles, etc.

In this book, we sometimes call the scene manager, a scene graph. And when we speak of
traversing the scene graph, we really mean accessing objects in the scene in some order.

4.1.3 Using Scene Manager
In previous sections, we talked about how the scene manager organizes scene objects in a tree
hierarchy or a scene graph. In this section, we will explore the way to query the scene objects
and using the scene manager to complete some specific tasks.

4.1.3.1 View Clipping Object and Bounding Volumes
Before we can efficiently perform queries on the scene graph, we need to design the common
base interface for all scene objects on the scene graph. Recall that in Chapter 2, we designed a
class called CBaseObject, which contains attributes and functionalities that every scene
objects should support. Among them there is a function called GetViewClippingObect()
which returns another, if not the same, CBaseObject. The object is a view clipping object that
contains the bounding volume information of the scene object. The most commonly used
bounding volume presentation is a 3D box. We call a bounding box whose axis are always
aligned with the world coordinate, an axis aligned bounding box or AABB. We call a
bounding box which is arbitrarily positioned in world coordinate system, an oriented
bounding box or OBB. The view clipping object contains a unified interface for getting
information of different bounding volume types from the same object, such as AABB, OBB,
sphere, etc. For example, most static mesh objects’ bounding volumes are OBB.

Object’s bounding volume information is widely used during scene query. For example, if
we want to find out if a scene object intersects with another object, we can first tests the two
objects by their respective bounding volumes (view clipping objects); if the two view clipping
objects do not intersect, we know that the two objects does not intersect neither; if, however,
they do intersect, we can continue further testing or simply report contact, depending on our
testing requirement. View clipping objects are usually pre-calculated when their associating
objects are loaded, so that they can be obtained very fast. See Figure 4.3.

 48

Figure 4.3 Object-level Testing Using Oriented Bounding Boxes

4.1.3.2 Traversing Scene Graph
The most basic use of a scene manager is scene graph traversal. During scene rendering,
mouse ray-picking and environment simulation, we will need to traverse the scene graph
using different criteria. The goal of a traversal is finding relevant objects such as objects that
intersect with the camera view frustum, a ray or a radius. During scene traversal, we may
create temporary data structures or even modifying the scene graph, such as the location of an
object changes in the scene. The detailed behaviors for different scene traversal tasks are
discussed in their respective chapters. Here, we describe the general algorithm of doing a fast
scene traversal.

Generally speaking, we can use either breadth-first or depth first traversal, or their
combinations. However, we rarely need a full traversal of the scene graph. In most cases, we
only want to “touch” objects which intersect with a testing area, such as the camera view
frustum, the mouse ray, etc. We can do so by only going deeper into a scene graph level, if
and only if it contains or intersects with the testing area. The complete algorithm will be given
in the code section.

4.1.4 Dynamic Scene Loading and Unloading
Another issue that is not covered so far is when to load and unload a chunk of scene objects to
or from the scene manager. In Chapter 3, readers may notice that the game world in
ParaEngine is divided into lattices. Each terrain in the lattice is associated with an on load
script from which the game engine can construct scene objects in that region. When a user
controlled or active character is about to come into a certain terrain lattice, the game engine
will automatically load all scene objects in that lattice and the adjacent 8 lattices. To deal with
objects spanning the boarder of two or more lattices and to provide more granular and safe
scene loading management, we will introduce another module of the scene manager called
managed loader.

A managed loader is a group of scene objects which are usually close to each other. For
example, a bunch of small houses can be grouped by one loader; whereas a bigger house with
internal decorations can be grouped in another. The loading behavior for all objects in a
managed loader is synchronized, i.e. they are attached to the scene manager at one time.

Bounding volume

Testing by Oriented Bounding Boxes

 49

Management loader is also unique in the scene, and that it can only be attached once to the
scene manager. With this feature, we can group objects on terrain borders to a unique
managed loader and execute the managed loader in all adjacent terrain lattices’ on load scripts.
Even though, the same managed loader is executed multiple times, objects in the managed
loader are only attached once to the scene.

A managed loader is a kind of global scene object for dynamic scene object loading and
unloading. The content of a managed loader can no longer be changed once the loader has
been attached to the scene. Once objects in managed loader are attached to the scene graph,
the ownership of these objects transferred from the loader to the scene manager. The owner of
an object is responsible to clean up the object when it is no longer needed. The more exact
behavior of a managed loader is given below:

- The objects in a managed loader will be automatically attached to the scene as a single
entity.

- Generally speaking, only static objects are put in a managed loader.

- Managed loaders must be identified by a globally unique name.

- If one creates a manager loader with the same name several times, reference to the first
loader is returned for all subsequent creation calls.

- The bounding box of a managed loader will be automatically re-calculated as new objects
are added to it.

- Linearly traversing all managed loaders in the scene is sufficient to decide which group of
scene objects to load or unload. Although this routine is executed when the CPU is free, it
is good practice to keep the total number of managed loaders small. Usually a couple of
hundred loaders are fine for current hardware for one game scene.

- It is good practice to use managed loaders to attach static scene objects to the scene,
instead of attaching them directly. Managed loaders prevent duplicated attachments.

- It is good practice to put static objects which are physically close to each other in a single
managed loader.

- It is good practice to put objects on latticed terrain boarders in to a managed loader.

Dynamic scene unloading is not quite an issue in scene management and sometimes not
quite necessary. The major penalty for unloaded scene objects is that it uses some system
memory for its bounding volumes. But since unused objects are not touched during scene
traversal; there are no noticeable penalties for it. Hence, some game engines never remove
scene objects from the scene unless it has been manually instructed, such as the user resets the
game world. Moreover, in our game engine we separate object from its asset, which further
reduced the data keeping size of pure scene object. We do, however, provide a garbage
collection function to be manually called to release unused asset entities.

 50

4.2 Scene Manager Architecture

4.2.1 The Scene Root Object
The Scene Root Object (CSceneObject) is a very important class in the game engine. It is the
root of the entire scene graph tree. The tree is flat at its root node, but deep on some of its
child nodes. For examples, on the root of the scene object is a flat list of engine objects, such
as the global terrain, the cameras, the global bipeds, the physics world, the asset manager, the
render state, the sky boxes, the quad tree terrain tiles for holding all 3D scene objects, the AI
simulator, and 2D GUI root object, etc. The CSceneObject also controls most global states of
the 3D scene, such as fog, shadow and some debugging information.

The rendering pipeline is built directly to the root scene object. Actually the entire game
world can be accessed through the root scene object. Figure 4.4 shows the Collaboration
diagram of the class.

Figure 4.4 The Collaboration diagram for the root scene object

Figure 4.5 is a list of objects inherited from the common scene object interface
CBaseObject, which has been explained in Chapter 2. We also list some basic functions
related to bounding volume. Bounding volume is used for scene traversal against a testing
area.

 51

class CBaseObject{

.. // function related to bounding volume

void SetBoundingBox(…);
void GetBoundingBox(…);

void SetBoundSphere(FLOAT fRadius);
FLOAT GetBoundSphere();

/** get the oriented bounding box in world space. One may
need to shift by the rendering origin if used for that purposes.*/
virtual void GetOBB(CShapeOBB* obb);
virtual void GetAABB(CShapeAABB* aabb);

virtual bool TestCollisionSphere(…);
virtual bool TestCollisionObject(CBaseObject* pObj);
virtual bool TestCollisionRay(…);
virtual FLOAT GetSphereCollisionDepth(…);
virtual FLOAT GetObjectCollisionDepth(CBaseObject* pObj);
float GetObjectToPointDistance(…);

.. // lots of functions omitted.
}

Figure 4.5 The base class and bounding volume functions

4.2.2 Relative Position VS Absolute Position
Although the scene graph is hierarchically structured in a quad tree, scene objects attached to
the quad-tree terrain tiles are all specified in world coordinate system. Alternatively, a game
engine can use relative position for objects in the scene hierarchy, i.e. a scene object’s
position is made relative to its parent’s position. Although relative position has its merit, we
use world coordinates for all independent scene objects. This makes moving objects in a
dynamic game world easier. The more important reason is that absolute position works well
with other game engine module such as the physics and scripting system. In case of lower
level scene hierarchy, relative position is preferred, e.g., body parts of a character object are
made relative to their parent node.

4.2.3 Quad Tree Terrain Tiles
The following program shows the interface for terrain tile and the root terrain tile.
class CTerrainTile{
public:
 CTerrainTile(void);
 CTerrainTile(float x, float y, float r);
 ~CTerrainTile(void);
 void Cleanup();

 52

public:
 /// -- data structuring
 #define MAX_NUM_SUBTILE 4
 CTerrainTile* m_subtiles[MAX_NUM_SUBTILE];
 list<CBaseObject*> m_listSolidObj;
 list<CBaseObject*> m_listFreespace;
 /// mobile biped objects that is moving in this region
 list<CBipedObject*> m_listBipedVisitors;
 /// global name mapping.
 map<string, CBaseObject*> m_namemap;

 /// the central position of the terrain.
 float m_fX, m_fY;
 /// the radius of the entire terrain (half the length of the square terrain).
 float m_fRadius;
public:
 /// get object position in the world space
 void GetPosition(D3DXVECTOR3 *pV);
 bool TestCollisionSphere(const D3DXVECTOR3* pvCenter, FLOAT radius);
 bool TestCollisionObject(CBaseObject* pObj);
 float GetSphereCollisionDepth(D3DXVECTOR3* pvCenter, FLOAT radius, bool bSolveDepth);
 float GetObjectCollisionDepth(CBaseObject* pObj);

 int GetSubTileIndexByPoint(FLOAT fAbsoluteX, FLOAT fAbsoluteY);

 CBaseObject* SearchObject(const char* pSearchString, int search_mode=0, int reserved = 0);
 CBaseObject* GetGlobalObject(const string& sName);
 void DestroyObjectByName(const char* sName);
…// some functions and members are omitted
};

class CTerrainTileRoot: public CTerrainTile{

int m_nDepth;
public:

/// Reset Terrain
void ResetTerrain(FLOAT fRadius, int nDepth);
/// Get and create tile
CTerrainTile* GetTileByPoint(FLOAT fAbsoluteX, FLOAT fAbsoluteY,
 FLOAT fPtWidth=0, FLOAT fPtHeight=0);
/** attach object to the proper tile that best fits it. the terrain tile to which the object is attached is
returned */
CTerrainTile* AutoAttachObject(CBaseObject* obj);

/** detach the object from the tile or its sub tiles. the function will return immediately when the
first matching object is found and detached*/
bool DetachObject(CBaseObject * pObject, CTerrainTile* pTile=NULL);

…// some functions and members are omitted
};

4.3 Code and Performance Discussion
The code sample for traversing scene graph can be found in the rendering pipeline chapter.
The code for performing collision detection between two objects can be found in the picking
chapter and physics chapter. The remaining scene manager implementation is just a tree based
data structure. We will discuss here about the balance of the quad-tree terrain tile.

 53

4.3.1 Quad-tree Balance Discussion
Quad-tree is used for organizing scene objects spatially. What measures shall we based on for
determine the maximum tree depth of the quad tree? The answer to that question usually
depends on the density of scene objects and the average volume of scene objects. Ideally, we
should minimize the tree depth, while keeping the number of objects in the leaf-node small.
Typically, we like to keep the number of objects in the leaf node below 100. The question
now becomes how much land 100 objects will usually occupy. In the situation of our game, a
100m*100 m square region might contain 100 top-level objects on average, such as trees and
props. So given the size of the entire game world (fWorldSize) and the size of the smallest
terrain quad (fSmallestTileSize), in this case, it is 100 m; we can calculate the preferred tree
depth with the following formula:

// fSmallestTileSize = 100.f;

int nDepth = (int)(log10(fWorldSize / fSmallestTileSize)/log10(2.f));

if(nDepth<2) nDepth = 2;

4.4 Summary and Outlook
Scene management technique is very dependent on the type of games that a game engine
support. For example, typical game types are:

- Indoor games: the game is usually comprised of many independent game levels, each of
which takes place in a relatively small region and mainly indoors.

- Outdoor games: the game story takes place in a continuous and large (e.g. tens of
kilometers) scene with much longer line of sight. It features large areas of landscape and
realistic terrain and ocean rendering. It may also be mixed with indoor scenes. This is the
game type our game engine is designed for.

- Outer space games: it features infinitely large space that goes beyond 32 bits floating
point presentations and extends in all directions.

- Special games: Any other games that do not belong to the above genres.

Game engines for different game genres are usually different game engines. Of course, a
scene manager can be designed to support several scene management methods, but this
usually greatly complicates the design of the game engine. This is perhaps one of the reasons
why most game engines today only target on one game genre.

The following is a brief introduction of other scene management data structures besides
quad tree.

- Binary Space Partitioning (BSP) tree: It is a very efficient way of computing visibility
and collision detection in occluded environments. It may include bounding boxes for
clipping test. Leafy BSP tree with potentially visible sets (PVS) matrix can do fast
occlusion test. The drawback is that BSP only supports static mesh, involves much
preprocessing and consumes much maintenance memory.

- Octree (3D) or quad tree (2D): They are very general, scalable and widely applicable data
structure for storing objects spatially. It may be weak at occlusion test. Yet with occlusion
test supported in hardware, it is sufficient to use this simple data structure in most cases.

 54

- Portal rendering: Like BSP, it allows programmers to quickly decide what is potentially
visible in the scene from the camera eye position. It is very suitable for indoor scenes with
many dynamic objects in each room. Unlike BSP, the world hierarchy in portal rendering
can not be automatically computed, and requires human editing. Visibility is computed in
real time, not preprocessed. It is also the most difficult one of the three methods discussed.
Moreover, it usually involves additional works for game level editor.

 55

Chapter 5 Rendering Pipeline

In a game engine, the part that deals with graphic storage and displaying is often called 3D
engine or rendering engine. The rendering pipeline can be regarded as the main loop in a 3D
engine. What the rendering pipeline does is traversing the scene graph, getting objects that are
potentially visible by the current camera, and drawing them to the screen. The details of a
rendering pipeline can differ greatly for different game engines. This chapter only covers the
basics of a rendering pipeline and details about the top level rendering pipeline used in
ParaEngine. This top level render pipeline mainly works at the object level and calls the
potentially visible scene objects’ render function for the actual rendering in polygon level.
The pipeline discussed here is suitable for hybrid outdoor and indoor rendering.

5.1 Foundation

5.1.1 Render Pipeline Basics
At one end of the pipeline is polygon data of a scene object in local coordinate system; at the
other end is colored pixels in screen coordinate system. The middle stages usually involves,
translating the object from local space to world space, check if the object is visible from the
current camera settings, remove back and hidden faces if possible, transform polygons from
world space to camera space, apply the perspective transform, do the screen space clipping
and rasterizing. Formal introduction of a standard rendering pipeline can be found in DirectX
SDK. This book will not cover it. If you are a programmer reader, we assume that you already
read the rendering pipeline basics in DirectX SDK.

Because a rendering pipeline is a fairly fixed routine, it is accelerated by graphic processing
unit (GPU). Since DirectX 8.0, game engine programmers can sidestep the fixed rendering
pipeline, and program their own pipeline by replacing some render stage with their own GPU
programs. In the coming DirectX Version 10, fixed rendering pipeline is completely replaced
by the new programmable pipeline. Today, most 3D engines are based on the CPU / GPU
parallel processing architecture. An engine programmer has to program for both and balance
the threads of execution.

Figure 5.1 shows the rendering pipeline in CPU / GPU architecture. The white blocks stand
for procedures completed by CPU, the colored blocks stand for procedures completed by
GPU. The figure has roughly three columns. The left column denotes data set used by
pipeline procedures. The middle column denotes pipeline procedures in blocks. The right
column contains some brief descriptions of functions completed by a pipeline procedure on
the left. The pipeline flows from top to bottom in the figure. It begins by traversing the scene
manager and builds a list of potentially visible objects according to the current camera
settings. For example, in a large game world, only objects, whose bounding volumes are
inside or intersect with the camera view frustum, need to be in the list. A camera view
frustum is an enclosed sub space of the game world. We call this procedure object level
clipping. This will effectively exclude large number of objects as early in the render pipeline
as possible. Then for each objects, the game engine calls its render method which continues
the render pipeline downwards. There, the object may need to retrieve polygon and texture
data, etc from the asset manager, and then it may optionally do some view culling and view

 56

occlusion tests with the data in the hope to further minimize polygons sent to the next render
pipeline stage. Before we pass polygon data (i.e. triangle primitives, etc) down to the GPU
pipeline, we must prepare them as formatted buffer objects and setting up the GPU pipeline
states and shader programs. After data is sent to GPU, they will be processed in parallel with
CPU, following the built-in stages in GPU. Since DirectX 8.0, most stages of the GPU are
programmable by engine programmers. The programs executed by GPU are called shader
programs. They are mainly a simple function with standard INPUT and OUTPUT format.
Since shader programs are executed by GPU in parallel with CPU, they only have access to
data in the function parameters, GPU constant tables, and video memory.

Input Assembler stage

Rasterizer stage

Vertex Shader
stage

Geometry Shader
stage

Pixel Shader
stage

Output merger stage

Stream output
stage

Video memory resources
(buffer, texture, constants)

Input data

Output data

Scene manager Selecting potentially
visible objects

Preparing render data
and GPU pipeline

Asset manager

Rendering pipeline

Object level clipping: remove
unseen objects as early as possible

Remove hidden faces;
prepare transformed vertex data, index

buffers, textures, etc;
 set GPU pipeline states and programs.

Programs running in CPU

Shader programs running in GPU

vertex transformations, skinning,
and lighting, etc

Sending data back to the pipeline as
input data or read-back from the CPU

Clipping primitives

Generate color for a given
pixel, etc.

Output to render target for the
final pipeline result

 57

Figure 5.1 Typical rendering pipeline in 3D engine

The goal of 3D render pipeline is to make data processing parallel between CPU(s) and
GPU, and process as little data as possible to render a game scene. Since we have little control
of the render pipeline on the GPU, the main goal is to optimize the part on the CPU.

A good 3D rendering pipeline on the CPU side can be divided into clipping, culling,
occluding and computing the right level of detail (LOD). Different game genres may
emphasize certain aspects more than others to reach the desired performance. Generally, it
falls into three categories: outdoors, indoors, and planetary (outer space). The first two are
common. We can formally define an indoors rendering algorithm as one software piece that
optimizes the rendering pipeline by quickly determining occlusions (in addition to clipping
and culling) in the level geometry, thus allowing interactive rendering. This draws a
distinction with outdoors rendering methods (explained in later sections), which will in turn
emphasize LOD processing because view distances will be large. This characterization does
not imply that indoors algorithm does not use LOD, but it is the occlusion component that
will be dominant in the optimization. Regardless of the optimization goals, object level
clipping always comes first. In the architecture presented in this chapter, we will only look
into the object level clipping.

5.1.2 Object Level Clipping with Bounding Volumes
Object level clipping is a technique to remove an entire 3D object at an early stage of the
rendering pipeline. Recall in the scene management chapter, we associated each scene objects
with a view clipping object that contains pre-calculated bounding volume information. It is
used in object level clipping. A pseudo code is given below. Note that we first treat the view
clipping object and the camera view frustum as spheres for rough intersection test and then
perform more accurate collision test using the actual shape of the two objects. After running
this program, we will have a list of potentially visible objects, which will be sorted and then
passed down the render pipeline for further optimization and the actual rendering.
Traverse quad tree scene graph with the camera frustum{

For each sceneObject in the potentially visible terrain quad{
clippingObject = sceneObject GetViewCullingObject()
if((Test Collision (clippingObject as a 3D sphere, camera frustum as a 3D sphere) == true) and

(Test Collision (clippingObject, camera frustum) == true))
{

Add sceneObject to render object list
}

}
}

5.1.3 Object Visible Distance
The view frustum in an outdoor game may span several hundred meters. There is no need

to draw everything within this region, especially when the scene contains many small objects
that are barely visible in the distance. To avoid drawing small objects in the distance, we can
calculate the object visible distance for different object sizes. Objects are only drawn when
the object to camera distance is smaller than this value. This works even better when
combined with fog effect and some alpha animation on the object. For example, when an
object first appears at this distance, we play a quick animation on the object’s alpha color
from fully transparent to its original value and vice versa.

 58

We can easily combine this step to the object level clipping code in the previous section.
Instead of using the radius of the camera frustum for the rough collision test, we use another
sphere with center at the camera origin and an object visible distance (VisibleRadius)
calculated as below.

VisibleRadius (R) = max((fFar-Pow2(fNear*tanf(m_fCullingAngle))*density*(fFar-
fNear)/(R*R)), fNear);

Let R be the radius of the object. Let fNear be the near plane distance of the fog and fFar is
the far plane distance of the fog. m_fCullingAngle is preset to some predefined value, such as
5 degrees or D3DX_PI/36. We will allow an object of height fNear*tan(m_fCullingAngle) to
pop out from fNear distance from the camera eye.

In the concise form, the object visible distance v(R) = f – k / (R * R), where f, k are some
pre-calculated values. Figure 5.2 shows the curve of v(R).

 Figure 5.2 Object Level Culling: object visible distance function

The formula ensures that the pixel changes of any newly popped out object are roughly the
same for objects of all sizes. I.e. small objects will only be drawn when they are very close to
the camera, whereas large objects will be drawn as soon as they are in front of the far fog
plane.

5.1.4 Coordinate System for Render Pipeline
One tricky thing in the render pipeline is the coordinate system in which to perform clipping,
culling, occlusion testing and finally outputting to GPU. The world coordinate system seems
to be the natural choice, but consider the other choices. Below is list of coordinate systems.

- World coordinate system: if the game designer uses meters as the world unit and that
the size of game world is 40km*40km. Points in world units will fall in the range (-
200000, -200000, -200000) to (200000, 200000, 200000).

- Local coordinate system: this is usually the coordinate system in model files. The artist
uses it during 3D modeling. They are not particularly useful and are almost always
transformed to its parent coordinate system.

fFar

fNear

v(R)

R

v(R) = f – k / (R * R)

Smaller objects will appear late.

 59

- Camera coordinate system: this is the coordinate system with the origin at the current
camera eye position and axis aligned with the view direction.

- User defined coordinate system: any other coordinate system.

In case of world coordinate system, if one uses 32 bits floating point value as vector
component, there are only 4 or 5 bits left at the world boundary. For example, a player can be
at position (99999.001, 0, 0); but you can not specify a player at (99999.000001,0,0) as you
can with (0.000001,0,0). 0.001 meter is generally enough for moving and positioning global
objects as an entity in the world. But it will not be sufficient for rendering polygon details
inside the entity. So world coordinate system can not be used by the rendering pipeline unless
the world size is very small and near the world origin.

A simple solution is to transform scene objects to the camera coordinate system. This
effectively solves the floating point inaccuracy problems. However this is not very efficient,
because the game engine must transform a scene object by a 4x4 matrix before using it in sub-
sequent testing. A better solution is to use a user defined coordinate system, whose origin is
(or is near to) the camera coordinate system’s origin, and whose axis aligns with the world
coordination system’s axis. In ParaEngine, we call it a render coordinate system. Scene
objects in world coordinate system can be transformed to this new coordinate system by
simply offseting its position component. Of course, we need to transform the camera to this
render coordinate system as well. By using the render coordinate system, all vertex positions
processed both by CPU and GPU are near the origin and the position components of all
matrices used by CPU and GPU are also near the origin. This can effectively reduce floating
point inaccuracy issues during matrix and vector math.

5.1.5 Hardware Occlusion Testing
In the old days, occlusions are done mostly by software (i.e. on CPU). GPU uses Z-buffer or
depth buffer for the final occlusion testing. And it is usually considered inefficient for a game
engine to rely entirely on hardware (i.e. GPU) for occlusion testing.

Things have changed as GPU becomes increasingly fast. It is now even advised to throw
everything to GPU, instead of wasting precious CPU time. Hardware occlusion testing is a
newly supported function of GPU for doing the difficult job of occlusion testing. The idea is
this: if an object contains dense polygons, yet has relatively small bounding volume, we can
send the bounding volume to GPU and ask the GPU if it is visible. If the GPU says yes, we
can continue sending the full polygon soup to the render pipeline; otherwise we can skip the
object. In case the bounding volume is not accurate enough for occlusion testing, we can
even send the complete polygon soup to GPU for occlusion testing.

In practice, we use the occlusion query results from the previous frames to decide whether
to draw an object in the current frame. This is because a query is available only when the
GPU have finished drawing the object. Thus, getting the query result of an object rendered in
the same frame will usually cause the CPU to wait for the GPU to complete. Yet, the
occlusion query results from previous frames are always available in the current frame. So, if
we assume that game scenes are continuous between frames, we can use the previous
occlusion query results to decide the visibility of objects in the current frame, without
compromising parallelism between CPU and GPU.

 60

This technique is very useful if mixed with other techniques in the render pipeline. For
example, we can design the rendering pipeline as follows. Divide all potentially visible
objects in to two lists: the first list contains solid objects that are close to the camera or having
a big view angle; the second list contains transparent objects or objects that are both far away
from the camera and having a small view angle. Both lists are sorted by their bounding
volume’s distance to the camera eye position. We then render objects in the first list from
front to back with occlusion testing; and then render objects in the second list from back to
front also with occlusion testing.

Figure 5.3 shows occlusion test using object’s bounding volume (in this case, it is OBB).
The left three objects are in the first list; the four objects on the right in blue color are in the
second list. The order of drawing those objects is given by numbers.

Figure 5.3 Hardware Occlusion Testing using bounding box

5.2 Building the Render Pipeline
Combining method discussed in the last section, we will now take a look at the pipeline used
in ParaEngine. The pipeline is directly built into the scene manager (CSceneObject) in its
member function AdvanceScene(). The following pseudo code shows the rendering pipeline.
Render scene (RENDER_TIMER){

Set up scene state: camera frustum, rendering device and other user parameters, etc

Draw the sky with depth buffer off

Render the outdoor terrain {

Build LOD terrain based on current camera settings.
Draw the global terrain

}

5

3
4

2

1
6

View Frustum

View angle

Object to camera
distance

Transparent objects

Transparent objects

7

 61

For each sceneObject in the potentially visible terrain quad{
clippingObject = sceneObject GetViewCullingObject()
calculate ViewRadius of the current clipping object
if((Test Collision (clippingObject as a 3D sphere, sphere with ViewRadius) == true) and

(Test Collision (clippingObject, camera frustum) == true))
{

if(sceneObject is a container){
add its child objects to the testing queue

}
if(sceneObject is character object){

add it to the list_pr_Bipeds
}
else if(sceneObject is an ordinary mesh object){

fObjectToCameraDist = distance from clipping object to the camera eye position
if(sceneObject is solid object that is very near the camera or having a big view angle) {

add pair<sceneObject, fObjectToCameraDist> to the list_pr_front_to_back
}else{

add pair<sceneObject, fObjectToCameraDist> to the list_pr_back_to_front
}

}
else{ … }

}
}

Sort list_pr_front_to_back by fObjectToCameraDist
Sort list_pr_back_to_front by fObjectToCameraDist
Sort list_pr_Bipeds by asset type

for each object in list_pr_front_to_back {

if(hardware occlusion testing with object’s bounding volume is passed){
draw object

}
}
for each object in list_pr_back_to_front {

if(hardware occlusion testing with object’s bounding volume is passed){
draw object

}
}
Draw sprite objects {}

for each characterObject in list_pr_Bipeds{

characterObject animate();
}
Render character shadows using shadow volumes{

…only cast shadows on object rendered previously
}
for each characterObject in list_pr_Bipeds{

characterObject draw();
}

Draw missile objects { … }
Draw the ocean { … }
Draw particle systems in the scene {…}
Render dummy objects for debugging purposes

}
Generally speaking, we render indoor objects followed by outdoor objects, postponing the

rendering of any small-sized but high-poly object until larger objects (occluders) have been
drawn. Shadow receivers are rendered before shadow casters.

 62

The transformation from world coordinate system to render coordinate system is performed
by each view clipping object and each drawable object internally. I.e. the bounding volume
returned by view clipping object is internally converted to the render coordinate system to
avoid floating point inaccuracy issue.

5.3 Shader Program Management
There are two sets of rendering API supported by DirectX 9. One is for fixed function

rendering pipeline (FFP), another is for programmable pipeline (PP). In version 10 of DirectX,
it will only support programmable pipeline, where a game engine must supply all GPU shader
programs and input streams used for different rendering stages on GPU.

However, there are some difficulties to support both rendering pipelines in a game engine.
For backward compatibilities, most present day PC game engine still need to support both. In
this section, we will describe one way to mix these two pipelines in a game engine. The
emphasis, however, is on the programmable pipeline, or more specificly shader program
management.

5.3.1 Effect File Manager
To be compatible with DirectX, our shader program is written in HLSL or High Level Shader
Lanaguage. In DirectX extension library, HLSL file is also called effect files. Here, we
assume that the reader understands the basics of HLSL, including shader constants, samplers,
pixel and vertex shader, render passes, techniques and effect states. Such information can be
found in the DirectX SDK. And we also assume that you understand the standard procedure
of rendering a simple geometry using a HLSL shader program. Our focus in this section is on
managing large number of shader programs and how to apply them efficiently on a very large
amount of renderable scene objects.

HLSL program can be compiled into assembly code and loaded at run time. In most cases,
we configure the IDE (Visual Studio) to compile HLSL in to both text and binary formats of
assembly code. The text version is for human examination, the binary one is used by the game
engine. We then examine the text assembly code in terms of instruction count, and we also
need to take care of GPU register usage and whether the code for static and dynamic branch is
being properly generated. The binary version of assembly code is what will be used by the
game engine at runtime.

To compile HLSL program, one can enable custom build options in its build environment
for all HLSL files and use a HLSL code compiler such as fxc.exe included in the DirectX
SDK. The fxc compiler is able to generate assembly code in both text and binary format. It is
common for a game engine to have 10 to 20 or even more HLSL files. They are for different
scene objects and render options. See Figure 5.4. In ParaEngine, a singleton class called
CEffectManager is used to manage all shader (effect) files in the game engine.

 63

Figure 5.4 Effect Files in a Game Engine

 The CEffect manager is responsible for three kinds of tasks. The first task is to dynamically
load/unload effect files and switch between them. The second task is to automatically select
the proper techniques for different render tasks and graphic hardware. In ParaEngine, the
effect manager will default to fixed function pipeline if there are no proper techniques in the
requested shader file. To be more precise, all effect files in the effect manager have an unqiue
effect handle, where the handle 0 is reserved for the fixed function pipeline, handle 1-1024 is
reserved for intenal shader file usage, handle value above 1024 is for any user defined custom
shaders. The effect manager will automatically default to handle 0, if the requested effect file
does not contain a valid technique. The third task of the effect manager is to expose a
collection of functions for setting shared effect states, such as fog, alpha testing, alpha
blending, texture samplers, and any other game engine specific parameters, etc.

HLSL file

HLSL file

Assembly code (text)

Assembly code (binary)

Fxc

Solution
flies

Assembly code (text)

Assembly code (binary)

Compile time Run time

GameEngine
E

ffect M
anager

 64

Figure 5.5 Effect handle and it association with scene objects

On the other hand, each renderable scene objects may be associated with an effect handle,
which can be dynamically changed at runtime by the game logics or multistage rendering
routines. Recall that in the top level render pipeline, we have batched objects in to several
render groups. Now for each render group, we will further sort objects by their associated
effect handles. See Figure 5.5. Switching between shader programs is one of the most time-
consuming operations on GPU. Hence, in a programmable rendering pipeline, we need to
batch objects by their shader programs to minimize the number of shader switch times.

5.3.2 Wrapping the Render API
The centralized effect management scheme as discussed in the previous section also

provides us a good opportunity and place to wrap the DirectX render API, so that the render
code elsewhere is version neutral. Wrapping the fixed function pipeline is not necessary,
unless you are working on a game engine supporting both OpenGL and DirectX. Wrapping
the programmable pipeline is fairly easy, we only need to wrap a couple of resource
submission calls and draw calls in DirectX API; everything else, such as sampler states and
shader constants, etc, are already wrapped by either the CEffectManager or CEffectFile class.
Some code samples are given in the code section.

Effect Manager

EffectFile

Shared render states

EffectFile Fixed Function

Handle=0
Handle>0

Assembly code Assembly code

Default to FF

Expose interface

CBaseObject 0
CBaseObject 0

CBaseObject 4
CBaseObject 4
CBaseObject 4

An effect handle is
associated with each scene
object. This handle can be

changed dynamically,
which also changed the
shader effect file used to

render the object.

Objects are batched
by effect files

during rendering

Render

 65

5.4 Code and Performance

5.4.1 Traversing Quad Tree
The following shows part of the rendering pipeline. It traverses the terrain quad tree to find
potential visible scene objects.
Queue<CbaseObject*> queueNodes;
queue<CTerrainTile*> queueTiles;
CTerrainTile* pTile = (CTerrainTile*)(&m_tileRoot);
bool bQueueTilesEmpty = false;
while(bQueueTilesEmpty == false)
{

/// add other tiles
for(int i=0; i<MAX_NUM_SUBTILE; i++){

if(pTile->m_subtiles[i]){
/// rough culling algorithm using the quad tree terrain tiles test against a sphere round the eye
if(pTile->m_subtiles[i]->TestCollisionSphere(& (vViewCenter), fViewRadius)){

queueTiles.push(pTile->m_subtiles[i]);
}

}
}
/// go down the quad tree terrain tile to render objects
if(queueTiles.empty()){

bQueueTilesEmpty = true;
}
else
{

/// We will not push objects in the current terrain tile to a queue object for further view clipping.
pTile = queueTiles.front();
queueTiles.pop();

/// add all solid objects to the queue for further view clipping test
list< CBaseObject* >::iterator itCurCP, itEndCP = pTile->m_listSolidObj.end();
for(itCurCP = pTile->m_listSolidObj.begin(); itCurCP != itEndCP; ++ itCurCP){

if((*itCurCP)->CheckVolumnField(OBJ_VOLUMN_PERCEPTIVE_RADIUS) == false)
queueNodes.push((*itCurCP));

}
if(pTile->m_listBipedVisitors.empty() == false){

/// add all visitor biped objects to the queue.
list< CBipedObject* >::iterator itCurCP1, itEndCP1 = pTile->m_listBipedVisitors.end();
for(itCurCP1 = pTile->m_listBipedVisitors.begin(); itCurCP1 != itEndCP1; ++ itCurCP1){

queueNodes.push((*itCurCP1));
}

}
/// add all free space objects to the queue
list< CBaseObject* >::iterator itCurCP, itEndCP = pTile->m_listFreespace.end();
for(itCurCP = pTile->m_listFreespace.begin(); itCurCP != itEndCP; ++ itCurCP){

queueNodes.push((*itCurCP));
}

}

/// For any potentially visible objects in the queue,
// perform further object-level clipping test, and draw them if the test passes.
while(!queueNodes.empty()){

// pop up one object
CBaseObject* pObj = queueNodes.front();
CBaseObject* pViewClippingObject = pObj->GetViewClippingObject();
queueNodes.pop();

 66

ObjectType oType = pObj->GetMyType();
bool bDrawObj, bDrawChildren;

{
…// object level clipping code here
…// set bDrawChildren
}

/// push its child objects to the queue
if(bDrawChildren){

list< CBaseObject* >::iterator itCurCP, itEndCP = pObj->GetChildren()->end();
for(itCurCP = pObj->GetChildren()->begin(); itCurCP != itEndCP; ++ itCurCP){

queueNodes.push(* itCurCP);
}

}
} //while(!queueNodes.empty())

}//while(!queueTiles.empty())
… // lots of code omitted

5.4.2 Render Coordinate System Transformation
The following code shows how render coordinate system is used during object level clipping
and object rendering.
D3DXVECTOR3 CSceneObject::GetRenderOrigin(){
 return m_vRenderOrigin;
}

D3DXVECTOR3 CBaseObject::GetWorldPosition(){
 D3DXVECTOR3 vPos;
 GetPosition(&vPos);
 return vPos;
}

D3DXVECTOR3 CBaseObject::GetRenderOffset(){
 D3DXVECTOR3 vPos;
 GetPosition(&vPos);
 return (vPos-CGlobals::GetScene()->GetRenderOrigin());
}

void CViewCullingObject::GetRenderVertices(D3DXVECTOR3 * pVertices, int* nNumber)
{
 int nNum = 8;
 *nNumber = nNum;
 pVertices[0].x = m_vMin.x; pVertices[0].y = m_vMin.y; pVertices[0].z = m_vMin.z;
 … // code setting pVertices[1] to pVertices[6] omitted
 pVertices[7].x = m_vMax.x; pVertices[7].y = m_vMax.y; pVertices[7].z = m_vMin.z;

 D3DXMATRIX mat = m_mWorldTransform;
/** this will make the components of world transform matrix consistent (i.e. of the same magnitude.),
hence it will correct floating point calculation imprecision.*/
 D3DXVECTOR3 vOrig = CGlobals::GetScene()->GetRenderOrigin();
 mat._41 -= vOrig.x;
 mat._42 -= vOrig.y;
 mat._43 -= vOrig.z;

 for(int i=0; i<nNum;i++){
 D3DXVec3TransformCoord(&pVertices[i], &pVertices[i], &mat);

 67

 }
}

HRESULT CMeshObject::Draw(SceneState * sceneState){
 … // code omitted here
 // using the render coordinate system to render mesh
 D3DXVECTOR3 vPos = GetRenderOffset();
 D3DXMatrixTranslation(& mx, vPos.x, vPos.y, vPos.z);
 mxWorld = m_mxLocalTransform* mx;

 pd3dDevice->SetTransform(D3DTS_WORLD, & mxWorld);

 … // draw mesh here
}

5.4.3 Hardware Occlusion Testing
The code shown here is written with DirectX 9.0C using fixed function pipeline.
…// the following code is executed for every object in the post rendering list.
if(m_bEnableOcclusionQuery && d3dQuery){

/** Occlusion culling algorithm is used after drawing all solid objects. */
CBaseObject* pViewClippingObject = (*itCurCP).m_pRenderObject->GetViewClippingObject();

// Start the query
pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
d3dQuery->Issue(D3DISSUE_BEGIN);
// Make sure that no pixels get drawn to the frame buffer
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
// Render the occlusion object: in this case, it is the bounding box of the clipping object
pViewClippingObject->DrawOcclusionObject(&sceneState);
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
// End the query, get the data
d3dQuery->Issue(D3DISSUE_END);

pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
// Loop until the data becomes available
DWORD pixelsVisible = 0;
while (d3dQuery->GetData((void *) &pixelsVisible,

sizeof(DWORD), D3DGETDATA_FLUSH) == S_FALSE)
{};

if(pixelsVisible > 0){
 // render the object.
 (*itCurCP).m_pRenderObject->Draw(&sceneState);
 ++ itCurCP;
}else{
 // if not visible, remove from the list.
 itCurCP = sceneState.listPRTransparentObject.erase(itCurCP);
 nOccludedObjCount++;
}

}

5.4.4 Effect Management
Header code of effect manager.

 68

/** manager all effects file used by the game engine.*/
 class EffectManager: public AssetManager <CEffectFile>
 {
 public:
 EffectManager();
 ~EffectManager();

 CEffectFile* GetEffectByHandle(int nHandle);

 CEffectFile* MapHandleToEffect(int nHandle, CEffectFile* pNewEffect);

 virtual bool DeleteEntity(AssetEntity* entity);
 virtual void InitDeviceObjects();
 virtual void DeleteDeviceObjects();
 virtual void RestoreDeviceObjects();
 virtual void InvalidateDeviceObjects();
 void Cleanup();

 /** get the shadow map object. */
 CShadowMap* GetShadowMap();
 /** get the glow effect object. */
 CGlowEffect* GetGlowEffect();

 /** Start effect by handle. It set the proper technique of the effect.
 the vertex declaration will also be set or created.
 @param nHandle: the effect handle.
 @param pOutEffect: pointer to retrieve the effect object which is currently selected.
 @return: return true if succeeded.
 */
 bool BeginEffect(int nHandle, CEffectFile** pOutEffect = NULL);
 /** end the effect, this function actually does nothing. */
 void EndEffect();

 /** predefined vertex declaration. */
 enum VERTEX_DECLARATION
 {
 S0_POS_TEX0, // all data in stream 0: position and tex0
 S0_POS_NORM_TEX0, // all data in stream 0: position, normal and tex0
 S0_S1_S2_OCEAN_FFT, // for FFT ocean
 S0_POS_NORM_TEX0_TEX1, // all data in stream 0: position, normal tex0 and tex1
 MAX_DECLARATIONS_NUM,
 };

 /** Get declaration by id
 @param nIndex: value is in @see VERTEX_DECLARATION
 @return: may return NULL.*/
 LPDIRECT3DVERTEXDECLARATION9 GetVertexDeclaration(int nIndex);
 /** Set declaration by id
 @param nIndex: value is in @see VERTEX_DECLARATION
 @return: return S_OK if successful. .*/
 HRESULT SetVertexDeclaration(int nIndex);

 /** load the default handle to effect file mapping.
 @param nLevel: the higher this value, the more sophiticated shader will be used.
 The default value is 0, which is the fixed programming pipeline without shaders.
 10, VS PS shader version 1
 20, VS PS shader version 2
 30, VS PS shader version 3
 please note that any user defined mapping will be cleared.

 69

 */
 void LoadDefaultEffectMapping(int nLevel);
 enum EffectTechniques
 {
 /// normal rendering
 EFFECT_DEFAULT = 0,
 /// shadow map generation technique
 EFFECT_GEN_SHADOWMAP,
 /// rendering the model with shadow map
 EFFECT_RENDER_WITH_SHADOWMAP,
 /// fixed function pipeline
 EFFECT_FIXED_FUNCTION,
 };
 /** set all effect files to a specified technique.If the effect does not have the specified technique
 nothing will be changed.
 @param nTech: the technique handle. */
 void SetAllEffectsTechnique(EffectTechniques nTech);
 /** current technique in the effect file*/
 EffectTechniques GetCurrentEffectTechniqueType();

 int GetCurrentTechHandle();
 CEffectFile* GetCurrentEffectFile();

 //
 //
 // The following functions set or retrieve global effect states which are shared by all effect files.
 // They are designed to look like the fixed pipeline programming interface of DirectX9
 //
 //

 HRESULT SetMaterial(D3DMATERIAL9 *pMaterial);
 HRESULT SetLight(DWORD Index, CONST D3DLIGHT9 *pLight);
 HRESULT LightEnable(DWORD Index, BOOL Enable);
 HRESULT SetRenderState(D3DRENDERSTATETYPE State, DWORD Value);
 HRESULT SetTexture(DWORD Stage, LPDIRECT3DBASETEXTURE9 pTexture);
 HRESULT SetTransform(D3DTRANSFORMSTATETYPE State, CONST D3DMATRIX *pMatrix);
 HRESULT GetTransform(D3DTRANSFORMSTATETYPE State,D3DMATRIX * pMatrix);

 /** Get the current world transformation matrix which is used by the effect.
 @see GetTransform()*/
 D3DXMATRIX& GetWorldTransform();
 D3DXMATRIX& GetViewTransform();
 D3DXMATRIX& GetProjTransform();

 /** update the transformation for both the fixed and programmable pipeline.
 @param pWorld: world transformation, only set if it is true,
 @param pView: camera view transformation, only set if it is true,
 @param pProjection: camera projection transformation, only set if it is true, */
 void UpdateD3DPipelineTransform(bool pWorld, bool pView,bool pProjection);

 /** enable or disable fog.*/
 void EnableFog(bool bEnabled);

 /** clip plane state */
 enum ClipPlaneState{
 ClipPlane_Disabled,
 ClipPlane_Enabled_WorldSpace,
 ClipPlane_Enabled_ClipSpace,
 };

 70

 void EnableClipPlane(bool bEnable);

 void SetClipPlane(DWORD Index, const float * pPlane, bool bClipSpace);

 // … many game engine specific render state function ignored here
 private:
 /** whether use lighting: global sun light and local point lights */
 bool m_bEnableLocalLighting;
 /** whether use fog*/
 bool m_bUseFog;
 /** if true, setting the alpha testing parameter of the effect files will have no effect. */
 bool m_bDisableD3DAlphaTesting;
 /** whether using shadow map */
 bool m_bUsingShadowMap;
 /** whether full screen glow effect is used. */
 bool m_bIsUsingFullScreenGlow;
 /** glowness controls the intensity of the glow in the full screen glow effect.
 0 means no glow, 1 is normal glow, 3 is three times glow. default value is 1. */
 D3DXCOLOR m_colorGlowness;
 /** the glow technique to use. */
 int m_nGlowTechnique;

 /** if true, setting the culling mode of the effect files will have no effect. */
 bool m_bDisableD3DCulling;

 ClipPlaneState m_ClipPlaneState;
 bool m_bClipPlaneEnabled;
 static const int MaxClipPlanesNum = 3;
 D3DXPLANE m_ClipPlaneWorldSpace[MaxClipPlanesNum];
 D3DXPLANE m_ClipPlaneClipSpace[MaxClipPlanesNum];

 CShadowMap* m_pShadowMap;
 CGlowEffect* m_pGlowEffect;

 /** all vertex declarations*/
 LPDIRECT3DVERTEXDECLARATION9 m_pVertexDeclarations[MAX_DECLARATIONS_NUM];

// … several game engine specific class members ignored here
 };

5.4.5 Performance Discussion
The rendering pipeline presented in this chapter is effective for both outdoor and indoor game
scenes. In a hybrid game engine, the scene objects may be ordinary mesh objects, such as
trees, stones, tables, bottles, etc; or characters and creatures with dense polygons; or large
meshes with indoor rooms, such as camps, buildings and castles, etc. When rendering large
mesh objects, complex hidden surface removal algorithm is usually applied in order to send
fewer polygons to GPU. Popular algorithms are BSP, Octree, Portal Rendering, etc. However,
as GPU is becoming increasingly powerful, it is now possible to send an entire moderate-
sized mesh to GPU for occlusion testing and rendering. This not only saves CPU times, but
also makes level editing easier, because it has little constraints and no human intervention
when making 3D models or designing game levels.

To test the performance, we have performed a test as follows.

 71

- Select a hybrid game scene with both indoor and outdoor objects

- (1) Render the scene using solely object level clipping and hardware occlusion testing

- (2) Render the scene using BSP based software occlusion testing for indoor objects.

Method (2) does not exhibit higher performance than (1) with NVIDIA 6800 GPU. Figure 5.6
shows the game scene we have chosen.

Figure 5.6 Hardware Occlusion Testing using bounding box

5.5 Summary and outlook
Rendering pipeline is the most important and distinguishing component of a 3D engine. The
design of a rendering pipeline depends on game requirement and hardware architecture. It is
common for engine programmers to rewrite the rendering pipeline several times, during the
development of a game engine or a specific game title.

We think that there is no official version of a general rendering pipeline. Engine
programmers have the freedom to upgrade it as new graphics functions are added. However,
in the design of a rendering pipeline, one should avoid intertwining it with other game engine
modules, such as AI, physics and scripting.

Computer graphics hardware evolves very fast and it causes the software architecture of a
game engine to evolve as well. For example, the evolutionary BSP based scene management
is losing popularity with modern hardware; whereas Octree and Portal-based rendering are
gaining popularity. On the other hand, GPU memory is getting cheaper; 2GB video memory
will soon become common. Multi-core computer is getting in, the new Xbox 360 already have
two CPUs. Parallel programming may soon become common in next generation game engine.
Microsoft supports OpenMP (a parallel programming) extension to C++ in visual studio 2005.
Although this will not bring radical changes to the architecture of 3D engine, but it shows
how a computer game engine evolves with incremental advancement in computer hardware.

 72

Techniques we used today may be outdated at the time they are used for the actual game.
So, agree with us or not, unless you are programming for a specific game title or doing
specific research, we do not advise you to spend too much time on eye-catching graphics
effects. This will result in lots of useless code in your rendering pipeline and many unused
peripheral tools created for the modelers. In case you are extending your 3D engine, always
foresee as much as possible. For example, you should be able to predictive the mainstream
GPU and CPU specifications in the next 1 or 2 years and stick to it when extending your
engine.

 73

Chapter 6 Special Scene Objects

This chapter covers the design and implementation of several special scene objects which are
too trivial to be put in separate chapters. This chapter is written for programmers mostly.

6.1 Sky
In a game engine, the sky background is rendered as an ordinary mesh object with Z-buffer
disabled and origin fixed at the current camera eye position. The sky mesh object is usually a
box, a dome or a plane, depending on the game requirement. The size of the sky mesh is
arbitrary (unit size is fine), but since it moves with the camera, it will give the illusion of a
sky background in the infinite distance. For more information about the sky effect please read
the Fog and Sky section in Chapter 11.

6.2 Sun and Sun Light
The sun is modeled by a special global object called (CSunLight). It contains parameters for
the sun color, directions, and light scattering data, time of day, etc. The sun direction is
related to the time of day. Other scene objects can query the sun object for its current
parameters. For example, we can take the sun parameter in to consideration when rendering
the fog; and take the sun direction in to consideration when rendering shadows, and takes the
scattering data in to consideration when rendering ocean reflections and refractions. If the
game engine has a simulated weather system, it may include the sun object as its member.
The following is the header file for the sun object.
class CLightScatteringData{
private:
 float m_henyeyG;
 float m_rayleighBetaMultiplier;
 float m_mieBetaMultiplier;
 float m_inscatteringMultiplier;
 float m_extinctionMultiplier;
 float m_reflectivePower;
 sLightScatteringShaderParams m_shaderParams;
public:
 ..// functions omitted
};
/**
* Modeling the global sun and its directional light
*/
class CSunLight
{
public:
 CSunLight();
 ~CSunLight();
private:
 D3DLIGHT9 m_light;
 float m_seconds; /// how many seconds pasted since the last record
 float m_fYaxisRotation;
 float m_fMaxAngle;
 float m_fCurrentAngle;/// in the range [-m_fMaxAngle, +m_fMaxAngle]

 74

 float m_fDayLength;
 D3DXCOLOR m_colorSun; /// color of the sun
 CLightScatteringData m_LightScatteringData;
private:
 void RecalculateLightDirection();
public:
 D3DLIGHT9* GetD3DLight(){return &m_light;}
 /// set time of day in seconds
 void SetTimeOfDay(float time){m_seconds = time;}
 /// get time of day in seconds
 float GetTimeOfDay(){return m_seconds;}
 /// set position of the time
 void SetPostion(const D3DXVECTOR3& pos){m_light.Position = pos;}
 /// advance time is in seconds
 float AdvanceTimeOfDay(float timeDelta);
 /// get the sun color
 D3DXCOLOR GetSunColor(){return m_colorSun;}
 /// get the sun direction vector
 D3DXVECTOR3 GetSunDirection(){return m_light.Direction;}
 /// get the sun Ambient Hue
 D3DXCOLOR GetSunAmbientHue(){return D3DXCOLOR(m_light.Ambient);}
 /// get light Scattering Data object
 CLightScatteringData* GetLightScatteringData(){return &m_LightScatteringData;}
..// functions omitted
};

6.3 Particle System
A particle system is usually implemented as a group of animated sprites which are always
facing the camera. They are a cheap way to achieve seemingly complex graphics effect, such
as smokes, fires, magic, etc.

6.3.1 Defining a Particle System
An instance of particle system is a list of particles, each of which is represented by current
position, speed, acceleration (gravity) direction, origin, size, life, maximum lifetime, texture
tile index, and color. See the specifications in C++ structures as follows.
Struct Particle {
 Vec3D pos, speed, down, origin;
 float size, life, maxlife;
 int tile;
 Vec4D color;
};

/** it represents the instance of the particle system. */
struct ParticleList{
 std::list<Particle> particles;
 /** whether to use absolute world coordinate system, so that when particles leave its source, it will be
an independent object in the world coordinate system.*/
 bool m_bUseAbsCord:1;
 /** the last render origin when the update() function is called.*/
 Vec3D m_vLastRenderOrigin;
 /** whether this object is updated in the current frame.*/
 bool m_bUpdated:1;
 /** whether this object should be rendered (in camera frustum) */
 bool m_bRender:1;
 /** current animation */

 75

 int m_anim;
 /** current frame */
 int m_time;
 /** remaining time for spawning new particles */
 float m_rem;
public:
 ParticleList():m_bUseAbsCord(true), m_vLastRenderOrigin(0,0,0),m_bUpdated(false),m_anim(0),
m_time(0), m_rem(0){};
};

The same particle system can have many particle system instances in the scene. A particle
system animates particles in all of its particle system instances according to predefined
animation data and other factors such as gravity. Usually we need a particle editor for artists
to make animations of a particle system. The following things can be animated in a standard
particle system: speed, variation, spread, gravity, lifespan, rate, size, color etc. The follow
code shows a standard particle system data structure.
class ParticleSystem {
 Animated<float> speed, variation, spread, lat, gravity, lifespan, rate, areal, areaw, grav2;
 Vec4D colors[3];
 float sizes[3];
 float mid, slowdown, rotation;
 Vec3D pos;
 TextureEntity* texture;
 ParticleEmitter *emitter;
 int blend,order,type;
 int rows, cols;
 std::vector<TexCoordSet> tiles;
 void initTile(Vec2D *tc, int num);
 bool billboard:1;

 Bone* parent; // to which it is attached in a 3D model
public:
 CParaXModel *model;
 float tofs;
 /** instances of the particle systems. mapping from the owner object, typically this is a scene object,
to the particle list of that owner */
 map <void*, ParticleList*> m_instances;

 void init(CParaFile &f, ModelParticleEmitterDef &mta, int *globals);

 void update(float dt);
 /**
 * @param dt: time delta
 * @param vOffset: all position and origin will be offset by this value during animation.
 * this is usually the render origin offset between two consecutive calls.
 * @param instancePS: particle system instance.
 * @return: return true if there is still particles in the instance.
 */
 bool AnimateExistingParticles(float dt, const D3DXVECTOR3& vOffset, ParticleList* instancePS);

 /** get the current particle system instance according to the current scene object.
 * @param bForceCreate: if this is true, the instance will be created if not found.
 */
 ParticleList* GetCurrentInstance(bool bForceCreate=true);
 void setup(int anim, int time);
 /** draw the current instance, if it is a non-absolute particle system instance. */
 void draw();
 /** draw a specified instance.*/

 76

 void drawInstance(ParticleList* instancePS);
 /** draw all absolute instances.This is called for batch-rendering global(absolute) particle instances.*/
 void drawAllAbsInstances();
…// some functions and members omitted
};

The particle system class keeps a list of all of particle system instances. A particle system
instance is always associated with an owner scene object, such as a missile, a mesh, or a
character object. The instance may be global or local. Global particles remain in the scene
even after its owner object is destroyed and they are rendered in the global world coordinate
system. The scene manager keeps a reference to all active particle systems and their instances.
It will automatically delete instances that are no longer active in the current frame. It will also
animate and render these global instances. Particles in global particle systems should have a
short (finite) life time, in order to clean themselves quickly after its owner is released.

6.3.2 Animating Particles
The particle engine mathematics that a particle system uses is very simple. It is a two-step

process. During each frame move, it first animates existing particles in a particle system
instance, removing particles that are out of its life time; secondly it generates new particles,
giving them initial position, speed, etc. The module to spawn new particles is usually called
particle emitters. We can use different emitters to spawn particles in different patterns.

Animating an existing particle by a delta time (⊿t) is this:

Define a function called keyframes as below:

keyframes(type, animation_id, frame_number) = retrieves a key frame based animation data
of the given type at the given time and with given animation id.

Parameter description:

- time: current frame time of the particle

- animID: the animation ID of the particle

- ⊿t: time delta

- a: acceleration of the particle.

- s: current position of the particle

- v: speed of the particle

- life: current life time of the particle

- size: size of the particle

- color: particle color

- SLOWDOWN, MAXLIFE, MID, SIZE0, SIZE1, SIZE2,COLOR0, COLOR1,
COLOR2: constants

Animating particles mathematically:

a = keyframes(type(a), animID, time)G G

s =s+(v+(a))t t×Δ ×Δ
G G GG

 , if without slowing down factor

 77

()s+(v+(a)) SLOWDOWN lifet e t− ×× Δ × ×Δ
G GG

, if with slowing down factor

life life t= + Δ

Define interpolation function f(x,mid,a,b,c) =

(x/mid) a+(1-x/mid) b, if x mid× × ≤

(x-mid)/(1-mid) b+(1-(x-mid)/(1-mid)) , if x>mid c× ×

size = f(life/MAXLIFE, MID, SIZE0, SIZE1, SIZE2)

color = f(life/MAXLIFE, MID, COLOR0, COLOR1, COLOR 2)

The following shows the animation code of a particle system.
bool ParticleSystem::AnimateExistingParticles(float dt, const D3DXVECTOR3& vOffset, ParticleList*
instancePS){
 if(instancePS==NULL)
 return false;
 std::list<Particle> & particles = instancePS->particles;

 int manim = instancePS->m_anim;
 int mtime = instancePS->m_time;
 float grav = gravity.getValue(manim, mtime);
 float mspeed = 1.0f;

 std::list<Particle>::iterator it;
 for (it = particles.begin(); it != particles.end();) {
 Particle &p = *it;
 p.speed += p.down * grav * dt;

 if (slowdown>0) {
 mspeed = expf(-1.0f * slowdown * p.life);
 }
 p.pos += p.speed * mspeed * dt;
 if(instancePS->m_bUseAbsCord)
 {
 p.pos += (const Vec3D&)vOffset;
 p.origin += (const Vec3D&)vOffset;
 }

 p.life += dt;
 float rlife = p.life / p.maxlife;
 // calculate size and color based on lifetime
 p.size = lifeRamp<float>(rlife, mid, sizes[0], sizes[1], sizes[2]);
 p.color = lifeRamp<Vec4D>(rlife, mid, colors[0], colors[1], colors[2]);

 // kill off old particles
 if (rlife >= 1.0f)
 it = particles.erase(it);
 else
 ++it;
 }
 return (particles.size() > 0);
}

void ParticleSystem::update(float dt){
 /** get the particle system instance for the current scene object.*/
 ParticleList* instancePS= GetCurrentInstance();

 78

 if(instancePS == NULL)
 return;
 /// add this particle system to the scene state. so that the scene state will automatically
 /// maintain the life of this particle system instance.
 CGlobals::GetSceneState()->AddParticleSystem(this);
 /// mark as updated instance
 instancePS->m_bUpdated = true;

 std::list<Particle> & particles = instancePS->particles;

 Vec3D vRenderOriginOffset;
 D3DXMATRIX mWorld;
 Vec3D vRenderOrigin;

 if(instancePS->m_bUseAbsCord){
 CGlobals::GetRenderDevice()->GetTransform(D3DTS_WORLD, &mWorld);
 vRenderOrigin = *((Vec3D*)(&(CGlobals::GetScene()->GetRenderOrigin())));

 vRenderOriginOffset = instancePS->m_vLastRenderOrigin - vRenderOrigin;
 instancePS->m_vLastRenderOrigin = vRenderOrigin;// update render origin
 }

 /** animate existing particles.*/
 AnimateExistingParticles(dt, (const D3DXVECTOR3&)vRenderOriginOffset, instancePS);

 /** spawn new particles */
 if (emitter) {
 int manim = instancePS->m_anim;
 int mtime = instancePS->m_time;
 float frate = rate.getValue(manim, mtime);
 float ftospawn = (dt * frate / flife) + instancePS->m_rem;
 if (ftospawn < 1.0f) {
 instancePS->m_rem = ftospawn;
 if (instancePS->m_rem<0) instancePS->m_rem = 0;
 }
 else {
 int tospawn = (int)ftospawn;
 instancePS->m_rem = ftospawn - (float)tospawn;
 for (int i=0; i<tospawn; i++) {
 Particle p = emitter->newParticle(manim, mtime);
 if(instancePS->m_bUseAbsCord){
 // transform to world coordinate system, suppose that the world transform is in device already set
 D3DXVECTOR4 tmp;
 D3DXVec3Transform(&tmp, &p.pos, &mWorld);
 p.pos.x = tmp.x;
 p.pos.y = tmp.y;
 p.pos.z = tmp.z;

 D3DXVec3Transform(&tmp, &p.origin, &mWorld);
 p.origin.x = tmp.x;
 p.origin.y = tmp.y;
 p.origin.z = tmp.z;
 }
 // sanity check:
 if (particles.size() < MAX_PARTICLES) particles.push_back(p);
 }
 }
 }
}

 79

Many kinds of emitters can be used to spawn new particles for a particle system. The
following shows a simple circle emitter that randomly emits particles from an origin in all
directions.
Particle CircleEmitter::newParticle(int anim, int time){
 Particle p;
 float l = sys->areal.getValue(anim, time);
 float w = sys->areaw.getValue(anim, time);
 float spd = sys->speed.getValue(anim, time);
 float var = sys->variation.getValue(anim, time);

 float t = randfloat(0,2*PI);
 Vec3D bdir(0, l*cosf(t), w*sinf(t));
 p.pos = sys->pos + bdir;
 p.pos = sys->parent->mat * p.pos;
 if (bdir.lengthSquared()==0) p.speed = Vec3D(0,0,0);
 else {
 Vec3D dir = sys->parent->mrot * (bdir.normalize());
 p.speed = dir.normalize() * spd * (1.0f+randfloat(-var,var));
 }
 p.down = sys->parent->mrot * Vec3D(0,-1.0f,0);
 p.life = 0;
 p.maxlife = sys->lifespan.getValue(anim, time);
 p.origin = p.pos;
 p.tile = randint(0, sys->rows*sys->cols-1);
 return p;
}

6.3.3 Drawing Particles
Many scene objects such as mesh and creatures may contain particles system. However, the

drawing of particle systems is usually postponed until most other scene objects have been
drawn. The scene manager maintains a list of active particle systems in the scene and the
rendering pipeline will draw them in a batch. When scene objects containing particle systems
are rendered in the rendering pipeline, their associated particle systems will not be
immediately drawn, instead they will be put to the particle system list maintained by the scene
manager. Recall the rendering pipeline in Chapter 5. We render all particle systems in the
scene last in a batch.

Each particle is rendered as a sprite facing the camera. There are many ways to do so. Some
GPU supports point sprite, so that one can send particles to GPU as points. Alternatively, you
can compute the object facing by CPU and render particles as quads (two triangles) in the
traditional way. This will give you more freedom on the way a particle is rendered. Perhaps,
writing your own shaders for particle rendering is a better choice which combines the speed
of GPU sprite method and the flexibility of the CPU quad method. One can accelerate particle
rendering by using the face normal of the gravity point for all particles which in a particle
system instance. Figure 6.1 shows the idea and Figure 6.2 is our rendering result using this
approximated method.

 80

Figure 6.1 Particle rendering with approximated facing using center of mass

Figure 6.2 Particle Systems in Games

Center of mass

All particles share the same facing

Camera

Approx. facing

Ideal facing

 81

6.4 Weather System
We will end this chapter by putting functionalities introduced in this chapter together to a
game module called weather system. Figure 6.3 shows components of a weather system and
game modules which are related to the weather in the game world.

Figure 6.3 Weather system

Skys

Weather system
Sun and sun light

Fog

Rain & Snow &
Cloud rendering

Particle system

Ambient color

Shadows

Water rendering:
reflection and refractions

Bright at day; dark at night

Turn on/off light maps;
dynamic shadow directions

Fog color, density and range

Change sky meshes

 82

Chapter 7 Picking

Picking is about casting a 3D ray (origin, direction, length) and finding objects which
intersect with the ray. Information such as the intersection point and intersected face normal
can be returned on demand. This chapter focuses on the implementation and different uses of
picking in a game engine. The most common use is to find the scene object that intersects
with the user’s mouse cursor. In a 3D game, the screen position (x,y) of the mouse cursor is
first converted to a 3D ray using the current camera and projection settings; then this 3D ray
will be used to pick out the nearest scene object that intersects with it.

7.1 Foundations

7.1.1 Background
In the old days, ray picking is a fundamental component of a game engine. It provides a ray
based sensor for querying the game world. A number of game engine modules, such as
physics, camera, and AI, depend on picking functions to get information about the game
world. For example, the physic module (imaging a flying missile) use ray based sensors to
detect obstacles ahead and terrain height positions beneath. The camera uses ray based
sensors to detect if it is very close to a physical surface and should move way from it. An
intelligent character uses a group of sensor rays to deduct terrain and walls in its vicinity. Of
course the most common application is mouse picking on 3D scene objects.

The data structure we discussed for storing scene objects (see Chapter 4) are also
optimized for fast ray picking. For example, BSP tree is ideal for accuracy ray picking at
triangle level. Quad-tree and Octree can also perform ray picking very fast at the object level.

As technology evolves, we have a few other options to “touch” objects in the game world,
such as using a bounding sphere or box instead of a ray. Moreover, this group of collision
detection functionalities has been elevated to a new level of game physics, which involves
rigid body dynamics simulation and collision detection of any shapes. As we will see in later
chapters, game physics nowadays are implemented as middleware or an independent module,
which usually has its own internal data presentation. However, sometimes, we can not rely
solely on a separate game physics module for the following reasons:

- Data duplications: we will have two duplicate copies of game data (such as a mesh) in
two file formats: one for physics and one for rendering. For example, we do not like the
global terrain mesh to be duplicated in a physics simulation middleware.

- High level collision detection: sometimes we do not need collision information at the
triangle level. Instead, we only need to perform collision detection in object level. For
example, mouse ray picking is usually an object level task.

- Special game requirement: a general physics middleware can not provide everything
we need for a specific game title. For example, we may want some mesh to change
shapes (morphing) or dig holes on mesh surfaces, etc, while still providing real time
collision detection for them. Such things can not be effectively achieved through a
unified data structure provided by the physics middleware.

 83

To sum up, a game engine usually needs to combine several different implementations to
achieve the required collision detection tasks in a diverse game world. In ParaEngine, the
global terrain, the ocean manager, the physics engines and the scene picking function all
provide similar collision detection functions for their governed objects. Scene picking
function is usually an implementation for ray based collision detection at object level. We will
cover this particular one in this chapter.

7.1.2 Picking Mathematics
The mathematics used in ray picking involves collision detection between a ray and an

oriented 3D box. Some math library usually includes collision detections between the
following basic shapes: ray (and line segment), triangle mesh, sphere, axis aligned bounding
box (AABB), oriented bounding box (OBB). We advise novice engine programmers to study
some open source implementation, such as the ODE physics engine. For object level ray
picking, we will only need collision detection between a ray and an axis aligned bounding box.
Optionally, we can have a collision detection function between a ray and an oriented
bounding box.

The following lists the mathematical presentations of the ray, AABB and OBB.

- A ray is a half-line P(t) = mOrig + mDir * t, with 0 <= t <= +infinity

- An AABB is box which is aligned to x,y,z axis. It can be defined by two points (vMin,
vMax), where vMin.x<=vMax.x, vMin.y<=vMax.y, vMin.z<=vMax.z. It may also be
defined by the box’s center vCenter and its extents (vExtents) from its center along the
x, y, z axis.

- An OBB is a box which is arbitrarily oriented in space. It can be defined as an AABB
plus a rotation matrix (mRot).

7.1.2.1 Ray-AABB Collision Detection
We will study a fast algorithm for ray and AABB overlapping test without returning the

intersection point or ray-box distance. The algorithm given below will return true if the ray
intersects the box, and false otherwise.

Assume ray (mOrig, mDir) and AABB (center, extents). Let D = mOrig-center. Project the
ray and the AABB to x,y,z planes respectively, we will get a 2D ray and a rectangle centered
at the origin during each of the three projections. See Figure 7.1. Perform the following tests.

- Test 1: Consider a box with the same center as the AABB but with extents |D|. The ray
origin is on the surface of the new box. If the ray points out of the new box and that the
ray origin is outside AABB, the algorithm terminates and return false. See Figure 7.1.
This test will quickly exclude outward pointing rays like Ray 1 (red) in the figure.

- Test 2: Consider the three projections on the x,y,z planes. If in any projection, the ray is
outside the angle range denoted by the grey arc in the figure, the algorithm terminates
and return false. This test will further remove rays like Ray 2 (blue) in the figure.

- If none of the above test returns, it means that the ray intersects with the box and the
algorithm returns true.

 84

Figure 7.1 Ray/AABB Collision Testing: projection to x plane

Let us now look at the math for the above algorithm.

Pre-compute:

 D = mOrig-center

 |mDir| = abs(mDir)

Test 1:

 If x x x x(|D |>extent) (D mDir 0)∧ × ≥ return false

 If y y y y(|D |>extent) (D mDir 0)∧ × ≥ return false

 If z z z z(|D |>extent) (D mDir 0)∧ × ≥ return false

Test 2:

 If y z z y y z z y|mDir D -mDir D |>(extents |mDir| +extents |mDir|)× × × × return false

 If z x x z x z z x|mDir D -mDir D |>(extents |mDir| +extents |mDir|)× × × × return false

 If x y y x x y y x|mDir D -mDir D |>(extents |mDir| +extents |mDir|)× × × × return false

Final step: return true

7.1.2.2 Ray OBB Collision
Ray AABB collision from the previous section can be used for oriented bounding boxes

(OBB) with minor changes. We just transform both the ray and the OBB to a new coordinate
system whose center is at the OBB’s center and axis aligned with the OBB. This will turn
OBB to AABB. Then we can use the same algorithm to test ray-box collision. The

Projection to the x plane

(mDir.z, mDir.y)

(D.z, D.y)

(extents.z, extents.y)

z

y

x Ray1Ray2

Split plane

 85

transformation from OBB to AABB requires an additional computation to calculate the
inverse of the rotation matrix of OBB and transform the 3D ray vector by it.

Assume ray (mOrig, mDir) and OBB (center, extents, mRot). mRot is the rotation matrix.

Pre-compute:

 Inverse(mRot) = Inverse of rotational matrix mRot (-1mRot)

 RayNew = ((mOrig-center) Inverse(mRot), mDir Inverse(mRot))× ×

 AABB = ((0,0,0), extents)

Compute:

 return using RayNew and AABB collision test.

We can optimize the above code by the fact that the inverse of a pure rotation matrix is the
same as the transpose of the matrix. Hence we have

1 1
3 3 3 3 3 3 3 1 3 1 3 3 1 3 3 3 3 3 3 1() (()) ()T T T T TmRot mRot M V V M V mRot mRot V− −
× × × × × × × × × ×= ∧ × = × ⇒ × = ×

Thus we can avoid calculating the inverse of the rotation matrix and modify the algorithm to
the following.

Pre-compute:

 RayNew = (mRot (mOrig-center), mRot mDir)× ×

 AABB = ((0,0,0), extents)

Compute:

 return using RayNew and AABB collision test.

The optimization depends on a game engine’s definition to the rotation matrix in OBB. If it
is a 3x3 pure rotation matrix, then the modified version can be used. If it is not a pure rotation
matrix, then we have to use the original one or something in the middle. The rotation matrix
of OBB used in ParaEngine contains both a pure rotation matrix and a position translation. In
other words, mRot is a 4x3 matrix.

7.1.2.3 Mouse Ray Picking
Mouse ray picking is to find the scene object that intersects with the user’s mouse. In a 3D
game, the screen position (x,y) of the mouse cursor is first converted to a 3D ray in world
coordinate system using the current camera and projection settings; then this 3D ray will be
used to pick the closest scene object that intersects with it.

The mathematics is fairly simple. Given a 2D position in screen coordinate system (x,y)
with screen size (width, height) pixels, and a projection matrix (mProj) and camera view
transform matrix (mView), we will compute the 3D ray with origin and direction (vOrg, vDir)
as follows:

Compute the intersection point (vPtScr) between the ray and the view frustum’s near plane
in screen space as

 86

nearvPtScr=(2 x/width-1, -(2 y/height-1), Z)× × , where Znear is the Z-value of the near
view-plane.

Transform vPtScr back to the camera view coordinate system using the inverse of mProj.
1PrvPtView vPtScr m oj−= × , where the projection matrix mProj has the following format:

mProj =
far far near

near far far near

xScale 0 0 0
0 yScale 0 0
0 0 Z /(Z -Z) 1
0 0 -Z Z /(Z -Z) 0×

We can directly compute 1PrvPtScr m oj−× as

(/ , / ,)x near y near nearvPtView vPtScr xScale Z vPtScr yScale Z Z= × ×

Or we can use 'vPrView Pr / (/ , / ,1)near x yv View Z vPtScr xScale vPtScr yScale= = which

is also a point on the ray.

Now that we have two points on the ray in the view coordinate system, which is the camera
origin (0,0,0) and vPtView. Please note that vPtView is also the direction of the ray. Thus we
can compute the origin and direction of the final ray in world coordinate system by applying
the inverse of the camera view matrix to them. Thus we have

Pre-compute:

mView-1 = inverse of mView

Compute:
1 1 1 1vOrg=(0,0,0) mView (.41, .42, .43)mView mView mView− − − −× =

The following code shows how a mouse position in 2D screen coordinates can be converted
to a 3D ray in the world coordinate system. Because it is fairly simple, we will show directly
by code.

// nWidth and nHeight is the screen size.
void CAutoCamera::GetMouseRay(D3DXVECTOR3& vPickRayOrig, D3DXVECTOR3& vPickRayDir,
POINT ptCursor, UINT nWidth, UINT nHeight)
{
 D3DXMATRIX* pMatProj = GetProjMatrix();

 // Compute the vector of the pick ray in screen space
 D3DXVECTOR3 v;
 v.x = (((2.0f * ptCursor.x) / nWidth) - 1) / pMatProj->_11;
 v.y = -(((2.0f * ptCursor.y) / nHeight) - 1) / pMatProj->_22;
 v.z = 1.0f;

 // Get the inverse of the composite view and world matrix
 D3DXMATRIX* pMatView = GetViewMatrix();
 D3DXMATRIX m;
 m = (*pMatView);
 D3DXMatrixInverse(&m, NULL, &m);

 87

 // Transform the screen space pick ray into 3D space
 vPickRayDir.x = v.x*m._11 + v.y*m._21 + v.z*m._31;
 vPickRayDir.y = v.x*m._12 + v.y*m._22 + v.z*m._32;
 vPickRayDir.z = v.x*m._13 + v.y*m._23 + v.z*m._33;
 vPickRayOrig.x = m._41;
 vPickRayOrig.y = m._42;
 vPickRayOrig.z = m._43;
 D3DXVec3Normalize(&vPickRayDir,&vPickRayDir);
}

7.2 Architecture and Code
Recall that the common base object for scene objects contains a virtual function which returns
the OBB of its bounding volume. The scene manager can use it to quickly get the scene object
that intersects with a ray. And we can start ray query with a certain distance. Objects whose
distance to ray origin is larger than it will be neglected. And we provide a user defined object
filter object that could reject objects according to some criteria, such as type and name.

7.2.1 Ray Picking in the Scene
The following shows the interface for object level ray picking in ParaEngine

/** it stands for an object intersecting with a ray. it is used for ray picking. */
struct PickedObject:public AttachedSceneObject
{
 /// approximated distance
 float m_fRayDist;
 /// the smallest value of the object's bounding box's extents
 float m_fMinObjExtent;
public:
 PickedObject(float fRayDist, float fMinObjExtent, CBaseObject* pObj)
 :m_fRayDist(fRayDist), m_fMinObjExtent(fMinObjExtent), AttachedSceneObject(pObj){}
 PickedObject():m_fRayDist(0), m_fMinObjExtent(0), AttachedSceneObject(NULL){}
};

bool PickingFilterMesh(CBaseObject* obj){
 ObjectType t = obj->GetMyType();
 return (t!= CBaseObject::BipedObject);
}
bool PickingFilterBiped(CBaseObject* obj){
 ObjectType t = obj->GetMyType();
 return (t== CBaseObject::BipedObject);
}
bool PickingFilterNotPlayer(CBaseObject* obj){
 return (CGlobals::GetScene()->GetCurrentPlayer() != obj);
}

/**
* Pick object using view clipping object.
* pick the smallest intersected object which is un-occluded by any objects. Object A is considered
occluded by object B only if
* (1) both A and B intersect with the hit ray.
* (2) both A and B do not intersect with each other.
* (3) B is in front of A, with regard to the ray origin.
*
* this function will ray-pick any loaded scene object(biped & mesh, but excluding the terrain) using their
oriented bounding box. A filter function may be provided to further filter selected object. this function will
transform all objects to render coordinate system. This will remove some floating point inaccuracy near

 88

the camera position. Hence this function is suitable for testing object near the camera eye position. This
function does not rely on the physics engine to perform ray-picking.
* @see Pick().
* @param ray: the ray in world coordinate system
* @params pPickedObject: [out] the scene object that collide with the mouse ray. This may be NULL, if
no object is found.
* @params fMaxDistance: the longest distance from the ray origin to check for collision. If the value is 0
or negative, the camera view culling radius is used as the fMaxDistance.
* @param pFnctFilter: a callback function to further filter selected object. if it is NULL, any scene object
could be selected.
* @return :true if an object is picked.
*/
bool CSceneObject::PickObject(const CShapeRay& ray, AttachedSceneObject* pTouchedObject, float
fMaxDistance, OBJECT_FILTER_CALLBACK pFnctFilter)

The following code shows an implementation of picking object by traversing the scene
graph using the bounding volume of the segmented ray.
bool CSceneObject::PickObject(const CShapeRay& ray, AttachedSceneObject* pTouchedObject, float
fMaxDistance, OBJECT_FILTER_CALLBACK pFnctFilter)
{
 if(fMaxDistance<=0)
 fMaxDistance = m_sceneState.fViewCullingRadius;
 PickedObject lastObj;

 CRayCollider rayCollider;
 rayCollider.SetMaxDist(fMaxDistance);
 D3DXVECTOR3 vRenderOrigin=GetRenderOrigin();
 // the ray in the view space, shifted to the render origin.
 CShapeRay ray_view(ray.mOrig-vRenderOrigin, ray.mDir);

 // defining the view frustum based on the bounding sphere of the ray
 float fViewRadius = fMaxDistance/2;
 D3DXVECTOR3 vViewCenter = ray.mOrig + ray.mDir*fViewRadius;

 While (for each objects in the view frustum){
…// code omitted
 CBaseObject* pObj = queueNodes.front();
 CBaseObject* pViewClippingObject = pObj->GetViewClippingObject();

 queueNodes.pop();
 ObjectType oType = pObj->GetMyType();

 D3DXVECTOR3 vObjCenter;
 pViewClippingObject->GetObjectCenter(&vObjCenter);
 vObjCenter -= vRenderOrigin;

 // float fR = pViewClippingObject->GetBoundSphere();
 // rough testing using bounding sphere
 if(pViewClippingObject->TestCollisionSphere(& (vViewCenter), fViewRadius,1)){
 // further testing using bounding box
 CShapeOBB obb;
 pViewClippingObject->GetOBB(&obb);
 obb.mCenter-=vRenderOrigin;
 float fDist;
 if(rayCollider.Intersect(ray_view, obb, &fDist) && fDist<=fMaxDistance
 /* filter objects*/&& (pFnctFilter==NULL || pFnctFilter(pObj))){
 // add to collision list and sort by distance to ray origin
…// code omitted
 }

 89

 }
 }
 if(pTouchedObject!=0){
 if(lastObj.IsValid()){
 pTouchedObject->m_pObj = lastObj.m_pObj;
 pTouchedObject->m_pTerrain = lastObj.m_pTerrain;
 }
 else
 pTouchedObject->m_pObj = NULL;
 }
 return false;
}

7.2.2 Collision Detection Math Code
The code presented here is based on an open source physics engine called ODE. It provides

data structures for ray, AABB, OBB, etc, as well as collider classes for performing collisions
between one shape and all other shapes. The reason that a collider class is used is that it may
pre-calculate data that is shared among multiple collision queries. For example, if one uses the
same ray to test collisions with 1000 objects, it does make sense to reuse the same collider
which will save some CPU cycles.
class CRayCollider : public Collider{
 bool Collide(const CShapeRay& world_ray, const CShapeAABB& world_AABB, const
 bool Collide(const CShapeRay& world_ray, const CShapeOBB& world_oob);
 bool Intersect(const CShapeRay& world_ray, const CShapeAABB& world_AABB, float * pDist, const
D3DXMATRIX* world=NULL);
 bool Intersect(const CShapeRay& world_ray, const CShapeOBB& world_oob, float * pDist);
 void SetMaxDist(float max_dist);

 bool RayAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents);

 bool SegmentAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents);
 bool RayTriOverlap(const D3DXVECTOR3& vert0, const D3DXVECTOR3& vert1, const
D3DXVECTOR3& vert2);

 bool InitQuery(const CShapeRay& world_ray, const D3DXMATRIX* world=NULL);
protected:
 // Ray in local space
 D3DXVECTOR3 mOrigin; //!< Ray origin
 D3DXVECTOR3 mDir; //!< Ray direction (normalized)
 D3DXVECTOR3 mFDir; //!< fabsf(mDir)
 D3DXVECTOR3 mData, mData2;
…// code omitted
};

bool CRayCollider::InitQuery(const CShapeRay& world_ray, const D3DXMATRIX* world)
{
 // Reset stats & contact status
 Collider::InitQuery();

 // Compute ray in local space
 // The (Origin/Dir) form is needed for the ray-triangle test anyway (even for segment tests)
 if(world) {
 Matrix3x3 InvWorld(*world);
 mDir = InvWorld * world_ray.mDir;

 D3DXMATRIX World;

 90

 CMath::InvertPRMatrix(World, *world);
 D3DXVec3TransformCoord(&mOrigin, &world_ray.mOrig, &World);
 }else{
 mDir = world_ray.mDir;
 mOrigin = world_ray.mOrig;
 }

 // Precompute data (moved after temporal coherence since only needed for ray-AABB)
 if(IR(mMaxDist)!=IEEE_MAX_FLOAT){
 // For Segment-AABB overlap
 mData = 0.5f * mDir * mMaxDist;
 mData2 = mOrigin + mData;

 // Precompute mFDir;
 mFDir.x = fabsf(mData.x);
 mFDir.y = fabsf(mData.y);
 mFDir.z = fabsf(mData.z);
 }else{
 // For Ray-AABB overlap

 // Precompute mFDir;
 mFDir.x = fabsf(mDir.x);
 mFDir.y = fabsf(mDir.y);
 mFDir.z = fabsf(mDir.z);
 }
 return false;
}

bool CRayCollider::SegmentAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3&
extents){

float Dx = mData2.x - center.x; if(fabsf(Dx) > extents.x + mFDir.x) return false;
float Dy = mData2.y - center.y; if(fabsf(Dy) > extents.y + mFDir.y) return false;
float Dz = mData2.z - center.z; if(fabsf(Dz) > extents.z + mFDir.z) return false;
float f;
f = mData.y * Dz - mData.z * Dy; if(fabsf(f) > extents.y*mFDir.z + extents.z*mFDir.y) return false;
f = mData.z * Dx - mData.x * Dz; if(fabsf(f) > extents.x*mFDir.z + extents.z*mFDir.x) return false;
f = mData.x * Dy - mData.y * Dx; if(fabsf(f) > extents.x*mFDir.y + extents.y*mFDir.x) return false;
return true;

}

bool CRayCollider::RayAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents)
{

float Dx = mOrigin.x - center.x; if(GREATER(Dx, extents.x) && Dx*mDir.x>=0.0f) return false;
float Dy = mOrigin.y - center.y; if(GREATER(Dy, extents.y) && Dy*mDir.y>=0.0f) return false;
float Dz = mOrigin.z - center.z; if(GREATER(Dz, extents.z) && Dz*mDir.z>=0.0f) return false;
float f;
f = mDir.y * Dz - mDir.z * Dy; if(fabsf(f) > extents.y*mFDir.z + extents.z*mFDir.y) return false;
f = mDir.z * Dx - mDir.x * Dz; if(fabsf(f) > extents.x*mFDir.z + extents.z*mFDir.x) return false;
f = mDir.x * Dy - mDir.y * Dx; if(fabsf(f) > extents.x*mFDir.y + extents.y*mFDir.x) return false;
return true;

}

bool CRayCollider::Collide(const CShapeRay& world_ray, const CShapeAABB& world_AABB, const
D3DXMATRIX* world){
 // Init collision query
 // Basically this is only called to initialize precomputed data
 if(InitQuery(world_ray, world)) return true;

 D3DXVECTOR3 vCenter, vExtents;

 91

 world_AABB.GetCenter(vCenter);
 world_AABB.GetExtents(vExtents);

 // Perform stabbing query
 if(IR(mMaxDist)!=IEEE_MAX_FLOAT) {
 return SegmentAABBOverlap(vCenter, vExtents);
 }else{
 return RayAABBOverlap(vCenter, vExtents);
 }

 return true;
}

bool CRayCollider::Collide(const CShapeRay& world_ray, const CShapeOBB& world_oob){
 CShapeRay ray(world_ray);
 ray.mOrig -= world_oob.GetCenter();
 return Collide(ray, CShapeAABB(D3DXVECTOR3(0,0,0), world_oob.GetExtents()),
 &world_oob.GetRot());
}

7.3 Summary and Outlook
In the old days, ray picking is used widely in game engines to query physical information
about the game world. In recent years, picking functions have been leveraged in specialized
game physics modules. However, object level picking is still an indispensable part in modern
computer game engine. The picking function discussed in this chapter is mainly used for
object level mouse ray picking in ParaEngine.

Ray picking in triangle level may be implemented by different scene object independently.
For example, if a ray hits an object, one can further calls the object’s picking function to
obtain sub-level collision information in the triangle level. BSP used to be a great data
structure for performing triangle level ray picking on large level geometry. However, it is not
efficient for collision detection of a great number of smaller game objects of other shapes
such as sphere and box. Recent physics engine usually uses octree and/or quad tree combined
with AABB to provide collision detection of virtually any shape at both triangle level and
object level.

Caching is also a technique which could accelerate picking and other collision detection
queries when they are issued in large qualities and that the collision spots are not far from one
another. In simpler words, if in former queries, two objects are in contact with each other,
they tend to continue to be so in subsequent queries; hence we can accelerate collision
detection by keeping this information from query to query. Cached information should be
invalidated and updated when object moves in the scene. One can find more information
about picking and game physics on the web using the key words “game physics”.

 92

Chapter 8 Simulating the Game World

There are always moving objects in a game world. They are not all movies, in which all
movements are pre-made by artists; they are not all controlled by human users or intelligent
computer agents. Instead, a game world usually has its own physical laws which
automatically produces or constrains the motions of game objects in it. Due to the limited
power of a personal computer, not every object can be simulated accurately as in our real
world. However, the trend of next generation game engine is on the integration of more
advanced game world simulation technologies and artificial intelligence.

One of the main tasks of simulating the game world is dealing with physics in it. We call it
game physics or physics engine in the game industry. The most basic task of game physics is
to ensure that two solid objects do not run into each other, as well as simulating forces on
objects, such as gravity and thrust.

The focus of the chapter is on simulation, which involves the use of rigid body dynamics
simulation, motion blending of key framed animations, as well as other methods to simulate
the motions of objects in a game world. We will also examine the related modules in
ParaEngine.

8.1 Foundation
This section will cover several physics simulation methods. They are rigid body dynamics,
sensor based physics, motion blending, and autonomous character animation. They are
usually used together in a computer game engine.

8.1.1 Rigid Body Dynamics
In recent years, game physics have come to the middleware arena. They are called physics
engine, which provides APIs to simulate the movements of 3D geometry under effects of
gravity, friction, collision with other objects, and even soft body motions such as cloth. But
the selling point of most physics simulation middleware is on the efficient and robust
implementation of rigid body dynamics. We do not intend to cover the math here. Interested
reader can refer to SIGGRAPH '97 course notes on physically based modeling: principles and
practice8. Understanding the math of rigid body dynamics is one thing, implementing them
efficiently is another thing. Our suggestion is that always consider using a middleware first.

8.1.1.1 Integrating a Physics Engine
Two critical problems in integrating physics engine into a game engine are simulation time

management and collision response. Simulation time is the current time used in the physics
engine. Each frame, we advance simulation time in one or several steps until it reaches the
current rendering frame time. Choosing when in the game loop to advance simulation and by
how much can greatly affect rendering parallelism.

8 SIGGRAPH '97 course notes: http://www.cs.cmu.edu/~baraff/sigcourse/

 93

In game development, we usually have many hand-animated (key framed) game characters,
complicated machines and some moving platforms. These objects do not obey the laws of
physics. They are non physical objects, but they should appear to be physical. So the problem
is how physical and non-physical object should react to each other. For example, we may
consider key framed motion to be nonnegotiable. A key framed sliding wall can push a
character, but a character cannot push a key framed wall. Key framed objects participate only
partially in the simulation; they are not moved by gravity, and other objects hitting them do
not impart forces. They are moved only by key framed animation data. For this reason, the
physics engine usually provides a callback function mechanism for key framed objects to
update their physical properties at each simulation step. And game developers need to
manually tell the engine how the objects should respond.

8.1.1.2 Novodex Physics Engine
There are several commercial and open source middleware physics engine today. Among the
most popular are havoc, novodex, and ODE. Novodex is even forward looking to support
hardware accelerated physics calculation. It has a public license for developers to try for free.
We will demonstrate the use of Novodex engine to perform geometry level physics in
ParaEngine.

A full integration guide of the Physics engine can be found here9. All physics SDKs are
built upon a few fundamental objects: the physics SDK itself, a physics environment or scene,
parameters for the scene, rigid bodies, materials that define the surface properties of the rigid
bodies, collision shapes that the rigid bodies are built from, triangle meshes that some
collision shapes are comprised of, constraints that connect rigid bodies at a point, and springs
that connect rigid bodies via forces over a distance. The final component of the SDK is a set
callback objects that developers can use to receive collision events, such as contact events
between designated contact pairs, joint breakage, and the results of ray cast queries in
previous frames, etc.

We call all physical objects in Novodex “actors” and use the words “actor” and “object”
interchangeably. These actors can be crates, doors, trees, rocks, any physical object that
resides in the game world. There are two types of actors: “dynamic” and “static”.

“Dynamic” actors are part of the physical scene and will move and collide with the world
and other objects realistically. In other words, they are moved by force. A dynamic actor can
be turned into a kinematic actor, if we want total control over them. A kinematic actor does
not react to the physical world; yet the physical world reacts to kinematic actors. For example,
they can be moved to wherever we want them, pushing all dynamic objects aside along the
way, as if they had infinite mass. They are good for moving objects that are effectively
immune to the physical scene, like Main RPG character, heavy moving platforms or large
moving blast doors and gates, etc. Kinematic objects can be turned into dynamic objects and
vice-versa.

“Static” actors are stationary and never move in the scene. Static objects cannot be made
dynamic or kinematic once they are created.

9 NovodeX AG, NovodeX SDK Integration Guide, www.novodex.com, 2005.

 94

To summarize, the physical world is built with dynamic and static actors. Two kinds of
dynamic actors are interchangeable; they are dynamic actors and kinematic actors. Kinematic
actor can be thought of as a mobile static object, as it will push other dynamic objects asides.
In the following text, we will use static actor, dynamic actor and kinematic actor to
distinguish these three types of actors which comprise the physical world.

Kinematic Character Collision Detection and Response

The kinematic motion of character is calculated after the dynamic simulation of the physical
environment is finished, which in turn will affect the dynamic objects in the next time step.
We will first look at the simulation pipeline in ParaEngine.

The Environment Simulation Routine is activated several times a second (may be 15 or 30
FPS). The physics engine (in this case, it is the Novodex engine) usually has a higher frame
rate (usually 50 or 60 FPS) for precise collision detection; hence in each environment
simulation step, the Novodex engine may advances several sub steps until it catches up with
the simulation time, which in turn may need to catch up the rendering time. During each sub
steps, the physics engine may report user contacts through callbacks (since, Novodex is multi-
threaded; these callbacks are in different threads than the game loop thread). The game engine
should remember these contacts in the callbacks; so that it can see them and respond to them
when the game loop thread resumes control.

The following code gives an overview of what should be done in the game loop thread.

Environment simulation (SIM_TIMER) {

Fetch last simulation result of dynamic objects

Validate simulation result and update scene object parameters, accordingly.

Calculate kinematic object motions and update simulation data for the next time step.

Run AI module (SIM_TIMER) {

Run scripting system (SIM_TIMER):

Networking is handled transparently through the scripting system.

}

Start simulating for the next time step (this may run in a separate thread than the game
loop).

}

The motion of kinematic objects are usually calculated from sensor results, such as casting
rays in front of the character and returning contact points with the physics environment. One
advantage of using sensors is that one can detect collision before it happens. The shape of the
sensors used in collision detection can be point, line or even the bounding shape of the
character itself.

Terrain learning is required for collision prevention. However, this task is less realistic
because it relies on trial and error rather than prediction, and that a character will only detect
obstacles when it is too late (i.e. already in contact).

 95

8.1.2 Sensor Ray based Physics
Physics in a game can be completed based on sensor rays or through other physics

simulation techniques, such as the rigid body dynamics. This section will focus on the first
one. In Chapter 7, we have shown that ray picking is a common feature supported by
different kinds of scene objects, such as bounding volumes, triangle mesh, terrain and ocean.
A physics simulation engine which is entirely based on ray casting can be devised. In case
that both the environment and the object being simulated is extremely complex, ray picking is
the only choice left. In role playing games and first person shooter games, sensor ray based
physics are still popular for the main game character. We can also use sensor rays for
handling other kinematics character collision detections and responses.

The idea of sensor ray based physics is similar to using our eye to perceive the environment.
However, the process is reversed. Instead of letting the light rays coming into our eyes, we
actively cast sensor rays to the environment and deduct the environment from information
returned from sensor rays. Obviously, the more rays (higher resolution) cast, the more
accurate environment information a program can deduct. The disadvantage of ray based
physics is that no matter how many rays we cast, we can only deduct and never be sure about
the space between two adjacent rays. The advantage is that it is a common way to perceive the
environment. One can use the same algorithm for environment of any shape and of any
complexity.

In ParaEngine, character objects cast multiple sensor rays to get the knowledge about
physical environment in its surroundings and animate accordingly. We will use it as an
example of showing how sensor rays can be used in game physics. In our implementation, the
character is modeled as a cylinder will move in a 3D scene with meshes, terrain and ocean. It
will walk on land, swim in water, fall in air, climb on slopes, slide if there is a wall, and block
if there is a corner, etc. All this can be done almost faultlessly and smoothly using only ray
based physics.

Character’s Physical Definition

- dTimeDelta: the time delta to be simulated. Character’s position and speed will be
updated according to this time step. Such as 1/30 second.

- vPos: 3D position of the object in world coordinate system. Y is for height (up) axis.

- vPosTarget: the destination position that the character is instructed to move. The Y
component of vPosTarget is ignored, assuming the character should always be on ground.

- Speed: the magnitude of the character’s current speed vector after projection to the X,Z
planes.

- vFacing: the direction of character’s current speed. It does not count for the vertical speed.

- SpeedVertical: the magnitude of the character’s current vertical speed (i.e. speed in Y
plane).

- Radius: the character is modeled as a cylinder. This is the radius of this cylinder. We also
call it physical radius of the character. Such as 0.5 meters

- Height: height of the character. Also the cylinder’s height. We also call it physical height
of the character. Such as 1.8 meters.

 96

Constants

- PENETRATION_DISTANCE: the maximum penetration distance allowed. In each
simulation step, if the biped moves longer than this step, it is further divided in to several
evenly spaced steps. The step length is determined by the biped's speed multiplied by the
time delta. Default value 0.1 meter.

- MAX_STEPS_PER_FRAME: ignore PENETRATION_DISTANCE, if it takes longer
than MAX_STEPS_PER_FRAME to complete in a simulation frame. This is likely to
happen when character have very fast speed. This will ensure that the physics simulation
will always complete within a certain sub steps. However, it may produce inaccurate
physics.

- BIPED_SENSOR_RAY_NUM: The number of rays in a sensor group. The higher this
number, the more accurate the collision detection will be. The value must be 2n+1, such
as 1,3,5,7,9,etc. The direction of the ith ray is given by the following equation:

ith ray direction = Object facing + (PI / (rayNum+1)) * (i - ((rayNum-1) / 2)

Normally 3 rays will be both accurate and fast enough for most situations of RPG
characters. See Figure 8.1.

- FALLDOWN_SPEED: the vertical speed at which the biped will fall down from high
ground. Default value is 4.0.

- CLIMBUP_SPEED: the vertical speed at which the biped will jump up on a shallow stair.
Default value is 2.0.

- REBOUND_SPEED: the speed at which the biped will rebound from a wall, assuming
that the mass of characters are the same. This is proportional to rebound impulse. Default
value is 0.3.

- WALL_REBOUNCE_DISTANCE: the biped will rebound from a wall, if its body
penetrates into the wall for the specified distance. Default value is 0.4.

- SENSOR_HEIGHT_RATIO: the ratio between the sensor ray height and the biped's
physical height. Default value is 0.5.

- GRAVITY_CONSTANT: gravity. Value is 9.81.

Floor

Character
Object facing

Max stair height

Character height

Sensor rays

 97

Figure 8.1 Multiple ray-casting collision detection

The origin of all sensor rays is the character’s global position plus a max stair height, which
is usually some factor of the character’s height. A character will automatically climb up stairs
lower than this height.

Collision Response and Wall Sliding

We will first show collision detection and wall sliding without worrying about the terrain and
water, etc. In the multiple-ray-casting method, the character avoids obstacles using the sensor
ray hit points for detecting areas of free space instead of solely relying on the normal of the
obstacles. The obstacle normal returned by the ray sensor query is only used to give a
tentative move direction. Then we shift the origin of the sensor ray to the new location and
query again to obtain another hit point. From the two hit points together with the velocity
vector of the character, we calculate another impact normal, which will be used to find an
alternative heading. Using hit points of sensor rays to obtain impact normal can be an
advantage, because using the obstacle normal to find free space is a rough estimate, and the
likelihood of success diminishes as the complexity of the environment increases.

The algorithm is given below:

vMovePos = vPos
vOrig0 = (vPos.x,vPos.y+ Height* SENSOR_HEIGHT_RATIO, vPos.z)
vDir0 = vFacing
Range0 = Radius
Cast a group (group0) of n (n=3) rays in front of the character, the middle ray in the group has
orgin (vOrig0), direction (vDir0), and sensor range(Range0)

If several sensor rays hit some obstacles within the Radius of the object{

if the world impact normals are roughly the same{
/* the character is considered to be blocked by a single wall. In case of a single
blocking wall, we will try slide the character along the wall; */
vWallNorm = average of all impact normals returned by the ray query.
// compute a tentative sliding wall facing(not the final one) as below:
vTentativeFacing = vWallNorm (vFacing vWallNorm)× ×

vOrig1 = vOrig0+vTentativeFacing PENETRATION_DISTANCE×
vDir1 = the direction of previous ray whose hit point is closest to vOrig0
Range1 = Radius+ Speed dTimeDelta×
Cast another ray1 (vOrig1, vDir1, Range1)

Bool bMoveAlongOldFacing=false
If (the ray hits anything){

// get the wall direction by two hit points of the sensor ray
vWallDir = ray1.hitpoint-group0.hitpoint
if(vWallDir is not (0,0,0)){

/*check if the sensor ray and the biped facing vector are on the same side of the
wall vector. If so, it means that the biped is currently walking into the wall,
otherwise it is leaving the wall. */
If((vDir1 vWallDir) (vFacing vWallDir)>0× • ×){

 98

speedScale = vFacing vWallDir
vMovePos=vPos+vWallDir (Speed dTimeDelta speedScale)

•
× × ×

}else{
bMoveAlongOldFacing = true

}

}else{

bMoveAlongOldFacing = true
}

}else{
bMoveAlongOldFacing = true

}
If(bMoveAlongOldFacing is true){

/*we permit walking along the old facing vector. This is the case when the
character is walking away from the wall.*/
vMovePos=vPos+vFacing (Speed dTimeDelta)× ×

}
/** Finally, we will move the character slightly out of the wall, if it has run too deep in
to it. */
if(vMovePos != vPos){

vOrig2 = vOrig0+(vMovePos-vPos)
vDir2 = vFacing
Range2 = Radius
Cast a group (group2) of n (n=3) rays using the new character position

If(group2 hit anything){

nRes=compare sensor ray group0 and group2 by their hitpoints to orig distances
if(bMoveAlongOldFacing is false and nRes>0){

// The character is cornered; restore it to its original position
vMovePos = vPos

}else{
ReboundDistance=Radius-Groups2. MinDist-PENETRATION_DISTANCE;
If(ReboundDistance>=0){

// move character slightly out of wall
vMovePos=vMovePos+Group2.vDir (ReboundDistance)× −

}
}

}
}

}else{
Character is considered to be at a corner. Stop the character.

}
}else{

// if nothing is hit, simply move the character forward
vMovePos=vPos+vFacing (Speed dTimeDelta)× ×

}
vMovePos now contains the position of character after collision detection and wall sliding in
the x,z plane.

 99

Figure 8.2 shows the above algorithm. The character’s facing, wall obstacle and the origins of
sensor ray group 0, 1, 2 are marked out. The character will finally slide along the wall to the
bottom left.

Figure 8.2 Ray casting based sliding wall

The Complete Code

The complete code can be found in the code section later in this chapter. It takes other
factors such as terrain height, water level, etc in to account.

The Implementation Result

The game demo on our website uses the algorithm described in this section. Figure 8.3
shows characters sliding along small cylinder physics object, climbing up stairs, sliding along
wall meshes, turning around sharp wall edges, etc. The algorithm will generate accurate and
smooth motion even with concave, convex and sharp physical meshes.

wall vOrig1

vOrig2

vOrig0

Impact normal

vFacing

vDir1

vWallDir

 100

Figure 8.3 Collision detection and response results

8.1.3 Motion Blending
Realistic character simulation is one of the hardest simulations in game engine; because a
character usually has dozens of joints which move together in complex patterns and with
complex constraints. So character simulation in current game engine implementation is
usually achieved by motion blending premade animations according to physical events and
user/script commands. Premade animations are traditional key frame based animations which
are made by artists, frame by frame and/or using motion capture devices. For example, a
character has key framed animations for walking, running, jumping, falling and attacking. A
physical event generated by the physics engine, such as a sudden change on the terrain, might
change the character state from walking to falling. The character will blend walking
animation and falling animation with a blending factor, so that the motion of character is
smoothly transformed from walking to falling.

Since a complete introduction to motion blending requires knowledge about character’s
skeleton system, we will cover it in the character animation Chapter 12. When motion
blending is used in the simulation system, the character is modeled using a simple shape, such
as cylinder, sphere or capsule, as well as a group of state parameters. The simulation module

 101

can access the state parameters associated with a character object during simulation. For
example some state parameters may indicate that the character is in air, on land or under
water, etc. In the rendering pipeline, we will synthesize the final animation of a character
from a pool of key framed animations and its associated state. This synthesis of motion is
called motion blending.

State of the Art

As computer becomes faster, the simulation module usually replaces some animation parts
which used to be made with key framed animation. For example, cloth, wave, particle
simulation are moving to the physically based simulation module.

The animations generated by rigid body dynamics are more diverse and realistic than key
framed or motion blended animation. However, at the moment, they are only realistic under
limited conditions. For instances, rigid body dynamics are used to simulate character motions
when they are considered dead in the game, such as person or animals shot dead or their
corpses being dragged on the floor.

8.1.4 Autonomous Animation
The ultimate goal of character motion simulation is autonomous animation, which will learn
by observation the patterns of character motions under different environment and having them
automatically generated at playing time.

When animating a character, there are three kinds of animations which are usually dealt
with separately in a motion synthesis system: (1) local animation, which deals with the
motion of its major skeleton (including its global speed), (2) global animation, which deals
with the position and orientation of the character in the scene, (3) add-on animation, which
includes facial animation and physically simulated animation of the hair, cloth, smoke, etc.
This chapter mainly talks about the local animation. Local animation is usually affected by
the states of the character (such as a goal in its mind or a user command) and its perceptible
vicinity (such as terrain and sounds).

The motion of a specified human character can be formulated by a set of independent
functions of time, i.e. 0{ () | 1,2,..., ; [,]}nf t n N t T= ∈ +∞ . These functions or variables
typically control over 15 movable body parts arranged hierarchically, which together form a
parameter space of possible configurations or poses. For a typical animated human character,
the dimension of the configuration is round 50, excluding degrees of freedom in the face and
fingers. Given one such configuration at a specified time and the static attributes of the human
figure, it is possible to render it at real-time with the support of current graphic hardware.
Hence, the problem of human animation is reduced to,
given 0{ () | 1,2,..., ; [,]}n cf t n N t T T= ∈ and the environment W (or workspace in robotics),
computing { () | 1,2,..., ; [,]}n c cf t n N t T T T= ∈ + Δ which should map to the desired and
realistic human animation.

The first option to motion generation is to simply play back previously stored motion clips
(or short sequences of{ ()}nf t). The clips may be key-framed or motion captured, which are
used later to animate a character. Real-time animation is constructed by blending the end of
one motion clip to the start of the next one. To add flexibility, joint trajectories are

 102

interpolated or extrapolated in the time domain. In practice, however, they are applied to
limited situations involving minor changes to the original clips. Significant changes typically
lead to unrealistic or invalid motions. Alternatively, flexibility can be gained by adopting
kinematic models that use exact, analytic equations to quickly generate motions in a
parameterized fashion. Forward and inverse kinematic models have been designed for
synthesizing walking motions for human figures 10 . There are also several sophisticated
combined methods11 to animate human figures, which generate natural and wise motions (also
motion path planning) in a complex environment. Motions generated from these methods
exhibit varying degrees of realism and flexibility.

A different motion generation framework aims at synthesizing real-time humanoid
animation by integrating the variables of the environment into the controllers of the human
body and using a learning and simulation algorithm to calculate and memorize its motion.
Both the environment and the human body can be partially or fully controlled by an external
user; whereas the motion for the uncontrolled portion will be generated from an internal
algorithm. To produce realistic animation, the environment and the body movements are first
fully controlled until the animation system has discovered the patterns for the various
combinations of the different parts of the body and the environment variables; then only the
environment and selected parts of the human body are controlled, the system will generate the
motion for the rest. The advantages of the framework are (1) the motion is fairly realistic
since it is based on examples. (2) different parts of the human body may act less dependently;
e.g. the top of the body might react to other environmental changes other than synchronizing
with the bottom of the body. Please refer to our paper12 for more information.

8.2 Architecture and Code
The architecture of the simulation module involves the management of both static and
dynamic objects.

(1) Static physics objects management: There are usually tens of thousands of physical mesh
objects in a scene. It is not possible to simulate them concurrently. Fortunately, most physical
mesh objects are static, so we can choose to simulate only objects in the vicinity of mobile
physics objects. And a garbage collector routine will remove static physics objects which are
far away from its nearest mobile object. Usually a reference counter will suffice to do the task.
Another way to remove a bunch of physics objects from the simulator is through the managed
loader class supported by the scene manager. Objects in a managed loader can be loaded on
demand, yet unload as a single entity.

(2) Mobile object management: global characters are the most common mobile objects. The
game engine must be able to simulate and render them very fast. If there are too many global
objects (thousands), special data structures need to be used to store them according to their
dynamic spatiality.

10 R. Boulic, D. Thalmann, and N. Magnenat-Thalmann. A global human walking model with real time kinematic
personification. The Visual Computer, 6(6), December 1990.

11 Kuffner, J. J., Autonomous Agents for Real-Time Animation. Ph.D. thesis, Stanford University, 1999.

12 Xizhi Li, Synthesizing Real-time Human Animation by Learning and Simulation. 2004.

 103

The module for simulation in ParaEngine is called Environment Simulator. It uses a physics
middleware (Novodex physics engine) for handling static mesh collision detection and rigid
body dynamic simulations.

8.2.1 Integrating the Physics Engine
We use a thin wrapper called CPhysicsWorld for wrapping the physics middleware. A scene
manager is always associated with an instance of this class. It holds data for static physics
meshes and rigid body dynamic objects. As the game progress, objects may be moved in and
out of the physics world. The scene manager contains all objects in the scene. The physics
world only contains a subset of objects in the scene, which are currently being simulated.
When an object is deleted from the scene manager, it is also deleted from the physics world.
class CPhysicsWorld{
public:
 /** the triangle mesh shape. since we need to create separate physics mesh with different scaling
factors even for the same mesh model, we will need the mesh entity plus the scaling vector to fully
specify the mesh object*/
 class TriangleMeshShape {
 public:
 MeshEntity* m_pMeshEntity; /// the mesh entity
 D3DXVECTOR3 m_vScale; /// the scaling factor

 NxTriangleMeshShapeDesc m_ShapeDesc;
 TriangleMeshShape (){
 m_pMeshEntity = NULL;
 m_vScale = D3DXVECTOR3(1.f,1.f,1.f);
 }
 };
 /// All shapes. There may be multiple object using the same shape
 list<TriangleMeshShape*> m_listMeshShapes;
public:
 NxPhysicsSDK* m_pPhysicsSDK;
 NxScene* m_pScene;
 NxVec3 m_pDefaultGravity;

 /** get a pointer to physics scene object */
 NxScene* GetScene(){return m_pScene;}

 /** get a pointer to physics SDK object */
 NxPhysicsSDK* GetPhysicsSDK(){return m_pPhysicsSDK;}

 /** Init the physics scene */
 void InitNx();

 /** ReleaseNx() calls NxPhysicsSDK::releaseScene() which deletes all the objects in the scene and
then deletes the scene itself. It then calls NxPhysicsSDK::release() which shuts down the SDK.
ReleaseNx() is also called after glutMainLoop() to shut down the SDK before exiting.*/
 void ReleaseNx();

 /** First call ReleaseNx(), then InitNx() */
 void ResetNx();

 /** this function will not return, until the rigid body physics had finished */
 void GetPhysicsResults();

 /** Start the physics for some time advances

 104

 * @params dTime: advances in seconds */
 void StartPhysics(double dTime);

 /**
 * creat a static actor in the physical world from a mesh entity.
 * @params pV: the world position of the actor
 * @params fFacing: the facing around the y axis.
 */
 NxActor* CreateStaticMesh(MeshEntity* ppMesh, const D3DXMATRIX& globalMat);

 void ReleaseActor(NxActor* pActor);
…// omitted some functions
};

8.2.2 Environment Simulator
The main simulation module in ParaEngine is called environment simulator, which have been
covered in Chapter 1 and 2. We will go for its details in this section. The entry function of
the simulator is Animate(), which advances the simulation by a given time step. After each
simulation, the environment simulator will generate intermediate data such as a list of active
bipeds, each of which contains objects in its perceptive radius, etc.
Class CEnvironmentSim{
 /// a list of terrain that contains all active bipeds.
 list <ActiveTerrain*> m_listActiveTerrain;
 /// active bipeds may contain biped that is out of the view-culling radius.
 list <ActiveBiped*> m_listActiveBiped;
 /// very important biped list
 list <CBipedObject*> m_listVIPBipeds;
public:
 virtual void Animate(double dTimeDelta);
 void CleanupImtermediateData();
private:
 void Simulate(double dTimeDelta);
 void GenerateActiveBipedList();
 void GenerateStaticCP(ActiveBiped* pActiveBiped);
 void BipedSimulation();
 void PlayerSimulation(double dTimeDelta);

 /** when this function is called, it ensures that the physics object around an object is properly loaded.
It increases the hit count of these physics objects by 1. The garbage collector in the physics world may
use the hit count to move out unused static physics object from the physics scene (Novodex). This
function might be called for the current player, each active mobile object in the scene and the camera
eye position. */
 void CheckLoadPhysics(D3DXVECTOR3 vCenter, float fRadius);
…// omitted some functions and members
};

Active Biped is an important data structure that the environment simulator generates during
each simulation step. An active biped structure contains reference to the character object, the
terrain tile that contains this character, and a list of other characters in its perspective radius.

Recall that the scene manager maintains a global list of mobile characters. However, using
this global list for collision detection and rendering is inefficient. Its computation complexity
is O(n2), which tests one character against every other in the list. The environment simulator
utilizes the quad-tree terrain tile available in the scene manager. It saves a temporary
reference to each mobile character at the smallest quad-tree terrain tile that contains it. Recall
that in Chapter 4, the terrain tile object has a member called m_listBipedVisitors, which is a

 105

list of characters that are visiting that tile region. When character moves, the environment
simulator will automatically update the list in affected terrain tiles. When rendering characters,
only bipeds in the potentially visible terrain tile will be tested for drawing. And when a
character tries to generate a list of visible characters in its vicinity, it will only search in the
terrain tile that contains it as well as in its adjacent terrain tiles. In the worst case, there will be
9 terrain tiles that will need to be examined for generating visible character list for a given
character.
//---
// intermediate object definitions
//---
struct ActiveTerrain{
 CTerrainTile* pTile;
 list <ActiveBiped*> listActiveBiped;
};

//--
/// It holds any information that is perceived by a Active Biped object
/// including himself. This is one of the major product that environment
/// simulator produces for each living bipeds.
//--
struct ActiveBiped{
 struct PerceivedBiped{
 /// the distance of the perceived biped to the host
 float fDistance;
 CBipedObject* pBiped;
 PerceivedBiped(float fDist, CBipedObject* pB){
 pBiped = pB;
 fDistance = fDist;
 };
 PerceivedBiped(){pBiped=NULL;};
 };
 /// the biped scene object.
 CBipedObject* pBiped;
 /// tile that tells most exactly where the object is in the scene
 /// the terrain in which the biped is in
 CTerrainTile* pTerrain;
 /// object list that collide with this biped. It can be solid object or other bipeds.
 list <CBaseObject*> listCollisionPairs;
 /// object list that this biped could see or perceive. this includes all object
 /// that is in the perceptive radius.
 list <PerceivedBiped*> listPerceptibleBipeds;
…// omitted some functions.
};

There is, however, a problem when the character is at the boundary of two or three adjacent
terrain tiles. There are three solutions to it:

(1): increase the minimum size of terrain tiles that can store visiting biped lists and using
the character’s point position (not its bounding volume) to locate the terrain tile that contains
it. Ignore the problem in other cases. For example, if the container terrain tile is 200*200
square meters, chances are small for characters walking on the boundary. And a special game
title may even enforce that creatures can only move within a terrain tile but not crossing it.

(2): have duplicate references to the same character in terrain tiles that either contains or
intersects with the character’s perceptive volume. This method will work on all conditions,
but is a little bit difficult to implement.

 106

(3): use the character’s point position (not its bounding volume) to locate the only terrain
tile that contains it. During collision testing, the character should not only test against other
characters in the container terrain tile, but also any adjacent tiles that intersects with its
perceptible region (usually a sphere).

Another optimization we can apply is that we only need to update characters that are
moving in the last simulation step. We can quickly detect if a character is moving or not by its
speed magnitude. The following shows the character simulation pseudo code in the
environment simulator.

Character simulation pseudo code

For more information about character simulation, please see the AI in Game World Chapter
14.
// Compute next scene for all game objects and generate the vicinity list.
CEnvironmentSim::Simulate(dTimeDelta){

 // Load physics around the current player and the camera position.
 // This is very game specific. Usually, it only ensures that physics object
 // around the current player and camera eye position is loaded.
 Call CheckLoadPhysics(player position, player radius*2)　 　
 Call CheckLoadPhysics(camera position, camera near_plane*2)　 　

 // Pass 1:Update Game Objects: building perceived object lists for each sentient object
 for each sentient game objects (sentientObj) in the scene{
 sentientObj.m_nSentientObjCount=0;
 sentientObj.m_PerceivedList.clear();

 update itself in the terrain tile according to its current position:

 for each valid terrain tiles(9 or more) in the neighbourhood of sentientObj{
 for each object (AnotherObj) in the terrain tile{
 if(AnotherObj is not a sentient object){
 if sentientObj falls inside the sentient area of any other game object(AnotherObj){
 wake up AnotherObj, add it to the back of the sentient object list.
 AnotherObj.OnEnterSentientArea();
 }
 }
 if AnotherObj falls inside the sentient area of sentientObj{
 sentientObj.m_nSentientObjCount++;
 if AnotherObj falls inside the perceptive area of sentientObj{
 sentientObj.m_PerceivedList.push_back(AnotherObj.name());
 }
 }
 }
 }
 if(sentientObj.m_nSentientObjCount==0){
 sentientObj.OnLeaveSentientArea();
 remove sentientObj from the sentient object list.
 }else{
 // call game AI now or in the next pass, we advise a second pass,
 // so it gives equal chance to each character
 // sentientObj.OnPerceived();
 }
 }

 // Pass 2 (It can be combined with Pass 1): call game AI of sentient objects

 107

 for each sentient game objects (pObj) in the scene{
 // generate way points
 pObj->PathFinding(dTimeDelta);
 // move the biped according to way point commands
 pObj->AnimateBiped(dTimeDelta);
 // apply AI controllers
 if(pObj->GetAIModule())
 pObj->GetAIModule()->FrameMove((float)dTimeDelta);
 if(!pObj->m_PerceivedList.empty())
 pObj->On_Perception();
 // call the frame move script if any.
 pObj->On_FrameMove();
 }

 // Animate all global particles
 for each particle system (pObj) in the scene{
 if(!pObj->IsExploded())
 pObj->Animate(dTimeDelta);
 }
}

8.2.3 Sensor Ray Structure
It represents a group of rays sharing the same origin.
/** used for ray casting biped for low level navigation.
* @see CBipedObject::MoveTowards()*/
struct SensorGroups{
 /// origin shared by all sensor rays in this group.
 D3DXVECTOR3 m_vOrig;
 struct SensorRay
 {
 /// direction of the ray in the x,z plane
 D3DXVECTOR3 vDir;
 /// the impact norm of the ray
 NxVec3 impactNorm;
 /// the hit point of the ray
 NxVec3 impactPoint;
 /// the distance from the impact point to origin.
 float fDist;
 /// whether the sensor has detected anything in its range
 bool bIsHit;
 public:
 SensorRay():bIsHit(false),fDist(0){};
 };
 /** n (n=BIPED_SENSOR_RAY_NUM=3) rays in front of the character, which covers a region of (n-
2)/(n-1)*Pi radian.*/
 SensorRay m_sensors[BIPED_SENSOR_RAY_NUM];
 /// the average of all impact norms if available.
 D3DXVECTOR3 m_vAvgImpactNorm;
 /// range for all sensors.
 float m_fSensorRange;
 /// number of walls we hit.
 int m_nHitWallCount;
 /// the ray index whose impactPoint is closest to the origin. if negative, no ray has hit anything.
 int m_nHitRayIndex;

public:
 /** whether the sensor group has hit anything. */
 bool HasHitAnything(){ return m_nHitRayIndex>=0;}

 108

 /** whether the sensor group has hit anything. A negative value is returned if no hit ray.*/
 int GetHitRayIndex(){ return m_nHitRayIndex;}
 /** get the hit ray */
 SensorRay& GetHitRaySensor(){return m_sensors[m_nHitRayIndex];}
 /** get the number of wall hits. */
 int GetHitWallCount(){ return m_nHitWallCount;}
 /** get average impact norm. this is not normalized and may not be in the y=0 plane*/
 D3DXVECTOR3 GetAvgImpactNorm(){ return m_vAvgImpactNorm;}

 /** reset the sensor group to empty states. */
 void Reset()
 void ComputeSensorGroup(const D3DXVECTOR3& vOrig, const D3DXVECTOR3& vDir, float
fSensorRange, int nSensorRayCount = BIPED_SENSOR_RAY_NUM, float fAngleCoef = 0.16f);

 bool CompareWith(const SensorGroups& otherGroup, float fAngleCoef = 0.16f);
…// omitted some functions.
};

8.2.4 Ray based Character Simulation
The following shows the actual implementation of the ray based character simulation
discussed previously.
bool CBipedObject::MoveTowards(double dTimeDelta, const D3DXVECTOR3& vPosTarget, float
fStopDistance, bool * pIsSlidingWall)
{
 static SensorGroups g_sensorGroups[3];
 float fMaxPenetration = (float)(m_fSpeed * dTimeDelta);
 if (fMaxPenetration>PENETRATION_DISTANCE){
 int nNumSteps= (int)ceil(fMaxPenetration/PENETRATION_DISTANCE);
 if(nNumSteps> MAX_STEPS_PER_FRAME)
 nNumSteps = MAX_STEPS_PER_FRAME;
 double dT = dTimeDelta/nNumSteps;
 bool bReachedDestination = false;
 for (int i=0;(i<nNumSteps) && (!bReachedDestination);i++)
 {
 bReachedDestination = MoveTowards(dT, vPosTarget, fStopDistance, pIsSlidingWall);
 }
 return bReachedDestination;
 }
 float fGravity = GRAVITY_CONSTANT;
 {
 D3DXVECTOR3 vHeadPos = m_vPos;
 vHeadPos.y += GetPhysicsHeight();
 if(CGlobals::GetOceanManager()->IsPointUnderWater(&vHeadPos))
 {
 GetBipedStateManager()->AddAction(CBipedStateManager::S_IN_WATER);
 fGravity *= 0.2f;
 if(m_fSpeedVertical > 0) {
#define UP_WATER_RESISTENCE_COEF 0.1f
#define DOWN_WATER_RESISTENCE_COEF 0.1f
 fGravity += m_fSpeedVertical*m_fSpeedVertical*UP_WATER_RESISTENCE_COEF;
 }
 else
 {
 fGravity -= m_fSpeedVertical*m_fSpeedVertical*DOWN_WATER_RESISTENCE_COEF;
 }
 }
 else

 109

 GetBipedStateManager()->AddAction(CBipedStateManager::S_ON_FEET);
 }

 bool bReachPos = false;
 bool bSlidingWall = false; // whether the object is sliding along a wall.
 bool bUseGlobalTerrainNorm = false;
 bool bIgnoreTerrain = false;

 D3DXVECTOR3 vMovePos = m_vPos; // the position for the next frame without the height
 D3DXVECTOR3 vSub;
 float fDist;

 // get distance from target
 D3DXVec3Subtract(& vSub, & m_vPos, & vPosTarget);
 fDist = D3DXVec2LengthSq(& D3DXVECTOR2(vSub.x, vSub.z));

 // check if we have already reached the position
 if(fStopDistance == 0)
 {
 if(fMaxPenetration * fMaxPenetration >= fDist)
 {
 // we're within reach
 bReachPos = true;
 // set the exact point
 vMovePos = vPosTarget;
 }
 }
 else if(fStopDistance > fDist)
 {
 /// if we're within reach, we will stop without reaching the exact target point
 bReachPos = true;
 }

 // get the biped's facing vector in y=0 plane.
 D3DXVECTOR3 vBipedFacing;
 GetSpeedDirection(&vBipedFacing);
 // physical radius
 float fRadius = GetPhysicsRadius();

 // if we have not reached position , we will move on.
 if(bReachPos == false && GetSpeed()!=0.f) {
 {
 // get origin
 D3DXVECTOR3 orig = m_vPos;
 float fSensorHeight = GetPhysicsHeight()*SENSOR_HEIGHT_RATIO;
 orig.y += fSensorHeight;
 // compute sensor group 0.
 g_sensorGroups[0].ComputeSensorGroup(orig, vBipedFacing, fRadius);
 }

 bool bCanMove = false; // whether the character can move either directly or sliding along wall.

 // move the character according to its impact forces
 if(g_sensorGroups[0].GetHitWallCount() > 1)
 {
 /** it has hit multiple things, we will not move the object */
 bCanMove = false;
 }

 110

 else
 {
 if(g_sensorGroups[0].GetHitWallCount() == 1)
 {
 bCanMove = true;
 bSlidingWall = true;

 /**
 * we use the average impact norm to get a tentative point where the biped is most likely to be
in the next frame.
 * we then cast another ray (group 1) from this tentative point to get another impact point. if
there is no impact point
 * within the radius of (fRadius+m_fSpeed * dTimeDelta), the object will move using the old
facing vector.
 * without further processing. Otherwise, from the two impact points(of group 0 and 1), we can
calculate the wall direction vector,
 * which will be used for sliding wall.
 */
 {
 // we will try sliding the character along the wall.The wall normal is given by impactNorm
(the surface norm).
 D3DXVECTOR3 vWallNorm = g_sensorGroups[0].GetAvgImpactNorm(); // use only its
projection on the y=0 plane.
 vWallNorm.y = 0;
 D3DXVec3Normalize(&vWallNorm,&vWallNorm);

 D3DXVECTOR3 vTentativeFacing;
 /** we will compute a tentative sliding wall facing(not the final one) as below:
 * vFacing = vWallNorm (X) (vFacing (X) vWallNorm);
 * and get a tentative new position of the character.
 */
 D3DXVec3Cross(&vTentativeFacing, &vBipedFacing, &vWallNorm);
 D3DXVec3Cross(&vTentativeFacing, &vWallNorm, &vTentativeFacing);
 D3DXVec3Normalize(&vTentativeFacing,&vTentativeFacing); // just make it valid
 D3DXVec3Scale(&vTentativeFacing, &vTentativeFacing, PENETRATION_DISTANCE);
 vTentativeFacing.y=0;
 D3DXVECTOR3 vHitRayOrig = g_sensorGroups[0].m_vOrig + vTentativeFacing;
 D3DXVECTOR3 vHitRayDir = g_sensorGroups[0].GetHitRaySensor().vDir;
 float fSensorRange = fRadius+float(m_fSpeed * dTimeDelta);
 // compute sensor group 1.
 g_sensorGroups[1].ComputeSensorGroup(vHitRayOrig, vHitRayDir, fSensorRange, 1);
 }
 bool bMoveAlongOldFacing = false;
 if(g_sensorGroups[1].HasHitAnything())
 {
 // check to see if the object needs to follow the wall.
 D3DXVECTOR3 vWallDir =
(D3DXVECTOR3&)(g_sensorGroups[1].GetHitRaySensor().impactPoint -
g_sensorGroups[0].GetHitRaySensor().impactPoint);
 vWallDir.y=0;
 // g_sensorGroups[1].GetHitRaySensor().fDist;
 if(vWallDir != D3DXVECTOR3(0,0,0))
 {
 D3DXVec3Normalize(&vWallDir,&vWallDir);

 D3DXVECTOR3 tmp1,tmp2;
 D3DXVec3Cross(&tmp1, &g_sensorGroups[1].GetHitRaySensor().vDir, &vWallDir);
 D3DXVec3Cross(&tmp2, &vBipedFacing, &vWallDir);
 if(tmp1.y * tmp2.y > 0)

 111

 {
 // if the object is walking into the wall, we will slide along the wall.
 float speedScale = D3DXVec3Dot(&vBipedFacing, &vWallDir);
 D3DXVECTOR3 vFacing;
 D3DXVec3Scale(&vFacing, &vWallDir, float(m_fSpeed *
dTimeDelta*speedScale));
 D3DXVec3Add(& vMovePos, & vFacing, & m_vPos);
 }
 else
 bMoveAlongOldFacing = true;
 }
 }
 else
 bMoveAlongOldFacing = true;

 if(bMoveAlongOldFacing){
 // maintain the direction.
 D3DXVECTOR3 vFacing;
 D3DXVec3Scale(&vFacing, &vBipedFacing, (float)(m_fSpeed * dTimeDelta));
 D3DXVec3Add(& vMovePos, & vFacing, & m_vPos);
 }

 if(vMovePos != m_vPos) {
 {
 D3DXVECTOR3 vOrig = g_sensorGroups[0].m_vOrig + (vMovePos - m_vPos);
 // compute sensor group 2.
 g_sensorGroups[2].ComputeSensorGroup(vOrig, vBipedFacing, fRadius);
 }
 if(g_sensorGroups[2].HasHitAnything()){
 if((!bMoveAlongOldFacing) && g_sensorGroups[2].CompareWith(g_sensorGroups[0]))
 {
 // if the biped has reached a corner, stop it.
 vMovePos = m_vPos;
 }else {
 float fReboundDistance = (fRadius - g_sensorGroups[2].GetHitRaySensor().fDist -
PENETRATION_DISTANCE);
 if(fReboundDistance >= 0){
 D3DXVECTOR3 vFacing;
 D3DXVec3Scale(&vFacing, &g_sensorGroups[2].GetHitRaySensor().vDir, -
fReboundDistance);
 D3DXVec3Add(& vMovePos, & vFacing, & vMovePos);
 }
 }
 }
 }
 }else {
 // if nothing is hit, simply move the character forward
 bCanMove = true;
 D3DXVECTOR3 vFacing;
 D3DXVec3Scale(&vFacing, &vBipedFacing, float(m_fSpeed * dTimeDelta));
 D3DXVec3Add(& vMovePos, & vFacing, & m_vPos);
 }
 }
 }

 /**
 * check to see if the character is in the air, or is climbing up stairs.
 * if so we will see the bReachPos to false, and allow the character to smoothly fall down or fly up.
 */

 112

 D3DXVECTOR3 orig = vMovePos;
 orig.y += GetPhysicsHeight();
 NxRay ray((const NxVec3&)orig, NxVec3(0,-1.f,0));
 NxRaycastHit hit;

 // Get the closest shape
 float dist;
 NxShape* closestShape = CGlobals::GetPhysicsWorld()->GetScene()->raycastClosestShape(ray,
NX_ALL_SHAPES, hit, 0xffffffff, 10*OBJ_UNIT);
 if (closestShape)
 {
 dist = hit.distance;
 }
 else
 {
 dist = MAX_DIST*OBJ_UNIT; // infinitely large
 }

 // set the object height to the higher of the two.
 float fTerrainHeight = CGlobals::GetGlobalTerrain()->GetElevation(vMovePos.x, vMovePos.z);
 float fPhysicsHeight = orig.y - dist;

 if(fTerrainHeight > (m_vPos.y + GetPhysicsHeight())){
 bIgnoreTerrain = true;
 // the biped has gone into a terrain hole, we will subject the object to the physics object only.
 vMovePos.y = fPhysicsHeight;
 bUseGlobalTerrainNorm = false;
 }else{
 bIgnoreTerrain = false;

 /// take terrain in to account, we will adopt the higher of the two as the character's next height.
 if(fPhysicsHeight > fTerrainHeight){
 // physics object is over the terrain objects.
 vMovePos.y = fPhysicsHeight;
 bUseGlobalTerrainNorm = false;
 }else{
 // the terrain is over the physics objects.
 vMovePos.y = fTerrainHeight;
 if(m_vPos.y < (vMovePos.y + GetPhysicsHeight()))
 /// if the object is not too far from the ground, it will subject to terrain surface norm.
 bUseGlobalTerrainNorm = true;
 else
 /// if the object is well above the ground(in air), it will not snap to terrain surface norm.
 bUseGlobalTerrainNorm = false;
 }
 }

 if(vMovePos.y < LOWEST_WORLD)
 vMovePos.y = LOWEST_WORLD;

 // move the object to the new location in the x,z plane
 m_vPos.x = vMovePos.x;
 m_vPos.z = vMovePos.z;
 /// animate the character vertically according to gravity.
 /// implement smooth fall down and jump up.
 if(m_vPos.y > vMovePos.y)
 {
 if(m_fSpeedVertical == 0.f)
 m_fSpeedVertical = -GetAbsoluteSpeed();

 113

 float fLastSpeedVertical = m_fSpeedVertical;
 m_fSpeedVertical -= fGravity*(float)dTimeDelta;
 float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f;
 m_vPos.y += dY;

 if(m_fSpeedVertical == 0.f)
 m_fSpeedVertical = EPSILON;

 if(m_vPos.y <= vMovePos.y){
 m_fSpeedVertical = 0.f;
 m_vPos.y = vMovePos.y;
 /** end jumping, if the biped is near the ground and has a downward vertical speed.*/
 {
 CBipedStateManager* pCharState = GetBipedStateManager();
 if(pCharState)
 pCharState->AddAction(CBipedStateManager::S_JUMP_END);
 }
 }else if (m_vPos.y > (vMovePos.y+GetPhysicsHeight()*0.25f) && m_fSpeedVertical<0){
 /** fall down, if the biped is well above the ground and has a downward vertical speed.*/
 {
 CBipedStateManager* pCharState = GetBipedStateManager();
 if(pCharState)
 pCharState->AddAction(CBipedStateManager::S_FALLDOWN);
 }
 }
 }else if(m_vPos.y < vMovePos.y){
 bool bIsJumpingUp = false;
 float fClimbUpSpeed = GetAbsoluteSpeed();
 if(fClimbUpSpeed < CLIMBUP_SPEED)
 fClimbUpSpeed = CLIMBUP_SPEED;
 if(m_fSpeedVertical <= fClimbUpSpeed)
 m_fSpeedVertical = fClimbUpSpeed;
 else
 bIsJumpingUp = true;

 float fLastSpeedVertical = m_fSpeedVertical;
 m_fSpeedVertical -= fGravity*(float)dTimeDelta;
 float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f;
 m_vPos.y += dY;

 if(bIgnoreTerrain){
 if(m_vPos.y >= vMovePos.y)
 m_vPos.y = vMovePos.y;
 }else {
 if(m_vPos.y<vMovePos.y || (!bIsJumpingUp))
 m_vPos.y = vMovePos.y;
 }
 if(!bIsJumpingUp){
 m_fSpeedVertical = 0.f;
 {
 CBipedStateManager* pCharState = GetBipedStateManager();
 if(pCharState)
 pCharState->AddAction(CBipedStateManager::S_JUMP_END);
 }
 }
 }else{
 /** if the character is on the ground, make sure that it has a non-negative speed */
 if(m_fSpeedVertical > 0.f)

 114

 {
 float fLastSpeedVertical = m_fSpeedVertical;
 m_fSpeedVertical -= fGravity*(float)dTimeDelta;
 float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f;
 m_vPos.y += dY;
 }
 else
 m_fSpeedVertical = 0.f;
 }

 // Compute the norm (orientation) of the biped, and smoothly transform to it.
 {
 D3DXVECTOR3 vNorm;
 if(bUseGlobalTerrainNorm) {
 // get the global terrain norm
 vNorm = GetNormal();
 // this normal value simulate a real biped on a slope
 if((1.f-vNorm.y) > EPSILON){
 D3DXVECTOR3 vAxis;
 D3DXVec3Normalize(&vAxis, D3DXVec3Cross(&vAxis, &D3DXVECTOR3(0,1,0), &vNorm));
 D3DXVECTOR3 vFacing;
 GetSpeedDirection(&vFacing);
 float fFactor = D3DXVec3Dot(&vAxis, &vFacing);
 if(fabs(fFactor) < EPSILON)
 fFactor = 1;
 else
 fFactor = sqrt(1-fFactor*fFactor);

 D3DXMATRIX mx;
 D3DXMatrixRotationAxis(&mx, &vAxis, acos(vNorm.y)*fFactor);
 D3DXVec3TransformCoord(&vNorm, &D3DXVECTOR3(0,1,0), &mx);
 }
 }else {
 // For physics meshes. the norm is always (0,1,0)
 vNorm = D3DXVECTOR3(0,1,0);
 }
 CMath::SmoothMoveVec3(&m_vNorm, vNorm, m_vNorm, (SPEED_NORM_TURN*dTimeDelta), 0);
 }
 if(pIsSlidingWall){
 *pIsSlidingWall = bSlidingWall;
 }
 return bReachPos;
}

8.3 Summary and Outlook
Physics can be very complex in a game engine and there is rarely a single framework of

physics which can be applied throughout a game engine. This is because, in computer game
engines, some physics are physically simulated, some are motion blended, while others may
be triggered by special objects in the scene. Both the physics model representation and
simulation algorithms can differ greatly for different types of objects in the 3D world. For
example, the global terrain, the weather system, the ocean water, the particle system, the
indoor buildings, and outdoor meshes may all have different simulation schemes. Sometimes,
integrating all the simulation scheme may not be as easy as choosing the appropriate method
for each of them. For example, suppose there is a cave inside the heightmap-based global
terrain. A game engine can not decide whether the cave physics or the heightmap-based

 115

global terrain physics should be applied at the intersection regions. In such cases, some
additional rules need to be specified when object transfers from one physics system to another.

In ParaEngine, we have implemented physics simulation for the global terrain, the indoor
buildings, outdoor meshes and some of their combinations. Mobile characters may be subject
to one or more of these physics system at a time. For example, a character may swim from the
ocean to the land; fall down a hole on the terrain and landed on the floor of an underground
drungon, etc.

 116

Chapter 9 Terrain

Terrain is an important part for outdoor games. It is a continuous undulating grid of meshes
that may extend infinitely in all directions. In a single camera shot, we may need to render
250000 square meters or more terrain surface without losing details from the observer. This
usually involves dynamically rendering a mesh which has very high triangle counts, and
painting them with multiple layers of detailed textures. In this chapter, we will examine the
technique used in outdoor terrain rendering. In Chapter 3, we have shown the major file
formats used in terrain rendering, which is very useful in understanding how the terrain works.
The terrain module or terrain engine we are going to build in this chapter supports real-time
rendering of infinitely large terrain surface, with dynamic multi-texturing and geo-morphing.
It also supports terrain holes, through which a game world could be extended to the
underground, such as building caves and tunnels.

9.1 Foundation

9.1.1 Understanding Terrain Data
Understanding the terrain data and the ability of a modern personal computer is very useful to
the design of a terrain engine. Recall in chapter 3, the terrain in a game world is partitioned
in to many equal sized squares as shown in Figure 3.3. Each square is called a terrain tile, and
is specified by a 2D coordinate. Each terrain tile references an elevation file and a texture
mask file that specifies how this terrain tile should be painted, etc. An elevation file is just a
two dimensional array heightmap[nWidth][nHeight], where heightnap[x][y] contains the
terrain height value at (x*VertexSpacing, y*VertexSpacing). During terrain rendering, the
heightmap are used to build the triangles mesh, as shown in Figure 9.1.

Figure 9.1 Terrain Grid

 117

VertexSpacing is the distance between two adjacent points. Now suppose that
VertexSpacing is 1 meter. Then in order to rendering terrain of size 500*500 square meters
with brutal force, 250000 triangles should be built and rendered at real time. This is barely
affordable for a modern GPU, especially when there are many other scene objects to be
rendered in the same frame. Hence we need some algorithm to build the terrain mesh with
fewer triangles. From Figure 9.1, we see that the farther away the terrain, the more dense the
triangles. In the farthest end, we can barely distinguish the difference between adjacent
triangles. On the other hand, notice that some terrain surface is relatively flat with regard to
the camera, and we can not distinguish the height difference either. In both cases, we can
simplify the terrain mesh by merging triangles. Most popular terrain rendering algorithms are
based on this level of detail (LOD) technique. We will see some of them in the next section.

Another large dataset for terrain rendering is texture data which is used for painting the
terrain surface. See Figure 3.4 in Chapter 3. First of all, painting the terrain with non-repeated
detailed textures is too expensive in terms of memory usage. A 256*256 pixel bitmap can
only be used to texture a very small region such as 4*4 square meters. To render a single
static frame containing 250000 square meters terrain with just one texture layer, we will need
gigabytes of texture data. This is not affordable by current hardware. Moreover, it is difficult
for artists to generate such large texture data unless they are taken by satellite photographing.
Hence, terrain texturing in computer games is usually implemented as several layers of tiled
images blended together. In each texture layer, the same detailed tiled image is repeated
across a relatively large region and a very low resolution alpha map is stretched across the
entire region to blend the tiled images with the background. See Figure 9.2.

 Figure 9.2 Alpha blending of texture layer

Each sub region of a terrain surface may be textured by further blending several alpha
blended texture layers. For example, one layer uses a tiled cobble image, another uses tiled
grass image, the third uses just 1 pixel black image. Blending these three over a large region
using the above multi-texturing technique, we can easily create a grass land with cobble roads
and black shadows of props on the land. With tiled images and alpha blending, we need less
texture to paint the terrain. However, we still need to provide the alpha map for the entire
terrain surface. Fortunately, each pixel of alpha map is 4 or 8 bits and a 128*128 pixel alpha
map can be stretched and used for a very large region, such as 60*60 square meters. The
texture data for a terrain is thus mainly comprised of alpha maps and a few detailed textures.
Alternatively, we call alpha maps, mask files in this book.

Tiled detailed texture Alpha map (mask file) Blended texture layer

 118

9.1.2 Level of Detail Terrain Algorithm
This section provides an overview to several popular terrain rendering algorithms used in
game engines. It helps engine programmers to select the proper implementation. The Virtual
Terrain Project13 provides useful links to published papers and implementations of various
terrain rendering algorithms. Popular algorithms used in game terrain rendering are brutal
force, Chunked LOD, modified ROAM, GeoMipmapping, which are briefly introduced and
compared in this section. We will discuss the hybrid algorithm we used in further details in
the next section.

Brutal Force

Brutal force renders the mesh in the view frustum in their original form. Figure 9.3 shows
triangles with brutal force terrain rendering. Brutal force rendering is actually very useful in
computer games. It is also the algorithm that uses lest CPU time. As GPU is getting faster, we
can just send the clipped terrain mesh to GPU for rendering with brutal force method. Another
special usage of brutal force rendering is that we can use it to render remote terrains which are
displayed as silhouette in fog. Brutal force also simplifies the issues of terrain geo-morphing
and multi-texturing. It will perhaps be used more often in games as CPU time is getting more
precious in computer game engine. Please note that brutal force based terrain usually uses a
quad tree for view clipping, so that regions outside the camera view frustum will be clipped
quickly. An improved version of brutal force is chunked LOD. Please see below.

Figure 9.3 Brutal Force Terrain Triangles

Chunked LOD: Chunked level of detail

It is a relatively simple, yet very effective terrain rendering technique based on discrete
level of detail. Contrary to other more complicated algorithms, its aim is not to achieve an
optimal triangulation, but to maximize triangle throughput, while minimizing CPU usage. It is
built on the fact, that today’s GPU are so fast that it is usually cheaper to render a bit more
triangles than to spend a lot of CPU cycles to drop some of the unnecessary ones. Of course,
level of detail management is still required, but at a much coarser level. The basic idea is to

13 The Virtual Terrain Project: http://www.vterrain.org

 119

apply view dependent LOD management not to single vertices, but to bigger chunks of
geometry.

As a preprocessing step, a quad tree of terrain chunks is built. Every node is assigned a
chunk, containing the self contained mesh in that quad. The meshes on different levels in the
quad tree have different sizes in world space. During rendering, the quad tree nodes are culled
against the viewing frustum as usual. The visible nodes are then split recursively, until the
chunk’s projected error falls below a threshold.

 Since the terrain is assembled from separate chunks, there will be cracks in the geometry
between different LODs in the hierarchy. In order to minimize these artifacts, Ulrich uses a
technique called skirting. Skirting basically means that on the edges of the mesh, there are
extra triangles extending downwards, effectively hiding the gaps. See Figure 9.4 for meshes
generated by Chunked LOD. In different implementations, the triangle chunk may be
constructed differently from the pattern shown in the figure.

Popping is very noticeable with discrete LOD methods, because a lot of the vertices change
abruptly when switching to a different level of detail mesh. This disturbing effect can be
eliminated by smooth distance based vertex morphing.

Because Chunked LOD uses a quad tree, it is possible to build a huge world using tiled
chunks of geometry. It is the most popular terrain rendering technique in today’s game engine.

Figure 9.4 Chunked LOD terrain triangulation

Bird view Semi-perspective view

Gap between two levels of chunks

 120

Geomipmapping

This algorithm resembles Chunked LOD. It has the analogy in texture mipmapping.
Consider the ordinary mipmapping technique for textures. A chain of mipmaps is created for
each texture, the first item in the chain is the actual texture of its original size; each
succeeding item is the previous item scaled down to half its resolution, until a desired number
of items (levels) is reached. When a texture is at certain distance from the camera, the
appropriate level in the mipmap chain is chosen and used for rendering instead of the actual
high resolution texture. We can apply this concept to three-dimensional meshes.
Geomipmapping has the same gap (crack) problem as in chunked LOD and additional
triangles are used to repair the cracks. Figure 9.5 shows a possible triangle mesh rendered
with geomipmapping.

Figure 9.5 Geomipmapping terrain triangulation

ROAM: Real-Time Optimally Adapting Mesh

Adapting meshes is a key concept in this algorithm. In case there is no sudden change in the
viewpoint, the algorithm is designed to exploit frame to frame coherence. It assumes that the
mesh in the next frame will only differ in a few triangles. This means that there is no need to
regenerate the whole mesh from scratch every frame.

ROAM maintains two priority queues that drive the split and merge operations. The queues
are filled with triangles, sorted by their projected screen space error. In every frame some
triangles are split, bringing in more detail, and others are merged into coarser triangles. Since
the triangles are progressively refined, it is possible to end the refinement at any time,
enabling the application to maintain a stable frame rate. A traditional ROAM algorithm using
binary triangle tree will produce mesh that looks like the left one in Figure 9.6, other modified
version of ROAM using quad triangle tree may produce triangles that looks like the right one
in the figure.

The original ROAM algorithm produces the optimal (minimum triangle count) mesh, but it
is very CPU limited. Many game engines rather use a more CPU friendly version of ROAM
which uses a quad tree and rebuilds the mesh every frame without using priority queues.

Gap repair

 121

Figure 9.6 ROAM terrain triangulation

9.1.3 The Hybrid Terrain Algorithm
Start from Requirement

The choice of terrain algorithm depends on the requirement of the game engine. Our
requirement of the terrain engine is given below.

- Tiled terrains: tiled terrain means the game engine need to support infinitely large terrain.
This requires that we can efficiently repair cracks on the terrain tile borders.

- Geomorphing: We can change the shape of the terrain at real time. This requires that
terrain height map preprocessing should be fast.

- Multi-texturing: This requires that assigning appropriate texture coordinates to triangles
should be fast.

- Ray picking: we should be able to query ray-terrain intersections fast.

- Holes: we should be able to dynamically dig holes on terrain surface, so that we can have
caves and tunnels. See Figure 9.7.

Starting from these requirements, we use a hybrid approach of chunked LOD and ROAM.
It uses a quad tree to store terrain mesh at different level of details, and for every frame, it
breadth-first traverses the quad tree to built triangles similar to the one generated by ROAM.
See Figure 9.6 (right).

The advantages of the hybrid approach are:

- It is almost as fast as chunked LOD.

- Since the triangles are progressively refined, it is possible to end the refinement at any
time. For example, we can specify an upper limit to the number of triangles for each
frame, so that the terrain can always be rendered using triangles less than the specified
value.

- It satisfied all the game requirements defined above.

ROAM with binary tree ROAM with quad tree

 122

There is an open source project called Demeter Terrain Visualization Library, which uses
this method. The implementation in this book is based on it and improved in several places.

Figure 9.7 Holes on terrain surface

Implementation

We use a terrain object to represent a latticed terrain tile. A terrain object may be adjacent
to eight other terrain objects. We will first consider a single terrain object. See Figure 9.8.
CGlobalTerrain is the entire (inifinitely large) terrain; Terrain is a single terrain tile object.

Figure 9.8 Collaboration diagram for Terrain Object

The terrain object can be loaded from the Terrain Config File (See Chapter 3). It uses a
array (m_pVertices) of vectors to store the elevation (heightmap) data. The data for each LOD
is pre-computed and stored in a quad tree data structure called m_pRootBlock. Each LOD is

 123

also called a terrain block. Each terrain block contains the pre-computed the axis aligned
bounding box (only minimum and maximum height is needed) and some other information
shown below.
/** it represents the quad tree node of LOD terrain data*/
class TerrainBlock
{
 /** repair cracks in this block and child blocks. This is a recursive function.*/
 void CalculateGeometry(Terrain * pTerrain);
 /** generate triangles for rendering in higher LOD. This is a recursive function. */
 void Tessellate(const double *pMatrixModelview, const double *pMatrixProjection, const int
 *pViewport, TriangleStrip * pTriangleStrips, unsigned int *pCountStrips, Terrain * pTerrain);
 /** repair cracks in this block and child blocks. This is a recursive function.*/
 void RepairCracks(Terrain * pTerrain, TriangleFan* pTriangleFans, unsigned int* pCountFans);

 bool IsActive();
 int GetStride();
 void EnableStrip(bool bEnabled);
 int GetHomeIndex();
 void VertexChanged(Terrain * pTerrain);
 void VertexChanged(Terrain * pTerrain, int index1);
 void VertexChanged(Terrain * pTerrain, int index1, int index2);
 void IntersectRay(const Ray & ray, Vector & intersectionPoint, float &lowestDistance, const
 Terrain * pTerrain);
 /** update holes in the terrain. This will set the m_bIsHold attribute of the terrain block. This function
will recursively call itself. Call this function when the terrain block has already been built.*/
 void UpdateHoles(Terrain * pTerrain);

private:
 /// quad tree data structure. 4 valid pointers for non-leaf nodes
 TerrainBlock **m_pChildren;
 int m_HomeIndex;
 short int m_Stride;
 /// whether this block is a hole.
 bool m_bIsHole:1;
 bool m_bIsActive:1;
 bool m_bChildrenActive:1;
 TriangleStrip *m_pTriangleStrip;
 float m_MinElevation, m_MaxElevation; /// bounding box
#if _USE_RAYTRACING_SUPPORT_ > 0
 Triangle *m_pTriangles;
#endif
 friend class Terrain;
…// some function omitted.
};
Figure 9.9 shows the bounding box of quad trees. The terrain height value at the four vertices
of each terrain block will be used to build simplified triangles at that LOD. For performance
reasons, we also pre-compute, in each block, the index of the upper left vertex in the terrain’s
elevation array (m_pVertices). This index is called home index to that terrain block.

 124

Figure 9.9 Bounding Box and Triangles in Terrain quad tree

The basic algorithm works as follows. It consists of the terrain initialization and rendering
process.
Initialization{

Parse Terrain Config File

Load elevation data to Terrain Object{

Initialize Terrain::m_pVertices as an array of vectors
Precompute quad tree (m_pRootBlock){
m_pVertexStatus = initialize vertex status, which is an array of bits with the same dimension

of the heightfield. This is used for marking vertices during data processing.
m_pRootBlock = Recursively create Terrain Blocks and store them in a quad tree
// recusively compute the bounding volume and home index for all blocks in a quad tree.
m_pRootBlock CalculateGeometry();

}
}

Load hole map to Terrain Object as an array of Booleans.
// Recusrively update the quad tree to set the m_bIsHole attribute for each terrain block.
m_pRootBlock UpdateHoles()

Load Texture set
Load texture masks

}

For each frame during rendering{

If(camera has not moved since last frame){ render using old triangle buffer }
// the tessellation function will build a list of triangles
Tessellate(){

// recursively tessellate the terrain and generate triangles at the proper LOD.
m_pRootBlock->Tessellate(){

breadth-first traversing quad tree terrain blocks{
if(the block is not a hole){

if (block’s bounding box is inside the view frustum){
if(triangle count does not exceed the upper limit){

If(block is too big to be textured or …){
Inactivate the block, traverse child blocks

}else{
Project the block to screen space
If(the block is too small to be noticed){

add (simplified) triangles in this block to the list, do not traverse child blocks
}else{

Inactivate the block, traverse child blocks
}

Home index: Index to upper left

 125

}
if(block is leaf node whose child need to be traversed){

add triangles in this leaf block to the list
}

}else{
If(block is too big to be textured or …){

Inactivate the block, traverse child blocks
}else{

add (simplified) triangles in this block to the list, do not traverse child blocks
}

}
}else{

Inactivate the block, do not traverse child blocks
}

}else{
Inactivate the block, do not traverse child blocks

}
}

}
}
RepairCracks(){

Repair the cracks (gap) between two adjacent LOD triangle soups.
}
RebuildRenderBuffer(){

Sort triangles by texture
}

Render(){

Render each group of triangles with multi-texturing
}

}
During each frame, we need to tessellate the terrain according to current camera viewpoint,
repair cracks between two adjacent level-of-details, building the triangle buffer and render the
triangles with multi-texturing.

In the tessellation step, we will produce triangles in the pattern in Figure 9.3. In the repair
step, we can effectively remove T-shaped junctions by changing the triangle topologies in the
lower level of detail block as shown in Figure 9.10. Alternatively, we can insert additional
triangles at the crack as illustrated by Figure 9.4 and Figure 9.5.

 T-junction will lead to gaps Repair cracks with triangle fans

 126

Figure 9.10 Repair cracks in terrain triangles

After sorting triangles by their texture, we can render them with multi-texturing. The details
will be given next.

9.1.4 Painting the Terrain
In previous sections, we have shown that terrain surface is painted by alpha blending

several texture layers. Most GPU can do 4 to 8 texture blending in a single pass. Some layer
may have special meanings, such as shadow map (light map). Some layer may be blended
differently, such as using bump mapping. They are all up to the engine designer’s choice for
the way textures are blended (i.e. blending order, blending weight and method). We will see
here our general implementation in ParaEngine.

We define the following texture layers, all of which are optional during terrain rendering.

name symbol TexCord Description

Base Layer B u1,v1 Low resolution non-repeated texture, it provides
the basic hue of the terrain.

Dirt Layer D u2,v2 A tiled detailed or bump texture blended on the
base layer to make it look coarser.

Di
 u2, v2 The ith

Alpha layer Ai u1,v1

Tiled detailed texture (Di) which is blended
using an alpha map (Ai).

The final pixel color is given by the following formula.

0

0

0 0 1

1

{ . . , . . }
{ . , . . } . .

. (1- . .) . (. .)
(1- .) . .

i i i i

i i i i i i i

i i i i i

T B rgb D rgb B a D a
T D rgb D a A a C B rgb D rgb

or
C T rgb C C D a A a D rgb D a A a
C C T a T rgb T a

−

−

= × ×⎧
⎪ = × = ×⎧⎪
⎨ ⎨= = × × + × ×⎩⎪
⎪ = × + ×⎩

Cn denotes the final pixel color after blending n layers. The left one can be easily matched
to DirectX’s fixed rendering pipeline; the right one can be easily implemented in a pixel
shader. They are functional equivalent. If pixel shader is supported, the following alternative
blending method may be much easier to understand and implement.

0
=1 i=0

(. . . (. .)), where 1
n n

n i i i i i
i

C B rgb D rgb W D rgb D a A a W W= × × + × × × =∑ ∑

[x].rgb means the RGB color component of the pixel, [x].a means its alpha component.

W is the blending weight, one can use 1/iW n= or any other weight distribution. The two
methods described above are not equivalent. In ParaEngine, we use the first method.

For each terrain vertex, we will supply two texture coordinates (u1, v1) and (u1, v2). (u1,
v1) is the low resolution texture coordinate for B and Ai. Images are stretched in this texture
coordinate system. (u2, v2) is the high resolution texture coordinate for D and Di. Images are
not stretched in this texture coordinate system. The two coordinate systems usually relate to

 127

each other by an integer scale factor. In our implementation the scale factor is 16 by default.
In other words:

2 1 16
2 1 16

u u
v v

= ×⎧
⎨ = ×⎩

To minimize seams introduced by stretching, we need to enable texture clamping for B and
Ai; and enable texture wrapping for D and Di, because they are tiled detailed textures.

Figure 9.11 are sample images for B, D and Di.

B

Base texture

D

Dirt texture

D1

Sand texture

D2

Stone texture

Figure 9.11 Terrain texture samples

9.1.5 Miscellaneous Functions
There are a few functions that we have not covered. They are terrain holes, terrain

morphing and dynamic painting. They are not difficult to implement, we will talk about them
briefly.

Terrain holes

We can create an array of Booleans called hole_map to represent whether there is a hole on
the terrain block. Also, when pre-computing the terrain quad tree, we will mark the attribute
bit for any block that is a hole. During terrain tessellation phase, blocks with the attribute bit
set will not be rendered; neither will its child blocks be rendered. During ray-picking on the
terrain surface, whenever an intersection is found, the hit point will be further checked with
the hole_map to see if it falls into a hole.

Terrain Geo-Morphing

 128

Terrain Geo-morphing means dynamically changing the height field of the terrain. The first
step is to modify the height field array. And then update (recompute) the affected quad-tree.
Usually only a sub region of the terrain height field is modified, and we do not need to
recompute the entire terrain.

Dynamic painting

Dynamic painting refers to editing the detailed textures (Di and Ai) on terrain surface. This
is how we paint the mountain top with snow and stone road in front of a house, etc, in a game.
What we paint on is actually the alpha map (mask), i.e, the Ai textures. In ParaEngine, a
single terrain surface is covered by a grid (default is 8x8 in ParaEngine) of alpha maps, each
of which is an 8-bit texture of 256*256 or less pixels in size. The alpha map is made small so
that updating them is fast and that we do not waste too much texture memory when painting
on a small region. If the paint brush is at the boundary of two or three alpha maps, they must
all be updated.

9.1.6 Latticed Terrain
So far, we have only studied the implementation for a single square terrain. We can use the

method described above to construct terrain with height field as large as 4096*4096. This is
enough for most game applications. However, loading a terrain that large is time consuming
and it makes poor memory usage. Moreover, we want our terrain to be infinitely large. The
solution is to use latticed terrain, which is a grid of single terrain objects.

We can load terrain tiles on demand and render them separately. Latticed terrain is a grid of
single terrain objects. The only problem to solve is that how we deal with cracks between two
adjacent terrains in the lattice. Here we will suppose that the terrain height field is (2n+1)2

 and
that the height fields of any adjacent terrains share the same boundary height value. Hence,
the cracks can only result from the tessellation phase when two adjacent terrains use two
different LOD blocks at the boundary. See Figure 9.12.

Crack repair

 129

Figure 9.12 Crack repair for latticed terrain

The solution is to insert another step between the tessellation phase and the crack repair
phase. In this inserted step, each loaded terrain will check its adjacent 8 terrains and mark on
its boundary vertex states (the three red dots in Figure 9.12), so that during the crack repair
stage of each terrain, it will know how to deal with it by examining the vertex states. The
modified algorithm is given below.
For each frame during rendering{

If(camera has moved since last frame){
For each potentially visible terrain{

terrain Tessellate(){}
}
For each potentially visible terrain{

For each terrain_neighbour of the 8 adjacent terrain {
terrain UpdateByNeighbour(terrain_neighbour);
terrain_neighbour UpdateByNeighbour(terrain);

}
}
For each potentially visible terrain{

terrain RepairCracks(){}
terrain RebuildRenderBuffer (){}

}
}
For each potentially visible terrain{

terrain Render(){}
}

}

Terrain::UpdateByNeighbour(terrain_Neighbour){

Mark all boundary vertices in this terrain, which are present in the terrain_Neighbour.
}

 130

9.2 Architecture and Code
The architecture is already introduced in above section. We will show the actual code for

the main algorithm discussed in this chapter.

9.2.1 Tessellation Code
void TerrainBlock::Tessellate(const double *pMatModelView, const double *pMatProjection, const int
*pViewport, unsigned int *pCountStrips, Terrain * pTerrain)
{
 queue<TerrainBlock*> queueBlocks;
 queueBlocks.push((TerrainBlock*)this);

 /// breadth first traversing the quad tree
 while(!queueBlocks.empty()) {
 TerrainBlock* pBlock = queueBlocks.front();
 queueBlocks.pop();
 if(pBlock->Tessellate_NonRecursive(pMatModelView, pMatProjection, pViewport, pCountStrips,
pTerrain)) {
 queueBlocks.push(pBlock->m_pChildren[0]);
 queueBlocks.push(pBlock->m_pChildren[1]);
 queueBlocks.push(pBlock->m_pChildren[2]);
 queueBlocks.push(pBlock->m_pChildren[3]);
 }
 }
}

bool TerrainBlock::Tessellate_NonRecursive(const double *pMatModelView, const double
*pMatProjection, const int *pViewport, unsigned int *pCountStrips, Terrain * pTerrain)
{
 bool bProcessChild = false;
 if(!m_bIsHole){
 Box boundingBox;
 float width = m_Stride * pTerrain->GetVertexSpacing();
 boundingBox.m_Min.x = pTerrain->m_pVertices[m_HomeIndex].x;
 boundingBox.m_Min.y = pTerrain->m_pVertices[m_HomeIndex].y;
 boundingBox.m_Min.z = m_MinElevation;
 boundingBox.m_Max.x = boundingBox.m_Min.x + width;
 boundingBox.m_Max.y = boundingBox.m_Min.y + width;
 boundingBox.m_Max.z = m_MaxElevation;

 if (pTerrain->CuboidInFrustum(boundingBox)){
 if(*pCountStrips < pTerrain->m_MaxNumberOfPrimitives) {
 if (pTerrain->m_MaximumVisibleBlockSize < m_Stride ||
 pTerrain->CuboidInDetailedRadius(boundingBox)){
 bProcessChild = true;
 m_bIsActive = false;
 m_bChildrenActive = true;
 }else {
 // Check screen coordinates of center of each face of bounding box
 D3DXVECTOR3 screenTop, screenBottom;
 float halfWidth = (boundingBox.m_Max.x - boundingBox.m_Min.x) / 2;
 // calculate z half way up the BoundingBox
 float CenterZ = (boundingBox.m_Min.z + boundingBox.m_Max.z) * 0.5f;
 float screenDistSqure;

 131

 float faceX, faceY, faceZ;
 // bottom face
 faceX = boundingBox.m_Min.x + halfWidth;
 faceY = boundingBox.m_Min.y + halfWidth;
 faceZ = boundingBox.m_Min.z;
 myProject(faceX, faceY, faceZ, pMatModelView, pMatProjection, pViewport,
&screenBottom);
 // top face
 faceZ = boundingBox.m_Max.z;
 myProject(faceX, faceY, faceZ, pMatModelView, pMatProjection, pViewport, &screenTop);

 float deltaX, deltaY;//, deltaZ;
 deltaX = (float)(screenTop.x - screenBottom.x);
 deltaY = (float)(screenTop.y - screenBottom.y);
 screenDistSqure = (deltaX * deltaX + deltaY * deltaY);

 if (screenDistSqure <= pTerrain->GetDetailThreshold()){
 // This block is simplified, so add its triangles to the list and stop recursing.
 CreateTriangleStrip(pCountStrips, pTerrain);
 m_bIsActive = true;
 m_bChildrenActive = false;

 // set lowest visible height
 if(m_MinElevation < pTerrain->GetLowestVisibleHeight())
 pTerrain->SetLowestVisibleHeight(m_MinElevation);
 }else{
 bProcessChild = true;
 m_bIsActive = false;
 m_bChildrenActive = true;
 }
 }
 /** if it is the leave node that need to be further tessellated, build the triangles directly.*/
 if ((m_Stride == 2) && (m_bChildrenActive)) {
 // set lowest visible height
 if(m_MinElevation < pTerrain->GetLowestVisibleHeight())
 pTerrain->SetLowestVisibleHeight(m_MinElevation);

 int offset;
 int nWidthVertices = pTerrain->GetWidthVertices();
 int nLastStripCount = *pCountStrips;

 pTerrain->SetVertexStatus(m_HomeIndex, 1);
 TriangleStrip* tri_strip = pTerrain->GetSafeTriStrip(nLastStripCount);
 tri_strip->m_pVertices[0] = m_HomeIndex;
 offset = m_HomeIndex + nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[1] = offset;
 offset = m_HomeIndex + 1;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[2] = offset;
 offset += nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[3] = offset;
 offset = m_HomeIndex + 2;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[4] = offset;
 offset += nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[5] = offset;

 132

 tri_strip->m_NumberOfVertices = 6;
 tri_strip->m_bEnabled = true;

 offset = nWidthVertices + m_HomeIndex;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip = pTerrain->GetSafeTriStrip(nLastStripCount+1);
 tri_strip->m_pVertices[0] = offset;
 offset += nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[1] = offset;
 offset = nWidthVertices + m_HomeIndex + 1;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[2] = offset;
 offset += nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[3] = offset;
 offset = nWidthVertices + m_HomeIndex + 2;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[4] = offset;
 offset += nWidthVertices;
 pTerrain->SetVertexStatus(offset, 1);
 tri_strip->m_pVertices[5] = offset;
 tri_strip->m_NumberOfVertices = 6;
 tri_strip->m_bEnabled = true;
 tri_strip->textureId = -1;
 *pCountStrips = nLastStripCount + 2;

 m_nTriangleStripIndex = -1;
 m_bIsActive = true;
 m_bChildrenActive = false;
 bProcessChild = false;
 }
 }//if(*pCountStrips < pTerrain->m_MaxNumberOfPrimitives)
 else{
 if(pTerrain->m_MaximumVisibleBlockSize < m_Stride){
 bProcessChild = true;
 m_bIsActive = false;
 m_bChildrenActive = true;
 }else {
 // This block is simplified, so add its triangles to the list and stop recursing.
 CreateTriangleStrip(pCountStrips, pTerrain);
 m_bIsActive = true;
 m_bChildrenActive = false;
 // set lowest visible height
 if(m_MinElevation < pTerrain->GetLowestVisibleHeight())
 pTerrain->SetLowestVisibleHeight(m_MinElevation);
 }
 }
 }else{
 m_bIsActive = false;
 m_bChildrenActive = false;
 }
 }else{
 m_bIsActive = false;
 m_bChildrenActive = false;
 }
 return bProcessChild;
}

 133

9.2.2 Building Triangle Buffer
The following code shows building a triangle list sorted by texture ID. Alternatively, one

can use triangle strip with degenerate triangles to render the terrain. Using triangle strip
means sending less data to GPU and is faster than using triangle list. Degenerate triangle is
triangle that is not visible. It is used to concatenate disjoint triangle strips.

Figure 9.13 Degenerate Triangles

In Figure 9.13, the triangles in red are degenerate triangles (they share a vertex) and will
not be visible. Generally speaking, concatenating triangle strips helps improve batching, and
in the case of indexed primitives, there are fewer wasted transformations.
/** this is the most time consuming task compared with tessellation and repair crack */
void TerrainBuffer::RebuildBuffer()
{
 int i,j;
 m_nNumOfTriangles = 0; // total number of vertex
 m_textureGroups.clear();
 DeleteDeviceObjects();

 /// add get the total number of triangles for each texture group
 int nCount = (int)m_pTerrain->m_CountStrips;
 for (i = 0; i < nCount; ++i)
 {
 int texID = m_pTerrain->m_pTriangleStrips[i].Setup(m_pTerrain);
 if(texID != INVALID_TEXTURE_ID)
 {
 set<TextureGroup, TextureGroup_less>::iterator iter;
 pair<set<TextureGroup, TextureGroup_less>::iterator, bool> res =
m_textureGroups.insert(TextureGroup(texID));
 (*(res.first)).nNumTriangles += m_pTerrain->m_pTriangleStrips[i].GetTriangleNum();
 }
 }
 nCount = (int)m_pTerrain->m_CountFans;
 for (i = 0; i < nCount; ++i)
 {
 int texID = m_pTerrain->m_pTriangleFans[i].Setup(m_pTerrain);
 if(texID != INVALID_TEXTURE_ID)
 {
 set<TextureGroup, TextureGroup_less>::iterator iter;
 pair<set<TextureGroup, TextureGroup_less>::iterator, bool> res =
m_textureGroups.insert(TextureGroup(texID));
 (*(res.first)).nNumTriangles += m_pTerrain->m_pTriangleFans[i].GetTriangleNum();

A C E

B D F

G I K

H J L

= ABCDEF+ FGGH + GHIJKL

= .. +DEF + EFF + FFG + FGG + GGH + GHG + GGH + GHI +..

 134

 }
 }
 /// set the start triangle index of each texture group
 int nStartIndex=0;
 set<TextureGroup, TextureGroup_less>::iterator itCurCP, itEndCP = m_textureGroups.end();

 for(itCurCP = m_textureGroups.begin(); itCurCP != itEndCP; ++ itCurCP)
 {
 (*itCurCP).nStartIndex = nStartIndex;
 nStartIndex +=(*itCurCP).nNumTriangles;
 (*itCurCP).nNumTriangles = 0;
 }
 m_nNumOfTriangles = nStartIndex;

 //
 // Create a vertex buffer that contains the vertex data sorted by texture cell group
 //
 if(m_nNumOfTriangles>0)
 {
 IDirect3DDevice9* pD3dDevice = CGlobals::GetRenderDevice();

 pD3dDevice->CreateVertexBuffer(3*m_nNumOfTriangles*sizeof(terrain_vertex),
 D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, D3D9T_TERRAIN_VERTEX,
 D3DPOOL_DEFAULT, &(m_pVertexBuffer), NULL);
 terrain_vertex *pVertices = NULL;

 m_pVertexBuffer->Lock(0, 0, (void**)&pVertices, D3DLOCK_DISCARD);

 nCount = (int)m_pTerrain->m_CountStrips;
 for (j = 0; j < nCount; ++j)
 {
 TriangleStrip* pTri = m_pTerrain->GetTriStrip(j);
 if(pTri->IsEnabled())
 {
 set<TextureGroup, TextureGroup_less>::iterator iter =
m_textureGroups.find(TextureGroup(pTri->textureId));
 if(iter != m_textureGroups.end())
 {
 int nTriCount = ((*iter).nStartIndex + (*iter).nNumTriangles)*3;
 (*iter).nNumTriangles += pTri->BuildTriangles(m_pTerrain, pVertices, nTriCount);
 }
 }
 }
 nCount = (int)m_pTerrain->m_CountFans;
 for (j = 0; j < nCount; ++j)
 {
 TriangleFan* pTri = m_pTerrain->GetTriFan(j);
 set<TextureGroup, TextureGroup_less>::iterator iter =
m_textureGroups.find(TextureGroup(pTri->textureId));
 if(iter != m_textureGroups.end())
 {
 int nTriCount = ((*iter).nStartIndex + (*iter).nNumTriangles)*3;
 (*iter).nNumTriangles += pTri->BuildTriangles(m_pTerrain, pVertices, nTriCount);
 }
 }
 m_pVertexBuffer->Unlock();
 }
}

 135

9.3 Summary and Outlook
Terrain is an important part for outdoor game engine. It may take up to 1/4 of the total

rendering time of a moving frame in a game featuring advanced terrain rendering. Terrain
rendering algorithm used in computer games usually uses several LOD to reduce the triangle
count. However, an optimal LOD configuration is too CPU-time consuming to be used in
games; hence game engine usually makes some compromise between optimal appearance and
speed.

Nowadays, outdoor terrain engine is usually built on height map or elevation map, which is
essentially a 2.5D terrain. By implementing terrain holes, we can divide game world to two
parts (above terrain and below it). Other terrain topology may be researched in the future,
such as a closed sphere or other more complex 3D shapes.

On the other side, outdoor terrain rendering in present game engines is far from realistic,
due to the large dataset involved. Terrain rendering is still a very active research area.

 136

Chapter 10 Ocean

This chapter implements large scale ocean simulation and rendering with reflection and
refraction maps in ParaEngine. Water (including ocean) simulation and rendering is a well
studied research area. The computation complexity of ocean rendering techniques differs
greatly. More photo-realistic ocean rendering technique can now be introduced in computer
game engine. In this chapter, we will see in detail one implementation which is suitable for
current hardware. Although, there is some mathematics behind ocean rendering, the overall
coding complex of a fair-looking ocean module is relatively low. But for games, we will need
to deal with more conditions, such as rendering above and below the water surface, etc.

10.1 Foundation
In ParaEngine, the ocean module is called ocean manager. Typically, there are two sub

modules in it.

- Simulation of the water surface (generating undulating height field on each frame)

- Rendering the water surface

a) forming triangle mesh for visualization of the surface

b) Texturing the mesh with optic effects (such as reflection, refraction)

In this section, we will examine the mathematics and programming techniques for each of
the two sub modules.

10.1.1 Simulation of Water Surface
Water surface is simulated as a grid of height field and surface normal for each vertex.
struct sAnimVertex{
 /** the height of the vertex */
 float zPos;
 /** the normal of the vertex */
 Vector2 vNormal;
};
sAnimVertex m_Grid [GRID_SIZE] [GRID_SIZE];
In games, the shape of the ocean surface is mainly affected by two factors:

- disturbance of moving objects on surface, so that player swimming on the water surface
will leave ripples behind

- winds, so that ocean surface never rest to peace

They are usually simulated or approximated using very different algorithms and combined in
the final water surface presentation. Both can be done on GPU; but for the moment, we prefer
the flexibility of doing them on CPU. In case of pure ocean simulation, only the second
factor needs to be considered.

Simulation of disturbance of moving object on water surface

A simple way to simulate water is to solve the 2D Wave Equation on a uniform grid of
points. It assumes that a moving object on surface will continuously generate 2D sinuous

 137

waves that propagate on the surface. The 2D Wave Equation is
2 2 2

2
2 2 2()y y yc

t x z
∂ ∂ ∂

= +
∂ ∂ ∂

, where

x, z are 2D positions on the plane, y is the height (amplitude), the c term is the speed that the
wave travels. What we would like to do is to integrate the left side of the equation using some
numerical method so that, given the height field of y in previous frames, we can integrate over
a small time step to get the new height field for the current frame. To be concise, we use the
Verlet Integration Equation, which is given below.

2
2 1 0 1() 2 () () ()y t y t y t a t h= − +i i , where y(t) is the height of a point at time t, a(t) is the

acceleration of the point at time t, and h is the time step, which should be a constant.

Verlet integration requires two initial positions to start integration and that the time step
should be a constant. We will introduce a damping factor to absorb some excess energy that
results from the inexact numerical integration. The equation now becomes:

2
2 1 0 1() 1.99 () 0.99 () ()y t y t y t a t h= − +i i i (1)

The acceleration a (t) at position (x, z) can be replaced by its numerical form as
2 2 2

2
, 2 2 2

2
1, 1, , , 1 , 1 ,

2
1, 1, , 1 , 1 ,

()

(2) (2)

[4]

x y

x z x z x z x z x z x z

x z x z x z x z x z

y y ya c
t x z

c y y y y y y

c y y y y y
− + − +

− + − +

∂ ∂ ∂
= = +
∂ ∂ ∂

⎡ ⎤= + − + + −⎣ ⎦
= + + + −

i i

i

 (2)

When implementing it, we will keep two height field maps in memory, one for the last
height map y (t1), the other for the one before the last one y (t0). To compute the next height
field y (t2), we first calculate the acceleration a (t1) with equation (2), and then calculate y (t2)
with equation (1). This is rather straight forward. The normal for each point is calculated by
its adjacent height values. At any time, we can disturb the water surface at any location by
blending height field y (t1) with the shape of newly introduced disturbance sinuous wave at
time step h.

The simulation described above can be effectively done in GPU, where the two height
maps are kept as textures and processed in pixel shader. The source code can be found on
NVIDIA’s developer website.

Simulation of Ocean Waves

Unlike simple water surface simulation described above, wavy deep ocean surface are way
too complex to be physically simulated. Hence, they are kind of “modeled” using statistical
method. This is a much active research direction. One of the latest methods is based on using
fast Fourier transformation (FFT) to produce tillable height map. This method is rather
scalable and can be used not only for high-quality water animation for video, but also in real-

 138

time applications. This is why we have chosen it as our ocean simulation method. There is
also a good tutorial in the game community here14

The core idea of the FFT modeling method is that we assume that the surface waves are
assembled from many linear waves generated by wind over an area much larger than the
correlation length of the waves. The phases and amplitudes of these waves are in fact created
by some predefined statistical function. For example, experimental measurements of surface-
wave statistics confirmed that water surface descriptors have Gaussian distributions.

To implement this method, the height field of ocean surface is written as a summation of
2D sinusoidal waves of all kinds of frequency, i.e. as Fourier series.

2/ 2 1 / 2 1 i (u x+v z)

/ 2 / 2
h(x,z,t) H(u,v,t)

N N
N

u N v N
e

π− −

=− =−

= ∑ ∑
i i

i (3)

i t -i t
0 0H(u,v,t)=(H (,) e H (- ,-) e)u v u vω ω+i i (4)

2 2g |K| g (2 /N) +(2 /N)u vω π π= =i i (5)

We will explain these equations. The height field is presented by a 2 2q q× gird,
where 2q N= . h(x,z,t) is the height of the point (x, z) at time t. K= (2 /N,2 /N)u vπ π is a
frequency domain vector, which can be understood as the direction of a 2D wave(u,v)
traveling on the water plane; where as H(u,v,t) is a complex number, which can be
interpreted as the magnitude and phase of the 2D wave (u,v). The sigma integration means
that the water plane height at position (x,z) is determined by summing up all these waves
traveling on the ocean surface.

In (4), H0(u,v)=H(u,v,0) is a table of initial amplitudes and phases at time t=0, which are
generated by a random process. We use equation (5) to approximate the angular velocity for
the wave (u,v) assuming ocean is very deep, where g is the gravitational constant.

H(u,v,t) is the Fourier transform of h(x,y,t). If, at any given time t, we can calculate H(u,v,t)
from equation (4) and (5) in the frequency domain, we will be able to transform it to h(x,z,t)
using Fast Fourier Transform (FFT).

The only unknown term left for calculating H(u,v,t) is H0(u,v). H0(u,v) is generated by
equation (6)

0
1(,) () ()
2 r iH u v i P kξ ξ= +

K
 (6)

2 2 2/()
4

1() ,where (,), | (,) |, /l kLP k A e k w k u v k u v L w g
k

−= = = =
K K KK Ki (7)

(,) _ (0,1)r i Guassian randomξ ξ = (8)

14 Lasse Staff Jensen and Robert Golias “Deep-Water Animation and Rendering”
http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm 2001

 139

The coefficients of H0 are Gaussian distributed random number with zero mean value and
one standard deviation, shown in equation (8). The wave spectrum (magnitude for different
frequency) is modeled by an analytical equation (7). The spectrum from this equation is called
Phillip spectrum, which is initially used by Tessendorf for modeling wind-driven ocean waves.
In equation (7), L is the largest possible wave arising from a continuous wind with speed w, g
is the gravitational constant, w is direction of the wind and k is direction of the wave. A is a
numeric constant globally affecting heights of the waves. The last term in the equation

(
2

k w
K Ki) eliminates waves moving perpendicular to the wind direction.

For rendering the height field we need to calculate the gradient of the field to obtain normal.
The traditional approach of computing finite difference between nearby grid points may be
used, but it can be a poor approximation of the slope of waves with small wavelengths.
Therefore, if we can afford it (in terms of computational power), it is better to use another
FFT. This time evaluating the following sum:

2/ 2 1 / 2 1 i (u x+v z)

/ 2 / 2
(, ,) h(x,z,t) N(u,v,t)

N N
N

u N v N
n x y t e

π− −

=− =−

= ∇ = ∑ ∑
i i

i (9)

N(u,v,t)=i (u,v) H(u,v,t)i i (10)

Now we have finished with the math model. To implement it in code, we need three
complex tables (H, N, H0) and one float table (W). The table H is for both H(u,v,t) and
h(x,y,t). The imaginary components of H for h(x,y,t) is always 0. The table N is for both
N(u,v,t) and n(x,y,t). The table H0 stores precalculated H0(u,v). The float table W stores pre-
calculated angular velocity ω for all waves. The procedure of ocean simulation is given
below.

Initialization(Ocean Parameters){

 The ocean is initialized with parameters such as wind vector and maximum wave height.

 // calculate H0(u,v)

 For each (u,v) {

 Generate two guassian random numbers: (,)r iξ ξ : Equation (8)

 Calculate Phillip Spectrum at (u,v): Equation (7)

 Calculate H0(u,v) and fill table item in H0(u,v): Equation (6)

 Calculate the angular frequency ω at (u,v) and fill in table W: Equation (5)

 }

}

// called every frame

FrameMove(deltaTime){

 t = t+ deltaTime;

 (a) For each (u,v) {

 140

 Calculate H(u,v,t) and fill table item in H(u,v) : Equation (4)

 Calculate N(u,v,t) and fill table item in N(u,v) : Equation (10)

 }

 // 2D Fast Fourier Transform

 (b) H =Vertical_FFT(H);

 (c) H =Horizontal_FFT(H);

 (d) N =Vertical_FFT(N);

 (e) N =Horizontal_FFT(N);

 (f) // … build mesh with H and N …

 // … render the ocean …

}

For performance reasons, we can distribute step (a) to (f) to separate frames, so the height
table is only generated every 6 frames. For all intermediary frames when a height table is not
available, we can linearly interpolate between the last height table and the one before the last
one. Nowadays, step (a) to (f) can also be done by GPU.

10.1.2 Rendering of Water Surface
In previous sections, we have shown how to simulation height and normal for ocean

vertices. In this section, we will look at how to build triangle meshes and rendering them with
reflection and refraction maps.

Building Ocean Triangle Mesh

Some LOD algorithms like in terrain engine may be used. But usually it may not worth the
additional computation on CPU. Instead, we prefer to use tiled brutal force rendering. The
height field generated from ocean wave simulation is perfectly tiled, thus we can draw
multiple instances of the same height field on tiled positions in the world. We will still need to
remove ocean tiles that are not visible in the camera frustum. The good thing is that we only
need to send one height table to GPU. This time, it is certainly good to use indexed triangle
strips for the mesh, so that we can use fixed index buffers and only need to update the height
and normal vertex buffers every few frames (remember that we can interpolate?).

Rendering with Optic Effects

Considering the reflections and refractions on the ocean surface from both above and below
the water surface, one may misjudge the difficulty of rendering fair looking ocean. In fact, if
our game engine has a configurable rendering pipeline, we can easily render ocean effects
using less than a hundred lines of GPU shader code. But we will first look at the physics
model behind. Here we only cover the physics of optic effects which we are going to simulate.

 141

When light hits to a surface that separates two different materials (e.g. air, water), the ray is
usually both reflected and refracted. Reflected portion of light returns to the first material
mirrored by the surface normal n and the refracted part is transmitted into the second material.
This is illustrated in Figure 10.1. Naturally, refraction is only modeled if the material is
translucent. Physically, when light refracts, its direction is altered by the law of refraction, or
Snell’s law:

1 1 2 2sin() sin()n nθ θ=

n refers to the index of refraction and θ refers to the angle between the ray and surface
normal. It should be noted that the change in the refracted ray’s direction is often omitted or
modeled with some approximate distortion function.

Figure 10.1 Reflection and refraction of light ray

Now, we will look at how reflection and refraction are modeled and then combined to form
the final color.

Reflection Model:

The most common reflection model used today is the Phong reflection model, which is a
combination of three components: ambient, diffuse and specular.

reflect ambient diffuse specularI I I I= + +

()diffuse d n n
n

I k I L N= ∑ i

() p
specular s n n

n
I k I R V= ∑ i

ambient a aI I k= i

kd, ks are the wavelength-dependent reflection and refraction coefficients for a material, In
refers to the intensity of a point light and ()nL Ni is the cosine of the angle between the

θ 1

θ 2

n1

n2

Incoming ray Reflected ray

Refracted ray

θ 1

Normal

 142

direction of the light source and surface normal. ()nR Vi is the cosine of the angle between
viewing direction V and the mirror reflection direction Rn. p simulates surface roughness,
effectively the “sharpness” or “glossiness” of the reflection. The summation is over all light
sources. As for the ambient component, it is simply the product of the intensity of the ambient
light Ia and material ambient property (ka).

Adding them together, we have:

(() ())p
reflect a a n d n s n

n
I I k I k L N k R V= + +∑i i i

2()n n nR L N L N= − i i , which is a little inefficient to evaluate. Blinn introduces a new
vector H called “half-vector”, which eliminates the calculation of R completely. It is defined
as the unit normal to a surface that would reflect the light Ln along V and is mathematically
much easier to calculate than R.

1 ()
2

H L V= +

By substituting R by H and adding a term for attenuation (fatt), based on the distance to the
light source, we get the easy to evaluate reflection equation of Blinn-Phong model.

(() ())p
reflect a a n att d n s n

n
I I k I f k L N k H N= + +∑i i i

When computing the reflection component using GPU, the ambient and diffuse component
is actually read from a pre-rendered reflection map, which is generated by mirroring the
camera with the reflection plane and rendering the scene in to a reflection map texture. Finally
the only specular light we will include is the light from the sun. Now the equation becomes:

_ (()) () p
reflect sun sunI reflection map TexCords V I k H N= + i

Below is a procedure of rendering reflection_map: Reflect the original camera as shown in
Figure 10.2. Render the whole scene (except water) from this camera to the so called
“reflection” texture.

Original camera

Reflected camera

 143

Figure 10.2 Camera reflection

Figure 10.3 shows the image taken from the original camera and the image take from the
reflected camera. Please note that when rendering the reflection map, we will use a clip plane
slightly below the water surface to prevent objects on the other side of water from being
rendered in to the reflection map.

Figure 10.3 Original camera image (left) and reflection map (right)

This technique works fine for plane water. For oscillating water, we will use the same
reflection texture but to shift the texture mapping position according to the normal of the
surface point. This is of course an approximate and can be done in such way: in every grid
point of the wave, we calculate the reflection ray of its view vector in world coordinate
system, shift a small fixed distance along this ray to obtain a new position, and then project it
to screen space to obtain the shifted texture coordinates. So instead of rotating the water plane,
we can imagine that the water plane is shifted by a fixed distance to form another parallel
reflection plane. This is just an approximation See Figure 10.4. In Figure 10.3, we will notice
that the right image is distorted using the above method when mapped to the water surface in
the left image. We will show the actual code later.

θ 1

Water plane
V

View (eye) vector

θ 1

Reflected view vector
Shifted plane

V’

Approximated incoming ray

 144

Figure 10.4 Normal correction

The last problem is that reflection and refraction on wavy water surface usually show more
scenes than on still water surface. This will result to texture misses at the image edge as well
as the place where water meets the land. To cover texture misses, we increase FOV (field of
view) for the cameras used for the reflection map. In most cases, 10% larger than the main
camera’s FOV is enough. In case there are still texture misses even with increased field of
view, we use clamping texture addressing mode. Clamping addressing mode ensures that the
missing texture have the same color of the edge of the texture.

Refraction Model:

The refraction map is generated similar to the reflection map using the unreflected original
camera. The refraction map may also be distorted by the surface normal and indices of the
two materials. However, if we do not need the optic effects of refraction map distortion, we
can ignore the use of a refraction map and use alpha blending instead. We will see this later.

Mixing the Refraction and Reflection:

Once we have obtained the refraction and reflection color of a point on the water surface,
we will need to mix them according to the amount of energy passed and reflected by the
surface. This ratio is determined by Fresnel coefficient. The original physics formula is
complex enough.

2 2

2 2

() (() 1)() 1
2() (() 1)

g k k g kF k
g k k g k

⎛ ⎞− + −
= +⎜ ⎟+ − +⎝ ⎠

, where
2

22

1

, 1nk V N g k
n

⎛ ⎞
= − = + −⎜ ⎟

⎝ ⎠

K K
i , and V

is the view vector; N is the normal of the surface.

We approximate it with the function:

 () (1)G k V N α−= −
K K
i , where α is coefficient corresponding to relative refraction index (see

the following table). When rendering for games, we usually use a small α.

n2/n1 Α

1.1 10

1.2 8

1.33 7

1.5 6

The final formula we will use is this one:

FinalColor = Refraction+F(k)*(Reflection- Refraction)+Specular

In case a total reflection happens, we can elimite the refraction component. The actual code
is given in the next section.

 145

10.2 Architecture and Code

10.2.1 Ocean Rendering Pipeline
The render pipeline is given below.

For each frame(){

 …

 If(scene moves){

 Reflect the camera by the water plane

 Set clip plane and Render scene into the reflection texture

 Set the camera back to the original one

 [optional] Set clip plane and Render scene into the refraction texture

 }

 Render the scene to back buffer.

 …

 RenderOcean(){

 Animate height and normal field

 Render the ocean mesh with reflection and refraction map

 }

}

There are two places to be careful during coding:

(1) When the camera is reflected, objects and triangles which are initially invisible may
become visible in the new camera. For example, the terrain engine will need to re-
tessellate and rebuild the triangle mesh according to the reflected camera view
frustum.

(2) When rendering the reflection map, one can choose to reflect either the scene objects
or the camera. For example, one can build a reflection matrix P and pre-multiply it
with the original view matrix V; this will reflect all scene objects when the new view
matrix is applied. The disadvantage of this approach is that it makes the new view
matrix meaningless, e.g. all triangle normals are reversed, which means that all
meshes must reverse their default triangle winding direction when rendering the
reflection map. Alternatively, we can reflect the camera eye, lookat and up vector
and rebuild a valid camera view matrix. In this way, triangle winding is not affected
and that we always have a meaningful view matrix. However, the reflection image
should be flipped horizontally in the image space. Fortunately, this can be done
easily in vertex shader or pixel shader. So we advise to mirror the camera instead of
all scene objects when rendering the reflection map.

 146

10.2.2 Shader code for Reflection and Refraction mapping
The following shader code shows the reflection and refraction mapping described in this

paper. The vertex shader interpolates between two sets of height and normal values to obtain
the grid point’s vertex position and normal in world coordinate system. The
computeTextureCoord() function distorts the texture coordinate for the reflection map and it
also adjust it according to the FOV of the reflection map.

Please note that we did not use a refraction map in this shader code. Instead we use alpha
blending with the render target (i.e. the backbuffer). In order to use the render target as the
refraction map, we must render the scene (except for water) first, before the water is rendered.
In the pixel shader, we will need to generate the reflection and specular color, as well as an
alpha value by which the new pixel color is blended with color on the render target. If one
uses a refraction map, the code will be more straight-forward: just turn off alpha blending,
and add the reflection, refraction and specular term together to form the final pixel color.
// Desc: Based on the Vertex Texture Fetch paper on Nvidia developer's website.
//@def whether use backbuffer as refraction map.If so,
// pixel color alpha value is used as aprox. fresnel term.
#define ALPHA_BLENDING_REFRACTION_MAP

// parameters
const float4x4 mViewProj: VIEWPROJECTION: register(vs, c10);
const float4 vWorldPos: worldpos;
const float4 vCameraPos: worldcamerapos;
const float4 sun_vec: sunvector;
//const float4 sun_color: suncolor;
const float4 posOffset : posScaleOffset;
const float4 vsReflectionTexcoordScaleOffset:uvScaleOffset;
const float4 psFresnelR0: FresnelR0;
const half3 psTotalInternalReflectionSlopeBias : ConstVector0;
const float4 vsNormalSign : ConstVector1;

texture tex0 : TEXTURE;
// reflection map
sampler reflectionSampler = sampler_state
{
 texture = <tex0>;
 AddressU = clamp;
 AddressV = clamp;
 MINFILTER = LINEAR;
 MAGFILTER = LINEAR;
};

struct Interpolants
{
 float4 positionSS : POSITION; // Screen space position
 float2 reflectionTexCoord : TEXCOORD0; // texture coordinates for reflection map
 float3 normalWS : TEXCOORD1; // normal in world space
 float3 eyeVectorWS : TEXCOORD2; // eye vector in world space
 float3 halfVectorWS : TEXCOORD3; // half vector in world space
};

//
//
// Vertex Shader
//

 147

//

// Vertex shader Function declarations
float2 computeTextureCoord(float4 positionWS, float3 directionWS, float distance, float2 scale, float2
offset);

Interpolants vertexShader(float2 Pos : POSITION,
 float ZPos0 : POSITION1,
 float2 Norm0 : NORMAL0,
 float ZPos1 : POSITION2,
 float2 Norm1 : NORMAL1)
{
 Interpolants o = (Interpolants)0;
 float4 positionWS;
 float4 flatPositionWS;
 float3 normalWS;
 float3 reflectionVectorWS;
 float2 nXY;
 float1 waveHeight;
 // offset xy and interpolate z to get world position
 flatPositionWS = float4(Pos.x+posOffset.z, vWorldPos.y, Pos.y+posOffset.w, 1);
 waveHeight = lerp(ZPos0, ZPos1, posOffset.x);
 positionWS = flatPositionWS;
 positionWS.y += waveHeight*0.2; // make smaller wave

 // transform and output
 o.positionSS = mul(positionWS, mViewProj);

 // Output the world space normal
 nXY = lerp(Norm0, Norm1, posOffset.x);
 normalWS = normalize(float3(nXY, 8.0f)).xzy;// LXZ: why 8.0f, 24.0f are all OK values
 normalWS.xyz *= vsNormalSign.x; // Flip the normal if we're under water
 o.normalWS = normalWS;

 // Output the eye vector in world space
 o.eyeVectorWS = normalize(vCameraPos - positionWS);

 // Output the half vector in world space
 // No need to normalize because it's normalized in the pixel shader
 o.halfVectorWS = o.eyeVectorWS + sun_vec;

 // Calculate reflection map coordinates

 // Compute the reflection vector in world space
 reflectionVectorWS = reflect(-o.eyeVectorWS, normalWS);

 // Compute the reflection map coordinates
 o.reflectionTexCoord.xy = computeTextureCoord(positionWS, reflectionVectorWS, 0.4f,
vsReflectionTexcoordScaleOffset.xy, vsReflectionTexcoordScaleOffset.zw);

 return o;
}
// computeTextureCoord() takes a starting position, direction and distance in world space.
// It computes a new position by moving the distance along the direction vector. This new
// world space position is projected into screen space. The screen space coordinates are
// massaged to work as texture coordinates.
float2 computeTextureCoord(float4 positionWS, float3 directionWS, float distance, float2 scale, float2
offset)
{

 148

 float4 positionSS;

 // Compute the position after traveling a fixed distance
 positionWS.xyz = positionWS.xyz + directionWS * distance;
 positionWS.w = 1.0;

 // Compute the screen space position of the newly computed position
 positionSS = mul(positionWS, mViewProj);

 // Do the perspective divide
 positionSS.xy /= positionSS.w;

 // Convert screen space position from [-1,-1]->[1,1] to [0,0]->[1,1]
 // This is done to match the coordinate space of the reflection/refraction map
 positionSS.xy = positionSS.xy * 0.5 + 0.5;

 // Account for the fact that we use a different field of view for the reflection/refraction maps.
 // This overdraw allows us to see stuff in the reflection/refraction maps that is not visible
 // from the normal viewpoint.
 positionSS.xy = positionSS.xy * scale + offset;

 // Flip the t texture coordinate upside down to be consistent with D3D
 positionSS.y = 1 - positionSS.y;

 // Return the screen space position as the result. This will be used as the texture coordinate
 // for the screenspace reflection/refraction maps.
 return(positionSS.xy);
}

//
//
// Pixel Shader
//
//

half computeFresnel(half3 light, half3 normal, half R0);

half4 pixelShader(Interpolants i) : COLOR
{
 half4 specular;
 half4 reflection;
 half4 refraction;
 half fresnel;
 half4 o;

 // Normalize direction vectors
 i.normalWS = normalize(i.normalWS);
 i.halfVectorWS = normalize(i.halfVectorWS);

 // Compute the specular term
 specular.x = pow(max(dot(i.halfVectorWS, i.normalWS), 0), 3);

 // Put a cliff in the specular function
 if(specular.x < 0.5)
 {
 specular.x = 2.0 * specular.x * specular.x;
 }
 specular.xyz = specular.xxx * half3(0.2, 0.2, 0.2);
 specular.w = 0;

 149

 // Do the texture lookup for the reflection

 //reflection = tex2D(reflectionSampler, i.reflectionTexCoord.xy);
 reflection = tex2D(reflectionSampler, float2(1-i.reflectionTexCoord.x, i.reflectionTexCoord.y));

 // Do the texture lookup for the refraction
 …
 // Handle total internal reflection
 half refractionVisibility = saturate(dot(i.eyeVectorWS, i.normalWS));
 refractionVisibility = saturate((refractionVisibility - psTotalInternalReflectionSlopeBias.y) *
psTotalInternalReflectionSlopeBias.x +
 psTotalInternalReflectionSlopeBias.z);
 // Give some blue tint to the refraction
 // refraction = lerp(refraction, half4(0, 0, 1, 0), .1);

 // Compute the fresnel to blend the refraction and reflection terms together
 fresnel = computeFresnel(i.eyeVectorWS, i.normalWS, psFresnelR0.x);

 #ifdef ALPHA_BLENDING_REFRACTION_MAP
 // Combine the refraction,a blue tint(0,0,0.1), reflection and specular terms
 half alpha = 1-refractionVisibility*0.9*(1-fresnel);
 o.xyz = reflection.xyz*fresnel+(specular.xyz + (1-alpha)*half3(0, 0, 0.1))/alpha;
 o.w = alpha;
 return o;
 #else
 // Combine the refraction, reflection and specular terms
 return(lerp(refraction, reflection, fresnel) + specular);
 #endif
}

half computeFresnel(half3 eye, half3 normal, half R0)
{
 // R0 = pow(1.0 - refractionIndexRatio, 2.0) / pow(1.0 + refractionIndexRatio, 2.0);

 half eyeDotNormal;

 eyeDotNormal = dot(eye, normal);

 // Make sure eyeDotNormal is positive
 eyeDotNormal = max(eyeDotNormal, -eyeDotNormal);

 return(R0 + (1.0 - R0) * pow(1.0 - eyeDotNormal, 4.5));
}

//
//
// Technique
//
//
technique OceanWater_vs20_ps20
{
 pass P0
 {
 ZENABLE = TRUE;
 ZWRITEENABLE = TRUE;
 ZFUNC = LESSEQUAL;

 150

 AlphaBlendEnable = true;
 AlphaTestEnable = false;

 // shaders
 VertexShader = compile vs_2_0 vertexShader();
 PixelShader = compile ps_2_0 pixelShader();
 }
}

Figure 10.5 is an image generated with the above code without using a refraction map.

Above water surface Below water surface

Figure 10.5 Above and under water scene without refraction map

10.3 Summary and Outlook
Ocean simulation and rendering techniques used in games can already generate

approaching photorealistic scenes. What we covered in this chapter is only one set of popular
approaches. Still, there are a few other add-on things we have missed, such as the shorelines,
bump mapping and under water effects, etc. Shorelines can be created by blending a special
shoreline texture to the water surface, according to the depth of the water (see the following
section). Bump mapping can give you the effects of high-frequency wavelets on the water
surface. Wavy underwater effects can be achieved by a pixel shader in the image space after
the scene has been rendered. Water interaction with the physical environment (fluid dynamics)
is also an area which we believe future game engines will be featuring.

10.3.1 Shorelines
We will end this chapter by the implementation of shorelines. Please see Figure 10.6.

Shorelines can be easily implemented by comparing the water level and the terrain height at
each rendered pixel of the ocean surface. We will use the difference between the water and
terrain level at each pixel to obtain a blending factor, which blends an animated shoreline
texture with that of the original ocean color. In the figure, a static white bitmap is used as the
shoreline texture to illustrate how it is blended with the original ocean surface.

 151

Figure 10.6 Shore lines

The above procedure can be carried out in shader programs. In the vertex shader input, we
add an additional terrain height value for each ocean surface vertex. The vertex shader will
output the height difference between terrain height and the water height for each vertex. This
height difference is automatically interpolated when passed to the input of a pixel shader. In
the pixel shader, we will use it to obtain an alpha blending factor, using the code below.
blendfactor = (i.heightDifference+0.5)/0.5;
if(i.heightDifference >0)
 blendfactor = 1;
if(i.heightDifference <-0.5)
 blendfactor = 0;
o.xyz = lerp(o.xyz, half3(1,1,1), alpha); // half3(1,1,1) may be replaced by a shoreline texture

i.HeightDifference is the height difference passed to the input of a pixel shader. Blendfactor
is the linear interpolation factor to blend the shoreline texture and the original ocean color. 0.5
in the above code is arbitrarily chosen as the maximum shoreline water depth, beyond which
the shoreline texture will not be painted to the ocean surface.

 152

Chapter 11 Special Effects

In this chapter, we talk about a few special effects which are commonly seen in present-day
game engines. They are shadow, light map, environment map, local lighting, image post
processing, per-pixel fog, billboarding and reflective surfaces. It should be pointed out that
there are generally no standard ways to integrate them in to a game engine. Each of them has
one or several basic techniques behind. If you are implementing a new game engine from
scratch, we advise that you go over the basic ideas of these techniques, but postpone their
implementations until you have a stable and robust game engine framework or a funded game
project.

The implementation of special effects may be easily out-dated due to the fast advancement
of graphics hardware and techniques. It is better to consider them as add-on things to the
game engine and plug-in them to the rendering pipeline whenever and wherever necessary.

This chapter is organized by effects.

11.1 Shadows
Shadow is one of the most expensive rendering effects in games. There are also a large
number of different techniques to generate them; yet there are no perfect ones.

11.1.1 Static Shadow
The least expensive way is to bake the shadow to model and terrain textures or model

vertex colors, when the game scene is made by the artists and the level designers. This special
texture layer generated for shadow is commonly referred to as light map, whose colors are
usually multiplied with the original model color to darken the shadowed region. At runtime,
the game engine computes nothing; it just renders the models as usual. The biggest advantage
of this approach is that it is fast at runtime. The biggest problem is that it does not work
efficiently with dynamic objects or dynamic light sources, such as an animated character or a
moving light. Due to the high cost of other shadow techniques, static pre-generated shadow is
still commonly used for shadows cast from static scene objects and with a relatively static
light source. For example, the shadows of terrain and buildings under sun light.

11.1.2 Dynamic Shadow
The focus of this section is on other shadow techniques suitable for dynamic shadows.

Many of the shadow generation techniques developed over the years have been used
successfully in offline movie production. It is still challenging, however, to compute high
quality shadows in real-time for dynamic scenes. We will only briefly discuss some methods
suitable for interactive applications. Table 11.1 shows a comparison of some commonly used
real-time shadow rendering algorithms. Please refer to Woo et al.'s paper 15 for a broader
survey of shadow algorithms.

15 Andrew Woo, Pierre Poulin and Alain Fournier, A survey of shadow algorithms, IEEE Computer Graphics and
Applications, vol 10 (November 1990), pp. 13-32.

 153

Table 11.1 Shadow rendering algorithm comparison

Plane Projected Shadows Projected Shadows Depth Shadow Mapping

Quick, not much calculations
High detail
No self-shadowing
no shadow receivers

Quick, almost no calculations
Detail depends on texture
No self-shadowing
Shadow receivers

Very quick, not much calculations
Detail depends on texture
Self-shadowing
Shadow receivers

Vertex Projection Shadow Volumes Smoothies

Slow with high-res meshes
High Detail
No self-shadowing
no shadow receivers

Slow, lots of calculations
High detail
Self-shadowing
Shadow receivers

Very quick, not much calculations
Detail depends on Smoothies
Self-shadowing
Shadow receivers

In DirectX SDK, one can find source code samples using two different shadow algorithms.
One is called shadow mapping; the other is called shadow volume. Shadow mapping is easy
to implement and fast, but has so-called aliasing artifacts; shadow volume is computationally
more expensive and difficult to implement, but can generate very robust (i.e. fewer artifacts)
and good looking (even soft-edged) shadows. We will briefly explain shadow mapping and go
in to some depth of shadow volume.

11.1.2.1 Shadow mapping
Shadow mapping is perhaps the most ubiquitous and easy-to-implement shadow algorithms.
Its concept is straightforward. See Figure 11.1. The entire scene is drawn twice (in two render
passes). In the first pass, the scene is rendered to a texture from the light's perspective. This
texture is called a shadow map and is generated from simple vertex and pixel shaders. For
each pixel, the pixel shader writes the pixel depth instead of the pixel color. The same pixel
may be overwritten several times, so that when the entire scene has been rendered, the
shadow map will contain the distances from the light position to the scene geometries. In the
second pass, the scene is rendered from the camera’s perspective: the distance between each
pixel and the light is generated once again and compared to the corresponding depth
generated previously in the shadow map. If they match, then the pixel is not in shadow. If the
distance in the shadow map is smaller, the pixel is in shadow, and the shader can darken the
pixel color accordingly. The most suitable type of light to use with shadow maps is a spotlight
since a shadow map is rendered by capturing the scene from a point camera position.

The major advantage of using shadow maps over shadow volumes is efficiency since a
shadow map only requires the scene to be rendered twice. There is no geometry-processing
needed and no extra mesh to generate and render. An application using shadow maps can
therefore maintain good performance regardless of the complexity of the scene.

However, the shadow quality using shadow mapping is limited by the resolution of the
shadow map texture and affected by the relative positions of the camera and light. E.g. blocky
shadow edges or distinctly jagged edges frequently appear between shadowed and un-
shadowed regions due to under-sampling of the shadow map. There are improved versions to

 154

the original shadow volume algorithm, such as the perspective shadow mapping, which can
be found in NVIDIA developer network.

Figure 11.1 Shadow mapping

There are several things to take care about when implementing shadow mapping in the
game engine.

First thing is to build a complete list of shadow receivers and shadow casters in the
rendering pipeline. We must not forget to include shadow caster objects outside the camera
view frustum, because their shadows may be casted in the view frustum. A quick solution is
to use objects within a certain radius of the current camera eye position to build the list of
shadow casters. More over, we can use some predefined value such as 50, to limit the total
number of shadow casters. The code in the render pipeline is given below.
 if(m_nMaxNumShadowCasters <(int)sceneState.listShadowCasters.size())
 {
 // remove shadows casters that are far from the eye position.
 sceneState.listShadowCasters.sort(LessPostRenderObj_NoTechBatch<PostRenderObject>());
 int nRemoveNum = (int)sceneState.listShadowCasters.size() - m_nMaxNumShadowCasters;
 list<PostRenderObject>::iterator itFrom = sceneState.listShadowCasters.end();
 for (int i=0;i<nRemoveNum;++i)
 --itFrom;
 sceneState.listShadowCasters.erase(itFrom, sceneState.listShadowCasters.end());
 }
 // only for effect file batch
 sceneState.listShadowCasters.sort(LessPostRenderObj<PostRenderObject>());

The selection of shadow receivers also plays an important role in shadow mapping. A
fixed-sized shadow map must contain the bounding box of all shadow receivers, so the
shadow map quality is directly relevant to the size of the bounding box of shadow receivers.
The choice of shadow receivers is dependent on the camera mode: if the game is mainly a
top-down view, we can include both the terrain and objects on the terrain as shadow receivers;
if it is a free camera mode, it is sometimes only good to cast shadows on a small region of
terrain near the camera. On either case, terrain is the most important shadow receiver.

When rendering into the shadow map, there is another thing to take care of. It is texture
alpha testing. We need to emulate alpha testing using alpha blending in the pixel shader if the
shadow map render target does not support alpha testing.

Light

Pass 2

Eye

Pass 1: light map

Lit

Un-lit

 155

Figure 11.2 shows a scene rendered with shadow map (the tree leaves used texture alpha
testing); Figure 11.3 shows the shadow map generated for it. One can find the shader code in
the code section.

Figure 11.2 A 3D scene rendered with shadow mapping in ParaEngine

Original size (left image)
Zoomed (right image)

Figure 11.3 1024*1024 sized shadow map generated from the light’s perspective

 156

11.1.2.2 Shadow volume
In shadow volume technique, the scene objects may be either shadow caster or shadow

receiver or both. The computation complexity of shadow volume is mostly dependent on the
number of shadow casters and has nothing to do with the number of shadow receivers. So if
the game scene has a large number of shadow receivers (such as the terrain and buildings) and
just a few shadow casters (the main characters), shadow volume can generate perfect shadows
efficiently. In an actual game, one may combine the use of static shadow with that of shadow
volumes, such that shadows cast by terrain and buildings are pre-made in light maps, whereas
dynamic shadows of characters are generated using shadow volumes. Moreover, shadow
volume is also suitable for multiple light sources. The quality of shadows using shadow
volume is very high and independent of light position and shadow receivers. See Figure 11.4

Figure 11.4 Shadow volume rendering results

Before we go on, there are some limitations to the shadow volume method.

There are quite a few limitations to shadow volumes, in many respects they are the
medium-level of shadow rendering. They aren't the fastest (planar shadows generally are) and
they don't look the best (soft shadowing/projective shadows generally look better). However,
for the speed and features we get, they are probably the most practical to implement currently.

An overview of the main limitations:

1. Hardware Stencil Buffering

The application requires the use of a stencil buffer. We need as many bits for the stencil
buffer as possible; one may be able to work with a 1-bit stencil, but ideally either a 4 or an 8
bit stencil buffer are preferred for more accurate shadow rendering. This is because I will
render all shadow volumes in a batch to the stencil buffer. If these volume geometry overlap
after projection to the 2D space, it will cause the stencil buffer to overflow.

2. Bandwidth Intensive

The algorithm will chew up as much graphics card bandwidth as you can throw at it,
especially when it comes to rendering with multiple light sources. Fill rate (number of pixels
rendered per second) in particular is very heavily used; with a possible n+1 overdraw (where
n is the number of lights). There are a few tricks one can use to reduce the trouble this causes.

3. No Soft Shadowing

 157

The mathematical nature of a shadow volume dictates that there are no intermediary values.
It is a Boolean operation. Pixels are either in shadow or not. Therefore one can often see
distinct aliased lines around shadows.

4. Complicated for Multiple Light Sources

The majority of real-time scenes have several lights (4-5) enabled at any one point in time,
whilst with this technique there is no limit to the number of lights (even if the device caps
indicate a fixed number). The more lights that are enabled the slower the system goes. The
two factors to watch out are geometric complexity (and number of meshes) and light count,
the shadow rendering system usually uses an algorithm to select only the most important
lights, and only the affected geometry for rendering.

Implementation

Shadow volume algorithm imposes an additional constraint for models that are animated by
skinning (the process of blending different transformations of a vertex from nearby bones).
The process used in hardware to skin the model must be identically replicated in software, so
the possible silhouette determination step can find the possible silhouette of the animated
model, not the static pose. This is a problem common to all shadow volume techniques and
cannot be eliminated until graphics hardware is sophisticated enough to support the adjacency
data structures needed for possible silhouette determination. In ParaEngine, skinned
animation is by default calculated in software; if shadow volume is enabled, it becomes the
only option for skinned animation.

Shadow Rendering Pipeline

1. Render the portion of the scene which will receive shadows.
2. For each active light in the scene. {

2.1. Build light-camera pyramid for Z-Fail testing
2.2. For each shadow caster {

2.2.1. Decide whether to use Z-fail or Z-pass algorithm by checking the bounding box of
the model with the light-camera pyramid.

2.2.2. Build shadow volume for the current shadow caster, with regard to the current light.
If Z-fail is used, shadow volume must be capped at both front and back ends

2.2.3. Render the shadow volumes to stencil buffer twice to mark the shaded region. Render
method is either Z-fail or Z-pass.

}

2.3. Render the shadow (i.e. alpha blending a big quad of the shadow color to the screen), with
regard to the stencil buffer

}

3. Render the portion of the scene that does not receive shadows.
The following order of game scene rendering is adopted in the game engine.

1. all shadow receivers: terrain, mesh object, etc
2. shadow volumes of shadow casters
3. shadow casters
4. anything that does not receive shadows, such as particles, GUI, etc.

Since shadows will only be cast on objects rendered previously in the pipeline, characters
will not cast shadows on themselves, if we draw them after their shadows. Due to the nature

 158

of the shadow volume algorithm, the transparent region in textures will appear to be fully
shaded on the 3D model.

Shadow Volumes Calculation

In ParaEngine, any shadow caster class need to implement the ShadowCaster interface. For
example, the biped scene object is a shadow caster. In its shadow caster implementation, it
calls the BuildShadowVolume function of its associated model class. This class has the
geometry data of the 3D model, which will be used to build the Shadow Volume. Shadow
volume is built by firstly finding the silhouette edges (please refer to related papers on this),
and then extruding from the model’s pivot point to infinity along the opposite light direction.
See Figure 11.5.

Figure 11.5 Shadow Volume Calculation for Directional Light

The above shadow is incomplete, because its front cap is open. If the object is not
transparent and the camera is not in the shadow volume, this uncapped shadow volume will
suffice for rendering accurate shadows with Z-pass algorithm. However, when the near plane
of the camera’s frustum intersects the shadow volume, we should swap to another
computationally more extensive algorithm (z-fail). Complementary to Z-pass, Z-fail
algorithm only works when the shadow volume is closed (capped) at both ends and the far
plane of the camera does not intersect the back cap. Since the light’s angle to the ground is
limited to well above zero in the game engine. We can eliminate the need to check if the back
cap is outside the far plane of the camera’s frustum. However, we must close the shadow
volume’s front cap which is why z-fail algorithm is computationally expensive. The algorithm
in Table 11.2 is used decide when to swap to z-fail algorithm. The rules are labeled from (a)
to (e).

Table 11.2 Z-Fail Testing algorithm

If(model does not have bounding box or sphere){

(a) we will not test screen distance. i.e. we will draw its shadow anyway

The sun

Object1
Object2

Terrain
Shadow volume

Extruding to infinity; back capping at a point

Directional light

Sun rays

 159

}else{

(b) Check if object is too small after projection to 2D screen. If so, its shadow will not be
rendered};

If(model must be rendered using Z-Fail){ (c) use Z-fail}

Else if(model intersects with Occlusion pyramid){ (d) use Z-fail}

Else{ (e) use z-pass};

Occlusion pyramid is defined to be the shape formed by the four vertices of the camera’s
near plane and the sun position. Figure 11.6 shows some sample test cases. Bounding box 1
and 2 will use Z-fail algorithm by the rule (d). Bounding box 4 will not cast shadows by the
rule (b). Bounding box 3 will use z-pass by the rule (e).

Figure 11.6 Z-Fail algorithm testing

Performance analysis

The real bottlenecks in a stencil shadow volume implementation are silhouette
determination and shadow volume rendering. The former requires a huge amount of CPU
cycles and it worsens if the occluders had high polygon counts. The latter is a big consumer of
invisible fill rate. One way to alleviate the CPU burden during silhouette determination is to
use a lower polygon model of the occluder. Another effective way is to determine a new
silhouette only every 2-4 frames. This is based on the assumption that the light's position or
the occluder's position does not change very drastically within 2-4 frames. This assumption
turns out to be pretty good for most cases. Another good trick is to pre-calculate all static
shadow volumes. Moreover, shadow extrusion may also be done in HLSL shader.

11.1.3 Code
Some shadow mapping shader code is given below.

For each shadow casters, its associated effect file must contain a shadow technique which
renders the object into the shadow map. The code is usually identical and is given below.

The sun

Camera view vector
Eye position

Occlusion pyramid

Bounding box 1

Bounding box 3

Bounding box 2

Bounding box 4

 160

void VertShadow(float4 Pos : POSITION,
 float2 Tex : TEXCOORD0,
 out float4 oPos : POSITION,
 out float2 outTex : TEXCOORD0,
 out float2 Depth : TEXCOORD1)
{
 oPos = mul(Pos, mWorldViewProj);
 outTex = Tex;
 Depth.xy = oPos.zw;
}

float4 PixShadow(float2 inTex : TEXCOORD0,
 float2 Depth : TEXCOORD1) : COLOR
{
 half alpha = tex2D(tex0Sampler, inTex.xy).w;

 if(g_bAlphaTesting)
 {
 // alpha testing
 alpha = lerp(1,0, alpha < ALPHA_TESTING_REF);
 clip(alpha-0.5);
 }
 float d = Depth.x / Depth.y;
 return float4(d.xxx, alpha);
}

technique GenShadowMap
{
 pass p0
 {
 VertexShader = compile vs_2_a VertShadow();
 PixelShader = compile ps_2_a PixShadow();
 FogEnable = false;
 }
}

For each shadow receiver, we need to generate shadow texture coordinates in vertex shader,
and sample the shadow map in the pixel shader. The code is usually identical and is given
below. Please note, we have given the code for both hardware shadow map and traditional
Float 32 render target.
texture ShadowMap2 : TEXTURE;
sampler ShadowMapSampler: register(s2) = sampler_state
{
 texture = <ShadowMap2>;
 MinFilter = Linear;
 MagFilter = Linear;
 MipFilter = None;
 AddressU = BORDER;
 AddressV = BORDER;
 BorderColor = 0xffffffff;
};

Interpolants vertexShader(float4 Pos : POSITION,
 float3 Norm : NORMAL,
 float2 Tex : TEXCOORD0)
{
 Interpolants o = (Interpolants)0;

 161

 // … other code ignored
 if(g_Useshadowmap)
 {
 o.tex1 = mul(Pos, mLightWorldViewProj);
 }
 return o;
}

half4 pixelShader(Interpolants i) : COLOR
{
 half4 o = {0,0,0,1};
 // … other code ignored
 if(g_Useshadowmap)
 {
 if(g_UseShadowmapHW)
 {
 // hardware shadow map
 half3 shadow = tex2Dproj(ShadowMapSampler, i.tex2).rgb;
 //colorDif = ((shadow*0.2+0.8) * colorDif)*0.9 + 0.1;
 colorDif = (shadow*0.25+0.75) * colorDif;
 }
 else
 {
 // F32 shadow map
 float2 shadowTexCoord = i.tex2.xy / i.tex2.w;
 float shadowTestDepth = i.tex2.z / i.tex2.w;

 #ifdef MULTI_SAMPLE_SHADOWMAP
 // transform to texel space
 float2 texelpos = g_nShadowMapSize * shadowTexCoord;

 // Determine the lerp amounts
 float2 lerps = frac(texelpos);

 //read in bilerp stamp, doing the shadow checks
 //shadowTestDepth = shadowTestDepth- SHADOW_EPSILON;
 color0.x = (tex2D(ShadowMapSampler, shadowTexCoord) >= shadowTestDepth);
 texelpos = shadowTexCoord + float2(1.0/g_nShadowMapSize, 0);
 color0.y = (tex2D(ShadowMapSampler, texelpos) >= shadowTestDepth);
 texelpos = shadowTexCoord + float2(0, 1.0/g_nShadowMapSize);
 color0.z = (tex2D(ShadowMapSampler, texelpos) >= shadowTestDepth);
 texelpos = shadowTexCoord + float2(1.0/g_nShadowMapSize, 1.0/g_nShadowMapSize);
 color0.w = (tex2D(ShadowMapSampler, texelpos) >= shadowTestDepth);

 // lerp between the shadow values to calculate our light amount
 float shadow = lerp(lerp(color0.x, color0.y, lerps.x),
 lerp(color0.z, color0.w, lerps.x),
 lerps.y);
 lerps.x=(shadowTexCoord.x<0 || shadowTexCoord.y<0 || shadowTexCoord.x>1 ||
shadowTexCoord.y>1);
 shadow = lerp(shadow, 1, lerps.x);
 #else
 float shadowDepth = tex2D(ShadowMapSampler, shadowTexCoord);
 float shadow = (shadowTestDepth <= shadowDepth);
 #endif
 colorDif = (shadow*0.25+0.75) * colorDif;
 }

}
}

 162

 163

11.2 Light Mapping
Ever since the days of Quake, developers have extensively used light mapping to achieve

realistic lighting almost without any computing overhead at runtime. However, light mapping
technique is slowly becoming out dated as computer hardware evolves and real-time per pixel
lighting becomes possible.

Implementing light map requires two steps (l) light map generation and (2) applying light
maps to geometry. The first step is a complicated and time-consuming (so far, not real-time)
process. It does not make much sense to integrate it to the game engine unless you are
working on a powerful world editor for level designers. Instead, we can rely on other
professional editing tools, such as 3dsmax, Maya, etc to generate them for a game scene. In
this section, we will only focus on how light map related information can be retrieved from
these tools, and how to apply them to geomeotry.

11.2.1 Light Mapping Basics
The idea of light mapping is very simple. In additional to the main diffuse texture, it maps

another texture (so called light map) to all faces of the mesh. Each triangle face of the mesh is
mapped to a portion of the lightmap. At realtime, a pixel on the model face is determined by
the multiplication of the diffuse texture color and light map color. Figure 11.7 shows a light
mapped quad mesh.

Figure 11.7 Light map basics16

Figure 11.8 shows a VR scene using light maps in ParaEngine. The buildings in the image
are rendered with light maps, except for the windows which use a cubic environment map
(see section 11.3) of the sky. The front statue also uses a light map, which emulates the self-
shadow on it. The trees are billboarded (see section 11.4). You can compare the light mapped
building with the one rendered without light map in Figure 11.9.

16 Taken from http://www.flipcode.com/articles/article_lightmapping.shtml by Keshav Channa

 164

Figure 11.8 Light map example in ParaEngine

11.2.2 Consider Baked Texture First
Before using light maps, one should always consider baking lights to the main diffuse

texture first (i.e. using the diffuse*lightmap as the diffuse map as shown in Figure 11.7). If
this works in your situation, why bother to use an additional light map? If the mesh model is
small or its main diffuse texture is not reused across mesh faces, using baked texture is
usually a better choice. Light effect can be written to the main diffuse texture either by artists
or by ray tracing tools provided in 3dsmax or Maya, etc.

11.2.3 When to Use Light Map
Baked texture has its many limitations. One limitation that leads us to use light map is that

it consumes too much texture memory for large mesh models. Large mesh models, such as
walls and streets usually reuse the same set of textures across many mesh faces. It is very
wasteful to map unique high resolution textures to each mesh faces. Instead, we will reuse the
diffuse texture for faces in the mesh model (and possibly in other models as well), but use a
unique low-resolution texture (light map) which solely encode the brightness of each mesh
face.

 165

The quality of light effect is thus very dependent on the resolution of the light map.
Fortunately, strenching light map does not induce many glitches and is sometimes preferred to
create smooth shadow edges and brightness transitions.

11.2.4 Cost of Using Light Maps
Generally speaking, using light map will double or triple the total texture file size in the

scene, and it will increase the vertex buffer size, since the light map uses another texture
coordinate set and causes many mesh vertices to split. When there is only a single diffuse
texture coordinate set, a mesh vertex only need to be split when the faces sharing the vertex,
map it to different locations on the diffuse texture. Yet, with a second texture coordinate set
for the light map, a vertex shared by multiple faces will usually need to be splitted, since the
model always maps each of its face to a different location on the light map.

11.2.5 Retrieving Light Map Texture Coordinates from 3dsmax
In 3dsmax, light map texture coordinates are in another map channel of the mesh. In
ParaEngine, we assume that it is in the second map channel. The process of retrieving it is
given below.

For each face in the mesh{

 For each of the three face vertex in the face{

 Export position, normal, color, etc.

 For each map channel of the mesh{

 get the index of the vertex in the map channel

 Export the texture coordinates of the vertex using its index.

 }

 Export skinning information if any.

 }

}

Mesh data exported from 3dsmax is then saved to model files. Besides a propritory model
file format, most game engine also supports a public extensible file format. If it is a DirectX
based engine, it is usually the DirectX’s X-file format. In ParaEngine, we support almost
everything except for animated models in the original X-file format. The original X-file
templates provide a field called FVFData, which can be used to store any FVF per-vertex data
in the file. In case of light maps, the second UV coordinate set is saved in FVFData field. The
DirectX extenstion library also support multiple UV sets through its X-file format (by the
FVFData field). The only problem is that the original X-file templates do not provide a field
to store the light map file name, so we have to do it manually in some other places or derive it
from the main texture file name in the material template.

The following shows an example X file.

 166

xof 0303txt 0032
// Exported by ParaEngine X file exporter V0.1
Mesh mesh_object{
24; // 24 vertices
-1.583985;0.000000;-1.284059;,
2.540000;0.000000;1.115350;,
-1.583985;0.000000;1.115350;,
2.540000;0.000000;-1.284059;,
-0.715449;2.324428;-0.897879;,
1.902904;2.324428;0.696656;,
1.938948;2.324428;-0.890688;,
-0.690824;2.324428;0.719860;,
-1.583985;0.000000;-1.284059;,
1.938948;2.324428;-0.890688;,
2.540000;0.000000;-1.284059;,
-0.715449;2.324428;-0.897879;,
2.540000;0.000000;-1.284059;,
1.902904;2.324428;0.696656;,
2.540000;0.000000;1.115350;,
1.938948;2.324428;-0.890688;,
2.540000;0.000000;1.115350;,
-0.690824;2.324428;0.719860;,
-1.583985;0.000000;1.115350;,
1.902904;2.324428;0.696656;,
-1.583985;0.000000;1.115350;,
-0.715449;2.324428;-0.897879;,
-1.583985;0.000000;-1.284059;,
-0.690824;2.324428;0.719860;;

12; // 12 faces
3;0,1,2;,
3;1,0,3;,
3;4,5,6;,
3;5,4,7;,
3;8,9,10;,
3;9,8,11;,
3;12,13,14;,
3;13,12,15;,
3;16,17,18;,
3;17,16,19;,
3;20,21,22;,
3;21,20,23;;

MeshNormals {
24; // 24 normals
0.000000;-1.000000;0.000000;,
0.000000;-1.000000;0.000000;,
0.000000;-1.000000;0.000000;,
0.000000;-1.000000;0.000000;,
0.000000;1.000000;0.000000;,
0.000000;1.000000;0.000000;,
0.000000;1.000000;0.000000;,
0.000000;1.000000;0.000000;,
0.001378;0.164829;-0.986321;,
0.000000;0.166861;-0.985980;,
0.000865;0.165585;-0.986195;,
0.001378;0.164829;-0.986321;,
0.966159;0.257815;0.008211;,
0.964430;0.264338;0.000000;,

A light mapped box like mesh

24 Vertex Positions

There are actually only 8
unique vertex positions.
However, due to light
mapping, each vertex is split
three times for the three faces
sharing it.

12 triangle faces

Each face indexes into the
vertex array.

24 normals for each vertex

 167

0.966744;0.255505;0.011109;,
0.966159;0.257815;0.008211;,
0.004557;0.173885;0.984755;,
0.000000;0.167735;0.985832;,
0.002875;0.171617;0.985160;,
0.004557;0.173885;0.984755;,
-0.935226;0.354012;0.005265;,
-0.936743;0.350019;0.000000;,
-0.934617;0.355581;0.007338;,
-0.935226;0.354012;0.005265;;

12; // 12 faces
3;0,1,2;,
3;1,0,3;,
3;4,5,6;,
3;5,4,7;,
3;8,9,10;,
3;9,8,11;,
3;12,13,14;,
3;13,12,15;,
3;16,17,18;,
3;17,16,19;,
3;20,21,22;,
3;21,20,23;;
}
MeshMaterialList {
 1; // Number of unique materials
 12; // Number of faces
0,0,0,0,0,0,0,0,0,0,0,0;;
Material {
0.000000;0.000000;0.000000;1.000000;;
64000.0;
0.900000;0.900000;0.900000;;
1.000000;0.000000;0.000000;;
TextureFilename {"model/test/lightmap/0-ZHUA~1.dds";}
}
}// materials
MeshTextureCoords {
24; // 24 UV
1.000000;0.971927;,
0.034312;0.031192;,
0.993762;0.024954;,
0.031192;0.962569;,
0.031192;0.962569;,
0.993762;0.024954;,
1.000000;0.971927;,
0.034312;0.031192;,
0.232200;0.782655;,
0.702227;0.308705;,
0.761080;0.774808;,
0.257704;0.277317;,
0.392147;0.677684;,
0.587364;0.448217;,
0.609382;0.658112;,
0.379915;0.424975;,
0.232200;0.782655;,
0.702227;0.308705;,
0.761080;0.774808;,
0.257704;0.277317;,

Mesh materials

Currently, the original DirectX
template only supports a
single texture file name per-
vertex. However, we can
either encode the light map
file name into this texture file
name or derive from it.

24 UV coordinates

This is the first set of UV
coordinate for the diffuse
texture.

 168

0.392147;0.677684;,
0.587364;0.448217;,
0.609382;0.658112;,
0.379915;0.424975;;
}// UV
FVFData {
256; // FVF code
48;
1056325316,1052602860,
995417344,1035768352,
1056325316,1035768352,
995417344,1052602860,
1056551874,1053374800,
1008981770,1059832668,
1008981770,1053374800,
1056551874,1059832668,
1065185444,1060668198,
1057170974,1065185444,
1057170974,1060668198,
1065185444,1065185444,
1061833938,1038936608,
1057170974,1053103490,
1057170974,1038936608,
1061833938,1053103490,
1056551874,1060599939,
1008981770,1065117184,
1008981770,1060599939,
1056551874,1065117184,
1061929694,1053741612,
1057266730,1059870356,
1057266730,1053741612,
1061929694,1059870356;
}// FVF
}// mesh

FVF per vertex data

256 is the FVF code for TEX1
which means that the
following data will be an array
of (float, float) for each vertex.

We use the FVFData field to
store the 24 UV coordinates
for the light map. Data is
saved in DWORD type during
text-encoding. Although it is
difficult to read by human, it
can be parsed very fast by the
game engine.

One can also move other per-
vertex data to the FVFData
field to slightly shorten the
loading time of the mesh file.
This hold true for both text
and binary encoding.

11.3 Cubic Environment Mapping
Cubic environment mapping technique is widely used for efficiently rendering reflective or

semi-reflective surfaces in a static scene, such as the metallic reflections on the body of a
teapot or a car. In essence, environment mapping is a method of addressing texture maps
using a normalized vector. Hence, it can also be used to create many interesting user-defined
visual effects.

Unlike spherical mapping, cubic environment mapping can be generated on the flying
during game play. With hardware support, cubic environment mapping is now the preferred
environment mapping method for games.

There are already extensive articles talking about environment mapping, including the
DirectX SDK samples. We will not cover it in details. Instead we will only point out some
limitations and common mistakes during implementation.

Attention on plane surfaces

If the normals of the mesh faces do not vary much, such as on a plane surface, the surface
will map to a very small region on the environment map, resulting in terrible strench of the

 169

environment mapped textures. Special coding may alleviate the problem, but generally
speaking, we should avoid applying environment map on large plane surfaces.

Attention on cubic map resolution

There is no need to use high resolution texture for cubic environment map, because it is
mapped on a curved surface, making it hard to dinstinguish. But we need to enable mip-
mapping for the environment maps.

Obtaining the eye-reflection vector

Eye reflection vector is used to address the cubic map. Hence the eye reflection vector
should be generated in the same coordinate system as the one used during cubic environment
map generation. In most cases, we use the world coordinate system to generate the cubic
environment map and so does the eye reflection vector. The pixel and vertex shader code is
given below.
In Vertex shader
 if(g_bEnvironmentMap)
 {
 // Obtain the eye vector in world (cube) space
 float3 eyeVector = normalize(worldPos-g_EyePositionW);
 // Compute the reflection vector and save to tex1
 o.tex1 = normalize(reflect(eyeVector, worldNormal));
 }
In Pixel shader
 if(g_bEnvironmentMap)
 {
 half4 reflection = texCUBE(texCubeSampler, i.tex1);
 normalColor.xyz = lerp(normalColor.rgb, reflection.rgb, g_bReflectFactor);
 }

11.4 Billboarding
Billboarding is used for rendering objects which are always facing the camera. Sometimes,
we can rotate all three axes to oriente a mesh to the camera, as we did for particles in the
particle system. Sometimes, we only rotate the Y axis (or the world up axis) to orient a mesh
to the camera, such as billboarded trees, grasses, or even 3D objects, see Figure 11.9.

 170

Figure 11.9 Billboaded trees

The downside of billboarding is that it does not look real at close distance and that dynamic
shadows and physics does not apply to them. Billboading is rarely used for big objects in
games now, but is still widely used in other virtual reality applications.

11.5 Reflective Surfaces
Reflective or semi-reflective surfaces, such as floors, mirrors, or still water can be achieved

using the same method as we did with the ocean surface. The only difference is that we need
to share a fixed number of reflection maps for all reflective plane objects in the scene. For
example, if there are many reflective mesh faces at different height levels, we can choose to
render reflection maps for the closest visible surfaces.

Figure 11.10 shows an indoor room with semi-reflective floors rendered in ParaEngine, for
a VR application. The building in the figure has many floors, however, the camera is only
closet to the current floor; and so only the reflective surface on the current floor needs to be
rendered.

 171

Figure 11.10 Reflective surface

11.6 Local Lights
Local lights are lights which only affect a local region of the scene. A local light may be a

point light or a spot light. All local lights have a radius property. A game world may contain
any number of local lights. However, for performance reasons, there can only be very limited
number of active lights for a given scene geometry. For each scene geometry, such as a
character or a mesh, the game engine needs to automatically select the best lights which are
affecting (near) it. The number of best lights can be limited to some predefined value, such as
4 or 8. The light system works with both fixed function pipeline and programmable pipeline.
See Figure 11.11.

Light Manager

Light
Light
Light

…
Light

Light pool

Render pipeline

object pool

object
object
object

…
object

For each object, find the
lights near it

Render object
with lights

Light

Add and remove lights;
only keeping those in

the view frustum

 172

Figure 11.11 Local Light and render pipeline

Figure 11.12 Local lights example in ParaEngine

Figure 11.12 shows an example of local lights in ParaEngine. We will explain the light effects
in the figure. There is one mesh object, two characters and two local lights in the scene. The
mesh object is a bar with tables and props. The shadows on the wall and the floor are baked in
texture. Two dog characters are standing at the side of two tables, on top of which two local
lights are positioned. One is yellow, the other is green. We have marked the light positions
using two crystal helper meshes. The bar mesh is lit by the two local lights, as shown by the
color of the tables in it. The two mobile characters are lit by their closest local light
respectively. So one is under the range of the yellow light, and the other is under the influence
of the green light.

11.7 Full Screen Glow Effect
Full screen glow effect is an image space technique to give the entire scene a fancy look.
Glow effect is both very simple and very universal, the latter means that it can be applied to
any stage of the rendering pipeline. There is a paper explaining it very well. It is Real-Time
Glow by Greg James and John O’Rorke on Gamasutra, May 26, 2004. Please take a good at
the Figure 11.13 for the visual difference before and after full screen glow effect is applied.

 173

 Full screen glow is a simple version of those various visual effects created by high dynamic
range lighting (HDR). The good news is that it can work with hardware multi-sampling (i.e.
hardware anti-aliasing) and it does not even require a floating point render target to achieve
its effect. The basic idea of full screen glow is given directed in the following steps. We will
see later that all steps can be fit into one simple HLSL shader technique with multiple render
passes.

Because it is an image space technique, we assume one already has the scene rendered in
the back buffer or in whatever other render-targets.

- Copy the data from the current render target (in most cases, the back buffer) to a
temporary texture render target of a smaller size (usually half the original size).

- Blur this texture image using a 5*5 or 9*9 filter. Here we use a Gaussian filter, and
blur horizontally first and then vertically.

- Finally, blend this blurred image with the one on the original render target, and we are
done.

 174

Top is the final image with glow effect; bottom one is original image without glow effect.

Figure 11.13 Full screen glow effect

Figure 11.14 shows the intermediary images generated between the two in Figure 11.13.

Image after
horizontal blur

(right one)

 175

Image after
horizontal and

vertical blur, this
image is blended
with the original

image to create the
final result
(left one)

Figure 11.14 Intermediary images in full screen glow effect

11.7.1 Code
Here is the shader code to perform those steps. Please note that the first pass in the

technique is not necessary if one does not encode the glow factor in to the alpha channel of
the render target, as discussed in the paper given at the start of this section.
// TexelIncrement should be set to 1/RRT_width and 1/RTT_height respectively for the two seperate
convolution blur passes.
const float2 TexelIncrements : ConstVector0;
// Glowness controls the intensity of the glow. 0 means no glow, 1 is normal glow, 3 is three times glow.
const float4 Glowness : ConstVector1;

// texture 0
texture GlowMap0 : TEXTURE;
sampler GlowSamp1 : register(s0) = sampler_state
{
 texture = <GlowMap0>;
 AddressU = CLAMP;
 AddressV = CLAMP;
 AddressW = CLAMP;
 MIPFILTER = NONE;
 MINFILTER = LINEAR;
 MAGFILTER = LINEAR;
};

// texture 1
texture GlowMap1 : TEXTURE;
sampler GlowSamp2 : register(s1) = sampler_state
{
 texture = <GlowMap1>;
 AddressU = CLAMP;
 AddressV = CLAMP;
 AddressW = CLAMP;
 MIPFILTER = NONE;
 MINFILTER = LINEAR;
 MAGFILTER = LINEAR;
};

 176

struct VS_OUTPUT_BLUR
{
 float4 Position : POSITION;
 float4 Diffuse : COLOR0;
 float4 TexCoord0 : TEXCOORD0;
 float4 TexCoord1 : TEXCOORD1;
 float4 TexCoord2 : TEXCOORD2;
 float4 TexCoord3 : TEXCOORD3;
 float4 TexCoord4 : TEXCOORD4;
 float4 TexCoord5 : TEXCOORD5;
 float4 TexCoord6 : TEXCOORD6;
 float4 TexCoord7 : TEXCOORD7;
 float4 TexCoord8 : COLOR1;
};

struct VS_OUTPUT
{
 float4 Position : POSITION;
 float4 Diffuse : COLOR0;
 float4 TexCoord0 : TEXCOORD0;
};

VS_OUTPUT VS_GlowSource(float3 Position : POSITION,
 float3 TexCoord : TEXCOORD0)
{
 VS_OUTPUT OUT = (VS_OUTPUT)0;
 OUT.Position = float4(Position, 1);
 OUT.TexCoord0 = float4(TexCoord, 1);
 return OUT;
}

VS_OUTPUT VS_Quad(float3 Position : POSITION,
 float3 TexCoord : TEXCOORD0)
{
 VS_OUTPUT OUT = (VS_OUTPUT)0;
 OUT.Position = float4(Position, 1);
 OUT.TexCoord0 = float4(TexCoord, 1);
 return OUT;
}

VS_OUTPUT_BLUR VS_Quad_Vertical_5tap(float3 Position : POSITION,
 float3 TexCoord : TEXCOORD0)
{
 VS_OUTPUT_BLUR OUT = (VS_OUTPUT_BLUR)0;
 OUT.Position = float4(Position, 1);

 float3 Coord = float3(TexCoord.x , TexCoord.y , 1);
 float TexelIncrement = TexelIncrements.y;
 OUT.TexCoord0 = float4(Coord.x, Coord.y + TexelIncrement, TexCoord.z, 1);
 OUT.TexCoord1 = float4(Coord.x, Coord.y + TexelIncrement * 2, TexCoord.z, 1);
 OUT.TexCoord2 = float4(Coord.x, Coord.y, TexCoord.z, 1);
 OUT.TexCoord3 = float4(Coord.x, Coord.y - TexelIncrement, TexCoord.z, 1);
 OUT.TexCoord4 = float4(Coord.x, Coord.y - TexelIncrement * 2, TexCoord.z, 1);
 return OUT;
}

VS_OUTPUT_BLUR VS_Quad_Horizontal_5tap(float3 Position : POSITION,
 float3 TexCoord : TEXCOORD0)
{

 177

 VS_OUTPUT_BLUR OUT = (VS_OUTPUT_BLUR)0;
 OUT.Position = float4(Position, 1);

 float3 Coord = float3(TexCoord.x, TexCoord.y, 1);
 float TexelIncrement = TexelIncrements.x;
 OUT.TexCoord0 = float4(Coord.x + TexelIncrement, Coord.y, TexCoord.z, 1);
 OUT.TexCoord1 = float4(Coord.x + TexelIncrement * 2, Coord.y, TexCoord.z, 1);
 OUT.TexCoord2 = float4(Coord.x, Coord.y, TexCoord.z, 1);
 OUT.TexCoord3 = float4(Coord.x - TexelIncrement, Coord.y, TexCoord.z, 1);
 OUT.TexCoord4 = float4(Coord.x - TexelIncrement * 2, Coord.y, TexCoord.z, 1);
 return OUT;
}

//
//
// Pixel Shader
//
//

float4 PS_GlowSource(VS_OUTPUT IN) : COLOR
{
 float4 tex = tex2D(GlowSamp1, float2(IN.TexCoord0.x, IN.TexCoord0.y));
 tex.xyz = tex.xyz * tex.w;
 return tex;
}

// For two-pass blur, we have chosen to do the horizontal blur FIRST. The
// vertical pass includes a post-blur scale factor.

// Relative filter weights indexed by distance from "home" texel
// This set for 5-texel sampling
#define WT5_0 1.0
#define WT5_1 0.8
#define WT5_2 0.4

#define WT5_NORMALIZE (WT5_0+2.0*(WT5_1+WT5_2))

float4 PS_Blur_Horizontal_5tap(VS_OUTPUT_BLUR IN) : COLOR
{
 float4 OutCol = tex2D(GlowSamp1, IN.TexCoord0) * (WT5_1/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp1, IN.TexCoord1) * (WT5_2/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp1, IN.TexCoord2) * (WT5_0/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp1, IN.TexCoord3) * (WT5_1/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp1, IN.TexCoord4) * (WT5_2/WT5_NORMALIZE);
 return OutCol;
}

float4 PS_Blur_Vertical_5tap(VS_OUTPUT_BLUR IN) : COLOR
{
 float4 OutCol = tex2D(GlowSamp2, IN.TexCoord0) * (WT5_1/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp2, IN.TexCoord1) * (WT5_2/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp2, IN.TexCoord2) * (WT5_0/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp2, IN.TexCoord3) * (WT5_1/WT5_NORMALIZE);
 OutCol += tex2D(GlowSamp2, IN.TexCoord4) * (WT5_2/WT5_NORMALIZE);
 return float4(Glowness.xyz*OutCol.xyz, Glowness.w);
}

// add glow on top of model

 178

float4 PS_GlowPass(VS_OUTPUT IN) : COLOR
{
 float4 tex = tex2D(GlowSamp1, float2(IN.TexCoord0.x, IN.TexCoord0.y));
 return tex;
}
technique Glow_5Tap
{
 pass GlowSourcePass
 {
 cullmode = none;
 ZEnable = false;
 ZWriteEnable = false;
 AlphaBlendEnable = false;
 AlphaTestEnable = false;
 FogEnable = False;
 VertexShader = compile vs_2_0 VS_GlowSource();
 PixelShader = compile ps_2_0 PS_GlowSource();
 }
 pass BlurGlowBuffer_Horz
 {
 cullmode = none;
 ZEnable = false;
 ZWriteEnable = false;
 AlphaBlendEnable = false;
 AlphaTestEnable = false;
 FogEnable = False;
 VertexShader = compile vs_2_0 VS_Quad_Horizontal_5tap();
 PixelShader = compile ps_2_0 PS_Blur_Horizontal_5tap();
 }
 pass BlurGlowBuffer_Vert
 {
 cullmode = none;
 ZEnable = false;
 ZWriteEnable = false;
 AlphaBlendEnable = true;
 SrcBlend = one;
 DestBlend = zero;
 AlphaTestEnable = false;
 FogEnable = False;
 VertexShader = compile vs_2_0 VS_Quad_Vertical_5tap();
 PixelShader = compile ps_2_0 PS_Blur_Vertical_5tap();
 }
 pass GlowPass
 {
 cullmode = none;
 ZEnable = false;
 ZWriteEnable = false;
 AlphaBlendEnable = true;
 SrcBlend = one;
 DestBlend = SRCALPHA;
 AlphaTestEnable = false;
 FogEnable = False;
 VertexShader = compile vs_1_1 VS_Quad();
 PixelShader = compile ps_2_0 PS_GlowPass();
 }
}

 179

11.7.2 Discussion
Full screen glow effect can also be used for some other effects in the game engine, such as the
under water effect. When the camera is under water, we can turn on the full screen effect, and
adjust the blending factor so that the blurred image becomes dominant in the final image.
Figure 11.15 shows the result of the glow effect which makes the underwater scene more
convincing.

 with glow effect

 without glow effect.

Figure 11.15 Under water effect using full screen glow

 180

11.8 Fog Effect
Fog effect is mainly used for outdoor scenes to fade objects in to the background color. Fog
effect is only two lines of render state codes in fixed function pipeline and just a few lines of
code in HLSL shader program if we are using programmable pipeline. The focus of this
section, however, is on how to make fog looks right in a game scene, which goes beyond the
scope of implementing fog effect itself. For example, the following situations must be dealt
with careful in order to make the scene stay in harmony with the global fog effect. (1) Fog
and the background sky (2) Fog with global sun lighting (3) Fog underwater (4) Fog with
large mesh objects.

11.8.1 Fog and Sky
In a game scene, the distant fog color must blend into the background sky color. In this
section, we will describe a simple way to blend distant fog color with the sky background.
The result can be previewed in Figure 11.16.

In a game engine, the sky background is rendered first as an ordinary mesh object with Z-
buffer disabled and origin fixed at the current camera eye position. The sky mesh object is
usually a box, a dome or a plane, depending on the game requirement. The size of the sky
mesh is arbitrary (unit size is fine), but since it moves with the camera, it will give the illusion
of a sky background in the infinite distance. After rendering the sky, we retrieve the current
distant fog color and blend it to the sky background. The blending factor should be degrading
in the vertical direction until the fog color fully fades into the background sky color.

No fog, No sky No fog, No fog blend on sky

 181

No fog, Sky with distant fog blend Fog and Sky

Figure 11.16 Fog and Sky using Programmable Pipeline

11.8.1.1 Programmable Pipeline Implementation
This effect can be done very easily in shader. The following code shows the sky shader. In
this shader, per-pixel fog is used to paint the fog color on the sky model. Yet, instead of using
the camera to vertex distance to generate the fog factor, we will use the y (up) component of
the sky vertex in object space to generate it.
Interpolants vertexShader(float4 Pos : POSITION,
 float3 Norm : NORMAL,
 float2 Tex : TEXCOORD0)
{
 Interpolants o = (Interpolants)0;
 // screen space position
 o.positionSS = mul(Pos, mWorldViewProj);
 o.colorDiffuse = colorAmbient+colorDiffuse*sun_color*g_skycolorfactor;
 o.tex.xy = Tex;
 o.tex.z = Pos.y; // y component in object space
 return o;
}
half CalcFogFactor(half d)
{
 half fogCoeff = 0;
 fogCoeff = (d - g_fogParam.x)/g_fogParam.y;
 return saturate(fogCoeff);
}

half4 pixelShader(Interpolants i) : COLOR
{
 half4 o;
 half4 normalColor = tex2D(tex0Sampler, i.tex.xy);
 normalColor.xyz = normalColor.xyz*i.colorDiffuse;

 if(g_bEnableFog)
 {
 //calculate the fog factor

 182

 half fog = CalcFogFactor(i.tex.z);
 o.xyz = lerp(g_fogColor.xyz, normalColor.xyz, fog);
 o.w = 1.f;//lerp(normalColor.w, 0, fog);
 }
 else
 {
 o = normalColor;
 }
 return o;
}
technique SkyMesh
{
 pass P0
 {
 // shaders
 VertexShader = compile vs_2_a vertexShader();
 PixelShader = compile ps_2_a pixelShader();

 FogEnable = false;
 }
}

11.8.1.2 Fixed Function Pipelined Implementation
If we are building the sky mesh procedurally in the game engine, we can achieve the same
effect by encoding the fog factor in the alpha component of vertex color and blend the fog
color using this alpha. However, if we are dealing with arbitrary and animated mesh, this
method does not work. But we can still use the following method to procedurally build a fog
mesh, render and then blend it to the sky background. This fog mesh is shown in Figure 11.17.
Triangular strips are used to build the four sides of the fog box, the vertex color at its base has
alpha 1.0 which is the distant fog color; whereas the color on its top has alpha 0.0 which will
completely blend into the static sky mesh background. Triangular fans are used to build the
bottom planes. The center vertex is moved downward for some distance to avoid collision
with the camera eye. To make things looks real, the fog color for blending at the far end is
brightened by some small factor say 1.1, so that viewers will be able to distinguish the
silhouette of an appearing distant object. In case, a reviewer is looking downward from a
mountain, the center point of the triangular fan has the exact color of the fog.

 183

Figure 11.17 Fog color blending

Figure 11.18 shows the implementation result in ParaEngine. We can observe how textures on
the sky mesh, the fog, the terrain and other 3D objects coexist in a single scene.

Figure 11.18 Fog implementation result

11.8.2 Fog with Global Sun Lighting
The color of the fog may need to change according to the time of day. In other word, it should
change with the global sun lighting parameters. This can be done but using the dot product of
the original fog color and a fog factor, which is adjusted by the ambient color of the scene.

Camera Eye Position

Original fog color, alpha=1

Slightly brightened fog color, alpha

Slightly brightened fog color, alpha=0

Front view:

Top view:

Sky mesh Blending

 184

11.8.3 Fog underwater
When the camera is under water, we will see a blurred and dimmed underwater world. In the
Ocean chapter, we used a full screen quad to dim the entire screen. The color of this quad
should be close to the color of the fog to make the underwater effect looks natural. See Figure
11.15.

11.8.4 Fog with Large Mesh Objects
Large or medium sized mesh object can not fully disappear into the distant fog color on the
sky mesh. As shown in Figure 11.19, the left image leaves an ugly silhouette filled with
distant fog color, when the mesh is out of the camera view frustum or culled by the rendering
pipeline when still inside the view frustum, its silhouette will suddenly disappear, which
makes very abrupt changes to the graphics. The right image shows a simple remedy to this
fog side effect.

Ugly silhouette filled with distant fog color Nicely blended into the background

Figure 11.19 Fog with large mesh object

In short, it blends the color of the mesh in to the background according to its distance to the
camera on a per-pixel basis. This blending factor can be a simple function of the fog factor, as
shown in the following pixel shader code snippet.

//calculate the fog and blending factor, o is the output color
half fog = i.tex.z;
o.xyz = lerp(normalColor.xyz, g_fogColor.xyz, fog);
half BlendingFactor = saturate((fog-0.8)*16);
o.w = lerp(normalColor.w, 0, BlendingFactor);

11.9 Conclusion
In this chapter, we have shown several common effect techniques which make the 3D world
more realistic. With programmable pipeline, we can now use and play with more special
effects in a game than ever before. There are improved technologies that keep emerging every
month. We highly advise you to stay connected with the online community, such as the
developer websites maintained by NVIDIA and ATI. Another advice to lone wolf engine
programmers is that there is actually no need to put too much effect to it until the release time,

 185

since there are tons of other things to care about in order to make a game engine usable by
others.

 186

Chapter 12 Character and Animation

One of the most difficult components in a game engine is character animation. Characters
are the most eye-catching and interactive elements in a game. For example, we would like a
character’s appearance to be customizable; we would like to control the body parts of a
character separately without compromising the natural movement of the character; and we
would like the character to act autonomously and naturally according to very few external
commands and complex physical environment, etc. None of these things are simple to
implement, and they usually require taking both rendering and simulation in to account.

Chapter 12, Chapter 13 and Chapter 14 all talk about characters in a game engine. In this
chapter, we will explain the basics of a character animation system, help developers to build
up a basic character animation framework, and give the implementation clues to add today’s
popular animation features.

12.1 Foundation

12.1.1 Background of Motion Synthesis
When animating a character, there are three kinds of animations which are usually dealt

with separately in a game engine system: (1) local animation, which deals with the motion of
its major skeleton (including its global speed), (2) global animation, which deals with the
position and orientation of the character in the scene, (3) add-on animation, which includes
facial animation and physically simulated animation of the hair, cloth, smoke, etc. This
chapter mainly deals with the local animation. Local animation is usually affected by the
status of the character (such as a goal in its mind) and its perceptible vicinity (such as terrain,
water, sounds, etc).

The motion of a certain human character can be formulated by a set of independent
functions of time, i.e. 0{ () | 1,2,..., ; [,]}nf t n N t T= ∈ +∞ . These functions or variables
typically control over 15 movable body parts arranged hierarchically, which together form a
parameter space of possible configurations or poses. For a typical animated human character,
the dimension of the configuration is round 50, excluding degrees of freedom in the face and
fingers. Given one such configuration at a specified time, it is possible to render it at real-time
with the support of current graphic hardware. Hence, the problem of human animation is
reduced to:

Given 0{ () | 1,2,..., ; [,]}n cf t n N t T T= ∈ and the environment W (or workspace in robotics),

Compute { () | 1,2,..., ; [,]}n c cf t n N t T T T= ∈ + Δ which should be a realistic human
animation.

The most commonly used motion generation technique is to simply play back previously
stored motion clips (or short sequences of{ ()}nf t). The clips may be key-framed or motion
captured, which are used later to animate a character. Real-time animation is constructed by
blending the end of one motion clip to the start of the next one. To add flexibility, joint
trajectories are interpolated or extrapolated in the time domain. In practice, however, they are
only applied to situations involving minor changes to the original clips. Significant changes

 187

typically lead to unrealistic or invalid motions. In fact, over 90% percent character animations
in 3D computer games today are generated by motion blending from a bank of pre-made
animation sequences. We will talk about primarily this method in this chapter.

Alternatively, flexibility can be gained by adopting kinematic models that use exact,
analytic equations to quickly generate motions in a parameterized fashion. Forward and
inverse kinematic models have been designed for synthesizing walking motions for human
figures. There are also several sophisticated combined methods to animate human figures,
which generate natural and wise motions (also motion path planning) in a complex
environment. Motions generated from these methods exhibit varying degrees of realism and
flexibility. However, most of these works are at research level, but we believe that character
animation in computer games will be even more intelligent than that in the near future.

12.1.2 Introduction to Skeletal Animation
Skeletal Animation is a technique used to pose character models. A skeleton, which is a

hierarchy of bones, is embedded in, and attached to a character model. Once the skeleton is
attached, the character model becomes the skin. Posing the skeleton causes the skin to be
deformed to match the position of the underlying bones. The beauty of skeletal animation is
that (1) all animation data are encoded in bones (2) there is just one piece of mesh (skin),
which is shared by all animation sequences (3) there are no seams on the skin after
deformation by the bones (4) bone animations are reusable for different skins.

Besides skeletal animation, previous 3D games have used vertex animation and joint
animation. In vertex animation, animation data are encoded in each vertex as position keys at
each frame. In joint animation, a character mesh is divided in to disjoint body parts and
animated individually, which usually create seams or overlaps between disjoint mesh parts
during animation. Present day 3D computer games use skeletal animation technique for nearly
all kinds of animations. We will only introduce skeletal animation is this chapter. We assume
that you already have some non-qualitative knowledge of skeletal animation. And it is even
better if you already know how to build skeletal animation models in 3d content creation tools,
such as 3dsmax and Maya.

12.1.2.1 Animation Data in Skeletal Animation
There are two sets of data in order to construct a skeletal animation. One is a static mesh,

which is a collection of vertices { vn } in the initial pose. Another is bones, which is a
collection of nodes {bn} containing the node animation (trajectory) as well as a reference to
its parent node. The reference in the bones describes the hierarchy of bone structures, as
shown in Figure 12.1.

 188

Figure 12.1 Bone, skin and bone hierarchy

The bone’s animation data is stored in the form of scale (S), rotation (R) and translation (T)
keys relative to its parent bone. We call it SRT keys for short. The animation data used in
skeletal animation are usually read from model files, which in turn are exported from 3d
content creation tools, such as 3dsmax and Maya. Obtaining the mesh and animation data
from its authoring environment is another topic which is discussed in detail in the next
chapter. In this chapter, we are primarily concerned with synthesizing and rendering character
motions from these pre-made animation data.

Now we are going to define the precise animation data format used in ParaEngine. It should
be pointed out that there are still several slightly different ways to store animation data. What
will be proposed next is just one of them, which we believe is both efficient and very general
for skeletal animation.

A bone is represented by (pivot, parent, {scale}, {rot}, {trans}), where pivot is a constant
3D vector denoting the pivot point of the bone; parent is the index of the parent bone; {scale}
is a set of scale keys for scaling; {rot} is a set of 4D quaternion keys for rotation; {trans} is a
set of 3D vector keys for translation. One of the most important function on {scale}, {rot},
{trans} (or SRT) animation keys, is to query for the key value at a given time t. However, the
SRT keys are built from discrete samples from a continuous function of time. In order to
reconstruct the function value at any point in the continuous animation time range, we need to
interpolate keys. For simplicity, we only consider linear interpolation between two adjacent
keys.

 189

 k k k k+1

k k+1 k

f(t)=lerp(f(T), f(T), r)=(f(T) (1.0 - r) + f(T) r)
where r=(t-T) /(T T), and 0 1r

× ×
− ≤ <

The above interpolation can be used to interpolate the scale and translation keys linearly.
For quaternion keys, we use the slerp function, which does a spherical linear interpolation
between two quaternions k k+1f(T), f(T) by an amount r. See below. The code is given in the
code section.

 k k+1 k k+1

k k+1 k k+1 k

sin((1)) sin()f(t)= (f(T), f(T),) f(T) f(T)
sin sin

where Ω is angle between f(T) and f(T), r=(t-T) /(T T), and 0 1

r rslerp r

r

− Ω Ω
= +

Ω Ω
− ≤ <

Optionally, each set of keys may contain a field specifying the interpolation method used,
which is also exported from the 3d content creation tool. For other interpolation methods,
such as HERMITE interpolation, additional information such as the in/out tangent must also
be available in each key. So far, linearly interpolation is good enough for most game
animations.

12.1.2.2 Calculating Bone Transformation Matrix
For convenience of explanation, we use P, Ms(t), Mr(t), Mt(t) to denote the corresponding

homogenous 4x4 matrix of the pivot point translation and the SRT keys at time t for a given
bone. (P is translation matrix from world origin to pivot point.)

Let rM(t) denotes the relative transformation matrix, which is a matrix that brings a bone
from its parent bone pose to the bone pose at time t. Let M(t) denotes the bone transformation
matrix of a bone at time t. The bone transformation matrix is a matrix that brings a bone from
its initial bone pose (which is the same pose of the static mesh) to the bone pose at time t.

The relative transformation matrix of the bone at time t can be computed as below. All
matrices are row major in this chapter.

 -1rM(t)=P Ps r tM M M× × × ×

The bone transformation matrix of a bone at time t can be computed by multiplying the
relative bone matrix with the bone transformation matrix of its parent. If we do this
recursively, we have:

p p pp

p root i root root

M(t)=rM(t) M (t) rM(t) rM (t) M (t) ...

rM(t) rM (t) ... M (t)= rM (t), where root bone M (t)=rM (t)

× = × × =

= × × × ∏

rMp(t) and Mp(t) denotes the parent bone’s relative transformation matrix and the bone
transformation matrix, and so on.

For each bone at time t, we can compute its bone transformation matrix as described above.
Hence we can obtain all the bone transformation matrices at time t, and then we can use them
to transform mesh vertices to get the mesh pose at time t as described in the following section.

 190

12.1.2.3 Vertex Transformation
For each vertex in the initial mesh pose, the following information is stored.

struct ModelVertex {
 D3DXVECTOR3 pos; // 3D position
 byte weights[4]; // bone weight of up to four bones
 byte bones[4]; // bone index of up to four bones
 D3DXVECTOR3 normal; // vertex normals
 D3DXVECTOR2 texcoords; // texture coordinates
 DWORD color0; // always 0,0 if they are unused. Or they can be the second UV set.
 DWORD color1;
};

What we care about now are three parameters: pos, weights and bones. Pos is the 3D
position of the mesh vertex in the initial mesh pose. Bones [4] are the index of up to four
bones to which this mesh vertex is bound. Weight[4] is the bounding weights of the
corresponding bone. Suppose the bounding weight of the ith bone for the vertex is Wi and the
bone transformation matrix of the ith bone at time t is Mi(t), then the world position v(t) of the
vertex at time t is given below.

n n

i=0 i=0

v(t)= (()), where 1 and n is the total number of bonesi i iM t W W× =∑ ∑

Because most Wi is zero for a given vertex, we only keep the index and weight of up to
four most important bones per vertex.

For each vertex in the mesh at time t, we use the above method to calculate its position and
render the mesh; we do this per frame with a slight increase on time t and it becomes an
animation. For character meshes with normals, we need to exclude the position and scale keys
when building the transform matrix. Usually we build a separate bone rotation transformation
matrix for transforming vertex normals.

So far, we have shown all the steps to animate a mesh on a given animation range using
skeletal animation. Next we will show how to motion blend two animation sequences.

12.1.3 Motion Blending
Motion blending is the most frequently used motion synthesis techniques in today’s

computer games. For a typical game character, artists usually make 10 to 100 animation
sequences. They form a bank of motion clips. Motion blending is a technique to concatenate
or blend one motion clip to another or to itself. Some common situation of motion blending in
computer games are (1) blending the end of one animation sequence to the start of the same
animation sequence, such as a looped standing or walking sequence (2) blending one
animation sequence at its current play position to the start of another sequence, such as when
a character changes from standing to running. In these situations full body motion blending is
used; in modern computer game engine, developers may choose to blend only part of the
character body to another animation sequence, such as separating the upper body from the
lower body. In the latter case, we can achieve more versatile animations, such as walking
while waving hands, etc.

The basic implementation of motion blending is to compute two set of mesh poses
({v1n}and {v2n}) and use weights to (linearly) interpolate between the two poses. In other

 191

words, for each vertex, let v1 and v2 denotes its two poses at two different times, and let w
denotes the blending weight (a scaler). The final blended vertex v is computed as below.

 v1 (1.0- w) + v2 w blendedv = × ×

Because this is a linear transform, the result is equivalent to blend v1 and v2’s bone
transformation matrix. In other words, for each bone, we calculate the blended bone
transformation matrix Mblended.

{ }

1 2

1 2

1 2

() (1.0 -) ()
 (1.0 -)

we have (1.0 -)

blended

blended

blended

v v M w v M w
v M w M w
v M
M M w M w

= × × + × ×

= × × + ×

= ×
= × + ×

One way of choosing blending poses and their blending weight is given below. Suppose at
time T, we want to change animation from animation sequence 1 to sequence 2 and the
blending time is N seconds (such as N=0.3). In such situation, the mesh pose in sequence 1 at
time T is used as the first blending pose in the blending operation for the next N seconds and
the poses of sequence 2 during the time [T, T+N] are used as the second pose in the blending
operation. The blending weight w during the time [T, T+N] linearly changes from 1 to 0. To
use this blending method, the last played frame in sequence 1 is blended with sequence 2 until
the blending factor becomes 0. See Figure 12.2. The same rule applies when sequence 1 and 2
are the same sequence.

Figure 12.2 Blending poses and weight choice

Figure 12.3 shows the implementation result in ParaEngine. In the figure, the animal
character’s standing animation is blended to the running animation sequence, as the user
commands it to run. The animation snap shot is taken at very short interval.

Sequence 1

T

Sequence 2

Blending weight: 1 0

 192

Pose1:Standing animation

t=T

Pose2:Running animation

t=T

Blending Weight =1.0

Pose1:Standing animation

t=T

Pose2:Running animation

t=T+0.1s

Blending Weight =0.66

Pose1:Standing animation

t=T

Pose2:Running animation

t=T+0.2s

Blending Weight =0.33

Pose1:Standing animation

t=T

Pose2:Running animation

t=T+0.3s

Blending Weight =0

 193

Figure 12.3 Motion Blending Sample

12.1.4 Character State Manager
With motion blending, we are able to play a looped animation or smoothly change

animation from one animation sequence to another. But we have not discussed the module
which controls when, and how motion blending should be applied on a given character. A
simple animation system can directly map high-level character commands, such as walk, stop,
attack, etc to motion blending commands in the animation system. This works if there are
only a few animation sequences and a few sequence combinations; yet, in an action RPG
game, a character may have over a hundred of short animation sequences. A single command
may trigger a series of animation sequences to be played and blended according to the state of
the character. For example, consider the scenario when a character jumps down from a high
land, safely landed, and then runs in to a water pool, it swims across the water and climbs up
to the land. During this process, the user may just be holding the forward action key, yet the
character must switch between various animation sequences in order to perform these actions.

To achieve this functionality, we use another logic layer called character state manager to
manage motion blending in the animation system. The character state manager is a variant
finite state machine simulating the low level behavior logics of a character.

12.1.4.1 Finite State Machine
A finite state machine (FSM) is a model of computation consisting of a set of states, a start

state, an input alphabet, and a transition function that maps input symbols and current states to
a next state. Computation begins in the start state with an input string. It changes to new states
depending on the transition function. There are many variants, for instance, machines having
actions (outputs) associated with transitions (Mealy machine) or states (Moore machine),
multiple start states, transitions conditioned on no input symbol (a null) or more than one
transition for a given symbol and state (nondeterministic finite state machine), one or more
states designated as accepting states (recognizer), etc.

12.1.4.2 Character State Manager
In ParaEngine, we use a state stack and a number of global states to present the state of the

character. The following state may appear in the state stack, such as:
enum BipedState{
 STATE_MOVING = 0,
 STATE_WALK_FORWORD,
 STATE_RUN_FORWORD,
 STATE_WALK_LEFT,
 STATE_WALK_RIGHT,
 STATE_WALK_BACKWORD,
 STATE_WALK_POINT,
 STATE_SWIM_FORWORD,
 STATE_SWIM_LEFT,
 STATE_SWIM_RIGHT,
 STATE_SWIM_BACKWORD,
 STATE_STANDING = 100, // without speed
 STATE_IN_WATER, // under or in water

 194

 STATE_JUMP_IN_AIR, // in air
 STATE_JUMP_START,
 STATE_JUMP_END,
 STATE_STAND,
 STATE_TURNING,
 STATE_ATTACK,
 STATE_ATTACK1,
 STATE_ATTACK2,
 STATE_MOUNT, // mount on target
 STATE_DANCE
//… some are ignored
 };

The global states include things like whether it is running or walking, whether it is mounted,
a target position and facing, a timer, and some other miscellaneous states. The character state
manager also takes a variety of action symbols as input, such as:
enum ActionSymbols{
 S_STANDING = 0, /// ensure the biped has no speed
 S_IN_WATER, /// make sure that the biped is in water
 S_ON_FEET, /// make sure that the biped is on land and on its feet
 POP_ACTION, /// pop the current action
 S_STAND,
 S_WALK_FORWORD,
 S_RUN_FORWORD,
 S_WALK_LEFT,
 S_WALK_RIGHT,
 S_WALK_POINT, // walking to a point
 S_TURNING,
 S_WALK_BACKWORD,
 S_SWIM_FORWORD,
 S_SWIM_LEFT,
 S_SWIM_RIGHT,
 S_SWIM_BACKWORD,
 S_JUMP_START,
 S_JUMP_IN_AIR, // not used.
 S_JUMP_END,
 S_MOUNT,
 S_FALLDOWN,
 S_ATTACK,
 S_ATTACK1,
 S_ATTACK2,
 S_DANCE,
 S_ACTIONKEY, // perform the action in the action key, immediately.
//… some are ignored
 S_NONE
 };

In the simulation of a single frame, a number of places may feed input in to the character
state manager, such as the character physics simulation module, the user input module, the
script module, the AI modules, etc. The character state manager has an update() function
which is called just before a character model is animated, in which we can hard-code the state
transition function. The state transition function will change the character state and produce
the proper animation sequence to play next from all input action symbols in that frame; hence
when the character model is animated, it knows which animation sequence to play and how to
motion blend it. Some code sample can be found in the code section.

 195

12.1.5 Attachment and Custom Appearance
Nowadays, players can customize the appearance of their avatars in computer games, such

as changing the hair style, skin color, wearing many different kinds of clothes, handling
different weapons, etc. These effects are achieved by a mixture of the following methods

(1) Dynamically compose the character’s model texture from a collection of texture files
according to the user selection. Different skin colors, eye colors, etc, are achieved by
this method. Different clothes on a character body may also be achieved in this way.

(2) Hide and show geometry sets in the character model according to user selection. For
example, a character model may contain geometry sets for all supported hair styles,
while it only shows the one selected by the user at render time. For another example,
a character may have a robe geometry which is only shown when the character is
wearing a robe.

(3) Textures of some geometries can be replaced by the one selected by the user. This is
similar to the first one; but it does not require dynamically composing texture object,
which has some computation overhead.

(4) Attach external mesh objects to bones of the main character. Weapons, irregular
shaped armories, etc are usually achieved in this way.

(5) Use a different character model. One can not change a male into a female from the
above methods; hence, it is better to use a completely different model if we can not
customize it.

Managing character appearance might require a light-weight database system, because we
need to keep additional information for every attachable mesh object and every character
mesh. For example, for each attachable mesh, such as a red robe, we need to know which
geometry sets (geosets) on the main character model need to be displayed when the robe is
attached and we also need to know if the red robe requires that some replaceable textures on
the character body also be changed to some pre-designed textures, so that they match the
color of the robe. If there are thousands of attachable models in a game, using a database to
store the additional information is a good choice.

 In ParaEngine, we use a data provider class called CharacterDB to interface the game
engine’s character animation system to the character database. For example, the database
provider class may expose the following query functions to the animation system.
/** Get race ID from name
return true if the record is found in database. */
bool GetRaceIDbyName(const string& racename, int& id);

/** get the model ID from model asset file name
return true if the record is found in database. */
bool GetModelIDfromModelFile(const string& sModelFile, int& modelid, int& modeltype);

/** get the replaceable texture group for the specified index.
return true if the model is found.but it does not mean that the skin ID is found.
@param bFound: whether found */
bool GetReplaceTexturesByModelIDAndSkinID(int modelid, int skinIndex, string& sReplaceTexture0,
string& sReplaceTexture1, string& sReplaceTexture2, bool& bFound);

/** get the character's skin textures with a specified section type and section number.

 196

return true if the record is found in database. */
bool GetCharacterSkins(int race, int gender, int nSectionType, int nSection, int skinColor, string&
sSkinTexture0, string& sSkinTexture1, string& sSkinTexture2);

/** get the hair style geoset.
return true if the record is found in database. */
bool GetFacialHairGeosets(int race, int gender, int hairStyle, int& geoset);

/** get item's model type and model id by its item id.
return true if the record is found in database. */
bool GetModelIDfromItemID(int itemid, int& nItemType, int&nItemModelID);

/** get item display information by its model item id. The display information will describe how the item
(equipment) is displayed on the body of a character.
return true if the record is found in database. */
bool GetModelDisplayInfo(int nItemModelID, int GeosetA, int GeosetB, int GeosetC,
 string& skin, string& TexArmUpper, string& TexArmLower, string& TexHands, string&
TexChestUpper, string& TexChestLower, string& TexLegUpper, string& TexLegLower,string& TexFeet);
//… some functions are ignored here

12.2 Architecture
In ParaEngine, there are three major classes for character animation. They are CParaXModel,
CParaXAnimInstance and CBipedStateManager. They are explained in the following sections
separately.

12.2.1 Model File
CParaXModel presents a loaded model file, which contains the model mesh, bones and bone
animation data, etc. There is a class called CParaXSerializer which is used to parse a
character model file and construct the corresponding CParaXModel object. Two of the most
important functions exposed by the CParaXModel class are Animate() and Draw(). They are
usually called in pair by each character instance. The Animate function calculate all motion
blended bone transformation matrices used by the animation and the Draw function
transforms all visible vertices by their related bone matrices to get the right animation pose
and renders the mesh. Calculation in the Draw function can be done both in CPU and GPU.
When doing the calculation on GPU, bone transformation matrices are uploaded to GPU
registers or buffers which are used by the vertex shader.

12.2.2 Animation Instance
There may be many character instances in the scene sharing the same main model file. Each
character instance is associated with an animation instance, which contains the information of
the custom appearance of the character model (also its attached models if any) as well as the
animation frames to play. Whenever the render pipeline ask a character to render itself, it first
finds its associated animation instance; the animation instance will update its associated
model file object(s) according to its custom appearance and animation parameters, such as
motion blending frame numbers; finally the model file object(s)’ animate and draw method
are called to render the mesh in the requested motion blended pose. Each animation instance
class may work with one or several kinds of model files. In ParaEngine,
CParaXAnimInstance class is the animation instance class working with both animated and

 197

static models stored in CParaXModel model file. The relationships between these classes are
given in Figure 12.4.

Figure 12.4 Relationships between character animation modules

12.2.3 State Manager
Character state manager is discussed in section 12.1.4.2. CBipedStateManager is a special
implementation of a character state manager. It is mainly written for humanoid models. A
humanoid model is characterized by some special bone structures in the model files, such as
the neck bone, the waist bone, etc and also by some predefined animation sequences in the
model file, such as walk, turn, jump, swim, etc. One may develop different state managers for
different model types, such as for wheeled vehicle models or ship models, etc.

12.3 Code and Performance Discussion
Some useful code snippets used in this chapter are given.

12.3.1 Spherical Linear Interpolation of Quaternion
Here is the slerp function code for interpolating quaternion animation keys.
static const Quaternion slerp(const float r, const Quaternion &from, const Quaternion &to)
 {
 float to1[4];
 float omega, cosom, sinom;
 float scale0, scale1;

 cosom = from.x * to.x + from.y * to.y + from.z * to.z
 + from.w * to.w;

Animation

Character Instance

State Manager

Animation

Character Instance

State Manager

Model File
Upper level modules

Animate and draw

Physics

Script Engine

User Input
Model File

Scene objects

 198

 // adjust signs (if necessary)
 if (cosom < 0.0)
 {
 cosom = -cosom;

 to1[0] = - to.x;
 to1[1] = - to.y;
 to1[2] = - to.z;
 to1[3] = - to.w;
 } else {
 to1[0] = to.x;
 to1[1] = to.y;
 to1[2] = to.z;
 to1[3] = to.w;
 }

 // calculate coefficients
 if (cosom < 0.9995f)
 {
 // standard case (slerp)
 omega = acosf(cosom);
 sinom = sinf(omega);
 scale0 = sinf((1.0f - r) * omega) / sinom;
 scale1 = sinf(r * omega) / sinom;
 } else {
 // if "from" and "to" quaternions are very close, interpolate directly
 scale0 = 1.0f - r;
 scale1 = r;
 }
 // calculate final values
 Quaternion res;
 res.x = scale0 * from.x + scale1 * to1[0];
 res.y = scale0 * from.y + scale1 * to1[1];
 res.z = scale0 * from.z + scale1 * to1[2];
 res.w = scale0 * from.w + scale1 * to1[3];
 return res;
 }

12.3.2 Retrieving Animation Keys
We can use a template class for storing and retrieving scale, rotation and translation keys. See
below.
typedef std::pair<int, int> AnimRange;

template <class T>
class AnimatedKey {
public:

 bool used;
 int type, seq;

 std::vector<AnimRange> ranges;
 std::vector<int> times;
 std::vector<T> data;
// ..method ignored
}
Animation keys are stored in indexed time and value arrays, such that a stored key at index N
can be retrieve as (times[N], data[N]). Animation sequences are stored in an array of

 199

AnimRange objects. For a given animation sequence index K, ranges[K].first,
ranges[K].second are the index of the first and last key index in the time and data array.

Specific animation keys such as translation and rotation keys are instantiated like this:
AnimatedKey<D3DXVECTOR3> translationKeys;
AnimatedKey<Quaternion> rotationKeys;

In order to retrieve a given key from a given animation sequence at a given time, we can
perform a binary search on the time range of the given sequence. The code is given below.
Please note that we have shown two versions in the code, the first getValue() function
returned the non-motion blended key value, whereas the second one returns a motion blended
key value.
class AnimatedKey{
public:

 /** this function will return the interpolated animation vector at the specified anim id and frame
number*/
 T getValue(int anim, int time)
 {
 if (type != INTERPOLATION_ TYPE_NONE || data.size()>1) {
 AnimRange range;

 // obtain a time value and a data range
 if (seq!=-1) {
 /// global animation has nothing to do the current animation. Such animation may be
 /// the blinking of eyes and some effects which always loops regardless of the sequence.
 if (globals[seq]==0)
 time = 0;
 else
 time = globalTime % globals[seq];
 range.first = 0;
 range.second = (uint32)(data.size())-1;
 } else {
 /// get the range according to the current animation.
 range = ranges[anim];
 // there is a chance that time = times[times.size()-1]
 //time %= times[times.size()-1]; // I think this might not be necessary?
 }

 if (range.first != range.second) {
 size_t pos=range.first; // this can be 0.
 {
 /** use binary search for the time frame */
 int nStart = (int)range.first;
 int nEnd = (int)range.second-1;
 while(true)
 {
 if(nStart>=nEnd)
 { // if no item left.
 pos = nStart;
 break;
 }
 int nMid = (nStart+nEnd)/2;
 int startP=(times[nMid]);
 int endP=(times[nMid+1]);

 200

 if(startP <= time && time < endP)
 { // if (middle item is target)
 pos = nMid;
 break;
 }
 else if(time < startP)
 { // if (target < middle item)
 nEnd = nMid;
 }
 else if(time >= endP)
 { // if (target >= middle item)
 nStart = nMid+1;
 }
 }// while(nStart<=nEnd)
 }
 int t1 = times[pos];
 int t2 = times[pos+1];
 float r = (time-t1)/(float)(t2-t1);

 if (type == INTERPOLATION_ TYPE_LINEAR) return
interpolate<T>(r,data[pos],data[pos+1]);
 else if (type == INTERPOLATION_NONE){
 return data[pos];
 }
 else {
 // INTERPOLATION_TYPE_HERMITE is only used in cameras
 return interpolateHermite<T>(r,data[pos],data[pos+1],in[pos],out[pos]);
 }
 } else {
 return data[range.first];
 }
 } else {
 // default value
 return data[0];
 }
 }

 /**
 * get key value with motion blending with a specified blending frame.
 * @param nCurrentAnim: current animation sequence ID
 * @param currentFrame: an absolute ParaX frame number denoting the current animation frame. It is
always within
 * the range of the current animation sequence's start and end frame number.
 * @param nBlendingAnim: the animation sequence with which the current animation should be
blended.
 * @param blendingFrame: an absolute ParaX frame number denoting the blending animation frame.
It is always within
 * the range of the blending animation sequence's start and end frame number.
 * @param blendingFactor: by how much the blending frame should be blended with the current
frame.
 */
 T getValue(int nCurrentAnim, int currentFrame, int nBlendingAnim, int blendingFrame, float
blendingFactor)
 {
 if(blendingFactor == 0.0f)
 {
 return getValue(nCurrentAnim, currentFrame);
 }
 else

 201

 {
 if(blendingFactor == 1.0f)
 {
 return getValue(nBlendingAnim, blendingFrame);
 }
 else
 {
 T v1 = getValue(nCurrentAnim, currentFrame);
 T v2 = getValue(nBlendingAnim, blendingFrame);

 return interpolate<T>(blendingFactor,v1,v2);
 }
 }
 }
}

12.3.3 Animation Instance Interface
Animation Instance keeps information about the custom appearance and animation parameters
for a character instance. It contains a member of CharModelInstance, which contains the
custom appearance attributes and body attachments. This member is only valid if the
animation instance is for customizable character model, other than a non-customizable model.
Class CparaXAnimInstance :
 public CAnimInstanceBase
 {
 public:
 CParaXAnimInstance(void);
 ~CParaXAnimInstance(void);

 public:

 /** defines the model type that this instance holds*/
 enum ModelType{
 /** the character model is a fully customizable model for human shaped animation model
 * one can change the skin, attachments, clothings, hair and facial styles, etc */
 CharacterModel=0,
 /** Fixed model is a model which is not customizable, but can contain a list of animations to play
 * such as a flying flag, etc.*/
 FixedModel=1
 };

 /** model animation information */
 public:
 /** current animation index, this is different from sequence ID */
 int nCurrentAnim;
 /** an absolute ParaX frame number denoting the current animation frame. It is always within
 * the range of the current animation sequence's start and end frame number. */
 int currentFrame;
 /** the next animation index.if it is -1, the next animation will
 * depends on the loop property of the current sequenc; otherwise, the animation specified
 * by the ID will be played next, after the current animation reached the end. */
 int nNextAnim;

 /** the animation sequence with which the current animation should be blended. */
 int nBlendingAnim;
 /** an absolute ParaX frame number denoting the blending animation frame. It is always within
 * the range of the blending animation sequence's start and end frame number. */
 int blendingFrame;

 202

 /** by how much the blending frame should be blended with the current frame.
 * 1.0 will use solely the blending frame, whereas 0.0 will use only the current frame.
 * [0,1), blendingFrame*(blendingFactor)+(1-blendingFactor)*currentFrame */
 float blendingFactor;

 private:
 /// the type of the model
 ModelType m_modelType;
 union {
 CharModelInstance * m_pCharModel;
 };
 ParaXEntity * m_pModel;

 public:

 /** Get the character model instance. If the model instance is not of character type,
 * then NULL will be returned. But it does not mean that there is not a valid model instance of other
types */
 CharModelInstance * GetCharModel();
 /** get the animation model*/
 ParaXEntity* GetAnimModel();
 /** init the animation instance. associate it with the ParaX model*/
 void Init(ParaXEntity * pModel);

 /** refresh the model appearance with current settings. Call this function whenever the model has
changed its appearance. */
 void RefreshModel();

 /** Render the model with its current settings. */
 virtual HRESULT Draw(SceneState * sceneState, const D3DXMATRIX* mxWorld);

 /** shadow volume */
 virtual void BuildShadowVolume(ShadowVolume * pShadowVolume, LightParams* pLight,
D3DXMATRIX* mxWorld);

 /** Advance the animation by a time delta in second */
 virtual void AdvanceTime(double dTimeDelta);
 /** Get the specified attachment matrix of the current model.
 * this is usually for getting the mount point on a certain model, such as horses.
 * @return: NULL if not successful, otherwise it is pOut.
 */
 D3DXMATRIX* GetAttachmentMatrix(D3DXMATRIX* pOut, int nAttachmentID);

 virtual void LoadAnimation(const char * sName, float * fSpeed,bool bAppend = false);
 virtual void LoadAnimation(int nAnimID, float * fSpeed,bool bAppend = false);

// … some functions are ignored.
 };

12.3.4 Character State Manager
The character state manager is a variant finite state machine simulating the low level
behaviors of a character. Following is some state functions used in our CBipedStateManager
class.
class CBipedStateManager
{

 203

 public:
private:
 /// the state memory
 list <BipedState> m_memory;
 /// the biped object that is associated with this state manager.
 CBipedObject* m_pBiped;
 /// state timer, it is used for state transition timing.
 /// for example, one can define the time from state1 to state2.
 float m_fTimer;
 /** last animation state, which is the animation played in the last frame.
 * this is used for AI or other modules to check for the current biped animations.*/
 BipedState m_nLastAnimState;
 /** true if character uses walk as the default moving animation.otherwise it uses running.
 * default value is running.*/
 bool m_bWalkOrRun:1;
 /** whether the biped's state is being recorded to the movie controllers. Default value is false. */
 bool m_bRecording:1;
 /** whether the biped is mounted on another object. */
 bool m_bIsMounted:1;

 /* User data */
 D3DXVECTOR3 m_vPos; // for position user data
 float m_fAngleDelta; // for angle user data
 protected:
 /** remove all occurrence of a given state */
 void RemoveState(BipedState s);
 /** make sure that the memory has space left for one more state*/
 void CheckMemory();

 /** replace the current state with the one in the input*/
 void ReplaceState(BipedState s);
 /** add a new state to state memory */
 void PushState(BipedState s);
 /** all occurrence of the same state will be removed from the memory before this state is pushed to
the memory*/
 void PushUniqueState(BipedState s);
 /** prepend a new state to state memory*/
 void PrependState(BipedState s);
 /** all occurrence of the same state will be removed from the memory before this state is
prepended to the memory*/
 void PrependUniqueState(BipedState s);
 /** ensure that state s is unique in the memory. If there is one than one such state, it will be
deleted.*/
 void SetUniqueState(BipedState s);
 public:
 /** whether the object is mounted on another object. */
 bool IsMounted();
 /** set mount state */
 void SetMounted(bool bIsMounted);
 /** return true if character uses walk as the default moving animation.otherwise it uses running.*/
 bool WalkingOrRunning();
 /** Set default moving style
 *@param bWalk: true if character uses walk as the default moving animation.otherwise it uses
running.*/
 void SetWalkOrRun(bool bWalk);

 /** last animation state, which is the animation played in the last frame.
 * this is used for AI or other modules to check for the current biped animations.*/
 BipedState GetLastAnimState();

 204

 /** Find a specified state in memory.
 * @param s: the state to be found.
 * @return: If the state is not found, a negative value(-1) will be returned; otherwise the current
index of the first occurrence of the state is returned.*/
 int FindStateInMemory(BipedState s);

 /** get the last biped state */
 BipedState GetLastState();
 /** get the last biped state */
 BipedState GetFirstState();

 static bool IsStandingState(BipedState s);
 static bool IsMovingState(BipedState s);
 /** whether the memory contains at least one moving state.*/
 bool HasMovingState();
 /// whether the biped is swimming
 bool IsSwimming();
 /// whether the biped is flying
 bool IsFlying();

 CBipedObject* GetBiped();
 void SetBiped(CBipedObject* pBiped);

 /** read an action symbol, and let the manager determine which states it should go to.
 * this function will not perform any concrete actions on the biped objects. Call
 * Update() method to perform these actions on the associated biped after adding series of
 * action inputs to the state manager. The recommended order of calling is
 * StateManager::Update()->Environment Simulator->IO:{StateManager::AddAction}
 * @param nAct: the action
 * @param data: the data specifying more details about the action. This value default to NULL
 * if nAct is S_ACTIONKEY, then pData is const ActionKey*
 * if nAct is S_WALK_POINT, then pData is NULL or 1, specifying whether to use angle.
 * @return: the current state is returned. */
 BipedState AddAction(ActionSymbols nAct, const void* pData=NULL);

 /** update the associated biped according to the memory or state of the manager.
 * this function is automatically by each active biped during each frame move.
 * it may sometimes change the memory of state manager. But in most cases, it just carries out
 * actions according to the current state.
 * @param fTimeDelta: the time elapsed since the last time this function is called. Units in
seconds.*/
 void Update(float fTimeDelta);
//.. several miscellaneous functions are ignored
}

12.4 Summary and Outlook
The character animation system discussed in this chapter can be extended to synthesis more

intelligent and realistic character motions. Character animation is an active research field and
its development never slows down in the past decades.

When looking forward in this domain, we are always relating it to us human beings. I.e.
how we learn to control the motion of our body by learning, observing, and practicing in the
physical environment and how we are able to generate motions to achieve our mental goals
with little mental and physical (energy) cost. There is still a long way to go to make virtual

 205

characters in the virtual world act like ourselves. But whatever advancement people make,
you are likely to have the first experience of it in a computer game.

In the next chapter, we will see how to generate animation data from 3d content creation
tools.

 206

Chapter 13 Writing Model Exporters

A game engine, though it could be, is not an all-in-one game development platform. It still
depends on a number of external third party tools to create the content used in a game title.
Famous 3D content creation tools are 3dsmax, Maya, etc. One of the most important external
tools that virtually every game engine needs to provide is the model exporter. It exports 3D
models, textures, materials, and animation data from these widely used professional tools to
model files known to the game engine. In this chapter, we will take 3dsmax as an example
and show the steps of writing a model exporter. Optionally, a game engine may also develop
tools to export a complete 3D scene, including terrain, referenced 3D models, lights, paths or
even game specific logics from external content creation tools to the game engine.

13.1 Foundation
Professional 3D content creation tools like 3dsmax and Maya have exposed API through

both the C++ programming interface and their built-in scripting system. These SDK API
enables developers to write plug-in programs to extend their functionalities. Models and
animations used by a game engine are first constructed in these tool environments and then
exported through plug-in programs to game files known to the game engine.

The relationship between a game engine and 3D content creation tools usually defines the
major game production line. And it may vary from game to game even for the same game
engine. Before a game is made, game designers and engine designer (or tool developers) must
jointly decide which portion of the game content should be built in third-party tools, and
which are to be developed and tested using in-game tools. But whatever their relationship, its
design goal is to make the game production line more efficient for a specific game and for a
specific team.

Model exporter is the most common plug-in program which is almost always developed no
matter what the game is. In this chapter, we will take 3dsmax as an example and show the
steps of writing a model exporter. The concept used in writing 3dsmax based exporter can be
mapped to other 3D tool platforms as well. Developing model exporter program is also a good
starting point for learning the SDK API in 3dsmax.

13.1.1 Terminologies
Before we start, let us get familiar with a few important terminologies in this domain. They

can be easily confused when writing the model exporter. We assume that you know how to
use a 3d modeling tool, such as 3dsmax, to create skinned or biped animation, and that you
know what a skin modifier is.

13.1.1.1 Row major and Column major Matrix
If this is the first time you ever worked with other 3D software SDK besides your own, you

may run in to trouble of managing multiple definitions of matrix and coordinate systems. If
you are working with DirectX, you are primarily working with row major matrix and in left-
handed coordinate system. OpenGL and 3dsmax by default uses column major matrix. When

 207

writing model exporters, we had better adhere to a single coordinate system and math
operators. In this book, we use row major matrix and math. Hence if v is a 4D vector, and m
is a 4*4 matrix, we will assume that they are all row major and we use the following math to
transform the vector. This math convention is also adopted by DirectX.

 'v v m= ×

If you are using 3dsmax’s Data eXchange Interface (3DXI) or originally called IGame
interface API before version 7, you can count on 3dsmax to automatically convert the
coordinate system for you. You can tell the 3dsmax to use DirectX compatible coordinate
system, and then everything you get from the 3dsmax API will be row major, left-handed
with the y component pointing upwards. Right now, some helper mathematical functions in
3dsmax still use its internal coordinate format; hence one still need to pay attention and
convert these things manually in a few places.

13.1.1.2 Initial Pose
Initial Pose refers to the static mesh pose when the skin modifier is applied. It is more

precise to say that it is a snapshot of the static mesh just before the skin modifier is applied.
This is different from the animated mesh pose at Frame 0, because the mesh at Frame 0 is
already transformed by the skin or biped modifier in 3dsmax. Now suppose we have three
sequences of character animations stored in three separate files: one for standing, one for
walking, and the other is for running. For a game engine using skeletal (or skinned) animation,
it is required that all characters in these three files share the same skeleton and initial pose.

There are various ways to make skeletal animation in 3dsmax, extracting this initial pose
using the standard API can be difficult. Fortunately, 3dsmax exposes a very handy function
called GetInitialPose() through 3DXI. The mesh returned from this function can be used as
the shared mesh for all skinned animation sequences.

13.1.1.3 Bone’s World Transform Matrix
The effect of a bone is mathematically equivalent to a special 4*4 matrix M. In 3dsmax,

this matrix is called the bone’s world transformation matrix. To graphically represent and
manipulate a bone, 3dsmax uses a bone-like mesh whose origin is at (0,0,0). It then
transforms the bone mesh using the bone’s world transform matrix M. Now the transformed
mesh becomes the graphical presentation of the bone matrix M. For example, an identity
matrix draws a bone at the world origin, whereas a translation matrix draws the bone mesh
offset by the mount in the matrix’s last row. See Figure 13.1. To modify bones, artists
manipulate the bone mesh in 3D space, such as translating, rotating and scaling it, the result
will be propagated to the bone matrix.

 208

Bone Matrix=Identity Matrix

Bone Matrix=Rotation* Translation

Figure 13.1 Bone Matrix and its graphical presentation in 3dsmax

13.1.1.4 Initial Bone Matrix
Initial bone matrix is a special constant world transformation matrix which brings the bone
mesh from its local space (or you can think of it at world origin) to its initial pose in the world
space, where it is bound with the initial pose of the mesh. The presentation of bones when all
of them are transformed by their initial bone transform matrix is called the initial bone pose. It
is at the initial bone pose that the character mesh is bound. The snapshot of the mesh when
bounded to initial bone pose is called the initial pose of the mesh, as explained in the previous
section. See Figure 13.2.

Figure 13.2 Initial bone pose and initial mesh pose

Like initial pose, the initial bone transform matrices of all bones in all animation sequences
of a character must be the same. In essence, this ensures that all sequences of a character
share the same skeleton. In 3dsmax’s 3DXI interface, we can get the initial bone
transformation matrix at any time by calling GetInitBoneTM() function.

13.1.1.5 Bone’s World Transform Matrix at Frame N
In 3dsmax, we can sample the animation data by querying the bone’s world transformation
matrix at a specific frame within the animation range. Like the initial bone matrix, the world
transform matrix at frame N brings a bone from its local space to its bone pose at Frame N.

 209

For example, Figure 13.3 shows the bone pose at frame 0, which is the first frame of the
running sequence.

Figure 13.3 Bone pose at frame N

13.1.1.6 Affine Matrix Decomposition
There are basically three kinds of bone manipulations in 3dsmax. They are scaling (S),
rotation (R) and translation (T). We call them SRT transformation in short. An artist may
apply these operations to a bone any number of times and in any order. Although 3dsmax
internally keeps the history of these operations in terms of SRT keys, it is difficult to get them
through its API due to the number of ways that a bone may be animated in 3dsmax. However,
we can get the bone’s world transformation matrix at any frame (time) regardless of the type
of keys through the 3DXI API. We will show that, by decomposing a bone’s transformation
matrix in to SRT keys, we will be able to export interpolable animations to the game engine.

Matrix Interpolation

The reason for a game engine to use SRT keys instead of the bone’s transformation matrix
itself is for smooth interpolation between two adjacent key frames. In previous chapter, we
have seen that animations in a game engine are generated by interpolating the SRT keys
separately. You might ask: will it be just good to linearly interpolate the bone’s world
transformation matrix? Well, the answer lies in how you define a good interpolation.
Interestingly, this is a psychological problem concerning how the human mind interpret and
predict motions that it observes. Experiments show that the human mind tends to interpret
contents on image sequences as solid bodies, which are rotated and/or translated using the
shortest path from one image to the next. If the size of symbols on two consecutive images
changes, the mind would most likely to interpret it as a scale. In other words, the human mind
interprets a sequence of images and predicts the non-existent ones in-between by rules of SRT
as well. On the other hand, we will get unnatural motion if we linearly interpolate M(t) and
M(t+1), using the 16 components of the 4x4 matrix M. However, if we decompose the matrix
in to SRT terms, interpolate them individually, and then reassemble them back to a single
matrix, we will obtain more naturally interpolated motion during the time (t, t+1). This is why
decomposing a matrix into SRT components is very important in computer graphics. The
process is explained below.

 210

Affine Matrix

Three types of matrix are commonly used for 3-D graphics: 3×3 linear, 3×4 affine, and 4×4
homogeneous; similar types with one less column and row are used for 2-D graphics. The
homogeneous matrix is most general, as it is able to represent all the transformations required
to place and view an object: translation, rotation, scale, shear, and perspective. Shear and
perspective transformations are not used when animating bones. All transformations except
perspective can be accommodated by an affine matrix, which, in turn, can be considered just a
3×3 linear matrix with a translation column appended. Hence matrix used in 3D animation is
3×4 affine matrix with 12 degrees of freedom.

Affine Matrix Decomposition

Decomposing affine matrix is a computationally extensive iterative process. One can find
the details in the paper “Matrix Animation and Polar Decomposition” written by Ken
Shoemake, and also in an article in Graphics Gem IV. Fortunately, 3dsmax SDK contains
such a function called decomp_affine(), which takes a 3dsmax affine matrix and returns its
SRT parts. When we say 3dsmax affine matrix, we really mean it. You can not provide your
own affine matrix; you have to use the 3dsmax’s presentation of matrix in order to get the
correct result. We hope that 3dsmax will release a more public version of this function in its
next release. The input and output of this function are related by the following equation.
Please pay attention to the order; it is S, R, and then T.

 mSRT = Ms Mr Mt× ×

mSRT is the input affine matrix, Ms, Mr, Mt are scale, rotation and translation output
matrices.

There is something tricky about the scale transformation Ms, which can be a uniform scale
transformation, or non-uniform scale transformation about an arbitrary axis. In the first case,

 Ms=(s,s,s,1) E, where E is identity matrix, s is a number(scaler).×

In the second case, things get complicated.

 -1Ms = Mu [(Sx,Sy,Sz,1) E] (Mu)× × ×

In the equation, Mu is the scale's rotational axis transform. Here is what it does on the right
side of the above equation: it first rotates the space, so that scale axis is aligned with x,y,z axis,
then it applies a scale transform (Sx,Sy,Sz) along the three axis, finally it rotates back to the
original space by applying the inverse of Mu. For simplicity, most game engine only support
uniform scale as well as scale transforms along the x,y,z axis. In other words, most game
engines only deal with the situation when Mu is an identity matrix, such that Ms can be
rewritten as below.

 Ms = (Sx,Sy,Sz,1) E ×

Internally, we use a 3D vector S =(Sx,Sy,Sz) to represent Ms, a quaternion R=(i,j,k,w) for Mr,
and a 3D vector T =(x,y,z) for Mt. Hence we only exported 10 degrees of freedom from the

 211

bone matrix. Yet, the original M has 12 degrees of freedom. The missing two degrees of
freedom is Mu, which we ignored and assumed them to be identity during export.

13.1.2 Exporting Mesh
So far, we have build up enough terminology to start explaining the exporting process. We

will only talk about exporting animated mesh. For static mesh the process is simplified by
exporting only the first frame. Terminologies which are already explained in previous section
are in italic letters in the rest of the text.

There are two major passes when exporting scene data.

In the first pass, we traverse the 3ds max scene and locate the mesh object we would like to
export, and then we export vertices at their initial pose, together with skin information,
textures and materials, etc. For each vertex, we may need to collect the following information.
struct ModelVertex {
 D3DXVECTOR3 pos; // 3D position
 byte weights[4]; // bone weight of up to four bones
 byte bones[4]; // bone index of up to four bones
 D3DXVECTOR3 normal; // vertex normals
 D3DXVECTOR2 texcoords; // texture coordinates
};

For all meshes in the max file, we need to extract a list of textures and materials used at
least once by a mesh. Also we need to extract all bones used in the scene and assign them
unique IDs; parent-child relationships are also extracted for the bones. The data extracted in
the first pass is mostly static data which are identical for all animation sequences of the same
model.

In the second pass, we need to locate bone objects in the scene and extract animation data
from each animation sequence file. This procedure is explained in detail in the next section.

13.1.3 Exporting Animation Data
Animation data is kept in bone objects. It includes snapshots of each bone’s world

transformation matrix at all frames (times) and for all animation sequences. For each bone in
each animation sequence file, we need to use the following procedure to extract animation
data.

Get the animation range of the current sequence [0, T]

Sample the entire animation range at a given frequency, such as 30 frames per second.{

 For each sample, extract animation as SRT keys relative to the parent bone.

}

Remove redundant keys

Of course, we can sample only when there is an explicit key in the animation range, but the
above code is general enough to be applied to any animation data in 3dsmax. Next, we will
show how to extract a bone’s SRT keys relative to its parent bone.

Suppose we are sampling a bone at time t. First of all, we get the world transformation
matrix of the bone at time t. We denote it as M(t). Let Mi denotes the initial bone matrix of

 212

the bone being sampled. Mi is a constant for the bone at all times. Now suppose there is a
vertex v which is a vertex on the mesh’s initial pose and which is fully bound to this bone.
The transformed vertex position v(t) at time t for v can thus be written as below.

 -1
iv(t) = v M M(t)× ×

Now suppose the bone has a parent bone, whose world transformation and initial bone
transformation matrix are Mp(t) and Mpi respectively. v(t) can now be rewritten as below.

{ }-1 -1 -1 -1
i pi p pi pv(t) = v [M M(t)] [(M M ())] [M M ()]t t× × × × × ×

We can continue to append the identity matrix { }-1 -1 -1
pi p pi p[(M M ())] [M M ()]t t× × × to

the end of the above equation for all parent bones until the last one in the bone hierarchy (i.e.
the root bone). Thus, v(t) can be rewritten as below:

{ }
{ } { }

-1 -1 -1 -1
i pi p pi p

-1 -1 -1 -1 -1 -1
ppi pp ppi pp root_i root root_i root

v(t) = v [M M(t)] [(M M ())] [M M ()]

[(M M ())] [M M ()] ... [(M M ())] [M M ()]

t t

t t t t

× × × × × × ×

× × × × × ×

We regroup the terms on the right side and rewrite v(t) in the following final format.

{ } { }
{ }

-1 -1 -1 -1 -1 -1
i pi p pi p ppi pp

-1 -1 -1 -1
ppi pp pppi ppp root_i root

v(t) = v [M M(t)] [(M M ())] [M M ()] [(M M ())]

[M M ()] [(M M ())] ...[M M ()]

t t t

t t t

× × × × × × × × ×

× × × ×

Observe that the first term in the curly brackets in the above equation is:
-1 -1 -1

i pi p() [M M(t)] [(M M ())]rM t t= × × × (1)

rM(t) is actually a relative transformation matrix from the parent bone to the current bone.
Hence rM(t) is the matrix we need to decompose and export. So for each bone at time t, we
need to get the initial bone matrix of itself Mi and its parent Mpi, and we also get the world
transformation matrix at time t of itself M(t) and its parent Mp(t). These four parameters can
be directly obtained from the 3DXI API. Finally, we use equation (1) to get the relative
parent-to-child bone transformation matrix.

We can now directly decompose this affine matrix rM(t) using the 3dsmax function
decompose_affine() to get the SRT keys which are used in the game engine. However, recall
that in our character animation system, each bone has a constant pivot point. If we decompose
rM(t) directly, we are assuming that the mesh’s origin (0,0,0) is the pivot point for all bones.
Obviously this assumption is wrong. A bone’s pivot point should be the bone origin (0,0,0)
after transformed to the initial bone pose. In other word, the pivot point Pivot for a given bone
should be

i

4 4

Pivot=(0,0,0,1) M
(Pivot)P M ×

×
=

Let P denotes the homogenous 4*4 translation matrix from Pivot. Taking the bone’s pivot
point in to consideration, we can rewrite rMt as in equation (1) as below.

 213

-1

-1 -1 -1 -1 -1
i pi p

rMt = P mSRT P
or mSRT = P rMt P P [M M(t)] [(M M ())] Pt

× ×

× × = × × × × ×

mSRT is the final affine matrix to be decomposed in to scale, rotation and translation keys,
which are used in the game engine, i.e. s r tmSRT = M M M× × .

To summarize, for each animated bone we export a constant pivot point, and for each key
frame of the bone, we export a scale key S =(Sx,Sy,Sz) from Ms, a quaternion key R=(i,j,k,w)
from Mr, and a translation key T =(x,y,z) from Mt . There is are totally 10 degrees of freedom
exported for each key frame of a bone.

13.1.4 Importing Animation
The majority of this chapter talks about model exporting. In this add-on section, we will

talk about importing animation data from motion capture devices. Generally speaking, this
should be a documented process which involves the following activities.

- Planning: write down the specifications of each character, such as name, bone
hierarchy, frame rate, and make a list of actions to be captured for each character,
including whether it is looped, animation length, etc.

- Shooting: we can shoot real person using motion capture devices, or virtual characters
using the game engine. The second one enables the game engine’s built-in character
editor to export motion chapture files to other editing environment such as Character
Studio in 3dsmax. This can be very useful for sharing animations across different
authoring platforms and different characters.

- Processing: we convert motion chapture data to skeletal animation data. During this
processing, one may need to correct unfit motions and make the animation ready to be
used by the game engine.

- Exporting animation to the game engine: we assign skeletonal animations to our
character and export them to model files used by the game engine.

13.1.4.1 Motion Capture File Format
 Table 13.1 outlines several motion capture formats in use today along with URLs for

additional formatting information. It should be pointed out that, so far, motion capture formats
are not quite standardized. But the good news is that most of the widely used motion capture
file formats are in straight forward text encoding and is designed to be human readable.

Table 13.1 Motion Capture File Format

File Ext Company Key Style File Format Reference

BVH & BVA BioVision Rotation BVH.rtf in 3dsmax CD

CSM 3dsmax Position CSM.rtf in 3dsmax CD

ASF & AMC Acclaim Rotation http://www.darwin3d.com/gamedev/acclaim.zip

There are two key styles which are joint rotations and marker postions. They denote how
animation keys are stored in the file. Storing animation keys as point (marker) positions is

 214

more close to the raw data obtained from motion capture devices, because motion capture
devices record live motions by tracking a number of maker points (usually at the joint or pivot)
over time, which are translated into a 3 dimensional digital representation. In order to capture
more than one degree of freedom of the joint motions, there are usually more maker points
than bones. The process of deriving joint rotations from marker position tracks is a
complicated process. Hence we suggest the game engine work with file formats that store
motions as joint rotations. This leaves the process of translating point positions to rotational
data of bones, to motion device vendors and/or dedicated software tools like character studio
in 3dsmax.

13.1.4.2 BVH File Format
We will look at the BVH format in more details. BVH is the only natively supported file

format by character studio’s biped system in 3dsmax. Biped provides direct input of BVH
files from disk, including comprehensive key-frame reduction and footstep extraction to
provide a fast and accurate means of import for large volumes of rotational data stored in the
BVH format. During import, XYZ Euler joint rotations stored in the BVH file are used to
derive Quaternion bone rotation data for the biped at each frame. Once imported, BVH-based
animations can be saved as native Biped .bip files, providing access to a comprehensive set of
animation, layered editing, retargeting and structural modification features that are built
directly into Biped.

As we mentioned, motion capture formats are not quite standardized. In order for 3dsmax
Biped system to understand it, all bones in the BVH format must stick to a fixed naming
convention as well as bone hierarchy (i.e. parent-child relationships of named bones). The
hierarchy is given below.
Hips {
 LeftHip (LeftUpLeg) {
 LeftKnee (LeftLowLeg) {
 LeftAnkle (LeftFoot) {
 End Site {}
} } }

 RightHip (RightUpLeg) {
 RightKnee (RightLowLeg) {
 RightAnkle (RightFoot) {
 End Site {}
} } }

 Chest {
 LeftCollar {
 LeftShoulder (LeftUpArm) {
 LeftElbow (LeftLowArm) {
 LeftWrist (LeftHand) {
 End Site {}
} } } }
 RightCollar {
 RightShoulder (RightUpArm) {
 RightElbow (RightLowArm) {
 RightWrist (RightHand) {
 End Site {}
} } } }
 Neck {

 215

 Head {
 End Site {}
} } } }

Since 3dsmax 8, several more bone names, such as Toe, ChestN and FingerN, etc are also
recoginized. For more information, please refer to the BVH documentation in 3dsmax CD.

BVH allow us to specify both translation and rotational animation data; however, 3dsmax
only uses the translation data in the hip bone, translations in other bones are ignored. So for
the hip bone, we export vector3 translation key and a vector3 rotation key; for the rest of the
bones we only export the rotation key.

The BVH serialization code example is given in the code section.

13.1.4.3 Why supporting Motion Capture Format
Motion Capture File provides a simple mean for sharing animations in different animation

processing systems. In ParaEngine, we allow any in-game skeletal animations to be exported
as BVH file. By editing a marker file, we can extract only specific biped bones and export
common BVH files which can be further processed by 3dsmax character studio or other
systems that recognize them. The work flow is illustrated in Figure 13.4.

Figure 13.4 Animation Work Flow

13.2 Architecture
In this section, the software architecture of a model exporter is given. The main exporting
code is organized in three places, CXFileExporter, CMaxPipeline and CParaXBuilder. They
are for exporter interface, scene data extraction in 3dsmax, and serialization of model data,
respectively. They are explained one by one next.

BVH files

ParaX

Live Motion Capture

3dsmax
Character studio

In-game editing

Game Engine

Character Models

Animated model files used in game

 216

13.2.1 Exporter Interface
CXFileExporter is an implementation of 3dsmax exporter interface. It is the entry point when
the user specifies the exporting options and initiates the exporting progress based on user
options.

Figure 13.5 shows the common options supported by model exporter. For example, it
allows a user to specify the output format, whether to export animations, and whether to
compress texture files, etc. Moreover, it supports an intelligent export option, which allows
users to export all 3dsmax model files in a given directory and subdirectories without any user
intervention according to some predefined rules. This can be useful when we are dealing with
a large game project where an automated resource build process is very important.

For each 3dsmax model file, the CXFileExporter class will generate an option object to be
passed down to the export pipeline. The pipeline will extract, optimize, convert, and then the
serialize data according to the given option.

 217

Figure 13.5 Model Export Options

13.2.2 Scene Data Extraction
CMaxPipeline is called to generate all the intermediary data through the 3dsmax's export API
interface or 3DXI, which may include materials, meshes and frames (bones), etc. One can
refer to a sample in DirectX 9 SDK for extracting basic mesh data in 3dsmax. Scene data
extraction is a progress of recursively traversing various scene nodes in 3dsmax. During scene
traversing, if a bone frame or a mesh object is found, one can use the procedure described in
the Foundation section to extract animation data. Some code snippet is also given in the code
section of this chapter.

13.2.3 Serialization of Model Data
In the last step of the exporting progress, we pass the intermediary data extracted from the
3dsmax pipeline to CParaXBuilder, which is our model file serialization class. It performs a
series of optimizations on the data, such as texture batch sort, redundant face and vertex
removal, render pass sort, vertex cache optimizations, etc. Finally, it calls one of its saving
functions to save the data in a specified encoding and file type, such as DirectX text file or
ParaX binary or text file. Figure 13.6 shows the memory data presentation used at
serialization time.

Please also note that sometimes we need to extract information from multiple files (e.g.
multiple animation sequences stored in separate files) and feed them to the same
CParaXBuilder object for optimization and serialization.

 218

Figure 13.6 Model Data Presentation

13.3 Code and Performance Discussion
Some code snippets are given.

13.3.1 Sampling Bone Animation
The following sample code shows the sampling bone animation procedure as described in
section 13.1.3.
void CMaxPipeline::SaveSampledTranformKeyAsSRTKey(ComPtr<IDXCCAnimationStream>& anim,
IGameNode* node, TimeValue tick, int k)
{

 219

 D3DXMATRIX tm;
 D3DXMATRIX fm;
 D3DXVECTOR3 pivot(0,0,0);
 ConvertGMatrix(fm, node->GetWorldTM(tick));

 if(m_curIGameSkin !=NULL)
 {
 //
 // pre-multiply the inverse of the initial transform of the bone when skin is added.
 D3DXMATRIX InitBoneMatrixInverse;
 D3DXMatrixIdentity(&InitBoneMatrixInverse);

 D3DXMATRIX mInit;
 if(m_curIGameSkin->GetInitBoneTM(node, (GMatrix&)mInit))
 {
 D3DXVec3TransformCoord(&pivot, &D3DXVECTOR3(0,0,0), &mInit);
 if(k==0 && m_curFrameTracker!=0){
 m_curFrameTracker->m_pivot = pivot;
 }
 if(D3DXMatrixInverse(&InitBoneMatrixInverse, NULL, &mInit) != NULL)
 fm = InitBoneMatrixInverse*fm;
 }
 else
 {
 // pelvis does not have an initial bone transform.
 }
 }
 IGameNode* pn = node->GetNodeParent();
 if (pn)
 {
 D3DXMATRIX pfm;
 ConvertGMatrix(pfm, pn->GetWorldTM(tick));
 if(m_curIGameSkin !=NULL)
 {
 //
 // pre-multiply the inverse of the initial transform of the bone when skin is added.
 D3DXMATRIX InitBoneMatrixInverse;
 D3DXMatrixIdentity(&InitBoneMatrixInverse);

 D3DXMATRIX mInit;
 if(m_curIGameSkin->GetInitBoneTM(pn, (GMatrix&)mInit))
 {
 if(D3DXMatrixInverse(&InitBoneMatrixInverse, NULL, &mInit) != NULL)
 pfm = InitBoneMatrixInverse*pfm;
 }
 }
 D3DXMATRIX ipfm;
 if(D3DXMatrixInverse(&ipfm, NULL, &pfm) != NULL)
 tm = fm * ipfm;
 }
 else
 {
 tm = fm;
 }

 DXCCKEY_MATRIX key;
 key.Time = (float)k;
 key.Value = tm;

 220

 // polar decomposition into SRT using decomp_affine()
 AffineParts parts;
 D3DXMATRIX mSRT;

 if(pivot == D3DXVECTOR3(0,0,0))
 {
 mSRT = tm;
 }
 else
 {
 D3DXMATRIX mP;
 D3DXMatrixIdentity(&mP);
 mP._41 = pivot.x;mP._42 = pivot.y;mP._43 = pivot.z;
 mSRT = mP * tm;
 mSRT._41 -= pivot.x;mSRT._42 -= pivot.y;mSRT._43 -= pivot.z;
 }

 GMatrix tmMax;
 ConvertD3dMatrix(tmMax, mSRT);
 decomp_affine(tmMax.ExtractMatrix3(),&parts);
 // DecomposeMatrix(tm.ExtractMatrix3(), parts.t, parts.q, parts.k);

 D3DXKEY_VECTOR3 positionKey;
 positionKey.Time = (float)k;
 positionKey.Value = (D3DXVECTOR3)parts.t;
 _V(anim->SetTranslationKey(k, &positionKey));

 D3DXKEY_QUATERNION rotationKey;
 rotationKey.Time = (float)k;
 rotationKey.Value = (D3DXQUATERNION)parts.q;

 // 3dsmax returns quaternion using column matrix. However, row matrix is used by directx.
 // One can switch to row matrix by flip the quaternion's w component.
 // rotationKey.Value.w = -rotationKey.Value.w;
 _V(anim->SetRotationKey(k, &rotationKey));

 // please note Scale's rotation axis (quaternion parts.U) is ignored.
 D3DXKEY_VECTOR3 scaleKey;
 scaleKey.Time = (float)k;
 scaleKey.Value = (D3DXVECTOR3)parts.k;
 _V(anim->SetScaleKey(k, &scaleKey));
}

13.3.2 BVH Serialization Code
The following code shows writing BVH animations to files.
bool CBVHSerializer::WriteBVHNode(int nLevel, int nBoneIndex, CParaFile* pFile,bool
bEscapeUnknownBones)
{
 int nChildCount = m_bones[nBoneIndex].GetChildCount();
 if(bEscapeUnknownBones && m_bones[nBoneIndex].m_sMarkerName == "End")
 nChildCount = 0;
 bool bIsUnknownBone = m_bones[nBoneIndex].IsUnKnownBone() && (nChildCount != 0);

 if(!bEscapeUnknownBones || !bIsUnknownBone)
 {
 // write root or joint name
 for (int i=0;i<nLevel;++i)
 pFile->WriteFormated("\t");

 221

 if(nChildCount == 0)
 {
 // end site
 pFile->WriteFormated("End Site\r\n");
 }
 else if(nLevel == 0)
 {
 // root
 if(!m_bones[nBoneIndex].m_sMarkerName.empty())
 pFile->WriteFormated("HIERARCHY\r\nROOT %s\r\n",
m_bones[nBoneIndex].m_sMarkerName.c_str());
 else
 {
 char sID[MAX_PATH];
 sprintf(sID, "%d", nBoneIndex);
 pFile->WriteFormated("HIERARCHY\r\nROOT %s\r\n", sID);
 }
 }
 else
 {
 // joint
 if(!m_bones[nBoneIndex].m_sMarkerName.empty())
 pFile->WriteFormated("JOINT %s\r\n", m_bones[nBoneIndex].m_sMarkerName.c_str());
 else
 {
 char sID[MAX_PATH];
 sprintf(sID, "%d", nBoneIndex);
 pFile->WriteFormated("JOINT %s\r\n", sID);
 }
 }
 // left curly brace
 for (int i=0;i<nLevel;++i)
 pFile->WriteFormated("\t");
 pFile->WriteFormated("{\r\n");

 // write offset relative to parent
 for (int i=0;i<nLevel+1;++i)
 pFile->WriteFormated("\t");

 D3DXVECTOR3 vOffset = m_bones[nBoneIndex].m_vOffsetToParent;
 if(bEscapeUnknownBones)
 {
 int nIndex = GetMarkedParentIndex(nBoneIndex);
 if(nIndex >=0)
 vOffset = m_bones[nBoneIndex].m_vAbsOffset - m_bones[nIndex].m_vAbsOffset;
 }
 pFile->WriteFormated("OFFSET \t\t%f %f %f\r\n", vOffset.z, vOffset.y, vOffset.x);

 // write channels
 if(nChildCount != 0)
 {
 for (int i=0;i<nLevel+1;++i)
 pFile->WriteFormated("\t");
 if(nLevel==0 || m_bExportBVHPosition)
 pFile->WriteFormated("CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation
Yrotation\r\n");
 else

 222

 pFile->WriteFormated("CHANNELS 3 Zrotation Xrotation Yrotation\r\n");
 }
 }

 for (int i=0;i<nChildCount;++i)
 {
 // this will prevent multiple end site be exported.
 int nCount = m_bones[m_bones[nBoneIndex].m_childBones[i]].GetChildCount();
 if(nCount > 0 || i == 0)
 {
 if(!bEscapeUnknownBones ||
 (m_bones[m_bones[nBoneIndex].m_childBones[i]].m_bCriticalBone))
 WriteBVHNode(nLevel+1, m_bones[nBoneIndex].m_childBones[i],
pFile,bEscapeUnknownBones);
 }
 }

 if(!bEscapeUnknownBones || !bIsUnknownBone)
 {
 // right curly brace
 for (int i=0;i<nLevel;++i)
 pFile->WriteFormated("\t");
 pFile->WriteFormated("}\r\n");
 }

 return true;
}

bool CBVHSerializer::WriteBVHNodeAnimation(int nLevel, int nBoneIndex, CParaFile* pFile,bool
bEscapeUnknownBones)
{
 int nChildCount = m_bones[nBoneIndex].GetChildCount();
 if(bEscapeUnknownBones && m_bones[nBoneIndex].m_sMarkerName == "End")
 nChildCount = 0;
 bool bIsUnknownBone = m_bones[nBoneIndex].IsUnKnownBone();

 // write animation on each channel.
 if(nChildCount != 0)
 {
 if(!bEscapeUnknownBones || !bIsUnknownBone)
 {
 D3DXVECTOR3 vPos1, vPos2, vPos(0,0,0);
 D3DXVECTOR3 vRot(0,0,0);

 // if the parent bone is its immediate upper level bone, then we only need to read data from the key
 if (m_pXMesh->bones[nBoneIndex].rot.used) {
 Quaternion q = m_pXMesh->bones[nBoneIndex].rot.getValue(m_pXMesh->nCurrentAnim,
m_pXMesh->currentFrame, 0,0,0.f);
 q.ToRadians(&vRot.x, &vRot.y, &vRot.z);
 vRot.x *= 180.f/D3DX_PI;
 vRot.y *= 180.f/D3DX_PI;
 vRot.z *= 180.f/D3DX_PI;
 }
 if(nLevel==0)
 {
 // since we have different default orientations, rotate the root bone to face positive X.
 if(m_bRotateY)
 vRot.y += 90.f;

 223

 }
 if(nLevel == 0 || m_bExportBVHPosition)
 {
 D3DXVECTOR3 vAbsPos = (m_pXMesh->bones[nBoneIndex].mat*m_pXMesh-
>bones[nBoneIndex].pivot);
 vPos = vAbsPos - m_bones[nBoneIndex].m_vAbsOffset;
 // if this is the root node.
 pFile->WriteFormated("%f %f %f ", vPos.x, vPos.y, -vPos.z); // the order is affected by
m_RotateY settings.
 }
 pFile->WriteFormated("%f %f %f ", vRot.z, vRot.x, vRot.y);
 }
 }

 // write child nodes.
 for (int i=0;i<nChildCount;++i) {
 // this will prevent multiple end site be exported.
 int nCount = m_bones[m_bones[nBoneIndex].m_childBones[i]].GetChildCount();
 if(nCount > 0 || i == 0)
 {
 if(!bEscapeUnknownBones ||
m_bones[m_bones[nBoneIndex].m_childBones[i]].m_bCriticalBone)
 WriteBVHNodeAnimation(nLevel+1, m_bones[nBoneIndex].m_childBones[i],
pFile,bEscapeUnknownBones);
 }
 }

 if(!bEscapeUnknownBones || !bIsUnknownBone) {
 // end this frame
 if(nLevel==0)
 {
 pFile->WriteFormated("\r\n");
 }
 }
 return true;
}

13.3.3 Performance Discussion
Performance is not quite an issue in an exporter program, since it is not run at production

time. We can carry out the most expensive optimization in the exporter program, while
leaving only light-weighted optimizations to the game engine at run time.

However, for performance reasons, we do not advise to write exporter for animated models
through the scripting interface of 3dsmax. Not only will it run slowly for sophisticated meshes,
but also one will lose the chance to use several free third party mesh optimization utilities,
such as NVStrip from NVIDIA and DirectX’s extension library, which are all in C++. For
simple static mesh, programming through the scripting interface is a choice, but optional. In
ParaEngine, we have a script based exporter in 3dsmax for static meshes only; and it is very
handy to use and modify. Scripting is very important for rapid development of general game
exporter tools. We will see it in the next section.

13.4 Summary and Outlook
Model exporter is only a member in all plug-in tools developed for 3dsmax or other content

creation tools during game development. Many game studios choose to code various other

 224

toolsets for their content creation tools, so that designers and artists can easily preview and
edit in the same familiar environment. These toolsets are usually developed in an RAD
fashion. And most of them are developed via the scripting system, instead of C++ API. Below
are several advantages of using the scripting system for tool development:

- They have simpler interface and easy to write (no memory management, etc).

- They are more portable. One does not need to rewrite or recompile for different
versions of the content tools.

- They are also quite reusable. Modules of script file can be more easily reused than
objects in C++.

- They are easy to debug and modify.

Hence scripting interface becomes a good choice when you are writing plug-ins with rich
GUI and without extensive computations, such as scene exporter, terrain exporter, particle
system exporter, path and trigger exporter, etc. It is also a good idea to mix script based
programming with C++ programming when working on your plug-in tools. Figure 13.7 shows
a script based plug-in tool developed for 3dsmax in ParaEngine.

Figure 13.7 Script based ParaEngine plug-in for 3dsmax

 225

Chapter 14 AI in Game World

Artificial Intelligence (AI) is one of the most important aspects during game development,
because it is what makes a game playful. Although the topic of AI is more specific to games
than to game engines, there are some paradigms which are common to many games and
which need to be supported by the game engine natively.

The definition of AI has always been versatile. The scope of AI in this chapter is limited to
techniques which makes character behaviors in a game world customizable both before and
after a game engine is released. In other words, this chapter talks about AI frameworks from a
game engine’s perspective. It aims to enable game designers and players to design and make
intelligent behaviors of game characters.

In the Simulation chapter 8, we have already seen how game physics can affect a
character’s motion, such as motions that adapt to obstacles and the slope of terrain and walls,
and rag-doll animations, etc. In the previous Character Animation chapter 12, we have seen
how some variant finite state machine can be used to control a character’s low level behaviors,
i.e. motion blending of animation sequences. We will not cover them again in this chapter.
Instead, we will illustrate an AI diagram that summarizes all aspects of game AI discussed in
the book.

In this chapter, we will look at some common design and implementation of game AI,
which makes AI in the game world customizable. These include character simulation and
sensor event system, and a number of useful high level AI controllers.

14.1 Foundation
To make this chapter goal-driven, we will begin by first defining several types of character

AI behaviors which is common in computer games; and then we will propose techniques and
software paradigms to achieve these goals with the minimum computation.

14.1.1 Reactive Character
Reactive character is only active in the game world when some one else, usually another

player, triggers it, such as mouse-clicking on its figure. In other domain of computer science,
we usually call such a thing reactive agent. If we look around in other software systems, we
will see that many of them are built in the reactive agent paradigm, such as web services,
remote procedure calls, etc.

There are two things to consider when implementing a reactive agent based game character.
One is agent discovery, i.e. how to locate a game character in a vast game world. Another is
communication protocols, i.e. how one can send an eligible message to a game character, so
that it can reply accordingly.

Reactive NPC is the most commonly used and the least computational expensive character
in computer games. We can construct many interesting game scenarios using it, such as a
merchant character standing behind the bar that sells goods to visitors, or a guard that stands
at the gate of a village giving advices or quests to passers-by, etc.

 226

14.1.2 Movie Character
Movie characters are game characters that behave according to some predefined sequence.

Some cinematic characters that tell players a story between game scenes are of such a
category. We can also introduce some randomness and looping mechanism in the sequence;
and with this technique, we can make citizens in a game city quite convincing without
simulating them using more computational expensive techniques.

Movie characters can be endowed with reactive character abilities to form more interactive
and intelligent hybrid character types. For example, when you click on a patrolling character
in a typical RPG game, it will stop and reply to you, and then continue with its patrolling
sequence.

14.1.3 Perceptive Character
Perceptive character is a game character that can perceive other game entities when they are

in its perceptive radius. By perceiving the environment, a perceptive character usually acts
autonomously. Re-spawning creatures in games are usually of this type. For example, when a
creature sees a player, it may choose to attack, defense, or flee, etc. Perceptive characters are
usually associated with internal rules and can actively issue actions according to their
perceptions.

One inevitable computation complexity of all perceptive characters is to effectively find all
other characters in its perceptive radius. To reduce computation, we usually assign characters
to different groups and define which groups can be perceived by a given character. Using
group policy, we can easily reduce large number of irrelevant characters which are in a
character’s vicinity, yet of no interest to it. We will see them in details in the next section.

14.1.4 Character Simulation and Sensor Events
In previous sections, we have identified several types of game characters. A game engine

must be able to simulate characters according to their AI requirements. In ParaEngine, we use
a unified character simulation and senor event framework which could achieve any
combination of the aforementioned game character types. To begin with, we will define a
general game character as a group of attributes, functions and sensor events. For ease of
programmer readers, we will describe it in a class called IGameObject, from which other
specific types of characters may be derived. See below. The sensor events are in bold text.
They will be automatically called during game world simulation. One can refer to Chapter
8.2.2 for the character simulation code.
class IGameObject
{
 public:
 /** call back type */
 enum CallBackType{
 Type_EnterSentientArea=0,
 Type_LeaveSentientArea,
 Type_Click,
 Type_Event,
 Type_Perception,
 Type_FrameMove,
 Type_OnLoadScript
 };

 227

 /** save the current character to database according to the persistent property.
 if the object is persistent, the action is to update or insert the character to db
 if the object is non-persistent, the action is to delete it from the database. */
 virtual bool SaveToDB();

 /** automatically generate way points according to its perceptions */
 virtual void PathFinding(double dTimeDelta);

 /** animate biped according to its current way point lists and speed.
 * assuming that no obstacles are in the way it moves.*/
 virtual void AnimateBiped(double dTimeDelta, bool bSharpTurning = false /*reserved*/);

 /** Get the AI module that is dynamically associated with this object */
 virtual CAIBase* GetAIModule();

 //
 // the following must be implemented. The IGameObject will automatically activate
 // the script. Hence, object which implements these functions need to call the base class
 // to ensure that the script is also activated.
 //

 /** called when this object is attached to the scene. */
 virtual int On_Attached();
 /** called when this object is detached from the scene */
 virtual int On_Detached();

 /** when other game objects of a different type entered the sentient area of this object.
 This function will be automatically called by the environment simulator. */
 virtual int On_EnterSentientArea();
 /** when no other game objects of different type is in the sentient area of this object.
 This function will be automatically called by the environment simulator. */
 virtual int On_LeaveSentientArea();

 /** when the player clicked on this object.
 This function will be automatically called by the environment simulator. */
 virtual int On_Click(DWORD nMouseKey, DWORD dwParam1, DWORD dwParam2);

 /** TODO: Some game defined events, such as user attack, etc. */
 virtual int On_Event(DWORD nEventType, DWORD dwParam1, DWORD dwParam2);

 /** when other game objects of a different type entered the perceptive area of this object.
 This function will be automatically called by the environment simulator. */
 virtual int On_Perception();
 /** called every frame move when this character is sentient.
 * This is most likely used by active AI controllers, such as movie controller. */
 virtual int On_FrameMove();

 /** add a new call back handler. it will override the previous one if any.
 bool AddScriptCallback(CallBackType func_type, const string& script_func);
 /** return NULL if there is no associated script. */
 ScriptCallback* GetScriptCallback(CallBackType func_type);
 /** remove a call back handler*/
 bool RemoveScriptCallback(CallBackType func_type);

 /** whether the biped is sentient or not*/
 bool IsSentient();
 /** set the object to sentient.
 * @param bSentient: true to make sentient. if the object's sentient count is larger than 0, this

 228

 * function has no effect; false, to remove the object from the sentient list.
 */
 void MakeSentient(bool bSentient=true);

 /** get the sentient radius. usually this is much larger than the perceptive radius.*/
 float GetSentientRadius();
 /** set the sentient radius. usually this is much larger than the perceptive radius.*/
 void SetSentientRadius(float fR);

 /** get the perceptive radius. */
 float GetPerceptiveRadius();
 /** Set the perceptive radius. */
 void SetPerceptiveRadius(float fNewRaduis);

 /** return the total number of perceived objects. */
 int GetNumOfPerceivedObject();

 /** get the perceived object by index. This function may return NULL.*/
 IGameObject* GetPerceivedObject(int nIndex);

 /** get the distance square between this object and another game object*/
 float GetDistanceSq2D(IGameObject* pObj);

 /** whether the object is always sentient. The current player is always sentient */
 bool IsAlwaysSentient();
 /** set whether sentient. */
 void SetAlwaysSentient(bool bAlways);

 /** update the tile container according to the current position of the game object.
 * This function is automatically called when a global object is attached. */
 void UpdateTileContainer();

 /** is global object */
 virtual bool IsGlobal(){return m_bIsGlobal;}

 /** make the biped global if it is not and vice versa.*/
 virtual void MakeGlobal(bool bGlobal);

 /** set the group ID to which this object belongs to. In order to be detected by other game object.
 * Object needs to be in group 0 to 31. default value is 0*/
 void SetGroupID(int nGroup);
 /** Get the group ID to which this object belongs to. In order to be detected by other game object.*/
 int GetGroupID();

 /** set the sentient field. A bit field of sentient object. from lower bit to higher bits, it matches to the
0-31 groups. @see SetGroupID()
 * if this is 0x0000, it will detect no objects. If this is 0xffff, it will detects all objects in any of the 32
groups.
 * if this is 0x0001, it will only detect group 0.
 * @param dwFieldOrGroup: this is either treated as field or group,depending on the bIsGroup
parameter.
 * @param bIsGroup: if this is true, dwFieldOrGroup is treated as a group number of which object
will detect.
 * if this is false, dwFieldOrGroup is treated as a bitwise field of which object will be detected.
 */
 void SetSentientField(DWORD dwFieldOrGroup, bool bIsGroup=false);
 /** @see SetSentientField*/
 DWORD GetSentientField();

 229

 /** return true if the current object is sentient to the specified object. If the object is always sentient,
this function will always return true.*/
 bool IsSentientWith(const IGameObject * pObj);

 /** whether the object is persistent in the world. If an object is persistent, it will be saved to the
world's database.
 if it is not persistent it will not be saved when the world closes. Player, OPC, some temporary
movie actors may be non-persistent; whereas NPC are usually persistent to the world that it belongs
to.*/
 bool IsPersistent(){return m_bIsPersistent;};
 /** whenever a persistent object is made non-persistent, the SaveToDB() function will actually
remove it from the database and the action can not be recovered.
 * so special caution must be given when using this function to prevent accidentally losing
information.
 @see IsPersistent() */
 void SetPersistent(bool bPersistent);

 /** whether some of the fields are modified.It is up to the implementation class to provide this
functionality if necessary. */
 virtual bool IsModified();
 /** set whether any field has been modified. */
 virtual void SetModified(bool bModified){m_bModified = bModified;};
}
The above codes are explained in the following sections as character attributes and events.

14.1.4.1 Character Simulation Attributes
The most important attributes of a common game character are “global”, "Sentient",

“AlwaysSentient”, “Sentient Radius”, “Perceptive Radius”, “Group ID” and “SentientField”.
We will explain them one by one next.

“global” is a Boolean specifying whether the character can move in the scene. The “global”
attribute is usually assigned manually when the character is created. The computation to
simulate a non-global or static character is far more economic than to simulate a global one,
which can move in the scene autonomously. Pure reactive character is a typical non-global
character.

“sentient” is a Boolean which is automatically set on and off during character simulation. It
specifies whether a game character needs to be simulated in the current frame. A huge game
world may be populated with tens of thousands of characters, but most of them are not
sentient. Consider a city with 1000 NPC and creatures. If the human player’s avatar is miles
away from them, why bother to simulate them at all? On each simulation step, the character
simulator can automatically wake up non-sentient characters and put sentient ones to sleep
according to the values in the “sentient field” and “group ID” attributes of characters, as well
as their relative positions. The character simulation code in Chapter 8.2.2 shows that the
simulation time at a given frame is only linear to the number of sentient characters currently
in the scene. It has nothing or little to do with the total number of loaded game characters. In
other words, the character simulation complexity is O(N), where N is the number of sentient
game objects currently in the scene.

“AlwaysSentient” is a Boolean telling whether a certain character should always be sentient.
The simulator will never make an “AlwaysSentient” character non-sentient. Always sentient
characters in a game are usually the origin of the AI logic triggering chains. The most
common “AlwaysSentient” character is the human player’s avatar in the game world. When

 230

an “AlwaysSentient” character is in the scene, the character simulator will wake up all other
relevant characters which can sense it and in its vicinity. In a RTS (real-time strategy) game,
all game units may need to be always sentient; in a RPG game, only the main player need to
be always sentient; and in a MMORPG (massively multiplayer online role playing game), the
game server may need to treat all clients’ avatars and the Boss NPCs as “AlwaysSentient”
characters and everything else, such as ordinary NPC, re-spawning creatures as not
“AlwaysSentient”.

“Sentient Radius” is an important radius that the character simulator used to generate
sensor events for a character. The sentient radius is usually a large radius, such as 50-100
meters or it can be proportional to the camera view frustum radius. The spherical region
specified by a character’s sentient radius is used to wake up other non-sentient objects in this
range. Consider an “AlwaysSentient” player walks along a path, it will keep waking up all
other non-sentient objects whose sentient area intersect with it; whereas the character
simulator also keeps putting sentient objects to sleep when their sentient area are no longer
inside that of any other interested sentient characters. See Figure 14.1. Two events are fired
by the character simulator whenever a character changes states between sentient and non-
sentient. They are On_EnterSentientArea and On_LeaveSentientArea. The On_FrameMove
event and various other AI modules (which we will see in later sections) are called every few
frames during the time when a character is sentient.

Figure 14.1 Sentient radius and swept region

“Perceptive Radius” is an important radius that the character simulator uses to generate
sensor events for a character. The character simulator will call On_Perceive event of a given
character on a simulation frame if and only if (1) the character is sentient (2) there are other
interested characters in the perceptive radius of this character. Hence, the perceptive radius is
always smaller than the sentient radius. The reason that we need both sentient and perceptive
radiuses is that we can have two sets (layers) of AI functions at different ranges. One can
define more radiuses if one likes. But two layers of AI at different ranges are generally
enough for most game scenarios. For example, in the first layer or within the sentient radius,
the character just moves using some predefined patterns, such as patrolling. In the second
layer or within the smaller perceptive radius, the character may issue actions according to its
perceptions, such as attacking a player, etc.

Sentient Radius

Un-sentient

Sentient

Player

 231

 “Group ID” is an integer from 0 to 31, denoting 32 groups. Any character in the scene is
assigned to one of the 32 groups. By assigning group ID to characters, we can define
relationships between characters from different and/or the same groups. For example, we can
define rules such that characters from group 0 can only perceive characters from group 1 and
group 2. Such group relationship information is encoded in a 32bit DWORD attribute called
“SentientField” (see the next paragraph). In an actual game, we may put all players to one
group, all network players to one group, all static task NPCs to one group, all ally creatures to
one group, all enemy creatures to one group, all cinematic movie character to one group, all
dummy NPC to one group, etc. The reason to partition game characters by groups is that the
character simulator only needs to care about pair of characters whose group IDs are related.
This will greatly reduce the total number of sentient characters in the scene as well as number
of interested (relevant) characters in the vicinity of any sentient character.

“SentientField” is a 32bits DWORD, from lower bits to higher bits, each denoting one of
the 32 groups. If any bit of the “SentientField” is 1, it means that the character is able to sense
characters belonging to that group; and if any bit is 0, it means that the character can not sense
or is irrelevant to characters from the corresponding group. For example, with sentient field
0x1, the object is only interested in or sentient with group 0; with sentient field 0xffffffff, the
object is interested in characters of any group. Table 14.1 shows several typical game
character types and their typical group ID and sentient field values.

Table 14.1 Typical game characters and their group ID and sentient field

Player Movie Character Static NPC Enemy creatures
S-field\G-ID Group 0 Group 1 Group 2 Group 3

Bit 0 1 1 0 1

Bit 1 1 0 0 1

Bit 2 1 0 0 1 or 0

Bit 3 1 0 0 0

Sentient Field 0xF 0x1 0x0 0x7 or 0x3

14.1.4.2 Character Simulation Events
There are five typical events that the character simulator calls automatically. The character

AI code can be written directly in them or be called from them.

 Table 14.2 Character simulation events

On_Load Called when the character is loaded from disk or database to the
scene. Although it is not called by the character simulator, it looks
and functions like a simulation event.

On_EnterSentientArea When other game objects of a different type entered the sentient
area of this object. This function will be automatically called by
the character simulator.

 232

On_LeaveSentientArea When no other game objects of different type is in the sentient
area of this object. This function will be automatically called by
the character simulator.

On_Click When the player clicked on this object. This function will be
automatically called by the character simulator.

On_Perception When other game objects of a different type entered the perceptive
area of this object. This function will be automatically called by
the character simulator.

On_FrameMove This function is called every frame when the character is sentient.
This is mostly used by AI controllers.

Each event can be optionally associated with a script file. Whenever an event is fired, the
associated script is also called. We have not talked about scripting yet, but one can think of
them as programs to be compiled and executed at runtime. One can have a quick glance at the
scripting chapter for a brief introduction to game scripting technology. In this chapter, we will
only look at C++ or hard-coded AI code in the game engine. In the following sections, we
will see using AI controllers in the On_FrameMove events to achieve a variety of character
behaviors.

14.1.5 AI Controllers
AI controller is a reusable C++ AI code pattern. We will examine four kinds of AI

controllers in this chapter, they are facing tracking controller, follow controller, movie
controller and sequence controller. A character may be assigned any number of AI controller
instances at runtime. There are some internally defined priorities between different kinds of
AI controllers. The character simulator, which we have examined in previous section,
automatically executes all the AI controllers that are associated with a sentient character at
each simulation frame.

All AI controllers have a virtual function called FrameMove(), which are called
automatically per frame. We can think of it being called inside or just before
On_FrameMove() event of the character. Because the FrameMove() function call of AI
controllers originate from the character simulator, the code inside FrameMove() can access all
perceived characters in its vicinity. Some controllers that we used in ParaEngine are given
next.

14.1.5.1 Face Tracking Controller
Face tracking controller controls a character to always face a given target or another

character. Face tracking controller has relatively high priority. The implementation is very
simple. In the FrameMove() function of the controller, it just retrieve the closest character
from its perceived character list and set the facing accordingly. This controller is commonly
used when a player approaches an NPC. The NPC with a face tracking controller will
automatically rotates its neck to face the incoming player.

 233

14.1.5.2 Follow Controller
Follow controller controls a character to follow another character as long as the target is in

sight. The implementation is straight forward. It first searches if the target is in sight by
examining in its perceived character list. If the target is perceived, it just commands the
character to walk towards it until some minimum distance to the target is reached.

14.1.5.3 Movie Controller
Movie controller controls a character to act according to some predefined action script. The

script is a list of time and action pairs. Movie controller is suitable for playing back time
accurate character motions. The implementation is very similar to the key framed character
animation system, except that the keys are the character positions in the scene, the animation
IDs to play, the dialogs to speak, etc.

14.1.5.4 Sequence Controller
Sequence controller controls a character according to some predefined sequenced

commands list. It executes at most one command per frame, and it will only execute the next
command when the current command is finished or timed out. Sequence controller is similar
to movie controller, except that its progression is dependent on the termination of a command,
instead of time. One can think of a sequence controller as a short computer program. The
program may contain branch and loop operations. Instead of using a separate C++ thread to
execute this program, the sequence controller executes at most one command per simulation
step in the main thread. The following code shows a list of common instructions supported by
a sequence controller.
 /** run to a position relative to the current position. */
 void RunTo(float x,float y,float z);
 /** walk to a position relative to the current position. */
 void WalkTo(float x,float y,float z);
 /** move (using the current style i.e. walk or run) to a position relative to the current position. */
 void MoveTo(float x,float y,float z);
 /** play an animation by animation name */
 void PlayAnim(const string& sAnim);
 /** play an animation by animation id */
 void PlayAnim(int nAnimID);
 /** wait the specified seconds, without further processing commands */
 void Wait(float fSeconds);
 /** execute a given script command*/
 void Exec(const string& sCmd);
 /** pause the sequence infinitely until some one resumes it. */
 void Pause();
 /** turn the character to face a given absolute direction in radian value. */
 void Turn(float fAngleAbsolute);
 /** move forward using the current facing a given distance*/
 void MoveForward(float fDistance);
 /** move backward using the current facing a given distance*/
 void MoveBack(float fDistance);
 /** move left using the current facing a given distance*/
 void MoveLeft(float fDistance);
 /** move right using the current facing a given distance*/
 void MoveRight(float fDistance);
 /** Jump once */
 void Jump();

 234

 /** offset the current sequence commands by a given steps. */
 void Goto(int nOffset);
 /** offset to a label, if label not found, it will wrap to the beginning. */
 void Goto(const string& sLable);
 /** add a new label at the current position. */
 void Lable(const string& sLable);

Sequence controller can be combined with character sensor events to build fairly complex
AI logics. A sequence controller alone can be used to model behaviors such as patrolling
guards, wandering enemy creatures, busy citizens on a city street, etc. Sequence and movie
controllers are usually used via the scripting interface. Although we have not covered
scripting in game engine, one can still easily preview the script code example of a sequence
controller. See below.
local s = player:ToCharacter():GetSeqController();
s:BeginAddKeys();
 s:Lable("start");
 s:PlayAnim("EmotePoint");
 s:WalkTo(10,0,0);
 s:Wait(0);
 s:Turn(-1.57);
 s:WalkTo(-5,0,0);s:Jump();s:RunTo(-5,0,0);
 s:Exec(";NPC_SEQ_EXEC_Test()");
 s:Goto("start");
s:EndAddKeys();

14.1.6 Frame Rate of AI Logics
The character simulation engine is executed at a high frame rate, such as 30 FPS. However,

not all AI logics need to be executed at such a high rate, we can save three to five times
computation by simply adjusting the frame rate of some AI modules to a lower value, such as
10FPS or 6 FPS, or even lower depending on the type of AI concerned. On the other hand,
distributing AI code into several frames is also a very good idea.

However, if the same character is subject to several AI modules each of which are
operating at different frame rates, there could be some tricky issues to deal with. Figure 14.2
shows the different game engine modules which may affect the behavior of a simulated
character. AI module with high priority will override behaviors generated by AI modules with
low priority. AI modules with high priority usually executes at a slightly higher frame rate
than those with low priority.

 235

 Figure 14.2 Frame rate and priority of AI modules

Implementing a low priority AI module could get increasingly complicated when there are
more high priority AI modules working together. Take the sequence controller for example. It
has very low priority and frame rate. Many other controllers may override the behavior
generated by a sequence controller. For example, a sequence controller controls a character
walking in circles; then suddenly the character perceives a player, the follow controller is
activated and the character begins to walk after the player instead of doing its routine circling;
after a while, the character follows the player into a deep hole on the ground; the game
physics engine immediately detects this and it works with the character state manager to play
a falling down animation; after falling down the hole, the character loses sight of the player,
and it tries to go back to its initial position and continue with its walk in circles there. In this
long process, the sequence controller is suppressed by a number of high priority modules and
for quite a long time.

Another challenge of implementing low frame rate AI is that we need to make more
predictions to the motions of the character in order to generate smooth animation under the
normal render frame rate. Consider the following consecutive commands in the sequence
controller.
s:WalkTo(10,0,0);
s:WalkTo(0,0,10);

What we intended is that the character should walk 10 units along the x axis, and then 10
units along the y axis. This works fine if the sequence controller is running at the same frame
rate as the character simulator. However, if the sequence controller is only executed every 0.2
seconds or at 5 FPS, the result can be very different from what is expected. Without proper
prediction, the character will first walk 10 units along the x axis, and before the next walk
command is issued 0.2 seconds later, the character state manager determines that the character
has already reached its destination and a standing animation will be wrongly inserted.

Character

State Manager

Game Physics

User Input

Network Commands

AI logics

Follow controller

Events & Scripts

Face controller

Sequence controller

AI priorities Low

Frame rates of AI modules
usually match their priorities.

Movie controller

High

 236

This problem is caused by different AI modules working at different frame rates. A
workaround to this problem is to predict as much as possible. For example, in the sequence
controller, we need to predict 0.2 seconds ahead. I.e. if the character is going to reach its
destination in the next 0.2 seconds, we will immediately proceed to the next command
without waiting till the next frame. Thus, the termination of any command in sequence
controller is defined as below: a command terminates if it is going to meet its termination
criterion in the next 0.2 seconds. By predicting 0.2 seconds ahead of time, the sequence
controller can avoid idle frames that induce unnecessary animations. However, it also means
that all commands of a sequence controller may be terminated at most 0.2 seconds earlier. If
we want to carry out a command to its accurate completion, we can insert a wait(0) command
(an empty command), which tells the sequence controller to wait 0 seconds (it actually waits
0.2 seconds depending on the FPS of the sequence controller). See below.
s:WalkTo(10,0,0);
s:Wait(0);
s:Turn(3.14);
s:WalkTo(0,0,10);

Of course, if the sequence controller in your implementation is a high priority AI module,
the above Wait(0) command is not necessary.

14.1.7 Summary of AI
Game AI is very versatile. Due to the limited computation resources, game AI are usually

designed in a layered or prioritized fashion, in which different modules may be running under
different frame rates. Another characteristic of game AI is that the AI codes are usually not
centralized in a single all-in-one module. Modern computer game engines features real-time
physics and autonomous animations, which forces the AI (or character behavior related code)
to be distributed in various places of the game engine. Script file is another place that AI code
is usually placed in. This is especially true for RPG games with large number of unique game
characters. With the up coming of Internet enabled games, AI logics is going to be distributed
on the network.

14.2 Architecture
This section shows the basic architecture of the AI framework discussed in the chapter.

14.2.1 Game Object Base Class
All simulated characters need to be derived from a base game object or IGameObject. Figure
14.3 shows an example. The biped object is derived from IGameObject, and an RPG
character is derived from a biped object. IGameObject exposes a common interface used by
the environment simulator. The interface is already shown in the previous Foundation section.

 237

Figure 14.3 IGameObject inheritance graph

14.2.2 AI Controller
All AI controllers are also derived from a common base class called CBipedController as

shown in Figure 14.4.

Figure 14.4 AI controller inheritance graph

The following shows the CBipedController interface. The most important function of a
biped controller is the frame move function which is called by the character simulator every
frame if the associated character is sentient.
/**
 * Base Interface for Biped controller. The AI module contains a collection of biped controllers
 * for directing the behavior of the biped.Each biped controller derived from this class may
 * control a certain aspect of the biped, such as UserController, MovieController, OPCController
 * NPLController, FacingController, CollisionController, etc.
 */
 class CBipedController
 {
 public:
 CBipedController(CAIBase* pAI);
 CBipedController(void);
 virtual ~CBipedController(void);
 private:
 /** whether the controller is suspended, so it does not take effects on the next frame move.*/
 bool m_bSuspended;
 /** to which this biped controller is associated.*/
 CAIBase* m_pAI;

 238

 protected:
 /** total time elapsed since the controller is active (not suspended). */
 float m_fTimeElapsed;

 public:
 /** check whether the controller is active(not suspended).*/
 bool IsActive();
 /** suspend the controller, so it does not take effects on the next frame move.*/
 virtual void Suspend();
 /** resume the controller. */
 virtual void Resume();
 /** set the internal timer. This is useful when the behavior is relevant to the timer.*/
 virtual void SetTime(float fTime);
 /** get the current movie time*/
 float GetTime();
 /** get the biped in the perceived biped list, which is closet to the current biped.
 * @param pInput: the active biped list.
 * return: NULL is returned if there is no closest biped. The pointer returned is only valid where
pInput is valid*/
 IGameObject* GetClosestBiped(IGameObject* pInput);

 /** Find a biped with a matching name. * is supported, which matches any character(s).
 * @param pInput: the active biped list.
 * @param searchString: e.g. "LiXizhi", "LXZ*"
 */
 IGameObject* FindBiped(IGameObject* pInput, const std::string& searchString);

 /** get the biped, to which this biped controller is associated. */
 CBipedObject* GetBiped();
 /** set the AI object to which this object is associated.*/
 void SetAI(CAIBase* pAI);

 /** a virtual function which is called every frame to process the controller.
 * @param fDeltaTime: the time elapsed since the last frame move is called.
 */
 virtual void FrameMove(float fDeltaTime);
 };

The collaboration of AI controllers with the character scene object and the character state
manager is illustrated in the collaboration diagram shown in Figure 14.5. CAIBase and its
derived classes are AI controller containers. For example, a typical NPC AI module may
contain four AI controllers as shown in Figure 14.6.

 239

Figure 14.5 Collaboration diagram for CBipedController

Figure 14.6 Collaboration diagram for CAIModuleNPC

14.2.3 Other AI Modules
Other AI modules in ParaEngine can be found in other chapters of this book. The following is
a quick reference to those places in the book.

- Character simulator: in the simulation chapter 8.

- Character state manager: in the character and animation chapter 12.

- Character physics: in the simulation chapter 8.

- Script based AI: in the scripting chapter 16 and Appendix B.

- Path-finding: in the navigation chapter 15.

14.3 Code and Performance Discussion
This section provides some useful code snippets.

14.3.1 Follow Controller
Class structure

 240

 /** a follow controller
 * it will follow a given target or another biped.
 * please note that the controller will only follow an object within its perceptive radius. */
 class CFollowCtrler : public CBipedController
 {
 public:
 CFollowCtrler(void);
 CFollowCtrler(CAIBase* pAI);
 virtual ~CFollowCtrler(void);
 private:
 /// name of the biped to follow
 std::string m_sFollowTarget;
 /// default radius around the target biped. it will control the biped to try it best to stand on this circle.
 float m_fRadius;
 /// it will control the biped to stand beside the target with the target facing shifted by this value.
 /// note that +-Pi means behind the biped.
 float m_fAngleShift;
 public:
 /*
 * Follow a biped at a specified circle position.
 * @param obj: format "sName radius angle" | "sName"
 * sName: it is the name of the biped to follow,
 * radius: [optional, default to 2.5f] it is the default radius around the target biped. it will control the
biped to try it best to stand on this circle.
 * angle: [optional, default to Pi] it will control the biped to stand beside the target with the target
facing shifted by this value.
 * note that +-Pi means behind the biped.
 * e.g. "lixizhi", "lixizhi 2.5 3.14", "lixizhi 3.0 0", "lixizhi 3.0 1.57", "lixizhi 3.0 -1.57"
 */
 void SetFollowTarget(const std::string& obj);
 const std::string& GetFollowTarget();

 /** a virtual function which is called every frame to process the controller.
 * @param fDeltaTime: the time elapsed since the last frame move is called.
 * @param pInput: It holds any information that is perceived by a Active Biped object
 */
 virtual void FrameMove(float fDeltaTime);
 };

Implementation
void CFollowCtrler::FrameMove(float fDeltaTime)
{
 CBipedObject * pBiped = GetBiped();
 IGameObject* pPercevied = FindBiped(pBiped, m_sFollowTarget);
 if(pPercevied!=NULL && pBiped!=NULL && pPercevied-
>GetDistanceSq2D(pBiped)>MIN_FOLLOW_CATCHUP_DIST_SQUARE)
 {
 float fFacing = pPercevied->GetFacing() + m_fAngleShift;
 D3DXVECTOR3 vDest;
 pPercevied->GetPosition(&vDest);

 vDest.x += cosf(fFacing)*m_fRadius;
 vDest.z += sinf(fFacing)*m_fRadius;

 CBipedStateManager* pState = pBiped->GetBipedStateManager();
 if(pState)
 {
 pState->SetPos(vDest);

 241

 pState->AddAction(CBipedStateManager::S_WALK_POINT);
 }
 }
}

14.3.2 Sequence Controller
Class structure
/** A sequence controller is a biped controller which moves the biped according to some predefined
sequence. */
 class CSequenceCtler : public CBipedController
 {
 public:
 CSequenceCtler();
 CSequenceCtler(CAIBase* pAI);
 virtual ~CSequenceCtler(void);
 public:
 /** a virtual function which is called every frame to process the controller.
 * @param fDeltaTime: the time elapsed since the last frame move is called.
 */
 virtual void FrameMove(float fDeltaTime);

 bool Save(bool bOverride);
 bool Load(int nSequenceID);
 bool Load(const string& fileName);
 int Create(const string& name, const string& description, const char* pData,bool bInMemory);
 string ToString();

 /** Get the current absolute playing cursor position*/
 int GetKeyPos(){return m_nKeyPos;};
 /** set the current absolute playing cursor position*/
 void SetKeyPos(int nPos);

 /** get total key count*/
 int GetTotalKeys();
 /** offset the key index according to the current play mode. i.e. it will automatically wrap to the
beginning if looping.
 @param nOffset: number of keys to advance.
 @return: the number of keys that have been successfully offseted. Usually if the returned value is
not equal to the input value, it means
 that the sequence should be paused. */
 int AdvanceKey(int nOffset);
 /** call the command functions(RunTo, MoveTo, etc) only between the matching pair of
BeginAddKeys() and EndAddKeys()*/
 void BeginAddKeys();
 /** call the command functions(RunTo, MoveTo, etc) only between the matching pair of
BeginAddKeys() and EndAddKeys()*/
 void EndAddKeys();
 /** get sequence ID*/
 int GetSequenceID();
 /** delete keys range
 @param nFrom: 0 based index.
 @param nTo: 0 based index, if -1, it means the last one. */
 bool DeleteKeysRange(int nFrom, int nTo);

 /** get the play direction. */
 bool GetPlayDirection(){return m_bForward;};

 242

 /** set the play direction. */
 void SetPlayDirection(bool bForward){m_bForward = bForward;};

 /** the minimum time between two successive calls. */
 float GetInterval(){return m_fMinInterval;}
 /** the minimum time between two successive calls. */
 void SetInterval(float fInterval){m_fMinInterval = fInterval;}

 /** get the starting position. */
 D3DXVECTOR3 GetStartPos(){return m_vStartPos;}
 /** set the starting position. */
 void SetStartPos(const D3DXVECTOR3& vPos){m_vStartPos = vPos;}

 /** get the start facing. usually default to 0. */
 float GetStartFacing(){return m_fStartFacing;}
 /** Set the start facing. usually default to 0. */
 void SetStartFacing(float facing){m_fStartFacing = facing;}

 /** get the current play mode */
 int GetPlayMode(){return (int)m_nPlayMode;}
 /** set the current play mode */
 void SetPlayMode(int mode);

 /** get the number of seconds after which all move commands will be treated as finished.
 default value is 30 seconds. */
 float GetMovingTimeout(){return m_fMovingTimeOut;}
 /** set the number of seconds after which all move commands will be treated as finished.
 default value is 30 seconds. */
 void SetMovingTimeout(float fTimeout){m_fMovingTimeOut=fTimeout;}

 //
 // commands:
 public:
 /** run to a position relative to the current position. */
 void RunTo(float x,float y,float z);
 /** walk to a position relative to the current position. */
 void WalkTo(float x,float y,float z);
 /** move (using the current style i.e. walk or run) to a position relative to the current position. */
 void MoveTo(float x,float y,float z);
 /** play an animation by animation name */
 void PlayAnim(const string& sAnim);
 /** play an animation by animation id */
 void PlayAnim(int nAnimID);
 /** wait the specified seconds, without further processing commands */
 void Wait(float fSeconds);
 /** execute a given script command*/
 void Exec(const string& sCmd);
 /** pause the sequence infinitely until some one resumes it. */
 void Pause();
 /** turn the character to face a given absolute direction in radian value. */
 void Turn(float fAngleAbsolute);
 /** move forward using the current facing a given distance*/
 void MoveForward(float fDistance);
 /** move backward using the current facing a given distance*/
 void MoveBack(float fDistance);
 /** move left using the current facing a given distance*/
 void MoveLeft(float fDistance);
 /** move right using the current facing a given distance*/
 void MoveRight(float fDistance);

 243

 /** Jump once */
 void Jump();
 /** offset the current sequence commands by a given steps. */
 void Goto(int nOffset);
 /** offset to a label, if label not found, it will wrap to the beginning. */
 void Goto(const string& sLable);
 /** add a new label at the current position. */
 void Lable(const string& sLable);

 private:
 SequenceEntity* m_pSequenceEntity;

 enum SEQ_STATE{
 SEQ_EMPTY, // empty
 SEQ_CREATED, // only resides in memory
 SEQ_MANAGED, // is being managed by the manager
 }m_nSequenceState;
 /** sequence name */
 string m_name;
 /** description */
 string m_description;
 /** whether how sequence should be played. */
 int m_nPlayMode;
 /** initial position in world coordinate */
 D3DXVECTOR3 m_vStartPos;
 /** initial facing */
 float m_fStartFacing;
 int m_nKeyPos;
 bool m_bIsAddingKey;
 /** whether is playing forward*/
 bool m_bForward;
 /** 1/FPS, where FPS is the frequency of valid activation. */
 float m_fMinInterval;
 float m_fUnprocessedTime;
 /** the number seconds that a sequence item has been executed. */
 float m_fItemDuration;
 /** the number of seconds after which all move commands will be treated as finished.
 default value is 30 seconds. */
 float m_fMovingTimeOut;
 /** default to 1 seconds */
 float m_fTurningTimeOut;

 /** copy the entity parameter to this controller.*/
 void CopyEntityParamter(const SequenceEntity& e);
 /** assign a new sequence to replace the current one. */
 void SetEntity(SequenceEntity* e);
 };

Implementation
int CSequenceCtler::AdvanceKey(int nOffset)
{
 int nCount = m_pSequenceEntity->GetTotalKeys();
 if(nCount == 0)
 return 0;
 int nPos = m_nKeyPos+nOffset;
 if(nPos<nCount && nPos>=0)
 m_nKeyPos = nPos;
 else

 244

 {
 switch(m_nPlayMode)
 {
 case SequenceEntity::PLAYMODE_FORWORD:
 case SequenceEntity::PLAYMODE_BACKWORD:
 if(nPos >= nCount)
 {
 nOffset = nCount-m_nKeyPos-1;
 m_nKeyPos = nCount-1;
 }
 else // if(nPos<0)
 {
 nOffset = m_nKeyPos;
 m_nKeyPos = 0;
 }
 break;
 case SequenceEntity::PLAYMODE_FORWORD_LOOPED:
 case SequenceEntity::PLAYMODE_BACKWORD_LOOPED:
 if(nPos >= nCount)
 {
 nPos = nPos%nCount;
 m_nKeyPos = nPos;
 }
 else // if(nPos<0)
 {
 nPos = nCount - (-nPos)%nCount;
 nOffset = nPos;
 }
 break;
 case SequenceEntity::PLAYMODE_ZIGZAG:
 if(nPos >= nCount)
 {
 m_bForward = false;
 nPos = nPos%nCount;
 m_nKeyPos = nCount - nPos;
 }
 else // if(nPos<0)
 {
 m_bForward = true;
 nPos = (-nPos)%nCount;
 nOffset = nPos;
 }
 break;
 default:
 break;
 }
 }
 assert(m_nKeyPos>=0 && m_nKeyPos<nCount);
 return nOffset;
}
void CSequenceCtler::FrameMove(float fDeltaTime)
{
 if(IsActive())
 {
 CBipedObject* pBiped = GetBiped();
 CBipedStateManager* pState = NULL;
 if(pBiped==NULL || (pState=pBiped->GetBipedStateManager())== NULL)
 return;
 // process FPS.

 245

 m_fUnprocessedTime += fDeltaTime;
 fDeltaTime = m_fUnprocessedTime;
 m_fItemDuration += fDeltaTime;
 if(m_fUnprocessedTime> m_fMinInterval)
 m_fUnprocessedTime = 0;
 else
 return;
 bool bFinished = false;

 //
 //
 // check if the current sequence command is finished
 //
 //
 SequenceEntity::SequenceItem& item = m_pSequenceEntity->GetItem(m_nKeyPos);
 int nOffset = m_bForward?1:-1;
 switch(item.m_commandtype)
 {
 case SequenceEntity::CMD_MoveTo:
 case SequenceEntity::CMD_WalkTo:
 case SequenceEntity::CMD_RunTo:
 case SequenceEntity::CMD_MoveForward:
 case SequenceEntity::CMD_MoveBack:
 case SequenceEntity::CMD_MoveLeft:
 case SequenceEntity::CMD_MoveRight:
 {
 if(m_fItemDuration > m_fMovingTimeOut)
 {
 bFinished = true;
 }
 else
 {
 D3DXVECTOR3 vCurPos = pBiped->GetPosition();
 D3DXVECTOR3 vDest = item.m_vPos+m_vStartPos;
 if (CMath::CompareXZ(vCurPos, vDest, 0.01f))
 {
 bFinished = true;
 }
 else if(pBiped->IsStanding())
 {
 nOffset = 0;
 bFinished = true;
 }
 }
 break;
 }
 case SequenceEntity::CMD_Turn:
 {
 if(m_fItemDuration > m_fTurningTimeOut)
 {
 bFinished = true;
 }
 else
 {
 float fCurFacing = pBiped->GetFacing();
 float fFacing = item.m_fFacing + m_fStartFacing;
 if (abs(fFacing-fCurFacing)<0.01f)
 {
 bFinished = true;

 246

 }
 }

 break;
 }
 case SequenceEntity::CMD_Wait:
 {
 bFinished = (m_fItemDuration >= item.m_fWaitSeconds);
 break;
 }
 default:
 bFinished = true;
 break;
 }

 if(bFinished)
 {
 //
 //
 // process the next sequence command
 //
 //
 m_fItemDuration = 0;
 bool bEndOfSequence = AdvanceKey(nOffset) != nOffset;

 if(bEndOfSequence)
 {
 Suspend();
 return;
 }

 SequenceEntity::SequenceItem& item = m_pSequenceEntity->GetItem(m_nKeyPos);
 D3DXVECTOR3 vDest = item.m_vPos+m_vStartPos;
 float fFacing = item.m_fFacing;
 switch(item.m_commandtype)
 {
 case SequenceEntity::CMD_MoveTo:
 case SequenceEntity::CMD_WalkTo:
 case SequenceEntity::CMD_RunTo:
 case SequenceEntity::CMD_MoveForward:
 case SequenceEntity::CMD_MoveBack:
 case SequenceEntity::CMD_MoveLeft:
 case SequenceEntity::CMD_MoveRight:
 pState->SetPos(vDest);
 pState->SetAngleDelta(fFacing);
 if(item.m_commandtype == SequenceEntity::CMD_WalkTo)
 pState->SetWalkOrRun(true);
 else if(item.m_commandtype == SequenceEntity::CMD_RunTo)
 pState->SetWalkOrRun(false);

 pState->AddAction(CBipedStateManager::S_WALK_POINT, (const void*)1);
 break;
 case SequenceEntity::CMD_Turn:
 {
 pBiped->FacingTarget(fFacing);
 break;
 }
 case SequenceEntity::CMD_Exec:
 {

 247

 string sFile, sCode;
 DevideString(item.m_strParam, sFile, sCode, ';');
 CGlobals::GetScene()->GetScripts().AddScript(sFile, 0, sCode, pBiped);
 break;
 }
 case SequenceEntity::CMD_Pause:
 {
 Suspend();
 break;
 }
 case SequenceEntity::CMD_PlayAnim:
 {
 if(!item.m_strParam.empty())
 pState->AddAction(CBipedStateManager::S_ACTIONKEY,
&ActionKey(item.m_strParam));
 else
 pState->AddAction(CBipedStateManager::S_ACTIONKEY,
&ActionKey(item.m_dwValue));

 break;
 }
 case SequenceEntity::CMD_Jump:
 {
 pState->AddAction(CBipedStateManager::S_JUMP_START);
 break;
 }
 case SequenceEntity::CMD_Goto:
 {
 if(!item.m_strParam.empty())
 {
 // m_nGotoOffset is absolute position for goto command with Labels, so ...
 AdvanceKey(item.m_nGotoOffset - m_nKeyPos);
 }
 else if(AdvanceKey(item.m_nGotoOffset) != item.m_nGotoOffset)
 Suspend();
 break;
 }
 default:
 break;
 }
 }
 }
}

14.4 Summary and Outlook
In this chapter, we have examined how game AI can be implemented from a game engine’s

perspective. AI is a very versatile and broad topic and it worth 3 books like this to write about
in details. Despite of this, this chapter tries to sort out most practical AI techniques used in the
RPG game genre and described a valid and common AI framework, where pieces of specific
AI logics can fit together. The task of AI framework in a game engine is to provide means for
designers and programmers to add game specific AI logics after the game engine is released,
as well as integrating custom AI modules with other modules in the game engine, such as
physics, animations, etc.

 248

Obviously there are quite a number of AI techniques that are not covered in this chapter.
Some of them can be found in third-party middleware as well, such as procedural animation,
path-finding, flocking and crowd simulation, HFSM (hierarchical finite-state machine) editors,
and scripting systems, etc.

However, it should be pointed out that any game AI is built on top of some underlying
engine technology, and is built in the context of a specific game design. If either one of these
things changes significantly, it may break the AI framework completely.

On the tech side, if one changes the character simulation, the game object representation, or
the animation system significantly, one may well have to modify, if not rewrite it from scratch,
significant portion of AI code. Similarly, on the design side, a huge amount of work in AI
involves tuning and tweaking it for a specific game. The real challenge in game AI is
customizing it to be a perfect fit for a certain game design. Game engine developers need to
be aware of this.

In the long run, we can hope for a unified AI framework which could deal with all virtual
and real world situations. The invention of computers brings AI; and it is all because of AI
that we use a computer. AI in computer games is about human-like AI, which is most
challenging and fascinating to us.

 249

Chapter 15 Navigating in 3D world

In previous chapters, we have shown how a 3D world can be modeled, rendered and
simulated. This chapter focuses on navigation in the 3D game world. In most games, camera
system is the primary navigation tool for players. Game characters in the scene also need their
own navigation systems to travel in the world either autonomously or through some
predefined routes. This chapter is organized in several navigation related topics.

15.1 Camera Control
The major view into the 3D game world is controlled by the game engine’s camera control

system. The main task of a camera control system is positioning the camera in the 3D world
to provide a good view of some relevant 3D objects. In a game engine, we usually define a
good view as a set of measurable constraints, some of which are defined by game rules and
others are related to the physical environment. For example, we may require that the camera
having an unobstructed view of the main player in the 3D environment.

15.1.1 Background
Automatically planning camera shots in 3D virtual environments requires solving problems

similar to those faced by human cinematographers. In the most essential terms, each shot must
communicate some specified visual message or goal. Consequently, the camera must be
carefully staged to clearly view the relevant subject(s), properly emphasize the important
elements in the shot, and compose an engaging image that holds the viewer’s attention. The
constraint-based approach to camera planning in 3D virtual environments is built upon the
assumption that camera shots are composed to communicate a specified visual message
expressed in the form of constraints on how subjects appear in the frame. An external module
issues a request to visualize some given subjects and specifies how each should be viewed;
then a constraint solver attempts to find a camera shot solution which satisfies these
constraints, including all camera parameters such as position and orientation.

For example, there are constraints for different camera modes, such as third person, first
person, birds view, etc. There are constraints for certain scene objects, such as a camera
frustum must either stay under water or above water, but not in the middle. There are
constraints that force the camera to move along some predefined route. One of the most
important camera constraints in game, however, is occlusion constraint.

15.1.2 Occlusion Constraint
Occlusion constraint is about reposition the camera so that the camera view frustum stays in

free space and there are no opaque physical objects between the camera eye position and the
look at point. We have seen some games that make object meshes transparent when they
intersect with the camera view frustum or obstruct the camera view. In fact, this can be our
last resolve if there are no solutions by simply reposition the camera in the scene. Below is the
occlusion solver implementation. Please note that it requires that the physics engine to
provide the query results.

 250

Occlusion constraint is usually applied after all other camera constraints are applied. The
output from the previous constraint solver becomes the input of the occlusion constraint
solver.

Input:

- vEye: desired camera eye position
- vLookAt: desired camera look at position
Goal:

Adjust vEye and vLookat, so that:

(1) There are no physical objects in between

(2) The near plane of the camera view frustum does not collide with any mesh object or the
terrain

Solver for Goal (1): Line of Sight Solver

Cast a ray from the desired look at position to desired eye position. If the ray hits any
physical object, let fLineOfSightLen be the distance from the intersection point to the ray
origin. If the ray hits nothing, fLineOfSightLen is infinity. The output camera parameters are
further determined using the value of fLineOfSightLen as below.
- If fLineOfSightLen is larger than the line of sight with the desired camera position, then the desired

eye position and look at position are adopted.
- If fLineOfSightLen is smaller than the distance from the near camera plane to the camera eye; the

camera position does not change (both eye and look at location remain unchanged).
- If fLineOfSightLen is smaller than the line of sight with the desired camera position, but larger than

the distance from the near camera plane to the camera eye, the desired look at position is adopted,
whereas the camera eye position is changed to the interaction point, and the camera eye
movement speed is set to infinity

Solver for Goal (2): View Frustum Solver

For all kinds of cameras, we ensure that the camera’s near plane rectangular and the eye
position are well above the terrain surface. This is done by casting five rays from the five
points (four are the corners of the near plane, one is the camera eye) downwards (along the
negative Y axis) to the terrain surface. We will translate the camera eye position upward until
all ray-terrain distances are positive. A similar method is used to avoid camera’s near plane
from intersecting with the physical mesh. This is done by casting a ray from the center of the
near plane downward to see if it intersects with the physics mesh. Finally, we shift both the
camera eye and camera look at position along the positive Y axis (world up) for some small
distance calculated during the previous step.

Figure 15.1 shows an indoor camera automatically adjusted to provide an unobstructed
view of the player in control.

 251

Figure 15.1 Camera Occlusion Constraint and Physics

15.1.2.1 Code
Here is the code snippet for occlusion constraint.
 // solver 1
 {
 /// the vector from the new look at position to the new camera eye position.
 D3DXVECTOR3 vReverseLineOfSight = vEye-vLookAt;
 float fDesiredLineOfSightLen = D3DXVec3Length(&vReverseLineOfSight);
 float fMinLineOfSightLen = m_fNearPlane+fCharRadius;
 if(fDesiredLineOfSightLen < fMinLineOfSightLen)
 fDesiredLineOfSightLen = fMinLineOfSightLen;

 D3DXVec3Normalize(&vReverseLineOfSight, &vReverseLineOfSight);
 D3DXVECTOR3 vHitPoint;
 float fLineOfSightLen;
 fLineOfSightLen = CGlobals::GetScene()->Pick(vLookAt, vReverseLineOfSight, NULL,
&vHitPoint, false);
 if((fLineOfSightLen >= fDesiredLineOfSightLen) || (fLineOfSightLen<0))
 {
 // the new vEye, vLookAt is adopted.
 }
 else if (fLineOfSightLen<=fMinLineOfSightLen)
 {
 // restore to old value, nothing is changed.
 vEye = m_vEye;
 vLookAt = m_vLookAt;
 }
 else
 {
 // use the (hit point - NearPlane) as the new eye position.
 vEye = vLookAt + vReverseLineOfSight*(fLineOfSightLen-m_fNearPlane);
 // Increase the camera transition speed.
 fEyeSpeed = m_fEyeSpeed * 5.f;
 fLookAtSpeed = m_fLookAtSpeed * 10.f;
 }
 /** the following code implements smooth roll back of the camera.
 */
 if(pBiped!=NULL)
 {
 float fCameraObjectDist = D3DXVec3Length(&(vLookAt-vEye));

 252

 // 1000.f is a large value, beyond which speed rollback is disabled.
 //0.1f is minimum allowable object jerk distance. object smaller than this size will not cause
smooth rollback animation to apply.
 if(m_nForceNoRollbackFrames==0 && m_fCameraRollbackSpeed<1000.f &&
 (fCameraObjectDist >
m_fLastCameraObjectDistance+max(m_fCameraRollbackSpeed*fElapsedTime, 0.1f)))
 {
 float fDist = m_fLastCameraObjectDistance + m_fCameraRollbackSpeed*fElapsedTime;
 vEye = vLookAt + (vEye-vLookAt)/fCameraObjectDist*fDist;
 m_fLastCameraObjectDistance = fDist;
 }
 else
 m_fLastCameraObjectDistance = fCameraObjectDist;
 }
 }
 // solver 2
 {
 /**
 * check for global terrain.
 */
 // get the view matrix
 D3DXMATRIX MatView;
 D3DXMatrixLookAtLH(&MatView, &(m_vEye), &(m_vLookAt), &vWorldUp);
 D3DXMATRIX* pMatProj = GetProjMatrix();

 // get the four points on the near frustum plane
 D3DXMATRIX mat;
 D3DXMatrixMultiply(&mat, &MatView, pMatProj);
 D3DXMatrixInverse(&mat, NULL, &mat);

 D3DXVECTOR3 vecFrustum[6];
 vecFrustum[0] = D3DXVECTOR3(-1.0f, -1.0f, 0.0f); // xyz
 vecFrustum[1] = D3DXVECTOR3(1.0f, -1.0f, 0.0f); // Xyz
 vecFrustum[2] = D3DXVECTOR3(-1.0f, 1.0f, 0.0f); // xYz
 vecFrustum[3] = D3DXVECTOR3(1.0f, 1.0f, 0.0f); // XYz
 vecFrustum[5] = m_vEye;

 for(int i = 0; i < 4; i++)
 D3DXVec3TransformCoord(&vecFrustum[i], &vecFrustum[i], &mat);

 // one additional point (at the near plane bottom)to add more accuracy
 vecFrustum[4] = (vecFrustum[0]+vecFrustum[1])/2;

 float fShiftHeight = -EPSILON;
 // for all five point, test
 for(int i = 0; i < 6; i++)
 {
 float fMinHeight = CGlobals::GetGlobalTerrain()->GetElevation(vecFrustum[i].x,
vecFrustum[i].z);
 if(fShiftHeight < (fMinHeight-vecFrustum[i].y))
 fShiftHeight = fMinHeight-vecFrustum[i].y;
 }
 /// ignore camera collision with the terrain object, if the camera is well below the terrain
surface.(may be in a cave or something)
 /// 2 meters is just an arbitrary value.
 if(fShiftHeight > 2.0f)
 fShiftHeight = -EPSILON;

 /**

 253

 * check for physical meshes.
 */
 {
 D3DXVECTOR3 vHitPoint, vPt;
 // the distance to check is m_fNearPlane*2, which is far larger than the near plane height
 /// we will check three points around the near plane.
 vPt=(vecFrustum[0]+vecFrustum[3])/2;
 float fDist = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint, false,
m_fNearPlane*2);
 vPt = (vecFrustum[0]+vecFrustum[2])/2;
 float fDistTmp = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint,
false, m_fNearPlane*2);
 fDist = min(fDistTmp, fDist);
 vPt = (vecFrustum[1]+vecFrustum[3])/2;
 fDistTmp = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint, false,
m_fNearPlane*2);
 fDist = min(fDistTmp, fDist);

 if(fDist>0)
 {
 float fNearPlaneHeight = D3DXVec3Length(&(vecFrustum[2]-vecFrustum[0]));
 float fShift = fNearPlaneHeight/2-fDist+0.1f;
 if(fShift > fShiftHeight)
 {
 fShiftHeight = fShift;
 }
 }
 }

 /**
 * shift the distance
 */
 if(fShiftHeight > -EPSILON)
 {
 m_vEye.y+=fShiftHeight;
 m_vLookAt.y+=fShiftHeight;
 }

15.2 Generic Path Finding Algorithms
Path finding is very common in video games. Few things make a game look "dumber" than

bad path finding. Fortunately, path finding is mostly a "solved" problem. A* and its
extensions are popular algorithms, which can efficiently build optimal paths between two
endpoints, even if there is a long distance and many obstacles in the middle.

Two useful path finding algorithms in games are (1) simple wall sliding and (2) A*
algorithm. We have already implemented wall sliding in the simulation Chapter 8. A* path
finding is not very suitable for outdoor games with extensive and dynamic maps. Instead we
will look at some other general path-finding solutions based on simple geometries.

15.2.1 Object Level Path Finding
Object level path-finding is path-finding in the 3D world without taking the polygon-level

shape of objects in to consideration. It is mostly used for NPC character navigations. In

 254

ParaEngine, object level path-finding will use the result generated by the character and
environment simulator. Path-finding function is implemented by each biped object.

The available information for path-finding includes the terrain tile that the character
belongs to and the distance to all other characters and obstacles in its perceptive radius. The
goal of path-finding is to generate additional waypoints to the desired destination. There are
several kinds of waypoints that a path-finding algorithm can generate for a character. See
Table 15.1.

Table 15.1 Waypoint type
enum WayPointType {
 /// the player must arrive at this point, before proceeding to the next waypoint
 COMMAND_POINT=0,
 /// the player is turning to a new facing.
 COMMAND_FACING,
 /// when player is blocked, it may itself generate some path-finding points in
 /// order to reach the next COMMAND_POINT.
 PATHFINDING_POINT,
 /// The player is blocked, and needs to wait fTimeLeft in order to proceed.
 /// it may continue to be blocked, or walk along. Player in blocked state, does not have
 /// a speed, so it can perform other static actions while in blocked mode.
 BLOCKED
};

The waypoint generation rules are given in Table 15.2.

Table 15.2 Path-finding rule

rule1: we will not prevent any collision; instead, path-finding is used only when there are already collisions
between this biped and the environment by using the shortest path.

rule2: if there have been collisions, we will see whether we have already given solutions in previous path-finding
processes. If so, we will not generate new ones.

rule 3: we will only generate a solution when the next way point is a command type point.

A path finding solution can be generated as follow: when several objects collide with each
other, only one object is selected to implement path-finding, while others are put to a blocked
state. The selected object will pick the biggest object that collides with it and try to side-step it
by generating additional waypoints between its current location and the original destination.
See Figure 15.2

 255

Figure 15.2 path-finding: adding dynamic waypoints

15.2.2 Path-finding and Physics
When path-finding and physics have conflicts, the physics always has the priority.

Game physics is calculated in real coordinate system, if path-finding is also done in real
coordinate system, things can get very complicated. For example, the player can be at any
position in the set {x,y,z}, where x,y,z are real numbers. Object collisions therefore can not be
simply denoted by two states 0, 1; instead some fuzzy function DepthOf (object1, object2) is
used to return the collision depth as a real number between 0 and 1 inclusive. The larger the
value, the deeper the two objects run into each other. This is why graph-based path-finding
algorithm (like A*) can not be applied directly in real-coordinate system based 3D
environment.

To verify a solution generated by a real coordinate system based path-finding algorithm, we
need to ensure that the sum of all collision depth values between each pair of collided objects
decrease by at least some fixed value every frame.

15.2.3 Code
Since path-finding in real coordinate system involves tweaks for a specific game. We will
only show the top level path-finding code that we implemented for biped object in our game.
//---
/// desc: this function is called by the environment simulator, when needed.
/// The biped object then get an opportunity to shun from any obstacles or
/// try to solve collisions by generating additional way points.

To To

From

Without

From

Add waypoints dynamically

Way points

1 2

From To Circle

Box

 256

//---
void CBipedObject::PathFinding(double dTimeDelta)
{
#ifdef TURNOFF_BIPED_COLLISION
 return;
#endif
 /// rule1: we will not foresee any further, but implement path-finding only when
 /// there is already collisions between this biped and the environment.
 if(GetNumOfPerceivedObject()==0)
 return;

 BipedWayPoint waypoint;
 D3DXVECTOR3 vSrcPos;
 GetPosition(&vSrcPos);

 while(GetWayPoint(&waypoint))
 {
 /// rule2: if there have been collisions in the way, we will see whether we have already given
 /// solutions in the previous path-finding process.If so, we will not generate new ones nor canceling
it

 if((waypoint.GetPointType() == BipedWayPoint::PATHFINDING_POINT) ||
 (waypoint.GetPointType() == BipedWayPoint::BLOCKED))
 return;

 /// rule 3: we will only generate a solution when the next way point is a command type point.
 if(waypoint.GetPointType() == BipedWayPoint::COMMAND_POINT)
 {
 // source and destination points
 D3DXVECTOR3 vDestPos = waypoint.vPos;

 {
 /**
 * already reached destination, we will go on to the next way point in the queue
 * when there is collision, we will regard a circle(with a radius) as the destination point.
 * while in free-collision condition, a destination is really a point.
 */
 float fLength = D3DXVec3LengthSq(&(vDestPos-vSrcPos));
 if(fLength<=(dTimeDelta*GetAbsoluteSpeed())*(dTimeDelta*GetAbsoluteSpeed()) ||
 fLength<=(GetPhysicsRadius()*GetPhysicsRadius()))
 {
 RemoveWayPoint();
 continue;
 }
 }

 /**
 * See whether there are bipeds that are moving. If so, block the current biped for some seconds
 * or if the destination point(radius 0.01f)is inside one of the object, remove the way point
 * Get the biggest non-mobile object
 */
 bool bReachedObject = false;
 bool bShouldBlock = false;
 CBaseObject* objBiggest = NULL;
 float fBiggestRadius = 0.f;
 {
 float fMyRadius = GetPhysicsRadius();

 int nNumPerceived = GetNumOfPerceivedObject();

 257

 for(int i=0;i<nNumPerceived;++i)
 {
 IGameObject* pObj = GetPerceivedObject(i);
 if(pObj!=NULL)
 {
 if(pObj->TestCollisionSphere(&vDestPos, fMyRadius/*0.01f*OBJ_UNIT*/, 0))
 {
 bReachedObject = true;
 break;
 }
 if(! pObj->IsStanding())
 bShouldBlock = true;
 if(!bShouldBlock && fBiggestRadius<= pObj->GetPhysicsRadius())
 {
 fBiggestRadius = pObj->GetPhysicsRadius();
 objBiggest = pObj;
 }
 }

 }
 }
 if(bReachedObject == true)
 {
 RemoveWayPoint();
 continue;
 }
 else if(bShouldBlock)
 {
 // TODO: set a reasonable value. Just wait 0.5 seconds
 AddWayPoint(BipedWayPoint(0.5f));
 continue; // actually this is equivalent to return;
 }

 /**
 * We will only solve against the biggest static object, we can give very precise solution
 * according to its shape, when there is only one object.
 */
 if(objBiggest)
 {
 OneObstaclePathFinding(objBiggest);
 break;
 }
 }
 else if(waypoint.GetPointType() == BipedWayPoint::COMMAND_MOVING)
 {
 CBaseObject* objBiggest = NULL;
 float fBiggestRadius = 0.f;
 {
 float fMyRadius = GetPhysicsRadius();
 int nNumPerceived = GetNumOfPerceivedObject();
 for(int i=0;i<nNumPerceived;++i)
 {
 IGameObject* pObj = GetPerceivedObject(i);
 if(pObj!=NULL)
 {
 if(fBiggestRadius<= pObj->GetPhysicsRadius())
 {
 fBiggestRadius = pObj->GetPhysicsRadius();
 objBiggest = pObj;

 258

 }
 }
 }
 }
 if(objBiggest)
 {
 OneObstaclePathFinding(objBiggest);
 break;
 }
 }
 else
 {
 return;
 }
 }
}

15.3 Summary and Outlook
In 3D game world, there are three levels of navigation. This chapter talks about the first two.

- Polygon level navigation: such as the camera controller and character’s collision
avoidance with mesh objects.

- Object level navigation: such as NPC character path-finding.

- World level navigation: such as exploring new regions of the virtual world on the Internet.

3D Navigation is also a good research topic. It involves not only algorithms, but also
human computer interface (HCI) design and other psychological studies. As the game world
gets bigger and bigger, rich HCI enabled navigation design and search technologies will
become necessary. Aids objects such as symbols and marks can also be very helpful both for
agent and human user. In fact, these things are already introduced in some latest adventure
and MMORPG games.

One of the greatest advantages about things going 3D is immersion or the player’s feel of
being there. Yet one of the greatest disadvantages of going 3D is poor navigation compared to
its 2D counter part. From the HCI perspective, this is mostly caused by the input devices that
we used i.e. the mouse and the key board. If navigation in 3D games can be improved even
slightly, it will give players a much more engaging gaming experience.

 259

Chapter 16 NPL Scripting System

Scripts are external programs loaded and executed by a game engine at runtime. It allows
game logics to be composed outside the hard-core of a game engine. The original idea behind
a custom scripting language for a game is that one does not have to hard-code every single
possible event and conversation into the game executable. It also avoids the need to recompile
the executable for the game each time one wishes to slightly alter the storyline. Modern game
engines natively support this scripting paradigm, which allows game developers to extend the
original scripting language according to specific game needs.

In recently released computer games, most game contents are written in script files; these
include GUI, game settings, event handlers, AI, and many other game logics. The scripting
system in ParaEngine is called NPL scripting system. We build the entire scripting system
based on some network infrastructure, so that script files does not necessarily run on a single
client application, but may be deployed and run by multiple applications on the network. This
makes writing and deploying networked computer games much easier and much more flexible.

In this chapter, we will mainly focus on client side scripting system and its implementations.
In the second volume of this book, we will focus on server technologies using the NPL
scripting system.

16.1 Foundation
Building a scripting system by extending an existing language is a great short cut to

immediately add scripting capabilities to your game engine in a matter of hours. There are
several available base languages that one can choose from, such as Lua, Python, Java, and C#.
Each of these languages has a number of successful games using it.

We suggest Lua, which is a hidden secrete in the game community for a decade. Nowadays,
it receives wide popularity among both large game studios and indie game developers. One
will find rich community support on script editors, debuggers, wrappers for database, and
many script examples from released games, etc.

In ParaEngine, NPL scripting system is based on Lua, a popular light-weighted extensible
language. It offers good support for object-oriented programming, functional programming,
and data-driven programming. This chapter is not about telling you how to integrate Lua into
your game engine. The Lua documentation and the community website have already done a
good job on that. Instead, we are going to show you how to use the scripting paradigm most
effectively in a game engine. Since the rest of the chapter is mainly written for developers, we
assume that you have already read all the Lua documentation carefully.

16.1.1 Using LuaBind
LuaBind is a set of C++ templates, which makes binding C++ functions to Lua very easy.

We have used it extensively in ParaEngine, except for a few occasions where their grammar
involves flexible parameter passing.

In the game engine, we build an exact C++ copy of everything that is exposed to the
scripting interface and document them in the header files. Then we use LuaBind to bind these

 260

C++ functions and classes to Lua tables. We do not advice to directly expose C++ objects
which are used by the game engine to the scripting interface, because it will pollute the C++
game engine code and later become very difficult to separate code and documentations for the
script and for the game engine. The following shows the example.

Suppose we want to expose a game engine object CBaseObject to the scripting interface.
Instead of using CBaseObject directly, we can create another dedicated wrapper class called
ParaObject for exportation. ParaObject contains a pointer to CBaseObject as well as a set of
wrapper functions of CBaseObject. Please note that we document ParaObject as if it is a script
object. See below.
 /**
 * @ingroup ParaScene
 * ParaObject class:
 * it is used to control game scene objects from scripts.
 @par Class Properties

 - ("name",&ParaObject::GetName,&ParaObject::SetName)
 */
 struct ParaObject
 {
 public:
 CBaseObject* m_pObj; // a pointer to the object

 ParaObject():m_pObj(NULL){};
 ParaObject(CBaseObject* pObj):m_pObj(pObj){};
 ~ParaObject(){}

 /** get the Runtime class information of the object. */
 string GetType() const;
 /** get paraengine defined object type name.
 // TODO: This function is not implemented
 */
 int GetMyType() const;
 /**
 * check if the object is valid
 */
 bool IsValid() const {return m_pObj!=NULL;}
 /** whether the object has been attached to the scene. */
 bool IsAttached() const;

 /** get the attribute object associated with an object. */
 ParaAttributeObject GetAttributeObject();

 /** Rotate the object. This only takes effects on objects having 3D orientation, such as
 * static mesh and physics mesh. The orientation is computed in the following way: first rotate
around
 * x axis, then around y, finally z axis.
 * Note: this function is safe to call for all kind of objects except the physics mesh object.
 * for physics mesh object, one must call ParaScene.Attach() immediately after this function.
 * for more information, please see SetPostion();
 * @param x: rotation around the x axis.
 * @param y: rotation around the y axis.
 * @param z: rotation around the z axis.
 * @see: SetPostion();
 */
 void Rotate(float x, float y, float z);

 261

 // … many wrapper functions are ignored here
}

Using LuaBind, we can easily bind the above class object to the scripting interface as below.
After running the binding code, we will be able to use ParaObject from script files.
module(L)
 [
 namespace_("ParaScene")
 [
 // ParaObject class declarations
 class_<ParaObject>("ParaObject")
 .def(constructor<>())
 .property("name",&ParaObject::GetName,&ParaObject::SetName)
 .def("IsValid", &ParaObject::IsValid)
 .def("GetType", &ParaObject::GetType)
 .def("GetMyType", &ParaObject::GetMyType)
 .def("IsAttached", &ParaObject::IsAttached)
 .def("GetAttributeObject", &ParaObject::GetAttributeObject)
 .def("Rotate", &ParaObject::Rotate)
 // … many declarations ignored here
]
];

The above code does not look like C++ code, but in fact it is. One can debug into it to see
how LuaBind generates the registration code at the compile time and run time.

In Lua script file, we can use the ParaObject as below.
-- suppose Obj is a ParaObject
if(Obj:IsValid() == true) then
 Obj:Rotate(30, 0, 0);
end

The above programming paradigm provides us a centralized way to expose C++ objects to
the scripting interface. In the next section, we will look at a decentralized way to expose C++
attributes to the scripting interface.

16.1.2 Exporting C++ Attributes to Script
In this section, we will look at another very automatic way to expose C++ object attributes

to the scripting interface.

In interpreted language like C#, there is a concept called class reflection, which allows
programmers to query an object’s the class type information at runtime and execute functions
found in the class type information. Class type information enables us to access an object’s
properties and methods without knowing its class type at compile time.

In C++, we can simulate this functionality with little code cost. Whenever we want to
expose an attribute from a C++ class object such as the CBaseObject to the scripting interface,
we just add the get and set methods of the attribute to the CBaseObject’s class type
information, and it is done. We do not need to register the attribute in Lua and we do not need
to make a copy of the set and get methods in the dedicated wrapper class (or ParaObject in
this case). The only disadvantage is some decreased performance and slightly increased code
length when getting or setting an object’s attributes in script files. Hence this method is
suitable for exporting attributes and functions that are not called very frequently in script files.

 262

In ParaEngine, we store class runtime information in an attribute object. All instances of a
class share the same attribute object, which can be retrieved from a class instance by calling
its GetAttributeObject() method; the attribute object can then be used to get and set attributes
of the class instance.

An attribute object contains a mapping from each attribute name string to whatever is
needed to manipulate that attribute given a class instance pointer. The implementation is
given below. Please note that the implementation is not unique. Generally speaking, there are
three different implementations based on three different ways to store the type information.
Each has its advantages and disadvantages. We will look at them one by one.

16.1.2.1 Using Data Member Offset
In this method, the attribute object maps each attribute name string to a corresponding class

data member offset value. We can get the offset of a class’s data member using the following
macro.
 /** @def get the offset of a data member(x) from a class(cls) */
 #define Member_Offset(x, cls) (int)&(((cls *)0)->x)

Given the pointer to a class instance, we can compute the memory address of the data
member by adding the pointer to the member offset. This method requires the minimum effort
to implement. However, it only works on data members, but not on member functions.
Moreover, no data validation can be performed, so it is usually not safe to use.

16.1.2.2 Using Member Function Pointers
In this method, the attribute object maps each attribute name string to the corresponding

class’s member function pointer. Given the pointer to a class instance, we can call its member
function by the coorepsonding member function pointer.

This sounds a very good idea. It is safe to use because class data is always set or get from
class member functions, where data validation can be performed. However, C++ class
member function pointer is not easy to store. There is a myth even among experienced C++
developers that member function pointers are merely some offset values like the class data
member offset. Unfortunately, they are not that simple. Both STL and boost library provides
some helper templates to ease the use of member functions in C++. One can refer to these
places to find out why.

Implementing the attribute object functionalities using member function pointers requires a
great deal of template programming in C++, and one may end up with the wrong result.
Hence, we advise the third method which is given next.

16.1.2.3 Using Static Member Function Pointers
This is our approach in NPL scripting system. The attribute object maps each attribute

name string to the corresponding class’s static member function pointer. A static function uses
stdcall calling convention and its function pointer has a fixed data length. Static class member
function can simulate a member function by simply setting the first parameter to the class
pointer. Take the CBaseObject for example; suppose we want to expose the SetPosition and
GetPosition member functions of the CBaseObject, we just add two static functions as follow.

 263

Class CBaseObject{
Public:
 static int GetPosition_s (CBaseObject* cls, D3DXVECTOR3* p1) {
 cls->GetPosition(p1); return S_OK;
 }
 static int SetPosition_s (CBaseObject* cls, D3DXVECTOR3 p1) {
 cls->SetPosition(&p1); return S_OK;
 }
// … many code omitted
}

Given the pointer to a class instance, we just call the attribute’s corresponding static
function and pass the class instance pointer as the first parameter. Although this is
cumbersome sometimes (programmers need to add two more lines of code in the header file
for each property), it works well with overloaded functions, multiple inheritance and virtual
functions. Most importantly: (1) Attribute object only needs to be built once (automatically
built on first use), and is valid for all instances of the same class type thereafter. (2) It gives
programmers individual control over the behaviors of each attribute. E.g. we can make the
behavior of the attribute's set/get methods slightly different from the corresponding class
member functions, such as adding more robust data validation and error reporting
functionalities, or even implicitly changing the class pointer, so that we can expose attributes
from both an object’s class members and its base class. (3) It makes the executable file
smaller compared with the implementation using template programming.

Please see the code section for implementation details.

16.1.3 Runtime State Management
When loading or executing a script file, we must specify the runtime environment in which

the script code is loaded and executed. One can think of each runtime environment as an
independent virtual machine. The Lua’s runtime environment is fully reentrant: it has no
global variables. The whole state of the Lua interpreter (global variables, stack, etc.) is stored
in a dynamically allocated strcture called Lua state. Lua’s runtime environment is very light
weighted, which allows us to create and host hundreds of those Lua states effectively.
However, in most cases, we will load and execute script files in a shared global runtime state,
which is created when the game engine starts. An alternative is to load and execute files in
separate runtime states.

There are some discussions on whether to use one giant runtime state or many small light-
weighted states. The design principle is usually not on performance, but on data sharing. In
Lua, all functions and variables are data tables in a global environment. Hence script files
loaded in the same runtime state can access all tables created in it. This is a very important
feature, because otherwise the only way to share data is via the game engine. The following
design principles can be helpful when developing your game.

- GUI and major game logics run in the same main runtime state.

- Most AI events run in the main runtime state, some may run in separate runtimes.

- Any unsafe and unauthorized script code, such as those entered by the users or from the
network, may need to run in separate runtime states.

 264

16.1.4 Using Namespace
The beauty of Lua is its flexibilities. However, without proper administration, we will

quickly populate the main runtime state with tons of data and functions in a flat hierarchy.
One solution to this problem is that we organize host API (which is exposed from the game
engine to the script system. See Lua Documentation for details) into namespaces and
encourage script writers to do the same for any class and data structures created in the script
files.

In actual game development, several designers and programmers may jointly work on the
thousands of script files. They have little idea how other people are going to name variables in
their script files. Hence it is good practice to define a list of reserved global variables and a
list of namespaces in which corresponding game modules should be developed. The following
subsections show some examples.

16.1.4.1 Reserved Namespaces
The following shows an example of reserved namespaces for host API in ParaEngine. The

host API exposed by ParaEngine is a group of API to construct 2D and 3D content.

Table Name Description

ParaCamera The camera controller.

ParaScene ParaScene namespace contains a list of HAPI functions to create and modify
scene objects in ParaEngine

ParaAsset ParaAsset namespace contains a list of HAPI functions to manage
resources(asset) used in game world composing, such as 3d models, textures,
animations, sound, etc.

ParaUI ParaUI namespace contains a list of HAPI functions to create user interface
controls, such as windows, buttons, as well as event triggers.

ParaMisc Contains miscellaneous functions.

NPL Neural Parallel Language foundation interface is in this namespace.

16.1.4.2 Reserved Classes
The following are some reserved data types or class objects in NPL.

Object Name Description

ParaObject It is represent a scene object.

ParaCharacter It is represent a character object.

ParaAssetObject It represents an assert entity

ParaUIObject It represents a GUI object

16.1.4.3 Reserved Variables
The following are some reserved data types or class objects in NPL.

 265

Variable Name Description

sensor_name In an event handler, this variable contains the name of the callee.

self Equivalent to this pointer in C++.

mouse_button In a mouse event handler, it is mouse button that triggers the mouse.

mouse_x In a mouse event handler, it is mouse x position.

mouse_y In a mouse event handler, it is mouse y position.

keyboard_key In a key event handler, it contains a list of key strokes.

keyboard_character In a key event handler, it contains a string of readable characters.

16.1.5 Using Directory and Domain Name
How can a script file be found and referenced either by a script writer or by another script?

The answer is directory path plus script file name. Indeed, directory is the most intuitive and
convenient way to organize script files, especially when there are thousands of them. In NPL
scripting system, we allow a domain name and some decorator symbols to optionally precede
the directory path when specifying a script file. This gives us more flexibility when
referencing script files from both local and remote NPL runtimes. Domain name together with
decorator symbols can be used to specify the runtime environment of script files. In NPL,
they are mainly used in networked programming environment. For scripting on the local
computer, directory path alone is sufficient. We will cover the details of network
programming using NPL in the next volume of the book.

The following shows how a script function NPL.load() is used to load another script file.

NPL. load (const char * filePath, bool bReload=false)

Load a new glia file (in the local environment) without running it. If the glia file is already
loaded, it will not be loaded again. IMPORTANT: unlike other activation functions, this is
something similar to "include" in C programming, the function is loaded where it is and
returned to the original caller upon finish.

Parameters:

 filePath: the local file path

 bReload: if true, the file will be reloaded even if it is already loaded. Otherwise, the file
will only be loaded if it is not loaded yet.

Returns:

Return the GliaFile reference.

Examples:

NPL.load(“(gl)myworld/npc/creature0.lua”, false);

 266

16.1.6 Script File Activation Mechanism
This part can be optional in a scripting system. However, it is a very important component

in NPL scripting system and is used extensively both for client side and distributed
programming. So we will briefly introduce it anyway.

Script file is a very important unit of execution in NPL scripting system, and we allow each
script file to optionally provide an activation function. One can think of it as the main()
function in C/C++ application programs; yet it may be called many times and also exits very
fast. To define an activation function in a script file, we use the NPL.this() command. It can
take any previously defined script functions as its input. See the following declaration.

NPL. this (const functor funcActivate)

Associate a user defined function as the activation function of this file. Add the current file
name to the __activate table. Create the activate table, if it does not exist.

Parameters:

funcActivate: the function pointer to the activation function. It can either be local or global.

After registration, we can call the file’s acvation function by simply providing the file path,
where the NPL.activate() command is used. See below.

NPL.activate (const char * sNeuronFile, const char * code = NULL)

Activate the specified file. It can either be local or using the default or specified DNS. All
these information is extracted from the sNeuronFile parameters.

Parameters:

 sNeuronFile: Neuron File name for this neuron file. It may contain activation type,
namespace or DNS server information. They should be specified in the following format:
[(g|gl|l)] [namespace :] relative_path [@ DNSServerName]

//… many documentation ignored

code: It is a chunk of authorized code that will be executed in the destination file before its
activation is called. This code usually set the values of the destination’s global variables.

A script code which contains an activation function may look like this.

File name: SampleScript.lua

 267

local function activate()

if (state == nil) then --state is a global variable

local playname = “abc”;

-- activate another script on remote machine.

NPL.activate("ABC: /pol_intro.lua", "state=nil;");

-- activate another script on local machine.

NPL.activate(“(gl)polintro.lua”,””);

else

… …

end

end

state={}; -- a global variable (table), usually for passing and share states among NPL files.

NPL.this (activate); --tell NPL which function is used as the activation function of this file.

16.2 Architecture and Code
If you are extending your scripting system over Lua, then there should be no problem on

architecture issues. All you need is some code to register host API functions to the Lua
runtime. Hence we combined the architecture and code to the same section in this chapter.

We will illustrate how to export class attributes using static member functions in this
section.

16.2.1 Attribute Field
The following are structures to store a single attribute.
 /** a list of all attribute type*/
 enum ATTRIBUTE_FIELDTYPE
 {
 // get(), set()
 FieldType_void,
 // get(int*) set(int)
 FieldType_Int,
 // get(bool*) set(bool)
 FieldType_Bool,
 // get(float*) set(float)
 FieldType_Float,
 // get(float*,float*) set(float, float)
 FieldType_Float_Float,
 // get(float*,float*,float*) set(float, float, float)
 FieldType_Float_Float_Float,
 // get(int*) set(int)
 FieldType_Enum,
 // get(double*) set(double)
 FieldType_Double,

 268

 // get(D3DXVECTOR2*) set(D3DXVECTOR2)
 FieldType_Vector2,
 // get(D3DXVECTOR3*) set(D3DXVECTOR3)
 FieldType_Vector3,
 // get(D3DXVECTOR4*) set(D3DXVECTOR4)
 FieldType_Vector4,
 // get(const char**) set(const char*)
 FieldType_String,
 FieldType_Deprecated = 0xffffffff
 };
 /** for a single attribute field */
 class CAttributeField
 {
 public:
 CAttributeField();
 ~CAttributeField();
 public:
 union any_offset{
 void* ptr_fun;
 int offset_data;
 };
 any_offset m_offsetSetFunc;
 any_offset m_offsetGetFunc;

 /** field name: e.g. "base.position" */
 string m_sFieldname;
 /** see ATTRIBUTE_FIELDTYPE */
 DWORD m_type;

 /** additional schematics for describing the display format of the data. Different attribute type have
different schematics.
 @see GetSimpleSchema() */
 string m_sSchematics;
 /** a help string.*/
 string m_sHelpString;
 public:
 /**
 * get the field type as string
 */
 const char* GetTypeAsString();

 inline HRESULT Call(void* obj)
 {
 if(m_offsetSetFunc.ptr_fun!=0)
 return ((HRESULT (*)(void* obj))m_offsetSetFunc.ptr_fun)(obj);
 else if(m_offsetGetFunc.ptr_fun!=0)
 return ((HRESULT (*)(void* obj))m_offsetSetFunc.ptr_fun)(obj);
 else
 return E_FAIL;
 };
 template <class datatype>
 inline HRESULT Set(void* obj, datatype p1)
 {
 if(m_offsetSetFunc.ptr_fun!=0)
 return ((HRESULT (*)(void* obj, datatype p1))m_offsetSetFunc.ptr_fun)(obj, p1);
 else
 return E_FAIL;
 };
 template <class datatype>

 269

 inline HRESULT Get(void* obj, datatype* p1)
 {
 if(m_offsetGetFunc.ptr_fun!=0)
 return ((HRESULT (*)(void* obj, datatype* p1))m_offsetGetFunc.ptr_fun)(obj, p1);
 else
 return E_FAIL;
 };
// … many other set/get function templates ignored.
 public:
 enum SIMPLE_SCHEMA {
 SCHEMA_RGB = 0,
 SCHEMA_FILE,
 SCHEMA_SCRIPT,
 SCHEMA_INTEGER,
 };
 static const char* GetSimpleSchema(SIMPLE_SCHEMA schema);
 static const char* GetSimpleSchemaOfRGB(){return GetSimpleSchema(SCHEMA_RGB);};
 static const char* GetSimpleSchemaOfFile(){return GetSimpleSchema(SCHEMA_FILE);};
 static const char* GetSimpleSchemaOfScript(){return GetSimpleSchema(SCHEMA_SCRIPT);};
 static const char* GetSimpleSchemaOfInt(int nMin, int nMax);
 static const char* GetSimpleSchemaOfFloat(float nMin, float nMax);

 /**
 * parse the schema type from the schema string.
 */
 const char* GetSchematicsType();

 /**
 * parse the schema min max value from the schema string.
 * @return true if found min max.
 */
 bool CAttributeField::GetSchematicsMinMax(float& fMin, float& fMax);
 };

16.2.2 Attribute Class
This is the attribute object returned when querying a class instance for class type information.
 /** an attribute class is a collection of attribute fields. */
 class CAttributeClass
 {
 public:
 CAttributeClass(int nClassID, const char* sClassName, const char* sClassDescription);
 ~CAttributeClass(){}
 enum Field_Order
 {
 Sort_ByName,
 Sort_ByCategory,
 Sort_ByInstallOrder,
 };
 public:
 /** add a new field.
 @param sFieldname: field name
 @param Type: the field type. it may be one of the ATTRIBUTE_FIELDTYPE.
 @param offsetSetFunc: must be __stdcall function pointer or NULL. The function prototype should
match that of the Type.
 @param offsetGetFunc: must be __stdcall function pointer or NULL. The function prototype should
match that of the Type.
 @param sSchematics: a string or NULL. The string pattern should match that of the Type.
 @param sHelpString: a help string or NULL.

 270

 @param bOverride: true to override existing field if any. This is usually set to true, so that inherited
class can override the fields installed previously by the base class.
 */
 void AddField(const char* sFieldname,DWORD Type, void* offsetSetFunc,void* offsetGetFunc,
const char* sSchematics, const char* sHelpString,bool bOverride);
 /** use of deprecated field takes no effect and will output warning in the log. */
 void AddField_Deprecated(const char *fieldName,bool bOverride=true);
 /** remove a field, return true if moved. false if field not found. */
 bool RemoveField(const char* sFieldname);
 void RemoveAllFields();

 /** class ID */
 int GetClassID() const;
 /** class name */
 const char* GetClassName() const;
 /** class description */
 const char* GetClassDescription() const;

 /** Set which order fields are saved. */
 void SetOrder(Field_Order order);
 /** get which order fields are saved. */
 Field_Order GetOrder();

 /** get the total number of field. */
 int GetFieldNum();
 /** get field at the specified index. NULL will be returned if index is out of range. */
 CAttributeField* GetField(int nIndex);

 /**
 * get field index of a given field name. -1 will be returned if name not found.
 * @param sFieldname
 * @return
 */
 int GetFieldIndex(const char* sFieldname);

 /** return NULL, if the field does not exists */
 CAttributeField* GetField(const char* sFieldname);

 protected:
 int m_nClassID;
 const char* m_sClassName;
 const char* m_sClassDescription;
 vector<CAttributeField> m_attributes;
 Field_Order m_nCurrentOrder;
 private:
 /** insert a new field. return true if succeeded.
 @param bOverride: true to override existing field if any. This is usually set to true, so that inherited
class can
 override the fields installed previously by the base class.
 */
 bool InsertField(CAttributeField& item, bool bOverride);
 };

16.2.3 Attribute Field Interface
Class that supports attribute query needs to be derived from the IAttributeField base class.
/** A common interface for all classes implementing IAttributeFields
 By implementing this class's virtual functions, it enables a class to easily expose attributes
 to the NPL scripting interface. All standard attribute types are supported by the property dialog UI,

 271

 which makes displaying and editing object attributes an automatic process. This class has no data
 members, hence there are no space penalties for implementing this class. The attribute information
 for each class is kept centrally in a global table.
 most objects in ParaEngine implement this class, such as CBaseObject, etc.
 The following virtual functions must be implemented:
 GetAttributeClassID(), GetAttributeClassName(), InstallFields()
*/
 class IAttributeFields
 {
 public:
 IAttributeFields(void);
 ~IAttributeFields(void);

 public:
 //
 // implementation of IAttributeFields

 /** attribute class ID should be identical, unless one knows how overriding rules work.*/
 virtual int GetAttributeClassID(){return ATTRIBUTE_CLASSID_IAttributeFields;}
 /** a static string, describing the attribute class object's name */
 virtual const char* GetAttributeClassName(){static const char name[] = "Unknown"; return name;}
 /** a static string, describing the attribute class object */
 virtual const char* GetAttributeClassDescription(){static const char desc[] = ""; return desc;}
 /** this class should be implemented if one wants to add new attribute. This function is always
called internally.*/
 virtual int InstallFields(CAttributeClass* pClass, bool bOverride);

 //
 //
 // implementation of the following virtual functions are optional
 //
 //
 /** whether some of the fields are modified.It is up to the implementation class to provide this
functionality if necessary. */
 virtual bool IsModified(){return false;};
 /** set whether any field has been modified. */
 virtual void SetModified(bool bModified){};

 /** validate all fields and return true if validation passed. */
 virtual bool ValidateFields(){return true;};
 /** get the recent validation message due to the most recent call to ValidateFields() */
 virtual string GetValidationMessage(){return "";};

 /**
 * Reset the field to its initial or default value.
 * @param nFieldID : field ID
 * @return true if value is set; false if value not set.
 */
 virtual bool ResetField(int nFieldID){return false;};

 /**
 * Invoke an (external) editor for a given field. This is usually for NPL script field
 * @param nFieldID : field ID
 * @param sParameters : the parameter passed to the editor
 * @return true if editor is invoked, false if failed or field has no editor.
 */
 virtual bool InvokeEditor(int nFieldID, const string& sParameters){return false;};
 public:
 /** get the main attribute class object. */

 272

 CAttributeClass* GetAttributeClass();

 static HRESULT GetAttributeClassID_s(IAttributeFields* cls, int* p1) {*p1 = cls-
>GetAttributeClassID(); return S_OK;}
 static HRESULT GetAttributeClassName_s(IAttributeFields* cls, const char** p1) {*p1 = cls-
>GetAttributeClassName();return S_OK;}

 /**
 * Open a given file with the default registered editor in the game engine.
 * @param sFileName: file name to be opened by the default editor.
 * @param bWaitOnReturn: if false, the function returns immediately; otherwise it will wait for the
editor to return.
 * @return true if opened.
 */
 static bool OpenWithDefaultEditor(const char* sFilename, bool bWaitOnReturn = false);

 private:
 /** initialize fields */
 void Init();
 };

16.2.4 Attribute Class Script Wrapper
This is the script wrapper of the CAttributeClass.
 /**
 * @ingroup ParaGlobal
 * it represents an attribute object associated with an object.
 * Call ParaObject::GetAttributeObject() or ParaObject::GetAttributeObject() to get an instance of this
object.
 e.g. In NPL, one can write
 local att = player:GetAttributeObject();
 local bGloble = att:GetField("global", true);
 local facing = att:GetField("facing", 0);
 att:SetField("facing", facing+3.14);
 local pos = att:GetField("position", {0,0,0});
 pos[1] = pos[1]+100;pos[2] = 0;pos[3] = 10;
 att:SetField("position", pos);
 att:PrintObject("test.txt");
 */
 struct ParaAttributeObject
 {
 public:
 IAttributeFields * m_pAttribute;
 CAttributeClass* m_pAttClass;
 /**
 * return true, if this object is the same as the given object.
 */
 bool equals(const ParaAttributeObject obj) const;

 bool IsValid() const;
 int GetClassID() const;
 const char* GetClassName() const;
 const char* GetClassDescription() const;

 void SetOrder(int order);
 int GetOrder();

 int GetFieldNum();
 const char* GetFieldName(int nIndex);

 273

 int GetFieldIndex(const char* sFieldname);
 const char* GetFieldType(int nIndex);
 bool IsFieldReadOnly(int nIndex);
 const char* GetFieldSchematics(int nIndex);
 const char* GetSchematicsType(int nIndex);
 void GetSchematicsMinMax(int nIndex, float& fMin, float& fMax);
 void GetField(const char* sFieldname, object& output);
 void PrintObject(const char* file);
 bool ResetField(int nFieldID);
 bool InvokeEditor(int nFieldID, const string& sParameters);
// … comments and some functions are ignored
 };

16.2.5 Script Examples
One can visit our website at http://www.paraengine.com and download our demos; there are
hundreds of script files to study under the installation directory. In the Appendix of this Book,
there are also some NPL code samples to study.

16.3 Summary and Outlook
In this chapter, we have discussed and shown several useful design paradigms in the scripting
system of a computer game engine. We will end this chapter by an overview of the NPL
scripting system which will be discussed in detail in the second volume of the book.

16.3.1 NPL Feature Overview
Neural Parallel Language (or NPL) is an extension programming language which separates

code logics from its hardware network environment. It is a new programming standard
designed to support (1) frequent code updates, (2) complex graphic user interface and human-
computer interactions, and (3) reconfigurable code deployment in a distributed network
environment. Its extension interface and basic syntax is based on Lua, a popular light-
weighted extensible language. NPL offers good support for object-oriented programming,
functional programming, data-driven programming, and most importantly, network-
transparent programming.

Feature 1: Network-transparent programming

“Network-transparent” means that the source code of NPL does not concern the topology
of the actual networked hardware environment. NPL separates code logics from its hardware
network environment. In other words, the same source code (files) can be deployed to run on
one computer or a dozen of networked computers. The source files are still editable and
configurable after a successful deployment, which means that one can continue apply changes
to the source code or even splitting files to further deploy on more NPL runtimes.

Feature 2: Native language support for distributed visualization

Traditionally, distributed system has one or several mirrored visualization or graphic user
interface (GUI) terminals. NPL proposes a new computing paradigm, which allows
visualizations as well as user interactions to occur on any machine of the distributed system

http://www.paraengine.com/

 274

concurrently. Each specialized view will be automatically computed using the same source
code.

Feature 3: Distributed namespace architecture support

In NPL, script files can be logically organized in namespaces. Each NPL runtimes
maintains a dynamic mapping from namespaces to physical address (IP address); hence by
modifying this mapping, script files can have different physical configurations on the actual
network hardware. However, name collision is inevitable for distributed systems. One reason
is that there is no central boss directing all computers on the network; instead computers are
either on their own or working in clusters. Another reason is that the same source code may
be instanced (duplicated) thousands of times on a shared network (e.g. the Internet). NPL’s
solution to the namespace mapping problem is that it maintains a dynamic mapping on a task
basis. In other words, a namespace mapping is only valid for some task. Here, task means job
done cooperatively by a small group of computers at certain time. Hence, by imposing a few
simple rules for programmers, we can eliminate problems during namespace mapping.

16.3.2 Summary and Outlook of NPL
Scripting is the symbol of flexibility and has become ubiquitous in modern computer game

engines. Scripting alone means two things: (1) script files are automatically distributed and
logics written in a script can be easily modified; (2) script code may be generated by
dedicated visual language and software tools. In a computer game, almost all kinds of static
data and most dynamic logic have text-based presentations outside the hard core of its engine.
The adoption of scripting technology makes level design or game world logic composing
easier than ever.

Data exchange on the Internet is also largely text-based. An entity on the Internet with or
without computing capabilities automatically becomes a global resource and can be
referenced by other resources. A great deal of web technologies and recommended standards
have been recently proposed to make the web more and more meaningful, interactive and
intelligent. As envisaged by web3d17, web service and ubiquitous computing research, etc,
software applications in the future are highly distributed and cooperative. Computer games
and other virtual reality applications are likely to become the most pervasive forces in pushing
these web technologies into commercial uses. It is likely that one day the entire Internet
would be inside one huge game world. However, two related issues must be resolved first,
which are distributed computing and visualization. An extensible language system provides
means and solutions to both of them. NPL is our proposal which comes with plenty of
application demos and will bring more in the near future.

17 Web3D Consortium, http://www.web3d.org/

 275

Chapter 17 File System

As we have shown in the early chapter 3, a modern computer game may have tens of
thousands of resource files, most of which are ready-only. Deploying so many uncompressed
files can be both time and space consuming. Moreover, some games may need to keep
different versions of the same resource files on a user’s computer, such as applying different
UI themes or running the game before and after a resource patch. If you observe several 3D
games’ installation directories, 80% chances are that you will find one or more very large
game files. It has almost become a tradition that game resource files are compressed and
archived in a few large resource files at release time.

In this chapter, we will look into a typical game file system implementation. The content in
this chapter is quite optional for a game engine. However, if you are at the stage of shipping
demos or games, this is something worth implementing.

17.1 Foundation
During the game development, there is only one file system, which is the windows file

system. Most game development team uses version control software, which only works with
the windows file system. At game release time, all game resource files are in their final
version; we can put them in one or several isolated virtual file systems. Each virtual file
system is stored in a single archive file. Popular archive file formats are ZIP, RAR, 7-ZIP, etc.
An archive file usually consists of a chunked array of compressed files and a central directory
for fast indexing file addresses by their file names.

The game engine usually maintains a list of mounted file systems. The beginning of the list
is the windows file system. And the rest is the virtual file systems. The game engine provides
API to mount and unmount virtual file systems dynamically at runtime. In most cases, virtual
file systems are all mounted at the beginning of the game. When the game engine needs to
open a file, it tries to open it by iterating through all file systems in the list until either the file
is found or all file systems have been examined. This allows us to specify priorities when
searching a game file. For example, we can first search in the windows file system; if the file
is not found there, we continue to search in other virtual file systems, etc. Multiple versions of
the same file can thus have the same file path but stored in different file systems.

The most important interface of a virtual file system is to extract the uncompressed file data
from the archive, given a file name. It is usually a two step procedure. In the first step, we
search the file path string in the archive file’s central directory for the file address (byte offset
from the beginning of the archive file). In the second step, we decompress the file and copy it
to a memory block and return the memory file object to the caller. In most cases, virtual file
systems only store read-only files such as textures, models, sounds, and some script files.
Hence, file compression, deletion and insertion, which are usually time-consuming, only
occur before production time.

 276

17.2 Architecture
In ParaEngine, there are three modules in the game file system. They are CFileManager,
CArchive and CParaFile, which are shown in Figure 11.1.

Figure 17.1 Game file system overview

CFileManager is the main file manager. One can dynamically mount and unmount virtual
file systems through this class. Its main interface is shown below.
/**
* This is the main file interface exposed by ParaEngine.
* It is mainly used as a singleton class.
*/
class CFileManager
{
protected:
 list <CArchive*> m_archivers;
public:
 /** add archive to manager */
 bool OpenArchive(const string& path);
 void CloseArchive(const string& path);

 CSearchResult* SearchFiles(const string& sRootPath, const string& sFilePattern, const string&
sZipArchive, int nSubLevel=0, int nMaxFilesNum=50, int nFrom=0);

 /**
 * Check whether a given file exists on disk.
 * @param filename: file name to check
 */
 bool DoesFileExist(const char* filename);

// …many functions are ignored
};

CArchive is the base class to all virtual file systems. The most important virtual file
implementation is CZipArchive, which is for accesing a ZIP format archive file. Below is the
CArchive interface.
 /** file archiver base class. */
 class CArchive

File Manager

CArchive

CArchive

CZipArchive

CZipArchive

File Object

CArchive

List
Mount/unmount file system

Read/Writ

Game Engine File system

Windows file system

 277

 {
 public:
 CArchive(void):m_archiveHandle(NULL), m_bOpened(false),m_nPriority(0){};
 virtual ~CArchive(void);
 inline static DWORD TypeID() {return 0;};
 virtual DWORD GetType(){ return TypeID();};
 protected:
 string m_filename;
 FileHandle m_archiveHandle;
 bool m_bOpened;
 int m_nPriority;
 public:
 const string& GetArchiveName() const;
 /** open archive
 * @param nPriority: the smaller the number, the higher the priority with regard to other archive
 */
 virtual bool Open(const string& sArchiveName, int nPriority);

 /** close archive */
 virtual void Close(){};
 /**
 * Check whether a given file exists
 * @param filename: file name to check
 */
 virtual bool DoesFileExist(const string& filename)=0;

 /**
 * Open a file for immediate reading.
 * call getBuffer() to retrieval the data
 * @param filename: the file name to open
 * @param handle to the opened file.
 * @return : true if succeeded.
 */
 virtual bool OpenFile(const char* filename, FileHandle& handle) = 0;

 /** get file size. */
 virtual DWORD GetFileSize(FileHandle& handle) = 0;

 /** read file. */
 virtual bool ReadFile(FileHandle& handle,LPVOID lpBuffer,DWORD
nNumberOfBytesToRead,LPDWORD lpNumberOfBytesRead) = 0;

 virtual bool WriteFile(FileHandle& handle,LPCVOID lpBuffer,DWORD
nNumberOfBytesToWrite,LPDWORD lpNumberOfBytesWritten){return false;};

 /** close file. */
 virtual bool CloseFile(FileHandle& hFile) = 0;

 /** create a new file for writing
 * @param bAutoMakeFilePath: if true, the file path will be created, if not exists
 */
 virtual bool CreateNewFile(const char* filename, FileHandle& handle, bool bAutoMakeFilePath =
true){return false;};
 };

The file object or CParaFile is an all-in-one class for file access, which is used at other
places of the game engine. A CParaFile object may represent a disk file, a resource file, a
memory file read from a virtual file system, or a newly created disk file, etc. It provides open

 278

and close file functions, read and write file functions, and a great deal of other helper
functions for extracting binary or formatted data from the file.

17.3 Code
The most difficult implementation code of a game file system is directory or index building

and file decompression. Both of them are part of the CArchive class implementation. We will
only take a look at the most commonly used virtual file archive format, the ZIP format. For
zip files, there is a widely used single file compression and decompression library called ZLib,
which can be downloaded for free from the web. We guess that over 90% games use this lib
for file decompression. Please read the ZLib header file for its usage, basically it is just one
function for compression and the other for decompression.

However, before we can decompress a file, we must first locate the compressed file inside
the ZIP file archive. Zip file is a chunked file format, whose specification can be found on the
web. Figure 17.2 shows the overview of a Zip file format.

Figure 17.2 Zip archive format overview

It is common for a zip file to contain over 10,000 files with a total size of several hundred
MB. It is not efficient to traverse the file from the beginning to build the file directory. Instead
we will seek to the end of zip file, locate the central directory by its signature and build the
file directory from there.

Since we are not dealing with a super large file system, we can read the entire directory to
memory at once and save them in an array sorted by file path names. It takes about 0.1 second
to read and build file directory for a ZIP achive containing 20,000 files on a typical 3 G Hz
PC. So it does not take long to load the directories of several large ZIP achives to memory at
the game loading time.

The following are code snippet to build file directory from a ZIP archive.

Local header1

File data 1

N Chunks

Local header 2

File data 2

…

Local header N

File data N

Central directory

File header 1
File header 2

…

File header N
Signature

 279

bool CZipArchive::ReadEntries()
{
 char tmp[1024];
 long locatedCentralDirOffset = LocateBlockWithSignature(ZIP_CONST_ENDSIG, m_pFile-
>getSize(), sizeof(ZIP_EndOfCentralDirectory), 0x4);
 if (locatedCentralDirOffset < 0) {
 long locatedCentralDirOffset = LocateBlockWithSignature(ZIP_CONST_ENDSIG, m_pFile-
>getSize(), sizeof(ZIP_EndOfCentralDirectory), 0xffff);
 if (locatedCentralDirOffset < 0)
 return false;
 }

 ZIP_EndOfCentralDirectory EndOfCentralDir;
 m_pFile->read(&EndOfCentralDir, sizeof(ZIP_EndOfCentralDirectory));

 if(EndOfCentralDir.commentSize>0)
 {
 SAFE_DELETE_ARRAY(m_zipComment);
 m_zipComment = new char[EndOfCentralDir.commentSize];
 m_pFile->read(m_zipComment, EndOfCentralDir.commentSize);
 }
 int offsetOfFirstEntry = 0;
 if (EndOfCentralDir.offsetOfCentralDir < locatedCentralDirOffset - (4 +
EndOfCentralDir.centralDirSize)) {
 offsetOfFirstEntry = locatedCentralDirOffset - (4 + EndOfCentralDir.centralDirSize +
EndOfCentralDir.offsetOfCentralDir);
 if (offsetOfFirstEntry <= 0) {
 return false;//throw new ZipException("Invalid SFX file");
 }
 }

 m_pFile->seek(offsetOfFirstEntry + EndOfCentralDir.offsetOfCentralDir, false);

 IReadFile* pReader = NULL;

#ifdef ENABLE_INDEX_CACHE
 CMemReadFile memfile(m_pFile, locatedCentralDirOffset - m_pFile->getPos());
 pReader = &memfile;
#else
 pReader = m_pFile;
#endif

 int nEntryNum = EndOfCentralDir.entriesForThisDisk;
 m_FileList.set_used(nEntryNum);
 m_FileList.set_sorted(false);
 SAFE_DELETE_ARRAY(m_pEntries);
 m_pEntries = new SZipFileEntry[nEntryNum];
 for (int i = 0; i < nEntryNum; ++i)
 {
 ZIP_CentralDirectory CentralDir;
 pReader->read(&CentralDir, sizeof(ZIP_CentralDirectory));
 if(CentralDir.Sig!=ZIP_CONST_CENSIG)
 {
 return false; // throw new ZipException("Wrong Central Directory signature");
 }

 m_FileList[i].m_pEntry = &m_pEntries[i];
 if(m_FileList[i].m_pEntry == 0)
 return false;

 280

 SZipFileEntry& entry = *(m_FileList[i].m_pEntry);

 // read filename
 entry.zipFileName.reserve(CentralDir.NameSize+2);
 pReader->read(tmp, CentralDir.NameSize);
 tmp[CentralDir.NameSize] = 0x0;
 entry.zipFileName = tmp;
 if (m_bIgnoreCase)
 make_lower(entry.zipFileName);

 entry.CompressionMethod = CentralDir.CompressionMethod;
 entry.UncompressedSize = CentralDir.UnPackSize;
 entry.CompressedSize = CentralDir.PackSize;

 if (CentralDir.ExtraSize > 0) {
 pReader->seek(CentralDir.ExtraSize, true);
 }

 if (CentralDir.CommentSize > 0) {
 pReader->seek(CentralDir.CommentSize, true);
 }
 // calculate data pos offset.
 int nDataPos = CentralDir.LocalHeaderOffset + sizeof(SZIPFileHeader) + CentralDir.NameSize;

 entry.fileDataPosition = nDataPos;
 }
 return true;
}

17.4 Summary and Outlook
Many game engine modules need to access files. It is good practice to provide a unified file

access interface throughout the game engine. In this chapter, we have illustrated a typical file
system in a game engine.

A number of functionalities can be realized by extending the game file system, such as
XML data serialization, file patch system, HTTP and FTP file download, etc.

 281

Chapter 18 Frame Rate Control

Computer game engine is a real-time visualization and simulation application. However,
the computation complexity of each frame in a computer game engine is not steady. Time
management (including time synchronization and frame rate control) is the backbone system
that feedbacks on a number of game engine modules to provide physically correct, interactive,
stable and consistent graphics output.

In this chapter, we will look at timing issues in a game engine. This chapter could be useful
to developers who have already built a fairly complete game engine. This is why we put it at
the end of the book.

18.1 Foundation
Timing or frame rate in game engines is both unpredictable and intertwined for a number of

reasons. For example: resource files are dynamically loaded from the file system; some scene
entities are animated independently, whereas others may form master-slave animation
relationships; simulation and graphics routines are running at unstable (frame) rate; some of
the game scene entities are updated at variable-length intervals from multiple network servers;
and some need to swap between several LOD (level-of-detail) configurations to average the
amount of computations in a single time step. In spite of all these things, a game engine must
be able to produce a stable rendering frame rate, which best conveys the game state changes
to the user. For example, a physically correct animation under low frame rate (loosing many
rendering frames in the middle) is sometimes less satisfactory than time-scaled animation,
where continuities in character motions are preferred. A solution to the problem is to use
statistical or predictive measures to calculate the length of the next time step for different
time-driven game processes and objects. In other words, time management architecture (such
as the one proposed in this chapter) is worth to be integrated to a computer game engine.

It is also important to realize that timing in computer games is different from that of the
reality and other simulation systems. A computer game prefers (1) interactivity or real-time
game object manipulation (2) consistency (e.g. consistent game states for different clients) (3)
stable frame rate (this is different from interactive or average frame rate). For technical
reasons, it is unrealistic to synchronize all clocks in the networked gaming environment to
one universal time. Even if we are dealing with one game world on a standalone computer, it
is still not possible to achieve both smoothness and consistency for all time related events in
the game. Fortunately, by rearranging frame time, we can still satisfy the above game play
preferences, while making good compromises with the less important ones, such as physical
correctness.

18.1.1 Overview
Time management has been studied in a number of places of a computer game engine, such

as (1) variable frame length media encoding and transmission (2) time synchronization for
distributed simulation (3) game state transmission in game servers (4) LOD based interactive
frame rate control for complex 3D environments. However, there have been relatively few
literatures on a general architecture for time synchronization and frame rate control, which is
immediately applicable to an actual computer game engine. In a typical game engine,

 282

modules that need time management support include: rendering engine, animation controller,
I/O, camera controller, physics engine, network engine (handling time delay and misordering
from multiple servers), AI (path-finding, etc), script system, in-game video capturing system
and various dynamic scene optimization processes such as ROAM based terrain generation,
shadow generation and other LOD based scene entities. In addition, in order to achieve
physically correct and smooth game play, frame rate of these modules must be synchronized,
and in some cases, rearranged according to some predefined constraints.

In the game development forums, many questions have been asked concerning jerky frame
rates, jumpy characters and inaccurate physics. In fact, these phenomenons are caused by a
number of coordinating modules in the game engine and cannot be easily solved by a simple
modification.

In the following sections, we will identify frame rate related problems in a game engine.

18.1.2 Decoupling Graphics and Computation
Several visualization environments have been developed which synchronize their

computation and display cycles. These virtual reality systems separate the graphics and
computation processes, usually by distributing their functions among several platforms or
system threads (multi-threading).

When the computation and graphics are decoupled in an unsteady visualization
environment, new complications arise. These involve making sure that simultaneous
phenomena in the simulation are displayed as simultaneous phenomena in the graphics, and
ensuring that the time flow of computation process is correctly reflected in the time flow of
the displayed visualizations (although this may not need to be strictly followed in some game
context). All of this should happen without introducing delays into the system, e.g. without
causing the graphic process to wait for the computation to complete. The situation is further
complicated if the system allows the user to slow, accelarate or reverse the apparent flow of
time (without slowing or stopping the graphics process), while still allowing direct
manipulation and exploration at real time.

However, decoupling graphics and computation is a way to explore parallelism in
computing resources (e.g. CPUs and GPUs), but it is not a final solution to time management
problems in game engines. In fact, in some cases, it could make the situation worse; not only
because it has to deal with complex issues such as thread-safety (data synchronization), but
also because we may lose precise control over the execution processes. E.g. we have to rely
completely on the operating system to allocate time stamps to processes. Time stamp
management scheme supported by current operating system is limited to only a few models
(such as associating some priority values to running processes). In game engines, however,
we need to create more complex time dependencies between processes. Moreover, data may
originate from and feed to processes running on different places via unpredictable media (i.e.
the Internet). Hence, our proposed architecture does not rely on software or hardware
parallelism to solve the frame rate problem.

18.1.3 I/O
The timing module for IO mainly deals with when and how often the engine should process

user commands from input devices. These may include text input, button clicking, camera

 283

control and scene object manipulation, etc. Text input should be real-time; button clicking
should subject to rendering rate. The tricky part is usually camera control and object
manipulation. Unsmooth camera movement in 3D games will greatly undermine the gaming
experience, especially when camera is snapped to the height and norm of the terrain below it.
Direct manipulation techniques allow players to move a scene object to a desired location and
view that visualization after a short delay. While the delay between a user control motion and
the display of a resulting visualization is best kept less than 0.2 seconds, experience has
shown that delays in the display of the visualization of up to 0.5 seconds for the visualization
are tolerable in a direct manipulation context. Our experiment shows that camera module
reaction rate is best set to constant (i.e. independent of other frame rates).

18.1.4 Frame Rate and Level of Detail
The largest number of related work lies in Frame rate and Level of detail (LOD). The idea

of LOD techniques is that we can maintain stable frame rate by maintaining a stable scene
complexity or the number of rendered triangles per frame.

In many situations, a frame rate, lower than 30 fps, is also acceptable by users as long as it
is stable. However, a sudden drop in frame rate is rather annoying since it distracts the user
from the task being performed. To achieve constant frame rate, scene complexity must be
adjusted appropriately for each frame. In indoor games (where the level geometry may be
organized by BSP nodes or PVS), the camera is usually inside a closed room. Hence, the
average scene complexity can be controlled fairly easily by level designers. The uncontrolled
part is mobile characters, which are usually rendered in relatively high poly models in modern
games. Yet, scene complexity can still be controlled by limiting the number of high-poly
characters in their movable region, so that the worst case polygon counts of any screen shot
can stay below a predefined value. In multiplayer Internet games, however, most character
activities are performed in outdoor scenery which is often broader (having much longer line-
of-sight) than indoor games. Moreover, most game characters are human avatars. It is likely
that player may, now and then, pass through places where the computer cannot afford to
sustain a constant real-time frame rate (e.g. 30 FPS). The proposed frame rate controller
architecture can ease such situations, by producing smooth animations even under low
rendering frame rate.

18.1.5 Network servers
Another well study area concerning time management is distributed game servers. In peer-

to-peer architecture or distributed client/server architecture, each node may be a message
sender or broadcaster and each may receive messages from other nodes simultaneously.

In order for each node to have a consistent or fairly consistent view of the game state, there
needs to be some mechanism to guarantee some global ordering of events. This can either be
done by preventing misorderings outright (by waiting for all possible commands to arrive), or
by having mechanisms in place to detect and correct misorderings. Even if visualization
commands from the network can be ordered, game state updates on the receiving client still
needs to be refined in terms of frame rate (time step) for smooth visualization. Another
complication is that if a client is receiving commands from multiple servers, the time at which
one command is executed in relation to others may lead to further ordering constraints.

 284

The ordering problem for a single logical game server can usually be handled by designing
new network protocols which inherently detects and corrects misorderings. However, flexible
time control cannot be achieved solely through network protocols. For example, in case
several logical clocks are used to totally order events from multiple game servers, the game
engine must be able to synchronize these clocks and use them to compose a synthetic game
scene. Moreover, clocks in game engines are not directly synchronized. For example, some
clocks may tick faster, and some may rewind. Hence, time management in game development
can be very chaotic if without proper management architecture.

18.1.6 Physics Engine
The last category of related works that will be discussed is timing in physics engine, which

is also the trickiest part of all.

The current time in the physics engine is usually called simulation time. Each frame, we
advance simulation time in one or several steps until it reaches the current rendering frame
time (However, we will explain later that this is not always necessary for character animation
under low frame rate). Choosing when in the game loop to advance simulation and by how
much can greatly affect rendering parallelism. However, simulation time is not completely
dependent on rendering frame time. In case the simulation is not processing fast enough to
catch up with the rendering time, we may need to freeze the rendering time and bring the
simulation time up to the current frame time, and then unfreeze. Hence it is a bi-directional
time dependency between these two time-driven systems.

Integrating Key Framed Motion

In game development, most game characters, complicated machines and some moving
platforms may be hand-animated by talented artists. Unfortunately, hand animation is not
obligated to obey the laws of physics and they have their own predefined reference of time.

To synchronize the clocks in the physics engine, the rendering engine and the hundreds of
hand-animated mesh objects, we need time management framework and some nonnegotiable
rules. For example, we consider key framed motion to be nonnegotiable. A key framed sliding
wall can push a character, but a character cannot push a key framed wall. Key framed objects
participate only partially in the simulation; they are not moved by gravity, and other objects
hitting them do not impart forces. They are moved only by key frame data. For this reason,
the physics engine usually provides a callback function mechanism for key framed objects to
update their physical properties at each simulation step. Call back function is a C++ solution
to this paired action (i.e. the caller function has the same frame rate as the call back function).
Yet, calculating physical parameters could be computationally expensive. E.g. in a skeletal
animation system, if we want to get the position of one of its bones at a certain simulation
time, we need to recalculate all the transforms from this bone to its root bone.

18.2 Architecture
In this section, we propose the Frame Rate Control (FRC) architecture and show how it can

be integrated in a game engine.

 285

18.2.1 Definition of Frame Rate and Problem Formulation
In the narrow sense, frame rate in computer graphics means the number of images rendered
per second. However, the definition of frame rate used in this paper has a broader meaning.
We define frame rate to be the activation rate of any game process. More formally, we define
f(t) {0,1}, where t is the time variable and f(t) is the frame time function. We associate a
process in the game engine to a certain f(t) by the following rule: f(t) is 1, if and only if its
associated process is being executed. The frame rate at time t is defined to be the number of
times that the sign of f(t) changes from 0 to 1, during the interval (t-1,t].

Let
0

() (){ | , lim() }k

k k
s

x

f t f t xt k N
xδ

δ
δ→

− −
∈ = +∞ be a set of points on t, where the value

of f(t) changes from 0 to 1. Let
0

() (){ | , lim() }k

k k
e

x

f t x f tt k N
xδ

δ
δ→

+ −
∈ = −∞ be a set of

points on t, where the value of f(t) changes from 1 to 0. Also we enforce
that 1()k k kk s e s +∀ < < . { , }k ke st t is equivalent to f(t) for describing frame time function.

With the above formulation, we can analyze and express the frame rate of a single function as
well as the relations between multiple frame rate functions easily. Figure 18.1 shows the
curves of three related frame rate functions: i, j and k.

Figure 18.1 Sample curves of frame rate functions

The curve of f(t) may be unpredictable in the following ways.

- In some cases, the length of time when f(t) remains 1 is unpredictable (i.e. | - |k ke st t is
unknown), but we are able to control when and how often the f(t) changes from 0 to 1
(i.e. kst can be controlled). The rendering frame rate is often of this type.

- In other cases, we do not know when the value of f(t) will change from 0 to 1 (i.e. kst is
unknown), but we have some knowledge about when f(t) will become 0 again (i.e. we
know something about | - |k ke st t). The network update rate is often of this type.

- In the best cases, we know something about | - |k ke st t and we can control kst . The physics
simulation rate is often of this type.

- In the worst cases, only statistical knowledge or a recent history is known about f(t). The
video compression rate for real-time game movie recording and I/O event rate are often of
this type (fortunately, they are also easy to deal with, since these frame rates are
independent and do not need much synchronization with other modules.).

Let {fn(tn)} be a set of frame time functions, which represent the frame time for different
modules and objects in the game engine and game scene. The characteristics of f(t) and the

 286

relationships between two curves fi(t) and fj(t) can be expressed in terms of constraints. Some
simple and common constraints are given below, with their typical use cases. (More advanced
constraints may be created.)

1. | - | MaxDiffTime, (MaxDiffTime 0)i jt t < ≥ . Two clocks i, j should not differentiate
too much or must be strictly synchronized. The rendering frame rate and physics
simulation rate may subject to this constraint.

2. (-) MaxFollowTime, (MaxFollowTime 0)i jt t < > . Clock(j) should follow another
clock(i). The rendering and IO (user control such as camera movement) frame rate may
subject to it.

3. 1 1
, ((,) (,))k k l ls s s s

k l i i j jt t t t+ +∀ = ∅∩ . Two processes i, j cannot be executed
asynchronously. Most local clocks are subject to this constraint. If we use single-
threaded programming, this will be automatically guaranteed.

4. 1max{()} MaxLagTimek ks st t −− < . The worst cast frame rate should be higher than
1/MaxLagTime. Physics simulation rate is subject to it for precise collision detection.

5. 1 1(| 2 | MaxFirstOrderSpeed)k k ks s sk t t t+ −∀ + − < . There should be no abrupt changes in
time steps between two consecutive frames. The rendering frame rate must subject to it
or some other interpolation functions for smooth animation display.

6. 1(())k ks sk t t ConstIdealStep−∀ − = . Surprisingly, this constraint has been used most
widely. Games running on specific hardware platform or with relatively steady scene
complexity can use this constraint. Typical value for ConstIdealStep is 1/30fps, which
assumes that the user’s computer must finish computing within this interval. In in-game
video recording mode, almost all game clocks are set to this constraint.

7. 1(())k ks sk t t ConstIdealStep−∀ − <= . Some games prefer setting their rendering frame
rate to this constraint, so that faster computers may render at a higher rate. Typical value
for ConstIdealStep is 1/30fps; while at real time 1()k ks st t −− may be the monitor’s
refresh rate.

18.2.2 Integrating Frame Rate Control to the Game Engine
There can be many ways to integrate frame rate control mechanism in a game engine and it is
up to the engine designer’s preferences. We will propose here the current integration
implementation in ParaEngine.

In ParaEngine, we designed an interface class called FRC Controller and a set of its
implementation classes, each of which is capable to manage a clock supporting some timing
constraints. Instances of FRC Controller are created and managed in a global place (such as in
a singleton class). A set of global functions (see Time Scheme Manager in Figure 18.2) are
used to set the current frame rate management scheme in the game engine. Each function will
configure the frame rate controller instances to some specific mode. For example, one such
function may set all the FRC controllers for video capturing at a certain FPS; another function
may set the FRC controllers so that game is paused but 2D GUI is active; yet a third function
may set controllers so that the game is running normally with an ideal 30 FPS frame rate.

Like in most computer game engines, a scene manager is used for efficient game object
management. For each time-driven process and object in the scene, the game engine must
know which FRC controllers it is associated with. One way to do it is to keep a handle or

 287

reference to the FRC controllers in every scene object. However, it is inefficient in terms of
management and memory usage. A more efficient way to do this is to take advantage of the
tree hierarchy in the scene manager and its transversal routines during rendering and
simulation. This is done by creating a new type of dummy scene node called time node (see
Figure 18.2), which contains the reference or handle to one or several FRC controller
instances. Then they are inserted to the scene graph like any other scene nodes. Finally, the
following rules are used to retrieve the appropriate FRC controllers for a given scene object:

- The FRC controllers in a time node will be applied to all its child scene nodes recursively.

- If there is any conflict among FRC controllers for the current scene node, settings in the
nearest time node in the scene graph are adopted.

Since frame rate controllers are managed as top-layer (global) objects in the engine (see
Figure 18.2). Any changes made to the FRC controllers will be immediately reflected in the
next scene traversal cycle. Three global frame rate controllers are used: IO_TIMER,
SIM_TIMER and RENDER_TIMER. These are the initial FRC controllers passed to
processes in the game loop. As a process goes through the scene graph, the initial settings will
be combined with or overridden by FRC controller settings contained in the time nodes.

Figure 18.2 Integrating time control to the game engine

18.3 Evaluation
This section contains some use cases of the proposed framework. The combination of FRC
controller settings can create many interesting time synchronization schemes, yet we are able
to demonstrate just a few of them here.

Scene node

Scene manager

game object root frame rate
controllers

frame rate controller API

Time
scheme

Local game
loop

Network
and NPL

i t

Time node

Scene node

Scene node

Scene node

Time node

Scene node

Time node

Scene node Scene node

Environment
simulator

I/O
handler

Script engine &
NPL runtime

Rendering
pipeline

transversing the scene graph

 288

18.3.1 Frame Rate Control in Video Capturing
The video system in ParaEngine can create an AVI video while the user is playing the game.
When high-resolution video capture mode (with codec) is on, the rendering frame rate may
drop to well below 5 FPS. It's a huge impact, but fortunately it does not get run at production
time. The number of frames it will produce depends on the video FPS settings, not the game
FPS when the game is being recorded.

Now a problem arises: how do we get a 25 FPS output video clip, while playing the game
at 5FPS? In such cases, the time management scheme should be changed for the following
modules: I/O, physics simulation, AI scripting and graphics rendering. Even though the game
is running at very low frame rate, it should still be interactive to the user, generate script
events, perform accurate collision detection, run environment simulation and play coordinated
animations, etc, as if the game world is running precisely at 25 FPS. ParaEngine solves this
problem by swapping between two sets of FRC controller schemes for clocks used by its
engine modules. In normal game play mode, N-scheme is used; whereas during video
capturing, C-scheme is used. See Table 18.1. In C-scheme, the simulation and the scripting
system use the same constant-step frame rate controller as the rendering and I/O modules. The
resulting output of C-scheme is that everything in the game world is slowed but still
interactive.

Table 18.1 Frame rate control schemes

 N-scheme C-scheme

ConstIdealFPS 30 or 60 20 or 25

Rendering FRC_CONSTANT FRC_CONSTANT

I/O FRC_CONSTANT FRC_CONSTANT

Sim & scripting FRC_FIRSTORDER FRC_CONSTANT

18.3.2 Coordinating Character Animations
In computer game engine, a character’s animation is usually determined by the combination

of its global animation and local animation. Global animation determines the position and
orientation of the character in the scene, which is usually obtained from the simulation engine.
The local animation usually comes from pre-recorded animation clips. In order for the
combined motion of the character to be physically correct, the simulation time is usually
strictly matched with the local animation time using constraint (1) in Section 3.1. However,
this is not the best choice for biped animation with worst case rendering frame rate between
10FPS and 30 FPS. Our experiment shows that setting simulation time to constraint (5) and
the local animation time to constraint (6) will produce more satisfactory result. This
configuration does not generate strictly correct motion, but it does produce smooth and
convincing animation. The explanation is given below. Suppose a biped character is walking
from point A to B at a given speed. Assume that the local “walk” animation of the biped takes
10 frames at its original speed (i.e. it loops every 10 frames). Suppose that the simulation
engine needs to advance 20 frames in order to move the biped from A to B at the biped’s
original speed. Now consider two situations. In situation (i), 20 frames can be rendered
between A and B. In situation (ii), only 10 frames can be rendered. With constraint (1), the

 289

biped will move fairly smoothly under situation (i), but appears very jerky under situation (ii).
This is because if the simulation and the local animation frame rates are strictly synchronized,
the local animation might display frame 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 at its best; in the actual case,
it could be 0, 1,2, 8,9, 1,2,3,7,9, both of which are missing half the frames and appears
intolerable jumpy. However, with constraint (5) and (6) applied, the local animation frame
displayed in situation (i) will be 0,1,2,3,4,5,6,7,8,9, 0,1,2,3,4,5,6,7,8,9, and under situation (ii),
0,1,2,3,4,5,6,7,8,9, both of which play the intact local animation and look very smooth. The
difference is that the biped will stride a bigger step in situation (ii). But experiment shows that
users tend to misperceive it as correct but slowed animation. The same scheme can be used
for coordinating biped animations in distributed game world. For example, if there is any lag
in a biped’s position update from the network, the stride of the biped will be automatically
increased, instead of playing a physically correct but jumpy animation.

18.4 Summary and Outlook
The main purpose of this chapter is to help readers identifying frame rate related issues in a

game engine. We also propose the frame rate architecture in ParaEngine.

Ad-hoc timing control, as frequently seen in released product, needs to be refined by their
designers. In the long run, time management will become very important in distributed
visualization and simulation of virtual environment, such as networked computer game
worlds.

 290

Chapter 19 Summary and Outlook of Game Engine

After reading this book, we may get an overwhelming feeling about computer game engine:
a computer game engine is a complicated engineering of virtually all fields of computer
science in the most efficient ways. Applications created by game engine deliver the best
multimedia content that a computer could possibly offer.

19.1 Age of Middleware
Although, a computer game engine embraces a large number of field technologies, they are

not immediately applicable. In the old days, a game engine developer needs to recode a great
deal of them in order to meet the performance requirement of game engine. Nowdays,
common functional modules of a game engine are being specialized and commericialized.
They can be small to medium modules, such as game physics, particle simulation, AI modules,
network modules, scripting system, terrain engine, vegetation rendering; or they can be major
components of game engine, such as the entire graphics system, world editing environment,
client/server system, etc. These pieces of dedicated software are called middlewares.
Sometimes, it is hard to distringuish them from the game engine itself, or the game engine
itself may sometimes become a middleware.

The extensive use of middleware also requires extensive knowledge of a game engine.
Successful middleware users are usually those who have already implemented their own game
engine, but want to shorten the game production time and increase product quality.

On the other hand, innovative games usually require specialized game engines. No game
engine today can accommodate all types of games. When the cost of customizing an existing
game engine is too high, project manager needs to make the bold decision to rework major
game engine modules to suit the need of the game.

19.2 World Editing
There are three types of world editing choices for game engine. They are described in the
following sub sections.

19.2.1 In-game Editing
Most game engines provide some sort of in-game world editing application, which allows

designers to lay-out level geometry, triggers and a variety of game objects dynamically. This
is usually the case for games featuring extremely large territories, such as MMORPG games.
ParaEngine supports this editing method natively.

19.2.2 Customizing over Professional 3D Authoring Tools
Optionally, a game engine may customize professional editing applications, such as

3dsmax and maya, and make it an integrated world editing environment. This is usually the
case for art intensive games such as standalone console RPG games. By the time of writing,
ParaEngine only supports this type of world editing via 3dsmax.

 291

19.2.3 Writing Special Tools for Game
Most game projects do not implement their own game engine. Instead, they usually have a

dedicated tool team which builds the world editing tools to the need of their specific games.
One of the most demanding game types that require much work on game editor is perhaps the
Real-Time Strategy (RTS) games. These specified world editing tools are usually made via
API exposed by the game engine. Some game engine allows source code level access to the
game engine; however, this is not the advised way to build world editing tools. Instead world
editing tools are usually built via the game engine’s C/C++ API or API exposed through the
game engine’s scripting interface. In ParaEngine, 90% of the major game engine
functionalities, including the network and database logics, are exposed via the NPL scripting
interface. This allows tool developers to use the scripting language to construct advanced
world editing tools for their games.

19.2.4 Outlook
Unlike other super sophisticated computer software, we think that the near future of game

editing environment will not be ruled by a few giants. Instead, game editing will continue to
diversify for different people with different skills and objectives.

The logics of games are endless, and so does the human computer interface of its editing
environment.

19.3 Next Generation Game Engine
In the past and today, graphics is the most-talked-about feature for next generation game

engine. We will continue to see more realistic scenes powered by tommorrow’s technology.
We also believe that networking and artificial intelligence will play more important roles in a
game engine. They are also the two aspects that ParaEngine aims to specialize in.

We believe that computer game is the driving force which could bring the Internet to Web
3D18.

18 Web3D Consortium, www.web3d.org

 292

Appendix A:
Code Optimization

A game engine programmer always keeps one thing in its mind which is code optimization.
There are high-level algorithms and code patterns which we covered in this book. However,
when writing pieces of critical programming code, there are some basic techniques a
programmer should know. Since there are already many good books on the topic, we will
cover just some of them which will immediately boost your unoptimized code. They are
freely listed below.

Inline Functions

Recognize frequently called functions that have small bodies; if you feel that inlining might
boost performance, just do it. The most typical example of using inlining is on the math or
physics functions. If you observe the DirectX extenstion library, you will find that most
vector and matrix functions are inlined.

Use Globals

Here, globals do not just mean global parameters, but also any singleton object in the game
engine. A game engine usually contains many singleton objects, such as scene manager, scene
states, render device, current camera, current player, etc. Although it may be bad practice
elsewhere, game engines almost never pass globals as parameters to functions. The main
reason is on performance.

Writing Simpler Code

Do not pack many things in to a single line of C/C++ code. The compiler may fail to
optimize it due to it. Modern compiler can automatically optimize our source code by
applying a number tricks to the source code, such as inlining, changing code order or
duplicating code to prevent frequent branching, etc.

Branching

Currently CPU runs lots of instructions in parallel. A branch instruction such as “if” will
undermind parallism in the CPU, hence we should avoid the number of branch instructions in
critical program code, and if it is truly unavoidable, we should try to increase the chance that
a branch instruction passes. As a general rule, try to avoid using branching inside a loop, and
put unlikely-to-execute code in the “else” part instead of “if” part.

Precompute

We can use fast sine and cosine functions which precompute values and retrieve them by
indexing in to the table. Similarly, we can minimize the number of devision calls by
precompute its inverse.

Align data members

When space is critical, some people tend to pack data members in to bytes or even bits.
However, the computer accesses data most efficiently with the default 4 bytes alignment. In
most cases, system memory is not quite a scarce resource as it appears. Comparing with the

 293

size of model and texture files in memory; saving a few bytes in data structuring does not out-
weigh its costs of decreased member access speed.

Profiling

There are many good commercial profiling tools. DirectX SDK also comes with a GPU
profiler called PIX. When developing ParaEngine, we wrote a handy code level profiler
ourselves. A game engine is mainly a looped program where many modules are executed on a
regular basis. Hence we usually use the code profiler to generate information such as min,
max, average execution time, execution time deviations, etc. The following shows a segment
of information generated by the code profiler in ParaEngine.
<RebuildSceneState>
Avg: 0.000128 Dev: 0.000000 Max: 0.001101 Min: 0.000127 Total Frames: 615

<Render_Mesh>
Avg: 0.000114 Dev: 0.000555 Max: 0.062597 Min: 0.000011 Total Frames: 615

<Script FrameMove>
Avg: 0.008639 Dev: 0.038664 Max: 3.039571 Min: 0.000015 Total Frames: 669

<3D Scene Render>
Avg: 0.006790 Dev: 0.007811 Max: 0.613430 Min: 0.004168 Total Frames: 615

<Animate FrameMove>
Avg: 0.000168 Dev: 0.000254 Max: 0.065232 Min: 0.000005 Total Frames: 669

<present>
Avg: 0.000561 Dev: 0.000132 Max: 0.024704 Min: 0.000179 Total Frames: 669

<terrain_tessellation>
Avg: 0.007236 Dev: 0.001256 Max: 0.010994 Min: 0.004663 Total Frames: 56

 294

Appendix B:
Da Vinci World

The first object of the painter is to make a flat plane appear as a body in relief and projecting
from that plane.

-- Leonardo da Vinci (1452-1519)

Leonardo da Vinci was, and still is, known as one of the greatest inventors and thinkers of
the Italian Renaissance. He was an architect, musician, scientist, mathematician, and
"inventor of genius." He especially excelled in science and art, and was always thinking
outside of the box. Many of his ideas have been an inspiration for some modern technology.

In this special chapter, we use version 1.0 of ParaEngine SDK (personal edition) to create a
sample game scene, called Da Vinci World. The complete series of “Da Vinci World” is a
collection of games which allow children to experiment with and fulfill their imaginations in
3D worlds. We have tested the game among children aged 7 to 12 with some former gaming
experience, and the result is quite positive. Children are more creative and experimental than
we imagined. After watching the children creating game worlds for hours, adults usually
reach the conclusion that children are the greatest inventors and thinkers of our time.

The explicit purpose of this chapter is to teach casual readers how to use ParaEngine to
quickly build a game world. Besides that, we hope:

- To provide a tangible goal towards which new engine programmers may schedule to
work.

- To allow users (programmers, artists, designers, etc) to look up the related
technologies in this book, when they are using them.

- To give a simple outline of how a casual game can be developed.
In the following sections, we follow steps to create the Da Vinci World sample game scene.

Sections whose names start with “Do It Yourself” are advanced and usually require
programming via the NPL scripting interface. Casual readers can skip these sections
completely.

B.1 Game Proposal and Design

Goal

Design a sample game scene, in which children can do experiments and fulfill their
imaginations.

Where does the game happen?

It happens in a fantasy world surrounded by mountains with water and island in the middle.
The world is beautiful but looks a bit barren at first. There should be some open flat land
where buildings can be built and plants can be grown.

What do I control?

 295

The children control one character at a time in a third person or first person perspective.

How many characters can I control?

The children can populate the world with many characters. They can toggle between
characters.

What is the key point of the game?

The key is to entice the children to fulfill their imaginations and stories by creating new
elements, as well as, to discovery interactive parts of the world.

How about Models, Characters, Game World Logics, UI, Effects, Audio, etc?

We will use the default ones from ParaEngine SDK demo. ParaEngine Dev Studio plan to
share resources with you under a very user-friendly license. Please read the SDK for details.

Can I preview the game?

Please go to our website www.paraengine.com to download. One can quickly go through
the following pages to see some screen shots.

B.2 Prepare Your Work Environment

The only requirement to make this demo game is the installation of ParaEngine SDK
personal edition.

However, for more serious game making, lots of third party tools are used. For artists, you
may need software like Photoshop, 3dsmax, Maya, Deep paint, etc. For designers and
programmers, you need a word editor and a program editor, such as Ultraedit, or even visual
studio. For all people, version control your artifacts can be top most important and some game
studios choose to use version control software with user friendly interface, such as AlienBrain,
Visual Source Safe, etc.

B.3 Getting Used to ParaEngine SDK

For casual users, ParaEngine SDK is just a single executable, called the default interface.
One can create, edit and release using the same executable. It features more than a what-you-
see-is-what-you-get interface. Our design principle is to make it 100 percent functional, which
means that with each click of the mouse, you bring something explicit to happen in the world.
In fact, it is so designed that children aged 10-12 can quickly master it themselves; any
operation can do no harm to the system as long as script files are not touched from an external
editor. Hence, in the rest of the book, we will not teach instructions if it is on the default
interface.

For intermediary users, we offer another user interface, called ParaIDE, which runs side by
side with the default interface. One can bring up ParaIDE by pressing F5 or select from the
menu in the default interface. See Figure 19.1. The application on top is ParaIDE. The 3D
application on the background is ParaEngine SDK’s default interface. These two applications
can communicate at runtime. The ParaIDE provides advanced functionalities, such as asset
management, database management, selection and property management, etc. The default

http://www.paraengine.com/

 296

interface is usually what the game looks like once released. One can also edit and manipulate
objects in the default interface. Once an object is selected in the default interface, we can
change its properties either from the default interface or from ParaIDE.

Figure 19.1 Default Interface and ParaIDE

ParaEngine SDK professional edition have a collection of API for advanced developers to
write plug-ins for ParaEngine through both native C++ and .Network Framework API. In fact,
ParaIDE itself is written in C# language using ParaEngine Managed API for .Net Framework.
Most future plug-ins of ParaEngine for advanced developers will be released in this way. One
can find standard plug-ins as DLL files in the ./plugins directory. Most plug-ins including the
ParaIDE is only used by developers, and does not need to be included when shipping the
game.

The scripting language or NPL is the only language that more serious developers need to
learn when making games using ParaEngine. NPL is the main language for writing UI and
game logics. When a game is released, all its script files must also be included. Most
ParaEngine powered demos as well as the world editor (default interface) is completely
written in NPL. So basically everything you see or interact in the 3D world is written in this

 297

language. One can also load and invoke DLL plug-ins written in other languages from the
scripting interface, which extends the scripting interface greatly.

Figure 19.2 shows components of ParaEngine, API and their programming language.

Figure 19.2 ParaEngine components, API and programming language

ParaEngine SDK also comes with a collection of tools. The most important tool is the
model exporter. They allow serious game makers to import models, animations, effects,
terrains, or even game scenes from professional 3D authoring environment, such as 3dsmax,
to ParaEngine.

B.4 Creating a New World

A game may consist of many 3D worlds, some are huge and some are small. For this demo
game, we need just one small world. Let us name it Da Vinci World. We can create it either
from the default interface or ParaIDE.

In ParaEngine, an important concept when creating a new 3D world is called inheritance.
When creating a new 3D world, it allows users to specify a parent world from which the new
3D world is derived (not cloned). It is similar to class inheritance in C++. When the parent
world is changed, all its derived worlds also change unless the derived world has overridden
or made changes to the modified portion of the parent world. In other words, the game engine
automatically detects changes made to the current world, and it clones the smallest portion of
the parent world if that portion has never been modified in the current world before. Figure
19.3 shows the illustration. We see that portions of the current world’s game data are from its
parent worlds.

The smallest pieces of overridable game data in a game world are objects in a terrain tile,
terrain elevations of a terrain tile, terrain texture layers of a terrain tile and NPCs of the whole
world.

ParaEngine

C++ API

Managed API (.Net)

NPL

Default Interface

API

Plug-ins

Other plugins

ParaIDE

Release…

Tool sets

 298

Figure 19.3 World Inheritance

Our website maintains a repository of game world templates. One can download a variety
of game worlds from our website and start a new world on top of that. If one does not specify
the parent world, it will derive from a default empty world with flat terrain and default of
everything.

To create a new world in ParaIDE, select menu File->New World, as shown in Figure 19.4.

Figure 19.4 Creating a New World

All game world data are stored in a folder with the same name as the input world name. A
newly derived world may only be a few KB in size. As one makes changes to it, the size of
the world will grow slowly. When releasing a world, make sure that you include everything in
the world folder, as well as files in the parent worlds’ folder. However, if one overrides every
portions of the parent world, there is no need to include the parent world any more.

Parent worlds

Current world

World Inheritance

 299

B.5 Making Game Scene

A game scene comprises of terrain, models, characters, lights, and a few other global
objects and effects. We can create and modify terrain, lights, and all global objects directly in
the default interface. As for models and characters, one can use all models published from our
website. ParaEngine Dev Studio has made these customizable models and characters in the
hope that more people (young or experienced) can create high-quality game world in minutes.
If you have the skills, you can follow the steps as described in section B.6, B.7 and B.8 to
make or contribute your own models and characters. In this section, we assume that you are
using assets released by ParaEngine SDK.

We have observed children aged 10 to create 3D scenes using the default interface, as they
wander in the world. It is quite a try-and-error process, which they enjoy very much. For older
people like readers of this book, we suggest you plan in advance and start from the terrain
first, and then models and characters. In the game proposal section, we have described our
game scene verbally. Let us review it here:

A fantasy world surrounded by mountains with water and island in the middle. The world is
beautiful but looks a bit barren at first. There should be some open flat land where buildings
can be built and plants can be grown.

Now, we will use a sketch of Leonardo da Vinci to give you a better illustration. Serious
game studios usually draw concept arts before designers set out making the scenes.

Figure 19.5 Sketch of Leonardo da Vinci

For this demo, we need not strictly follow the concept arts. And because you are limited by
the number and type of available models, you can just try your best to make it feel right.
Figure 19.6 and Figure 19.7 shows sample scenes made by us using only available terrain
modifiers, textures and models. It might take one to several hours to complete for first time
makers. So please be as patient as children.

 300

Figure 19.6 Sample Scene Screenshot 1

Figure 19.7 Sample Scene Screenshot 2

The following three DIY sections teach you the basics of building your own advanced
terrain and models. You can escape them all and continue with the B.9 section.

 301

B.6 Do It Yourself: Advanced Terrain

In the default interface, one can modify the terrain elevation and texture layers interactively.
However, it will be slow and inefficient to make large terrains in the 3D environment of the
default interface. ParaEngine comes with a terrain exporter tool for 3dsmax. It can export
mesh grid from 3dsmax to “.raw” file (the height map file used by ParaEngine). The raw file
is called terrain modifier file, which can be applied to the existing terrain in the game scene.
Please refer to terrain chapter for more information.

The advised terrain making procedure is: first making the terrain modifiers in 3dsmax or
other dedicated software and then fine-tuning the terrain in the 3D environment using the
default interface.

Figure 19.8 Terrain exporter in 3dsmax

Figure 19.8 shows the terrain exporter in 3dsmax. The exporter is written in 3dsmax script.
One can start it in 3dsmax by running the start up script file: world editor/3dsmax plugin/
Start_ParaEditor.ms

The terrain plug-in can create terrain at a given tile position in the world as well as terrain
modifiers which can be applied at any location of the 3D world. We will only show how to
create a terrain modifier here.

A terrain modifier is an elevation or height map file of a square grid of arbitrary size. When
the terrain modifier is applied to a location of the 3D world, it will add the height map in the
terrain modifier to the terrain centered at that location. The edge of the modified terrain is
smoothly interpolated between the original terrain height and the height in the modifier.

To create a terrain modifier, you need to specify the grid size, such as 128; clear the text in
the elev file text box to empty; and then press the Create New Terrain button. A mesh grid
object will be generated. One can modify the mesh object, and then press Save Elev file.

For the default interface to automatically locate your elevation file, please save the terrain
modifier file as raw file under the ./model/others/terrain/ directory. When you open the

 302

default interface, you will notice that your newly created terrain modifier is displayed under
the terrain category. To apply the terrain modifier, move the character to the desired location
and then double click the modifier name. If you use the ParaIDE, you can browse to the
terrain modifier file in the asset list view, right click on the file icon and select Invoke in the
pop up menu. See Figure 19.9. The actual size of the terrain modifier as appeared in the 3D
world is proportional to the grid size. The proportion is subject to global game world settings.
A 128*128 mesh grid will match exactly to the size of your terrain tile. So if your terrain tile
size is 512*512 meters, then one grid in the mesh will be 4 meters long.

Figure 19.9 Apply Terrain Modifier in ParaIDE

ParaEngine comes with a collection of pre-made terrain modifiers. One can combine them
to create versatile terrain. When the game world is saved, the elevation files of the entire
world are saved as a collection of raw files. These raw files have the same format as the
terrain modifier; so they can be imported to 3dsmax for fine tuning.

B.7 Do It Yourself: Static Models

To DIY your own static models is very simple if you are familiar with any of the 3d
authoring environment. The static model format of ParaEngine is fully compatible with
DirectX X file format. However, to access full features of ParaEngine, one needs to use the

 303

ParaX Model Exporter plug-in provided by ParaEngine SDK. At the time of writing,
ParaEngine only supports model exporters for 3dsmax version 6, 7 and 8.

Please read the ParaX Model Exporter manual for more information. When making models
in 3dsmax, artists should follow the following principles:

- One generic unit in 3dsmax is one meter in ParaEngine. So it is advised that artists use
meters or generic unit in 3dsmax.

- The z axis in 3dsmax is y axis in ParaEngine. Fortunately, they all mean the world up
direction. Basically, what one sees in 3dsmax is the same as that in ParaEngine.

- Reset transform of the model before exporting. Please refer to 3dsmax manual for how
to do it.

- All mesh faces must be assigned a standard texture material in order to be treated as
visible when exported to ParaEngine.

- Objects or mesh face that does not have a material assigned to it is treated as physics
face only. Physics faces will block characters and will not be rendered. We can use the
3dsMax primitives such as boxes, cylinders, etc to build the physics faces in the model.

- If there are multiple renderable meshes or objects in the scene, it is better to convert all
of them to a single mesh before exporting. This can be done by first converting all
objects to editable meshes, and then attaching all other meshes to a particular one.
3dsmax will automatically combine all used materials to a single multi-material, which
can be exported by the exporter.

- For ordinary textures with or without transparency, one can use standard material and
specify only the diffuse and opacity maps. If the texture is opaque, only specify the
diffuse map and leave the opacity map empty. For texture with transparency, specify
both the diffuse and opacity map. Please note that the diffuse and opacity map should
be the same texture file, where the opacity is read from the alpha channel of the bitmap.
Material that only uses diffuse map will be exported as DXT1 format which contains 1
bit alpha; material with opacity map will be saved as DXT3 or DXT5 which has 3 bits
alpha. Artist is advised to use "tga" file format during exporting. The ParaX Exporter
will automatically save all used texture files as "dds" format according to their usage.

- Texture UV: Never set texture tiling in the material editor, since they are not exported
by the exporter. Instead, use UV mapping or UVW unwrapping in the 3dsmax modifier
stack.

- File path in ParaEngine are all relative to the root directory. Absolute file path is still
supported, however, when deploying the game to a different location, the file will not
be found. Hence, it is highly advised that one put the max file and its referenced
textures in the same folder, or at least under the same root directory. The toot directory
of a given file is defined as closest parent directory that contains the ParaEngine.sig
file. If one looks at the ParaEngine SDK installation folder, it will find the sig file there.

- Reflection map: specify ray-tracing in the reflection map of 3dsmax to export reflective
surface. Currently, only horizontal reflective surfaces at y=0 plane is supported.

 304

- Cubic environment map in 3dsmax is supported: Environment mapping: specify
reflect/refract map in the reflection map of 3dsmax material to export environment
mapped surfaces. The exporter will use the 6 surface files to generate the exported
cubic texture file. The exported cubic texture file has the same name as the diffuse map
plus "Env". For example, the diffuse texture is "face.dds", then the exported
environment map will be "faceEnv.dds"

- Light map must use a separate UV set and is specified as a bitmap in the reflection map
channel of 3dsmax. The exported texture file has the same file name as the specified
bitmap file. For example, if the reflection texture is "face.tga", the light map will be
"face.dds".

- The light map intensity can be specified by the amount property of the reflection map.
The amount parameter in 3dsmax is [0,100]. The actual light map intensity exported is
X/10, with the exception that 100 stands for 1. Hence, 10 is 1, 20 is 2, 99 is 9.9; yet 100
is 1. light map may be shared among multiple materials

- If the texture file name ends with _a{0-9}{0-9}{0-9}.xxx, it will be regarded as an
animated texture sequence. Always specify the last texture in the sequence, such as
“smoke_a120.tga”. All texture files can be animated, such as diffuse and light maps.

It is advised that you browse the sample 3dsmax source files under the SDK’s model
directory before exporting your first model. Once you are satisfied with your model in
3dsmax, you can export it by selecting File Export (ParaEngine ParaX file). There are not
many options and you do not even need to specify a valid file name. The ParaX Exporter will
guess most of the options for you as well as the file name and location to be saved. After
examining the guess report, click OK and it is done. See Figure 19.10

 305

Figure 19.10 ParaX Model Exporter

To view you models in the game engine, you can create an instance of the model using
either the default interface or the ParaIDE. To create a model in the ParaIDE, browse to your
model file in the asset list, and double click the file icon to create a model instance at the
current player’s position.

B.8 Do It Yourself: Characters

Characters and animated models are a little bit more difficult to make. One needs to follow
more strict rules in order to correctly export animated models.

First of all, characters may have one to several hundreds animations. There is a default
animation called standing animation which all characters must provide. Secondly, all
animations of the same character must share the same bone structure as well as bounding
weights or physiques. Thirdly, some animations are looped and some may have a global speed.
Each character animation should be stored in a separate file. All character animation files
must be put in the same directory. A character model directory contains only models files
which share the same mesh and bones.

When making characters with multiple animations, we usually start from the character with
the standing animation. In order for ParaX model exporter to guess the correct options, we
need to name each 3dsmax source file according to the following specifications.

 306

sObjectName (nAnimID [, fAnimSpeed], [, nonloop]).max

sObject Name is arbitrary. For example, "MyModel(0)" or "MyModel(4, 1.234)" or
"MyModel(30, 0, nonloop)".

nAnimID: this is the animation id for the max file. ParaEngine reserves animation id in the
range [0,255]. Animation ID outside this range is user defined animation sequences. The
mapping from id to their interpreted action can be found in the animation ID table of the
exporter manual. For example, 0 means default standing animation; 4 means walking
animation.

fAnimSpeed: This specifies animation speed in meters per second unit. Default value is 0.

"nonloop": if "nonloop" is present in the file name, the animation exported will be non-
looped, otherwise it is saved as looped animation.

For example: suppose you have the following max and texture files in the ./dog/ directory

./dog/dog (0).max

./dog/dog_walk (4, 2.35).max

./dog/dog.tga

You can open ./dog/dog(0).max in 3dsmax, and select File Export (ParaEngine ParaX
file), and then type anything as the file name. When the export dialog pops up, you will see
that the exporter has guessed most of your exporting options. You just need to select whether
you want to export a single animation for testing or all animations in the current directories. If
your models are OK, the exporter will generate a file at "./dog/dog.x", which contains your
current animation or all animation sequences. This may takes some minutes if the character
has many animation sequence files.

It is advised that you browse the sample 3dsmax source files under the SDK’s character
directory before exporting your first animated model.

B.8.1 Special Rules

There are more restrictive rules when making animated model than the static ones. If you
do not follow the rules, the exported model will not look right in the game engine. Some of
the common rules are given below.

- All meshes and bone structures of the character should be the same in all character
animation files. It is advised that one copy and paste the standing animation file when
making other animations.

- The character’s facing should be the positive x axis in 3dsmax.

- The following animation method is supported: skin, physique, biped (motion capture),
simple key transform. Please note that only one of these methods can be used for a
single character.

- Before binding bones to a mesh, reset the mesh’s transformation.

 307

- Avoid using scale animation. If one has to, use uniform scale only, i.e. scale the same
amount along x, y, z axis. The current exporter ignores the scale’s rotational axis.

- Floating bones or floating meshes are not supported. In other words, all bones must
have a single parent bone, and if a mesh is animated all of its vertices must be bound
to at least one bone.

- When using biped to animate characters, make sure that the initial pose of the character
is the same as the pose of the character when the skin modifier is applied.

- We allow models to be attached to other models, such as character body attachments or
mount system. These are realized by adding special bones to the character. These
special bones are converted to attachment points when exported. A bone whose name
contains the following string will be regarded as attachments.

 "Head" or "头部": Up to 4 parent bones of the head bone is used to rotate the
character's upper body.

 "L UpperArm": left shoulder where you can attach armory.

 "R UpperArm" right shoulder where you can attach armory.

 "L Hand" left hand which can hold other object models.

 "R Hand" right hand which can hold other object models.

 "Mount" or "Shield" the mount position for car or horse, etc. It may also be the
shield position where weapons may be attached on character models. “Mount1”
and “Mount2” are reserved in case that there multiple mount attachment points.

For example, if a car character defines a Mount bone at the seat position, and another
human character has a mount animation sequence, then the game engine can automatically
mount the human character to the car at runtime. Figure 19.11 shows animated model files in
3dsmax and Figure 19.12 shows the animation result in the game engine.

Character with “Mount” bone

Character with mount animation

Figure 19.11 Mount Bone and Mount Animation

 308

Figure 19.12 Mount one character over another

B.9 Adding Artificial Intelligence

Now we will add some AI to the game world, making it alive. Only character objects can
have AI. There are some pre-made AI templates which can be assigned to the currently
selected character, with a single click of the mouse in the default interface.

B.9.1 Do it yourself: Artificial Intelligence

To build your own AI, you need some knowledge about how characters are simulated in the
game engine. Please refer to the AI chapter of the book for more information. AI in
ParaEngine is layered; only the top layer can be edited completely via the scripting interface.
The following call back events can be registered per character.

On_Load Called when the character is loaded from disk or database to the
scene. Although it is not called by the character simulator, it looks
and functions like a simulation event.

On_EnterSentientArea When other game objects of a different type entered the sentient
area of this object. This function will be automatically called by
the character simulator.

On_LeaveSentientArea When no other game objects of different type is in the sentient
area of this object. This function will be automatically called by
the character simulator.

On_Click When the player clicked on this object. This function will be
automatically called by the character simulator.

On_Perception When other game objects of a different type entered the perceptive
area of this object. This function will be automatically called by
the character simulator.

On_FrameMove This function is called every frame when the character is sentient.
This is mostly used by AI controllers.

 309

The event handler registrations can be done in both ParaIDE and the default interface by
editing the character’s property. When a new character is created, all of its event handlers are
empty. When you try to add a new event handler, you can either specify an existing handler
from a script file, or let the game engine create a new empty handler for you. Figure 19.13
shows the event handler properties of a character in the default interface.

Figure 19.13 Event handler properties in the property window of default interface

After clicking the open button next to the property field, a new script with the same name
as the character will be automatically created in the ./character/ directory of the current world,
and opened in the default script file editor as shown in Figure 19.14.

 310

Figure 19.14 Empty event handlers script file in the editor

When any event handler is called, a parameter called sensor_name contains the character’s
name. We can get a character instance of the character by calling the following script
command.
local player = ParaScene.GetObject(sensor_name);

We can access to all other perceived objects of the current character as shown in the
example script below.
function _character.a.On_Perception()
 -- do your AI code here.
 local player = ParaScene.GetObject(sensor_name);
 if(player:IsValid() == true) then
 local nCount = player:GetNumOfPerceivedObject();
 for i=0,nCount-1 do
 local gameobj = player:GetPerceivedObject(i);
 if(gameobj:DistanceTo(player) < 5) then
 log(“Saw an object”);
 end
 end
 end
end

It is a good practice to use “sensor_name” parameter to get the current character name
instead of hard-code the character name in script. This allows the same event handler to be
reused by multiple characters of the same type. However, in case a character handler is only
used by a unique character in the game, one can directly use the character name in script.

 311

The event handler registration information as well as the memory states of a persistent
character are stored in the NPC database under the current world’s directory by default. We
can view this database using ParaIDE. Just browse to the world directory in the asset list,
select the database file and double click its file icon. See Figure 19.15.

Figure 19.15 NPC database in ParaIDE

It is advised that you see the sample AI templates written by us under the script/AI/
directory of the ParaEngine SDK. Also NPL programming reference is a must read for any
one who wants to use the NPL language.

B.9.2 Do it yourself: Using AI Controllers

Instead of controlling the character each frame in the event handler, we can assign AI
controllers to the character. We can regard AI controller as a certain logic unit. When they are
initialized and assigned to a given character, it will automatically control the behavior of the
character from that time on. This saves us development time and makes the AI logics clearer.
Because AI controllers are mostly written in native C++ language, it runs faster than script
instructions. Another advantage of using AI controller is that some pre-made tools are
available to quickly customize a certain AI controller. For example, one can use the sequence
AI controller to instruct the character to follow a certain path, where the path can be specified
using a pre-made tool with graphic user interface.

 312

The following are some code example of using three different kinds of AI controllers.
Please note that various AI controllers can be combined to generate complicated AI behaviors.

Face Tracking Controller

Face tracking controller controls a character to always face a given target or another
character. Face tracking controller has relatively high priority. This controller is commonly
used when a player approaches an NPC. The NPC with a face tracking controller will
automatically rotates its neck to face the incoming player.

We can assign and release this controller at any place and at any time. For example, we can
assign it in the On_Load() event handler, so that the character will always have this facing
behavior when it is loaded. See below. The bold text enabled the face tracking controller.
function _character.a.On_Load()
 local player = ParaScene.GetObject(sensor_name);
 if(player:IsValid() == true) then
 local playerChar = player:ToCharacter();
 playerChar:AssignAIController("face", "true");
 end
end

Follow Controller

Follow controller controls a character to follow another character as long as the target is in
sight. The following script instructs the character to follow another player named “girlPC”.
function _character.a.On_Load()
 local player = ParaScene.GetObject(sensor_name);
 if(player:IsValid() == true) then
 local playerChar = player:ToCharacter();
 playerChar: AssignAIController("face", "true");
 playerChar: AssignAIController("follow", "girlPC 2.5 -1.57");
 end
end

The two additional parameters following the target player name is radius and angle, which
specify the desired position of the following player around the target player. Figure 19.16
shows the meanings of the two parameters. So the character in the example code will try to
maintain a distance of 2.5 meters from the target player and stay to the left of the target.

 313

Figure 19.16 Follow controller parameters

Sequence Controller

Sequence controller controls a character according to some predefined sequenced
commands list. It executes at most one command per frame, and it will only execute the next
command when the current command is finished. One can think of a sequence controller as a
short computer program. The program may contain branch and loop operations.

Sequence controller can be combined with character sensor events to model fairly complex
AI logics. A sequence controller alone can be used to model behaviors such as patrolling
guards, wandering enemy creatures, busy citizens on a city street, etc.
function _character.a.On_Load()
 local player = ParaScene.GetObject(sensor_name);
 if(player:IsValid() == true) then

 local playerChar = player:ToCharacter();
 playerChar: AssignAIController("face", "true");

 -- a sequence can be read from file or database; here I just hard-coded them.
 local s = playerChar:GetSeqController();
 s:BeginAddKeys();
 s:Lable("start");
 s:PlayAnim("EmotePoint");
 s:Wait(3);
 s:Turn(0);
 s:WalkTo(10,0,0);
 s:Wait(3);
 s:Turn(-1.57);
 s:RunTo(0,0,10);
 s:Turn(3.14);
 --s:Pause();
 s:WalkTo(-5,0,0);s:Jump();s:RunTo(-5,0,0);
 s:Turn(1.57);
 s:MoveTo(0,0,-10);
 s:Goto("start");
 s:Exec(";NPC_SEQ_EXEC_Test()");
 s:EndAddKeys();
 end
end

angle

radius

Following player1

Following player2

Follow target

 314

function NPC_SEQ_EXEC_Test()
 local player = ParaScene.GetObject(sensor_name);
 if(player:IsValid() == true) then
 log("this is from sequence controller of character"..sensor_name);
 end
end

The above sequence program tells the player to walk around a rectangular path repeatedly,
while performing some animations. Please refer to the NPL programming reference for exact
meanings of sequence commands.

All way points in sequence controller are specified in relative position, so that the same
sequence controller may be reused for different characters.

B.10 Do It Yourself: User Interface

Your user interface stuff is written in NPL scripting language. This section does not teach
you how to use this language. It only suggests some basic ideas of how the existing SDK
script files are organized and how to change the user interface by modifying these files.

B.10.1 Game Loop File

First of all, the first script file which will be executed when the application starts
is ./script/gameinterface.lua. This script file is also the default game loop file, which will be
executed several times per second.

Basically, the first thing that you want to do in it is to change the game loop file to a new
one of your choice. We can do it by calling.

ParaGlobal.SetGameLoop("(gl)script/kids/main.lua");

After calling this function, the “gameinterface.lua” will never be called again. Instead the
newly specified file (in the example, "script/kids/main.lua") becomes the current game loop
file, which will be executed several times per second. It is in this script that you create those
first user interfaces in your game.

B.10.2 UI Controls

UI controls are basically created in a similar way like in other windows programming
language. For example, a container and a child button control can be created as below.
 local window, button, text; --declare local variables
 --create a new window called "mainwindow" using left top alignment at (50,20) with size 600*400
 window=ParaUI.CreateUIObject("container","mainwindow","_lt",50,20,600,400);
 --attach the UI object to screen (root)
 window:AttachToRoot();
 --create a new button called "btnok" at (50,350) with size 70*30
 button=ParaUI.CreateUIObject("button","btnok","_lt",50,350,70,30);
 --attach the button to the window
 window:AddChild(button);
 --set text to be displayed on the button
 button.text="OK";
 --if the button is clicked, specify the event handler
 button.onclick=";ParaUI.Destroy(\"mainwindow\");";

 315

B.10.3 IDE libraries

ParaEngine SDK comes with many useful script files for composing and editing the 3D
environment and 2D user interface. These script files are under the ./script/IDE/ directory. For
an example of using these IDE libraries, one can refer to script files under ./script/demo/
and ./script/kids/. The “demo” folder contains the source code for the default interface’s main
menu bar and all of its function modules, such as object creation and editing, terrain and
ocean editing, etc. The “kids” folder contains the source code for everything else in the
default interface.

B.11 Release

There are a number of ways to release the sample game. If you only used the default
interface and ParaIDE to build the game, you can just release all files under your world folder.
People who have an instance of ParaEngine can open your world and play in it. However, if
you used any of the stuff in the do-it-yourself sections, you will also need to include all model
and script files besides the files in the world folder. The most complete way to release a game
is to include everything under the ParaEngine install directory.

B.12 Conclusion

Making a game can be as easy as playing it. However making serious game from the
ground up can be a daunting task. The design principle of ParaEngine is to simplify game
making so much that anybody with or without former computer experience can use it to create
interactive 3D worlds. For intermediary and advanced users, it gives them access to the deep
parts of the game engine, and facilitates them to create resources that could be shared by other
developers.

 316

Appendix C
About ParaEngine

C.1 Introduction

ParaEngine is a distributed 3D computer game engine. It aims to develop the next
generation massively multiple-player online game, where the game world content and logics
are distributed over arbitrary networks. Neural Parallel Language (or NPL) is an extensible
programming language which separates code logics from its hardware network environment.
It is a new programming standard designed to support (1) frequent code updates, (2) complex
graphic user interface and human-computer interactions, and (3) reconfigurable code
deployment in a distributed network environment. The language is tightly integrated with
ParaEngine.

C.2 ParaEngine Specifications

The following table shows the features of ParaEngine.

Table 1. ParaEngine Specifications
Supported
OS: Windows XP/2000/2003 server

API: DirectX 9.0C
Language: C/C++ (VS.NET 7.1)
Features: Graphic engine:

- 3D scene management and rendering system, supporting 40,000m*40,000m
continuous game world. It is suitable for RPG games with super large continuous
map, many globally movable characters, complex scene triggers and story design.

- Advanced programmable pipeline for all renderable objects in the scene.
- Flexible shader management on a per object basis. One can dynamically change the

shader program of any scene objects on a per frame basis.
- Fixed function pipeline support, which allows the game engine to run on older

machines while retaining most of the graphics qualities. It can be mixed with the
programmable pipeline to adapt to a wide variety of graphics cards on the market.

- Hardware-occlusion testing can be turned on in the rendering pipeline, if there are a
huge number of small yet dense models in the game scene.

- Tile based ROAM/CLOD terrain engine. Because it is tiled, there is no limit to the
size of the terrain. Terrain holes can be created dynamically, which allows game
developers to build caves, tunnels or underground world directly in the same global
terrain environment. In-game terrain editing supports height field modifications,
unlimited multi-texturing on terrain surface, auto-breaking super large terrain texture
files in to smaller ones, fast ray-tracing on global height field.

- FFT based ocean wave simulation with reflection and refraction mapping for both
above and underwater scenes. Supporting real time shorelines and underwater scene
blur effect.

- Unlimited ranged light sources can be put anywhere in the game world.
- Robust shadows: supporting both shadow volume and shadow mapping at the same

time.
- Game resource management system: textures (dds, png, tga, bmp, jpg), 3D objects (x

file, m2, ParaX file), 3D skeletal animation (X file, m2 and ParaX file), effect file (FX
file), sound (wav, mp3), virtual file management (zip), database file management.

 317

- A comprehensive 2.5D GUI engine, fully scriptable through the NPL language. Drag
and drop controls, scrollable containers, three-state buttons, list box, slider bar, grid
view, AVI video player, edit box, IME edit box supporting various language input
methods, supporting GUI objects attached to 3D scene objects.

- Skeletal animation with customizable character appearance and reconfigurable
equipment, such as hair style, skin color, clothes, etc. Settings can be made persistent
by the pre-designed database. Supporting BVH motion capture export for biped based
skeletons.

- Particle systems are supported in the animation systems
- Three customizable follow cameras modes and one free camera mode. The camera

will automatically position itself to avoid collision with the view frustum and the
physical environment. Thus, it is eligible for third-person RPG games.

- In-game movie recording in any movie format, such as AVI.
- Fast mouse ray-picking with 3D scene objects.
- [Effect] global sunlight simulation. It will affect shadows and scene illumination.
- [Effect] per-pixel lighting and fog can be turned on in each model shader.
- [Effect] For each renderable object, some other effects can be dynamically applied to

it when necessary, such as object construction shader, occlusion shader, shadow
mapping shader, etc.

- [Effect] Cubic environment map, animated texture, reflective texture, light map on a
separate UV set, all of which can be exported to the game engine.

Scripting engine:
- The build-in scripting engine is powered by NPL language. It mimics the functioning

of neural networks and codes the logics of distributed game world into files that could
be deployed to arbitrary runtime locations on the network.

- In the NPL programming environment, it makes little difference between developing
network applications and stand-alone ones.

- All API of the game engine are exposed through the scripting interface, including
GUI, game events, 3D scene management, AI game logics, resource management,
networking, database queries, etc. It is possible to develop a traditional RPG game
through the scripting interface only. The scripting interface is well documented with
over 20, 000 lines of source code examples.

- The new scripting paradigm implies new ways of game content development on the
following aspects: online game and game society establishment and maintenance,
non-linear stand-alone AI behaviors and networked AI behaviors, stand-alone game
story development and network distributed story development, game cut-scene design
and interactive game movie shooting, game map design/storage/transmission, visual
scripting environment, etc.

- All network behaviors are written in NPL.

Middleware support:
- Polygon level physics effect middleware support [optional]: Novodex [Havok, ODE]
- Vegetation middleware support [optional]: [speed tree]

AI, physics, and others:
- Fast character simulation engine. It supports a large number of characters on a vast

continuous game world (as long as 32bits floating point position vector do not lose
accuracy). It integrates well with the global terrain and ocean engine. It provides
interfaces for path-finding, perception, collision detection and response. It supports
ray picking based character controller. For each character, quite a few character
sensors can be turned on to process custom character AI logics in the NPL script
callback functions.

- AI controllers: multiple hard-coded AI controllers can be parameterized and combined
with each other or with character sensor scripts to efficiently emulate convincing AI
behaviors. Supported AI controllers are: (1) Movie controller: it can record and replay
character actions in a time accurate manner. This is an easy way to build in-game

 318

character cinematic. (2) Sequence controller: a list of AI commands to be executed
one or several per frame. It can be used to perform general NPC logics such as
patrolling, dialoging, etc. (3) Combat controller: such as attack, evade, flee actions.
(4) Face tracking controller: rotate the character’s neck to face a target. (5) Follow
controller: follow another object.

- Biped state manager. It is a finite state machine which applies jumping, walking and
swimming animation, etc and their transitional animations automatically, according to
the physical environment.

- Mount system: characters can be mounted on other characters, such as a person be ing
mounted on a horse.

- Local database support, supporting most SQL-92 standard.
- Debugging and logging can be turned on which tracks all aspects of the game engine

status.
- [Game object] missile object. Firing a missile to any place in the game world.
- [Game object] D&D based RPG character object. Character attributes are exposed

through the scripting interface and character data is made persistent by the database.
This is a helper game object for building simple RPG game.

Tools and libraries:
- 3dsmax7&8 model exporters: both static and animated models are supported.

Characters with multiple animation sequences are also supported.
- 3dsmax terrain, scene exporters: this is written in 3dsmax script, and we allow users to

modify the source code to suit their needs in their own specific level design tools.
- Virtual world builder: This is a simple to use in-game game development

environment. It comes with a free collection of game art data. There are no
sophisticated interfaces in it; even children can learn to play with it. One can create a
huge 40,000m*40,000m game world by just mouse clicking and editing simple game
events (the latter is only for serious users). Editable entities in the world builder
includes: terrain, ocean, models, characters, GUI, sounds, lights, scripts, etc. It also
supports a powerful feature called world inheritance, in which a new world can be
built by inheriting from multiple existing game worlds. Virtual world builder is
written entirely by our proprietary NPL scripting language and we allow users to
modify the source code to suit their needs in their own specific level design tools.
Chinese version only. English version is planned at the end of 2006.

- World asset manager: managing resources used in a game title. Source code in C#
- In-game movie recorder: with source code in NPL
- In-game GUI IDE: with source code in NPL
- Third party tools: virtual file browser, deep exploration (3D model viewers), sqlite

analyzer (database query builder), ultra edit (optional script editor).
- The game engine functionalities can be extended or customized through three set of

API: (1) NPL scripting system (2) C++ API (3) .Net Framework API.
- ParaIDE: another IDE of the game engine completely written in C# using the

ParaEngine .Net Framework API. Source code available. It features resource
management, object property editing, game world management, client database
management, etc.

Documentation and support:
- NPL scripting reference: (150 pages) English version only.
- Demo “Parallel World”: It is a distributed game, built on top of ParaEngine. Player

may have its own game world hosted like a personal website on its PC or other web
severs. It is available on our website at the end of 2006.

- Artists’ guide: (50 pages) both Chinese and English version.
- Book “Design and Implementation of a Distributed Game Engine”: (approx. 350

pages) written by the main author of ParaEngine. Available in print in September
2006. English version only. Chinese version is planned at the end of 2006.

- ParaEngine design documentation: (approx. 2000 pages) only available for enterprise
edition users. English version only.

 319

- Website forums: http://www.paraengine.com

Summary: ParaEngine is a distributed 3D computer game engine. It aims to develop the next
generation online games, where the game world content and logics are distributed over
arbitrary networks.

License: To be released in three editions:
- Personal Edition: (Free of charge) Users can take the full advantage of NPL

scripting language to construct their own virtual game world. The following is also
available: source code of virtual world builder written in NPL language,
documentation and tutorials of NPL, all ParaEngine related tools and libraries. It can
be used for non-commercial uses and commercial uses with some limitations.
Available in September 2006.

- Professional Edition: The personal edition plus partial source code of the game
engine (including all tools’ source code) and technical support. Available now.

- Enterprise Edition: The professional edition plus source code of the game engine
and technical support. We can also modify the game engine according to your needs.
Available now.

C.3 About ParaEngine Dev Studio

ParaEngine Tech Studio (P.E.) focuses on the research and development of a distributed
computer game engine called ParaEngine. Based on our proprietary game engine technologies,
we are building various applications ourselves and we are also working with licensed clients
who use ParaEngine in their own projects. We believe that game technology is the driving
force to a new 3D Internet or web 3D. We would like you to join us or cooperate with us to
build innovative games or other 3D applications. Please contact me directly by email:
lixizhi@yeah.net. Also please visit our website at www.paraengine.com for more information.

http://www.paraengine.com/
mailto:lixizhi@yeah.net
http://www.paraengine.com/

 320

Appendix D
Figures in the Book

Figure 1.1 Overview of the major engine modules ... 7

Figure 2.1 Basic Skeleton of a Computer Game Engine ... 11

Figure 2.2 Spiral development path... 12

Figure 2.3 Timing and I/O in ParaEngine ... 16

Figure 2.4 Asset entities in ParaEngine... 23

Figure 3.1 File relationships in ParaEngine... 31

Figure 3.2 File relationships in ParaEngine... 32

Figure 3.3 Grid-based virtual world partition.. 33

Figure 3.4 Alpha blending of multiple textures on the terrain surface 35

Figure 3.5 From On Load Script to 3D scenes .. 36

Figure 4.1 Quad-tree of Terrain Tiles.. 45

Figure 4.2 Objects on Quad-tree.. 46

Figure 4.3 Object-level Testing Using Oriented Bounding Boxes.................................. 48

Figure 4.4 The Collaboration diagram for the root scene object 50

Figure 4.5 The base class and bounding volume functions ... 51

Figure 5.1 Typical rendering pipeline in 3D engine.. 57

Figure 5.2 Object Level Culling: object visible distance function 58

Figure 5.3 Hardware Occlusion Testing using bounding box ... 60

Figure 5.4 Effect Files in a Game Engine ... 63

Figure 5.5 Effect handle and it association with scene objects 64

Figure 5.6 Hardware Occlusion Testing using bounding box ... 71

Figure 6.1 Particle rendering with approximated facing using center of mass................ 80

Figure 6.2 Particle Systems in Games ... 80

Figure 6.3 Weather system.. 81

Figure 7.1 Ray/AABB Collision Testing: projection to x plane 84

Figure 8.1 Multiple ray-casting collision detection... 97

Figure 8.2 Ray casting based sliding wall ... 99

Figure 8.3 Collision detection and response results .. 100

Figure 9.1 Terrain Grid.. 116

 321

Figure 9.2 Alpha blending of texture layer.. 117

Figure 9.3 Brutal Force Terrain Triangles... 118

Figure 9.4 Chunked LOD terrain triangulation ... 119

Figure 9.5 Geomipmapping terrain triangulation ... 120

Figure 9.6 ROAM terrain triangulation... 121

Figure 9.7 Holes on terrain surface ... 122

Figure 9.8 Collaboration diagram for Terrain Object.. 122

Figure 9.9 Bounding Box and Triangles in Terrain quad tree....................................... 124

Figure 9.10 Repair cracks in terrain triangles.. 126

Figure 9.11 Terrain texture samples .. 127

Figure 9.12 Crack repair for latticed terrain .. 129

Figure 9.13 Degenerate Triangles ... 133

Figure 10.1 Reflection and refraction of light ray ... 141

Figure 10.2 Camera reflection ... 143

Figure 10.3 Original camera image (left) and reflection map (right) 143

Figure 10.4 Normal correction .. 144

Figure 10.5 Above and under water scene without refraction map............................... 150

Figure 10.6 Shore lines.. 151

Figure 11.1 Shadow mapping.. 154

Figure 11.2 A 3D scene rendered with shadow mapping in ParaEngine 155

Figure 11.3 1024*1024 sized shadow map generated from the light’s perspective 155

Figure 11.4 Shadow volume rendering results .. 156

Figure 11.5 Shadow Volume Calculation for Directional Light 158

Figure 11.6 Z-Fail algorithm testing.. 159

Figure 11.7 Light map basics .. 163

Figure 11.8 Light map example in ParaEngine ... 164

Figure 11.9 Billboaded trees.. 170

Figure 11.10 Reflective surface... 171

Figure 11.11 Local Light and render pipeline ... 172

Figure 11.12 Local lights example in ParaEngine... 172

Figure 11.13 Full screen glow effect ... 174

Figure 11.14 Intermediary images in full screen glow effect .. 175

Figure 11.15 Under water effect using full screen glow ... 179

 322

Figure 11.16 Fog and Sky using Programmable Pipeline ... 181

Figure 11.17 Fog color blending ... 183

Figure 11.18 Fog implementation result.. 183

Figure 11.19 Fog with large mesh object .. 184

Figure 12.1 Bone, skin and bone hierarchy ... 188

Figure 12.2 Blending poses and weight choice ... 191

Figure 12.3 Motion Blending Sample ... 193

Figure 12.4 Relationships between character animation modules................................. 197

Figure 13.1 Bone Matrix and its graphical presentation in 3dsmax 208

Figure 13.2 Initial bone pose and initial mesh pose .. 208

Figure 13.3 Bone pose at frame N... 209

Figure 13.4 Animation Work Flow ... 215

Figure 13.5 Model Export Options.. 217

Figure 13.6 Model Data Presentation .. 218

Figure 13.7 Script based ParaEngine plug-in for 3dsmax ... 224

Figure 14.1 Sentient radius and swept region.. 230

Figure 14.2 Frame rate and priority of AI modules... 235

Figure 14.3 IGameObject inheritance graph ... 237

Figure 14.4 AI controller inheritance graph .. 237

Figure 14.5 Collaboration diagram for CBipedController .. 239

Figure 14.6 Collaboration diagram for CAIModuleNPC.. 239

Figure 15.1 Camera Occlusion Constraint and Physics... 251

Figure 15.2 path-finding: adding dynamic waypoints... 255

Figure 17.1 Game file system overview.. 276

Figure 17.2 Zip archive format overview.. 278

Figure 18.1 Sample curves of frame rate functions... 285

Figure 18.2 Integrating time control to the game engine... 287

Figure 19.1 Default Interface and ParaIDE ... 296

Figure 19.2 ParaEngine components, API and programming language........................ 297

Figure 19.3 World Inheritance .. 298

Figure 19.4 Creating a New World ... 298

Figure 19.5 Sketch of Leonardo da Vinci.. 299

Figure 19.6 Sample Scene Screenshot 1.. 300

 323

Figure 19.7 Sample Scene Screenshot 2.. 300

Figure 19.8 Terrain exporter in 3dsmax .. 301

Figure 19.9 Apply Terrain Modifier in ParaIDE... 302

Figure 19.10 ParaX Model Exporter ... 305

Figure 19.11 Mount Bone and Mount Animation ... 307

Figure 19.12 Mount one character over another.. 308

Figure 19.13 Event handler properties in the property window of default interface..... 309

Figure 19.14 Empty event handlers script file in the editor .. 310

Figure 19.15 NPC database in ParaIDE .. 311

Figure 19.16 Follow controller parameters ... 313

	Chapter 1 Game Engine Introduction
	1.1 Game Engine Technology and Related Research
	1.1.1 A Glance at Computer Game Engine
	1.1.2 Games as a Driving Force

	1.2 Introduction to Distributed Computer Game Engine
	1.3 ParaEngine Overview
	1.3.1 Foundation Modules
	1.3.2 The Game Loop
	1.3.3 Summary

	Chapter 2 Spiral Development Path
	2.1 A Basic Skeleton of Computer Game Engine
	2.2 Spiral Development Path
	2.3 Building Game Engine Skeleton
	2.3.1 Preparation
	2.3.2 Writing the Game Loop
	2.3.3 Time Controller
	2.3.4 Log System
	2.3.5 Memory Leak Detection
	2.3.6 Using Mini-Dump
	2.3.7 File Manager
	2.3.8 Asset Manager
	2.3.9 Scene Manager
	2.3.10 Scripting System

	2.4 Summary and Outlook

	Chapter 3 Files and File formats
	3.1 File Format from Game Requirement
	3.2 ParaEngine File Formats Overview
	3.3 ParaEngine File Formats
	3.3.1 World Config File
	3.3.2 Terrain Config File
	3.3.3 Terrain Elevation File
	3.3.4 Terrain Mask File
	3.3.5 Terrain On Load Script
	3.3.6 Texture File
	3.3.7 Mesh and Animation File
	3.3.8 Archive File
	3.3.9 NPL Script File

	3.4 Summary and Outlook

	Chapter 4 Scene Management
	4.1 Foundation
	4.1.1 Hierarchical Scene Management
	4.1.2 Scene Graph
	4.1.3 Using Scene Manager
	4.1.3.1 View Clipping Object and Bounding Volumes
	4.1.3.2 Traversing Scene Graph

	4.1.4 Dynamic Scene Loading and Unloading

	4.2 Scene Manager Architecture
	4.2.1 The Scene Root Object
	4.2.2 Relative Position VS Absolute Position
	4.2.3 Quad Tree Terrain Tiles

	4.3 Code and Performance Discussion
	4.3.1 Quad-tree Balance Discussion

	4.4 Summary and Outlook

	Chapter 5 Rendering Pipeline
	5.1 Foundation
	5.1.1 Render Pipeline Basics
	5.1.2 Object Level Clipping with Bounding Volumes
	5.1.3 Object Visible Distance
	5.1.4 Coordinate System for Render Pipeline
	5.1.5 Hardware Occlusion Testing

	5.2 Building the Render Pipeline
	5.3 Shader Program Management
	5.3.1 Effect File Manager
	5.3.2 Wrapping the Render API

	5.4 Code and Performance
	5.4.1 Traversing Quad Tree
	5.4.2 Render Coordinate System Transformation
	5.4.3 Hardware Occlusion Testing
	5.4.4 Effect Management
	5.4.5 Performance Discussion

	5.5 Summary and outlook

	Chapter 6 Special Scene Objects
	6.1 Sky
	6.2 Sun and Sun Light
	6.3 Particle System
	6.3.1 Defining a Particle System
	6.3.2 Animating Particles
	6.3.3 Drawing Particles

	6.4 Weather System

	Chapter 7 Picking
	7.1 Foundations
	7.1.1 Background
	7.1.2 Picking Mathematics
	7.1.2.1 Ray-AABB Collision Detection
	7.1.2.2 Ray OBB Collision
	7.1.2.3 Mouse Ray Picking

	7.2 Architecture and Code
	7.2.1 Ray Picking in the Scene
	7.2.2 Collision Detection Math Code

	7.3 Summary and Outlook

	Chapter 8 Simulating the Game World
	8.1 Foundation
	8.1.1 Rigid Body Dynamics
	8.1.1.1 Integrating a Physics Engine
	8.1.1.2 Novodex Physics Engine

	8.1.2 Sensor Ray based Physics
	8.1.3 Motion Blending
	8.1.4 Autonomous Animation

	8.2 Architecture and Code
	8.2.1 Integrating the Physics Engine
	8.2.2 Environment Simulator
	8.2.3 Sensor Ray Structure
	8.2.4 Ray based Character Simulation

	8.3 Summary and Outlook

	Chapter 9 Terrain
	9.1 Foundation
	9.1.1 Understanding Terrain Data
	9.1.2 Level of Detail Terrain Algorithm
	9.1.3 The Hybrid Terrain Algorithm
	9.1.4 Painting the Terrain
	9.1.5 Miscellaneous Functions
	9.1.6 Latticed Terrain

	9.2 Architecture and Code
	9.2.1 Tessellation Code
	9.2.2 Building Triangle Buffer

	9.3 Summary and Outlook

	Chapter 10 Ocean
	10.1 Foundation
	10.1.1 Simulation of Water Surface
	10.1.2 Rendering of Water Surface

	10.2 Architecture and Code
	10.2.1 Ocean Rendering Pipeline
	10.2.2 Shader code for Reflection and Refraction mapping

	10.3 Summary and Outlook
	10.3.1 Shorelines

	Chapter 11 Special Effects
	11.1 Shadows
	11.1.1 Static Shadow
	11.1.2 Dynamic Shadow
	11.1.2.1 Shadow mapping
	11.1.2.2 Shadow volume

	11.1.3 Code

	11.2 Light Mapping
	11.2.1 Light Mapping Basics
	11.2.2 Consider Baked Texture First
	11.2.3 When to Use Light Map
	11.2.4 Cost of Using Light Maps
	11.2.5 Retrieving Light Map Texture Coordinates from 3dsmax

	11.3 Cubic Environment Mapping
	11.4 Billboarding
	11.5 Reflective Surfaces
	11.6 Local Lights
	11.7 Full Screen Glow Effect
	11.7.1 Code
	11.7.2 Discussion

	11.8 Fog Effect
	11.8.1 Fog and Sky
	11.8.1.1 Programmable Pipeline Implementation
	11.8.1.2 Fixed Function Pipelined Implementation

	11.8.2 Fog with Global Sun Lighting
	11.8.3 Fog underwater
	11.8.4 Fog with Large Mesh Objects

	11.9 Conclusion

	Chapter 12 Character and Animation
	12.1 Foundation
	12.1.1 Background of Motion Synthesis
	12.1.2 Introduction to Skeletal Animation
	12.1.2.1 Animation Data in Skeletal Animation
	12.1.2.2 Calculating Bone Transformation Matrix
	12.1.2.3 Vertex Transformation

	12.1.3 Motion Blending
	12.1.4 Character State Manager
	12.1.4.1 Finite State Machine
	12.1.4.2 Character State Manager

	12.1.5 Attachment and Custom Appearance

	12.2 Architecture
	12.2.1 Model File
	12.2.2 Animation Instance
	12.2.3 State Manager

	12.3 Code and Performance Discussion
	12.3.1 Spherical Linear Interpolation of Quaternion
	12.3.2 Retrieving Animation Keys
	12.3.3 Animation Instance Interface
	12.3.4 Character State Manager

	12.4 Summary and Outlook

	Chapter 13 Writing Model Exporters
	13.1 Foundation
	13.1.1 Terminologies
	13.1.1.1 Row major and Column major Matrix
	13.1.1.2 Initial Pose
	13.1.1.3 Bone’s World Transform Matrix
	13.1.1.4 Initial Bone Matrix
	13.1.1.5 Bone’s World Transform Matrix at Frame N
	13.1.1.6 Affine Matrix Decomposition

	13.1.2 Exporting Mesh
	13.1.3 Exporting Animation Data
	13.1.4 Importing Animation
	13.1.4.1 Motion Capture File Format
	13.1.4.2 BVH File Format
	13.1.4.3 Why supporting Motion Capture Format

	13.2 Architecture
	13.2.1 Exporter Interface
	13.2.2 Scene Data Extraction
	13.2.3 Serialization of Model Data

	13.3 Code and Performance Discussion
	13.3.1 Sampling Bone Animation
	13.3.2 BVH Serialization Code
	13.3.3 Performance Discussion

	13.4 Summary and Outlook

	Chapter 14 AI in Game World
	14.1 Foundation
	14.1.1 Reactive Character
	14.1.2 Movie Character
	14.1.3 Perceptive Character
	14.1.4 Character Simulation and Sensor Events
	14.1.4.1 Character Simulation Attributes
	14.1.4.2 Character Simulation Events

	14.1.5 AI Controllers
	14.1.5.1 Face Tracking Controller
	14.1.5.2 Follow Controller
	14.1.5.3 Movie Controller
	14.1.5.4 Sequence Controller

	14.1.6 Frame Rate of AI Logics
	14.1.7 Summary of AI

	14.2 Architecture
	14.2.1 Game Object Base Class
	14.2.2 AI Controller
	14.2.3 Other AI Modules

	14.3 Code and Performance Discussion
	14.3.1 Follow Controller
	14.3.2 Sequence Controller

	14.4 Summary and Outlook

	Chapter 15 Navigating in 3D world
	15.1 Camera Control
	15.1.1 Background
	15.1.2 Occlusion Constraint
	15.1.2.1 Code

	15.2 Generic Path Finding Algorithms
	15.2.1 Object Level Path Finding
	15.2.2 Path-finding and Physics
	15.2.3 Code

	15.3 Summary and Outlook

	Chapter 16 NPL Scripting System
	16.1 Foundation
	16.1.1 Using LuaBind
	16.1.2 Exporting C++ Attributes to Script
	16.1.2.1 Using Data Member Offset
	16.1.2.2 Using Member Function Pointers
	16.1.2.3 Using Static Member Function Pointers

	16.1.3 Runtime State Management
	16.1.4 Using Namespace
	16.1.4.1 Reserved Namespaces
	16.1.4.2 Reserved Classes
	16.1.4.3 Reserved Variables

	16.1.5 Using Directory and Domain Name
	16.1.6 Script File Activation Mechanism

	16.2 Architecture and Code
	16.2.1 Attribute Field
	16.2.2 Attribute Class
	16.2.3 Attribute Field Interface
	16.2.4 Attribute Class Script Wrapper
	16.2.5 Script Examples

	16.3 Summary and Outlook
	16.3.1 NPL Feature Overview
	16.3.2 Summary and Outlook of NPL

	Chapter 17 File System
	17.1 Foundation
	17.2 Architecture
	17.3 Code
	17.4 Summary and Outlook

	Chapter 18 Frame Rate Control
	18.1 Foundation
	18.1.1 Overview
	18.1.2 Decoupling Graphics and Computation
	18.1.3 I/O
	18.1.4 Frame Rate and Level of Detail
	18.1.5 Network servers
	18.1.6 Physics Engine

	18.2 Architecture
	18.2.1 Definition of Frame Rate and Problem Formulation
	18.2.2 Integrating Frame Rate Control to the Game Engine

	18.3 Evaluation
	18.3.1 Frame Rate Control in Video Capturing
	18.3.2 Coordinating Character Animations

	18.4 Summary and Outlook

	Chapter 19 Summary and Outlook of Game Engine
	19.1 Age of Middleware
	19.2 World Editing
	19.2.1 In-game Editing
	19.2.2 Customizing over Professional 3D Authoring Tools
	19.2.3 Writing Special Tools for Game
	19.2.4 Outlook

	19.3 Next Generation Game Engine

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

