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1 Preface

Fluid dynamics based registration was first introduced by Christensen [5]. Later Bro-Nielsen et al. [4] suggested
speedups of the computational costly method by using digital filters. | implemented the registration approach using
different solvers for the solution of the core problem of the fluid-dynamics based registration — the solution of the
Navier-Stokes-Equation. The implementation is available [9] under the terms of the GNU General Public License [1]

This documentation comes in the hope that it is helpful, but | do not promise, that it is error-free nor that it is
complete. Please address comments to <wollny@cns.mpg.de>.

2 A short Outline of the Method

In the following, an image is given as a mappihg 2 — V from its coordinate domaif2 € R3 to its intensity range
V € R. Given a coordinat& < €2, and the intensity of the imageat this coordinatd (), the ordered paifZ, I(Z))
is referred to as a voxel (volume element). Using a transform&tiof2 — 2, an image can be changed according to
I7 := I(T(¥)). The set of all these transformations is calledttaesformation spac€.
In this paper, the transformations correspond to spatial displacements of voxels and are described in the so-called
Eulerian reference frameHere the voxels are tracked by their position: A voxel originates at time 0 at coordinate
Z € Q. As it moves througlf), the displacement of a voxéfl, I(%)) at timet is given as a vectan(Z, t). The set of the
displacements of all voxels of an image is called a displacement field over déimaid its value at time is denoted
asu(t). The corresponding transformatidrcan be given coordinate-wise:

T,(Z) =% —u(Z,t) VZ €. @)
The concatenation of transformations is then given as
Ty oTy =7 — uy (7 — uz()) — uz(7), (2)

The focus of the registration of one (study) image Q@ — V to another (reference) imadge: Q2 — Visto find a
transformatior’,,;,, € I' that minimizes a given cost functidi( R, St) describing the similarity between transformed
study imageS and reference imagR in conjunction with an energy normalization (smoothness) t&fffi) that enforces
topology preservation:

Tinin = arg min (F(R,ST)+ wE(T)). 3

k is a Lagrangian multiplier to balance between registration accuracy and transformation smoothness. Minimizing (3)
can be done in terms of its first order derivative:

H%E(T) = —a%F(T, S.R). )

In the non-rigid registration software | use the sum of squared differences as a cost function:

FUT.5.R) = 5 [ IR@) = S(T(@)* . )

and fluid dynamics as smoothness measure.



Then the first order derivative of the cost function (5) can be used to estimate a deforming force:
£(z,t) :== —[S(T(Z,t)) — R(Z)] VS|pzy - (6)
and withx = 1.0, this force (6), and fluid dynamics energy regularisation, (4) can be written as
(V2 + (1 + NV(V)) V(@ 1) = —£(, u(7, 1)), (7)

In order to solve the registration problem, (7) is solved for constant time, and the deformatiar(fjeilslupdated from
the estimated velocity field using a time integration step with step-width

(@, t+ At) = u(@,t) + At [v(Z,t) — Vu(Z, t)v(7,1)]. ®)

The solution of the registration problem is summarized in algorithm 1

3 Solving the PDE

Solving PDE (7) is done on a discretizatiorof the continuous domaifi.

Christensen’s original approach usegcessive over-relaxatig®OR) [8, pp.866-869] [7, 2, 6] (Algorithm 2).

As an improvement, an adaptive update scheme (SORA) is used in my implementation. In each SORijgration
depends on the 19 values with indices

1 11 1 1 11 1 1£1
k k k k+1 k k+1 k+1

only. An adaptive update is now introduced, using an threshold

. 0 m=1
ri= F(m,) . 7(m) 1 ’ (10)

=D "z Otherwise

_ 1 —
"TX vz D 7l (1)

to decide, which elements to update during the iterative solution of (7) (Algorithm 3).

Another approach to solve (7) is th@nimal residuum algorithniMINRES) [2], a variant ofconjugated gradients
also suitable for indefinite matrices as they arise when discretizing (7) (Algorithm 4).

Finally Bro-Nielsen approach is based on folding the input fdir¢é) with the impulse response of the Navier-
Stokes-operator (Section 4.3).

with

4 Mathematical Derivations

4.1 Discretizing the Navier-Stokes-Equation

uVAiv + (p+ NV (V-v) = —f (12)
9% 82 o
92 92 52 881%2 dg?y aggz
2 (8;52 + 872 + 82’2> v+ (n+ ) 920y D Oyoz v=—f, (13)
92 02 92

For thex-component of (13) we may write:

o2 52 52 52 92 (v) o2 (2)
i (s g+ o ) 0+ ) (4 G S ) =y, (1)

0x2 = Oy 072 0z2 = 0z0y 0x0z
929 2v(®  §2y@) 2@ 522
z - bl z - - @
(2u+ ) 527 +u< 97 + 92 >+(;L+A)<awy + 8:1:8;;) f. (15)



Discretizing this using numerical derivatives based on finite differences [8, pp. 186-189] yields

@CutN) [, (@) (x) (z)
T (”i+1,j,k TV T 2“z‘,j,k) +
(») (w) (=) (») (@) (@)
7= (Uz',j+1,k F U 20 e TV e TV e T 2vi,j,k) +
(N (W) () (v) (v)
l4h2 Vi1, ~ Vict 4tk TV jo1 6 — ’Ui+1,j71,k) +
(et+N) [, () (2) (2) (2) _
ZhQ ”¢+L@k+1‘_1%7L$k714‘”¢7L$k71“U¢+L$k71) —'_f(@
With shortcutss = /4, b = £ follows,
(@) (a+b) () (z)
Uik + Gat2h) <Ui+1,j,k + ’Uz‘fl,j,k) +
b (z) (x) (z) (z)
(6a+20b) (vi,j+1,k TV T Ve TV e +
b Yy () (v) (y
1(6a+20) 1%+1J+1k'_1%+1J—1k-+1%—14—1k'_1%+1J—Lk) +
b (2) (2) (2) (2) _ 1 ;
1(6a+2b) U&%L$k+l'_1G7L$k714_U¢—L$k71__U¢+L$k—1> ——(6w+mgf(w
y- and z- components can be obtained in a similar manner.
With f := (GalTb)f, writing (12) in its discretized representation yields a linear system
Av =f.
4.2 SOR update
G _atb g _ b .
Substitutinge = 52757, d = 5455, € = TGataon) We obtain:
P 1
p= fijrtc (VET;FJ)IC + vz(Tl),j,k) +
(m+1) (m) (m+1) (m)
d (Vi,j—l,/c T Vigie T Vige-1 T Vi,j7k+1>
Settingv := (rst)” we may write
_ (m+1) (m) (m) (m+1)
Gz =€ (Si—l,j—l,k FSiit ik Sicl 1k Sitlo1kT
+1 +1
tﬁl,j,kfl + t?—li-l,j,k—&-l - t?il,j,k—&-l - tﬁl,j,kﬂ) )
_ (m+1) (m) (m) (m+1)
dy = ¢ TiTl,jﬂ,k + TiTl,j+1,k - TiTl,jH,k o TiTl,j%,k"“
(m—+1) (m) (m) (m+1)
ti,j—l,k—l + tz‘,j+1,k+1 - ti,j—l,k—i—l - ti,j+1,k—1) ’
_ (m+1) (m) (m) (m+1)
q: = ¢ TiTl,j,k—l + Tifl,j,k+1 - TiTl,j,kH - riTl,j,k—1+
(m+1) m) (m) (m+1)
Sii1k—1 T Si i1kl ~ Sijoik+1 — Si,j+1,k71) )

hence for the residual vector
rijr=w(P+a-—v),

and the SOR update of ; ;, is given by

(m+1) _ _(m) o
Viik = Vijk T Tijk

4.3 Convolution filter

The linear operator of PDE (A is defined as:
A= puV2+ (p+ NV(V)
and its eigenvalues are [5]:

Hl,i,j,k = 77’(2(2‘[1 -+ /\)(12 + j2 + ]{32),
R2.i,5,k = K3,i5k = —7T2M(i2 +]2 + k2),

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



with associated eigenvectors:
s ] . T
P1i5k(F) =\ mgege | Jescin(@) |,

(
$2,0,50(F) =\ | desciin(@) | (25)

ik scciﬁj}k(f)

3.1.5.k(E) =\ ErmETEE gk esci,j i (T) 7

—(i® + 5?) cesi jx(Z)

wherez € €,
sce; k(%) = sin(inz) cos(jmy) cos(knz),
cs¢; k(%) = cos(imzx) sin(jmry) cos(krz), (26)
ces; 1 (Z) = cos(imx) cos(jmy) sin(krz),

and

Tk = 9sign(i)-+sign(j)+sign(k) (27)
By introducing a filter width parameter > 0, w € N, which spawns a filter of siz2w + 1, and with the shortcut:

8

P 28
CE T TR+ A (2 + 72+ KT @9
the components of the impulse respofse R3*? of the linear operatoA can be written as [3]:
, (i® + (20 + A) (7% + k))sceij i (y + ye)
O%(y) = 327 k=0 Ui,j,kSCCi 5k (Ye) —(p+ Nij esciji(y +ye) |,
—(p+ N)ikcesi jx(y +¥e)
. — (14 A)ij sceijr(y +ye)
OY(y) = 227" o @igkescijk(ye) | (15 4 2u+ M) (@ + E))esci k(v +ve) | (29)
—(+ N)jk cesiju(y +ye)
, —(p+ Nk sce; j1(y +¥e)
O (y) = 225 ke Qing k5CCi ik (Ye) —(N + A)jkcscijrk(y +ye) |,

(k2 + (20 4 N)(@% + 32))cesij i (y +ye)

with y. = (0.5,0.5,0.5)7 andy € {y,c. = (%, 5, 5)7|r,5,t € [~d,d] N Z}.



5 Algorithms

5.1 Main Registration Algorithm

This algorithm is implemented in the filefuid/vfluid.(cc|hh)

Using the time step parametéE [dmin, dmax] @n adaptive control of the integration time step is achielég,, dimax]
should be chosen to permit a smooth but steady deformatiomMang d,,.. — dwin iS Used to re-adjust during the
registration.

Algorithm 1 non rigid registration based on fluid dynamics

d := diax, 1:=0,u(0):=0, T := Ty, S := S(T)
calculate mismatcin; by . (5)
repeat
t:=144+1
calculatef(t,) (6)
solve the linear PDE . (7) for velocity(¢;) and forcef (¢;)
label:
chooseAt = \57Vﬁ?j‘)v(a‘c‘)
if mingdet{I — V(u(Z) —
T»J =T — ﬁ(f)
T:=ToTg S :=8(T),u:=0
end if
(@) — U(Z) + At * (v(Z) — Vu(Z)v())
calculate mismatcin; using (5)
if m; > m;_1andd > d.;, then
d := max(d — Ad, dmin)
gotolabel
end if
d := min(d + Ad, dmaz)
until m; > m;_4
T:=To ﬁ(ti_l)
T is the transformation minimizing the cost function (5)

At (v() — Vu(@)v()))) < 0.5 then

5.2 Successive Over-Relaxation

This algorithm is implemented fluid/sor_solver.(cc|hh)

Algorithm 2 SOR

f= 5oy select values fomaxsteps ande, set initialv
repeat
for k := 1to Z step 1do
for j:=1to Y step 1do
for ¢ :== 1to X step 1do
calculatep; ; 1, as given in (19) { 24 FLOPs }
calculateq; ; , as given in (20) { 24 FLOPs }
calculater; ; ,, as givenin (21) { 9 FLOPs }
updatev; ; ;. as given in (22) { 3 FLOPs }
r =7+ |ri .|| 6 FLOPs
end for
end for
end for
{ one iteration need®(66n) FLOPs }
if step=1then
Tinit *= T
end if
until steps > maxsteps Or r < € * Tyt




5.3 Adaptive Update

This algorithm is implemented wfluid/sor_solver.(cc|hh)

Algorithm 3 SORA
1.7:=0,m:=1

. calculate the first iteration over the full domain as given in Algorithm 2, and the resigye= ||r; ; «||

. ifr; ;> 7 markv* € S as to be updated in the next iteration

2

3

4, vy =1,7 1= Zuj,k Tijk

5. set threshold as given in (10)
6

. in sub-sequential iteratioms of Algorithm 2 update; ; , andr; ; , only at marked positions, update the marks
as given in step 3, and threshalds given in step 5.

5.4 The Minimum Residual Algorithm
This algorithm is implemented wfluid/cg_solver.(cc|hh) andmia/cg.hh

Algorithm 4 MINRES

select values fomaxsteps ande

set initial vy

rg = f — AVQ

fo = AI‘O

Po = To, Pg = To, Y0 =To *Ig

repeat
hy = Ap,{ O(51n) FLOPs }
ap = ﬁjfhk { O(2n) FLOPs }
Vk+1 = vk + arpk { O(2n) FLOPs }
gyl =Tk — aihy { O(2n) FLOPS}
Tpy1 =T — Qg * (A * ﬁk) {O(53n FLOPs }
Vi1 = T k1 { O(2n) FLOPs }
By, = Bt

Tk

Pkt1 = Ikt1 + OBk * pi{ O@2n) FLOPs }
Pk+1 = Tk+1 T B * Dy { O(2n) FLOPs }

until steps > maxsteps or |ry41| > € |ro

{ one iteration need®(117r) FLOPs }
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