Con E/S (I/O en inglés) entendemos leer y escribir datos archivos. Es algo que necesitaremos hacer con relativa frecuencia, y en NumPy es muy sencillo de hacer. Para el caso de la lectura se usa la función np.loadtxt
.
Para practicar, vamos a leer el archivo temperaturas.csv
que contiene datos diarios de temperaturas en Nueva York entre el 1 de enero de 2013 y el 1 de enero de 2014, obtenidos gratuitamente de http://ncdc.noaa.gov/. Como los hemos descargado en formato CSV habrá que tener algunas precauciones a la hora de leer el archivo.
!head ../data/temperaturas.csv # Esta línea no funciona en Windows
STATION,DATE,TMAX,TMIN GHCND:USW00094728,20130101,44,-33 GHCND:USW00094728,20130102,6,-56 GHCND:USW00094728,20130103,0,-44 GHCND:USW00094728,20130104,28,-11 GHCND:USW00094728,20130105,56,0 GHCND:USW00094728,20130106,78,11 GHCND:USW00094728,20130107,72,28 GHCND:USW00094728,20130108,89,17 GHCND:USW00094728,20130109,94,39
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
datos = np.loadtxt("../data/temperaturas.csv",
skiprows=1, # Saltamos una línea
usecols=(1, 2, 3), # Solo columnas 2, 3 y 4
delimiter=',') # Separados por comas
datos[:9]
array([[ 2.01301010e+07, 4.40000000e+01, -3.30000000e+01], [ 2.01301020e+07, 6.00000000e+00, -5.60000000e+01], [ 2.01301030e+07, 0.00000000e+00, -4.40000000e+01], [ 2.01301040e+07, 2.80000000e+01, -1.10000000e+01], [ 2.01301050e+07, 5.60000000e+01, 0.00000000e+00], [ 2.01301060e+07, 7.80000000e+01, 1.10000000e+01], [ 2.01301070e+07, 7.20000000e+01, 2.80000000e+01], [ 2.01301080e+07, 8.90000000e+01, 1.70000000e+01], [ 2.01301090e+07, 9.40000000e+01, 3.90000000e+01]])
La primera columna es un entero con formato "AAAAMMDD" que vamos a ignorar. Las temperaturas están medidas en décimas de grado Celsius, así que hay que pasarlas a grados Celsius. Vamos a calcular también la temperatura media.
Tmax = datos[:, 1] / 10
Tmin = datos[:, 2] / 10
Tavg = (Tmax + Tmin) / 2
Como vamos a ignorar la columna de las fechas tenemos que crear un dominio para el eje x. Simplemente construiremos un array de enteros desde 0 hasta 365.
x = np.arange(366)
Supongamos que ahora queremos guardar nuestra tabla de datos en un archivo txt, para poder cargarlo ya modificado más adelante. Una manera fácil de hacerlo sería con otra función de NumPy: np.savetxt
. Lo usaremos con los argumentos opcionales fmt='%.5f', newline = '\r\n'
para obtener un fichero bonito que podamos entender de un vistazo.
matriz_datos = np.zeros([366, 4])
matriz_datos[:, 0] = x
matriz_datos[:, 1] = Tmax
matriz_datos[:, 2] = Tmin
matriz_datos[:, 3] = Tavg
print(matriz_datos[:10])
# np.savetxt('archivo_datos.txt', matriz_datos, fmt='%.5f', newline = '\r\n')
[[ 0. 4.4 -3.3 0.55] [ 1. 0.6 -5.6 -2.5 ] [ 2. 0. -4.4 -2.2 ] [ 3. 2.8 -1.1 0.85] [ 4. 5.6 0. 2.8 ] [ 5. 7.8 1.1 4.45] [ 6. 7.2 2.8 5. ] [ 7. 8.9 1.7 5.3 ] [ 8. 9.4 3.9 6.65] [ 9. 8.3 4.4 6.35]]
Y ahora representamos la evolución de la temperatura media (por ejemplo de color negro), indicando "Daily summaries" en el título, "Days" en el eje x y "Temperature (C)" en el eje y, usando la interfaz orientada a objetos de matplotlib (función plt.subplots
). Podemos crear una zona rellena entre la máxima y la mínima con la función fill_between(x, max, min)
(por ejemplo de color #4f88b1). Si los límites del eje x no quedan como queremos podemos usar la función set_xlim(xmin, xmax)
.
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(x, Tavg, 'k')
ax.set_xlim(0, 366)
ax.fill_between(x, Tmin, Tmax, facecolor='#4f88b1', edgecolor='none')
ax.set_title("Resúmenes diarios")
ax.set_xlabel("Días")
ax.set_ylabel("Temperatura (C)")
<matplotlib.text.Text at 0x7fa3e7d048d0>
from IPython.display import HTML
HTML('<iframe src="http://www.mambiente.munimadrid.es/sica/scripts/index.php" \
width="700" height="400"></iframe>')
# Linux command
!head ../data/barrio_del_pilar-20160322.csv
# Windows
# !gc log.txt | select -first 10 # head
Estación: Barrio del Pilar;;;; Fecha;Hora;CO;NO2;O3 ;;mg/m³;µg/m³;µg/m³ 22/03/2016;01:00;0.2;14;73 22/03/2016;02:00;0.2;10;77 22/03/2016;03:00;0.2;9;75 22/03/2016;04:00;0.2;3;81 22/03/2016;05:00;0.2;3;81 22/03/2016;06:00;0.2;6;79 22/03/2016;07:00;0.2;24;59
# loading the data
# ./data/barrio_del_pilar-20160322.csv
data1 = np.genfromtxt('../data/barrio_del_pilar-20160322.csv', skip_header=3, delimiter=';', usecols=(2,3,4))
data1
array([[ 0.2, 14. , 73. ], [ 0.2, 10. , 77. ], [ 0.2, 9. , 75. ], [ 0.2, 3. , 81. ], [ 0.2, 3. , 81. ], [ 0.2, 6. , 79. ], [ 0.2, 24. , 59. ], [ 0.3, 48. , 37. ], [ 0.3, 40. , 43. ], [ 0.3, 41. , 44. ], [ 0.3, 20. , 68. ], [ 0.3, 17. , 74. ], [ 0.2, 14. , 84. ], [ 0.3, 16. , 88. ], [ 0.3, 15. , 94. ], [ 0.4, 29. , 81. ], [ 0.3, 23. , 82. ], [ 0.3, 26. , 81. ], [ 0.3, 30. , 75. ], [ 0.4, 57. , 39. ], [ 0.4, 73. , 17. ], [ 0.4, 51. , 42. ], [ 0.4, 72. , 16. ], [ 0.4, 61. , 28. ], [ 0.3, 25. , 62. ], [ 0.3, 21. , 64. ], [ 0.3, 40. , 39. ], [ 0.4, 52. , 19. ], [ 0.4, 47. , 8. ], [ 0.4, 42. , 8. ], [ 0.5, 68. , 8. ], [ 0.6, 71. , 9. ], [ 0.9, 76. , 10. ], [ 0.7, 63. , 29. ], [ 0.3, 27. , 66. ], [ 0.3, 13. , 88. ], [ 0.2, 10. , 92. ], [ 0.3, 10. , 98. ], [ 0.3, 11. , 99. ], [ 0.3, 12. , 99. ], [ 0.2, 11. , 98. ], [ 0.2, 8. , 101. ], [ 0.2, 13. , 92. ], [ 0.2, 23. , 79. ], [ 0.5, 40. , 56. ], [ 0.6, 49. , 43. ], [ 0.5, 66. , 25. ], [ 0.4, 47. , 44. ], [ 0.3, 18. , 76. ], [ 0.3, 25. , 64. ], [ 0.3, 16. , 77. ], [ 0.3, 16. , 59. ], [ 0.3, 34. , 31. ], [ 0.3, 27. , 33. ], [ 0.3, 44. , 17. ], [ 0.4, 45. , 9. ], [ 0.5, 52. , 22. ], [ 0.4, 37. , 53. ], [ 0.3, 21. , 73. ], [ 0.3, 20. , 76. ], [ 0.3, 24. , 76. ], [ 0.4, 38. , 71. ], [ 0.3, 32. , 78. ], [ 0.3, 21. , 89. ], [ 0.2, 10. , 105. ], [ 0.3, 15. , 102. ], [ 0.3, 21. , 93. ], [ 0.3, 45. , 63. ], [ 0.4, 59. , 47. ], [ 0.4, 59. , 44. ], [ 0.7, 99. , 9. ], [ 0.6, 88. , 9. ], [ 0.8, 93. , 9. ], [ 0.9, 89. , 9. ], [ 0.8, 84. , 8. ], [ 0.5, 64. , 10. ], [ 0.4, 58. , 11. ], [ 0.5, 53. , 9. ], [ 0.4, 41. , 8. ], [ 0.5, 43. , 9. ], [ 0.5, 45. , 13. ], [ 0.6, 51. , 25. ], [ 0.5, 44. , 40. ], [ 0.4, 36. , 59. ], [ 0.4, 36. , 68. ], [ 0.3, 26. , 84. ], [ 0.3, 16. , 98. ], [ 0.3, 17. , 97. ], [ 0.3, 24. , 89. ], [ 0.3, 17. , 99. ], [ 0.3, 12. , 100. ], [ 0.3, 42. , 61. ], [ 0.4, 52. , 44. ], [ 0.5, 54. , 39. ], [ 0.5, 60. , 28. ], [ 0.6, 73. , 13. ], [ 0.5, 58. , 23. ], [ 0.4, 58. , 16. ], [ 0.5, 61. , 10. ], [ 0.5, 59. , 9. ], [ 0.4, 50. , 9. ], [ 0.3, 31. , 10. ], [ 0.4, 36. , 9. ], [ 0.6, 45. , 9. ], [ 0.5, 43. , 18. ], [ 0.5, 37. , 24. ], [ 0.5, 40. , 38. ], [ 0.4, 26. , 59. ], [ 0.3, 14. , 67. ], [ 0.3, 12. , 64. ], [ 0.3, 13. , 62. ], [ 0.2, 10. , 63. ], [ 0.2, 7. , 58. ], [ 0.2, 8. , 53. ], [ 0.2, 11. , 51. ], [ 0.3, 16. , 47. ], [ 0.2, 19. , 42. ], [ 0.3, 22. , 38. ], [ 0.3, 23. , 36. ], [ 0.3, 16. , 43. ], [ 0.2, 9. , 49. ], [ 0.2, 6. , 48. ], [ nan, nan, nan], [ 0.2, 4. , 64. ], [ 0.2, 3. , 89. ], [ 0.2, 4. , 90. ], [ 0.2, 3. , 92. ], [ 0.2, 6. , 89. ], [ 0.3, 11. , 83. ], [ 0.3, 9. , 87. ], [ 0.3, 8. , 84. ], [ 0.3, 10. , 82. ], [ 0.3, 10. , 80. ], [ 0.3, 12. , 80. ], [ 0.3, 12. , 81. ], [ 0.3, 8. , 84. ], [ 0.3, 10. , 85. ], [ 0.2, 10. , 85. ], [ 0.2, 14. , 82. ], [ 0.3, 18. , 72. ], [ 0.3, 28. , 60. ], [ 0.3, 30. , 55. ], [ 0.3, 21. , 61. ], [ 0.3, 16. , 63. ], [ 0.3, 12. , 65. ], [ 0.2, 9. , 67. ], [ 0.2, 5. , 70. ], [ 0.2, 5. , 69. ], [ 0.2, 6. , 65. ], [ 0.2, 7. , 63. ], [ 0.3, 16. , 55. ], [ 0.3, 30. , 45. ], [ 0.3, 38. , 39. ], [ 0.3, 37. , 41. ], [ 0.3, 29. , 53. ], [ 0.3, 27. , 53. ], [ 0.3, 27. , 49. ], [ 0.3, 23. , 54. ], [ 0.3, 22. , 57. ], [ 0.3, 19. , 61. ], [ 0.3, 17. , 63. ], [ 0.3, 22. , 59. ], [ 0.3, 27. , 53. ], [ 0.3, 29. , 50. ], [ 0.3, 34. , 44. ], [ 0.3, 33. , 45. ], [ 0.3, 26. , 50. ], [ 0.3, 19. , 56. ], [ 0.2, 11. , 63. ], [ 0.2, 8. , 63. ], [ 0.2, 9. , 58. ], [ 0.2, 6. , 63. ], [ 0.2, 5. , 66. ], [ 0.2, 7. , 62. ], [ 0.3, 18. , 53. ], [ 0.4, 38. , 37. ], [ 0.4, 49. , 28. ], [ 0.4, 45. , 35. ], [ 0.3, 34. , 47. ], [ 0.3, 24. , 62. ], [ 0.3, 24. , 68. ], [ 0.3, 28. , 68. ], [ 0.3, 23. , 78. ], [ 0.3, 21. , 82. ], [ 0.3, 17. , 87. ], [ 0.3, 23. , 80. ], [ 0.3, 28. , 75. ], [ 0.3, 29. , 71. ], [ 0.3, 46. , 50. ], [ 0.4, 66. , 27. ], [ 0.3, 51. , 38. ], [ 0.3, 42. , 46. ]])
np.mean(data1, axis=0)
array([ nan, nan, nan])
np.nanmean(data1, axis=0)
array([ 0.33717277, 29.79581152, 55.47643979])
# masking invalid data
data1 = np.ma.masked_invalid(data1)
np.mean(data1, axis=0)
masked_array(data = [0.3371727748691094 29.79581151832461 55.47643979057592], mask = [False False False], fill_value = 1e+20)
data2 = np.genfromtxt('../data/barrio_del_pilar-20151222.csv', skip_header=3, delimiter=';', usecols=(2,3,4))
data2 = np.ma.masked_invalid(data2)
Valores máximos obtenidos de: http://www.mambiente.munimadrid.es/opencms/export/sites/default/calaire/Anexos/valores_limite_1.pdf
plt.plot(data1[:, 1], label='2016')
plt.plot(data2[:, 1], label='2015')
plt.legend()
plt.hlines(200, 0, 200, linestyles='--')
plt.ylim(0, 220)
(0, 220)
from IPython.display import HTML
HTML('<iframe src="http://ccaa.elpais.com/ccaa/2015/12/24/madrid/1450960217_181674.html" width="700" height="400"></iframe>')
# http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.convolve.html
def moving_average(x, N=8):
return np.convolve(x, np.ones(N)/N, mode='same')
plt.plot(moving_average(data1[:, 0]), label='2016')
plt.plot(moving_average(data2[:, 0]), label='2015')
plt.hlines(10, 0, 250, linestyles='--')
plt.ylim(0, 11)
plt.legend()
<matplotlib.legend.Legend at 0x7fa400bd5630>
plt.plot(moving_average(data1[:, 2]), label='2016')
#plt.plot(data1[:, 2])
plt.plot(moving_average(data2[:, 2]), label='2015')
#plt.plot(data2[:, 2])
plt.hlines(180, 0, 250, linestyles='--')
plt.ylim(0, 190)
plt.legend()
<matplotlib.legend.Legend at 0x7fa400b71a20>
data_file = '../data/barrio_del_pilar-20151222.csv'
data = []
with open(data_file) as f:
# Saltamos las tres primeras líneas
for ii in range(3):
f.readline()
for line in f:
line_string = line
line_list = line.split(';')
date = line_list[0]
hour = line_list[1]
components_data = []
for c in line_list[2:]:
if '-' not in c:
components_data.append(float(c))
else:
components_data.append(np.nan)
data.append(components_data)
print(np.array(data))
[[ 5.00000000e-01 6.50000000e+01 7.00000000e+00] [ 4.00000000e-01 5.00000000e+01 7.00000000e+00] [ 3.00000000e-01 3.70000000e+01 1.10000000e+01] [ 3.00000000e-01 3.70000000e+01 1.00000000e+01] [ 3.00000000e-01 2.90000000e+01 1.70000000e+01] [ 3.00000000e-01 3.60000000e+01 1.30000000e+01] [ 3.00000000e-01 4.70000000e+01 7.00000000e+00] [ 4.00000000e-01 5.70000000e+01 6.00000000e+00] [ 5.00000000e-01 6.70000000e+01 6.00000000e+00] [ 5.00000000e-01 6.90000000e+01 8.00000000e+00] [ 5.00000000e-01 6.70000000e+01 1.10000000e+01] [ 5.00000000e-01 6.40000000e+01 1.50000000e+01] [ 5.00000000e-01 6.50000000e+01 2.10000000e+01] [ 5.00000000e-01 6.80000000e+01 2.40000000e+01] [ 7.00000000e-01 9.10000000e+01 1.90000000e+01] [ 8.00000000e-01 1.05000000e+02 1.30000000e+01] [ 8.00000000e-01 1.02000000e+02 1.00000000e+01] [ 7.00000000e-01 1.00000000e+02 8.00000000e+00] [ 1.50000000e+00 1.48000000e+02 7.00000000e+00] [ 2.70000000e+00 2.23000000e+02 7.00000000e+00] [ 2.00000000e+00 2.04000000e+02 7.00000000e+00] [ 3.30000000e+00 2.51000000e+02 7.00000000e+00] [ 3.00000000e+00 2.64000000e+02 7.00000000e+00] [ 2.00000000e+00 2.04000000e+02 7.00000000e+00] [ 1.20000000e+00 1.27000000e+02 6.00000000e+00] [ 4.00000000e-01 6.10000000e+01 7.00000000e+00] [ 3.00000000e-01 4.60000000e+01 9.00000000e+00] [ 3.00000000e-01 4.70000000e+01 7.00000000e+00] [ 5.00000000e-01 4.40000000e+01 6.00000000e+00] [ 5.00000000e-01 4.50000000e+01 6.00000000e+00] [ 5.00000000e-01 4.60000000e+01 6.00000000e+00] [ 4.00000000e-01 5.30000000e+01 6.00000000e+00] [ 5.00000000e-01 6.90000000e+01 6.00000000e+00] [ 9.00000000e-01 9.00000000e+01 7.00000000e+00] [ 4.00000000e-01 5.10000000e+01 1.10000000e+01] [ 4.00000000e-01 5.20000000e+01 1.60000000e+01] [ 4.00000000e-01 5.60000000e+01 2.00000000e+01] [ 4.00000000e-01 5.90000000e+01 2.70000000e+01] [ 4.00000000e-01 6.60000000e+01 2.50000000e+01] [ 6.00000000e-01 7.80000000e+01 2.00000000e+01] [ 7.00000000e-01 9.60000000e+01 1.10000000e+01] [ 7.00000000e-01 9.70000000e+01 7.00000000e+00] [ 1.00000000e+00 1.17000000e+02 7.00000000e+00] [ 1.70000000e+00 1.58000000e+02 7.00000000e+00] [ 2.80000000e+00 2.35000000e+02 8.00000000e+00] [ 3.20000000e+00 2.68000000e+02 7.00000000e+00] [ 3.40000000e+00 2.81000000e+02 7.00000000e+00] [ 2.10000000e+00 1.89000000e+02 7.00000000e+00] [ 7.00000000e-01 8.80000000e+01 6.00000000e+00] [ 4.00000000e-01 6.60000000e+01 6.00000000e+00] [ 6.00000000e-01 6.10000000e+01 6.00000000e+00] [ 6.00000000e-01 5.90000000e+01 6.00000000e+00] [ 5.00000000e-01 4.50000000e+01 6.00000000e+00] [ 6.00000000e-01 5.00000000e+01 6.00000000e+00] [ 7.00000000e-01 5.20000000e+01 6.00000000e+00] [ 7.00000000e-01 5.10000000e+01 6.00000000e+00] [ 1.00000000e+00 6.20000000e+01 6.00000000e+00] [ 9.00000000e-01 6.40000000e+01 6.00000000e+00] [ 8.00000000e-01 6.80000000e+01 7.00000000e+00] [ 9.00000000e-01 7.30000000e+01 8.00000000e+00] [ nan nan nan] [ 7.00000000e-01 6.90000000e+01 1.40000000e+01] [ 6.00000000e-01 6.80000000e+01 1.50000000e+01] [ 7.00000000e-01 7.50000000e+01 1.10000000e+01] [ 6.00000000e-01 6.70000000e+01 9.00000000e+00] [ 6.00000000e-01 7.00000000e+01 7.00000000e+00] [ 9.00000000e-01 8.40000000e+01 7.00000000e+00] [ 1.00000000e+00 9.20000000e+01 7.00000000e+00] [ 1.30000000e+00 1.08000000e+02 7.00000000e+00] [ 1.50000000e+00 1.35000000e+02 7.00000000e+00] [ 1.20000000e+00 1.16000000e+02 7.00000000e+00] [ 1.30000000e+00 1.04000000e+02 7.00000000e+00] [ 1.00000000e+00 8.00000000e+01 7.00000000e+00] [ 6.00000000e-01 6.30000000e+01 6.00000000e+00] [ 4.00000000e-01 5.10000000e+01 6.00000000e+00] [ 4.00000000e-01 4.50000000e+01 6.00000000e+00] [ 5.00000000e-01 4.60000000e+01 6.00000000e+00] [ 5.00000000e-01 4.00000000e+01 6.00000000e+00] [ 6.00000000e-01 3.50000000e+01 6.00000000e+00] [ 4.00000000e-01 3.90000000e+01 6.00000000e+00] [ 3.00000000e-01 3.30000000e+01 9.00000000e+00] [ 3.00000000e-01 2.80000000e+01 1.20000000e+01] [ 3.00000000e-01 2.10000000e+01 2.20000000e+01] [ 3.00000000e-01 2.50000000e+01 2.80000000e+01] [ 3.00000000e-01 2.60000000e+01 3.70000000e+01] [ 3.00000000e-01 3.20000000e+01 4.20000000e+01] [ 4.00000000e-01 4.10000000e+01 4.20000000e+01] [ 5.00000000e-01 5.80000000e+01 3.00000000e+01] [ 6.00000000e-01 7.20000000e+01 1.70000000e+01] [ 5.00000000e-01 7.10000000e+01 1.20000000e+01] [ 1.00000000e+00 1.08000000e+02 7.00000000e+00] [ 1.70000000e+00 1.65000000e+02 7.00000000e+00] [ 2.00000000e+00 1.86000000e+02 7.00000000e+00] [ 2.00000000e+00 1.80000000e+02 7.00000000e+00] [ 1.80000000e+00 1.78000000e+02 7.00000000e+00] [ 5.00000000e-01 7.10000000e+01 8.00000000e+00] [ 4.00000000e-01 4.30000000e+01 1.70000000e+01] [ 3.00000000e-01 3.60000000e+01 2.20000000e+01] [ 3.00000000e-01 3.20000000e+01 2.50000000e+01] [ 3.00000000e-01 2.80000000e+01 2.50000000e+01] [ 3.00000000e-01 2.30000000e+01 2.90000000e+01] [ 3.00000000e-01 2.70000000e+01 2.50000000e+01] [ 4.00000000e-01 3.50000000e+01 1.20000000e+01] [ 3.00000000e-01 4.10000000e+01 1.00000000e+01] [ 6.00000000e-01 5.30000000e+01 6.00000000e+00] [ 9.00000000e-01 6.10000000e+01 6.00000000e+00] [ 6.00000000e-01 5.80000000e+01 1.10000000e+01] [ 5.00000000e-01 5.00000000e+01 1.50000000e+01] [ 5.00000000e-01 5.00000000e+01 2.00000000e+01] [ 6.00000000e-01 4.90000000e+01 2.30000000e+01] [ 5.00000000e-01 6.00000000e+01 2.00000000e+01] [ 6.00000000e-01 6.60000000e+01 1.80000000e+01] [ 5.00000000e-01 6.40000000e+01 1.90000000e+01] [ 5.00000000e-01 7.40000000e+01 1.10000000e+01] [ 8.00000000e-01 1.05000000e+02 7.00000000e+00] [ 1.50000000e+00 1.54000000e+02 7.00000000e+00] [ 1.10000000e+00 1.36000000e+02 7.00000000e+00] [ 6.00000000e-01 8.00000000e+01 7.00000000e+00] [ 6.00000000e-01 7.40000000e+01 7.00000000e+00] [ 5.00000000e-01 5.50000000e+01 9.00000000e+00] [ 4.00000000e-01 4.20000000e+01 1.30000000e+01] [ 3.00000000e-01 4.10000000e+01 1.40000000e+01] [ 3.00000000e-01 3.70000000e+01 1.60000000e+01] [ 3.00000000e-01 3.30000000e+01 1.90000000e+01] [ 3.00000000e-01 3.20000000e+01 1.90000000e+01] [ 2.00000000e-01 3.10000000e+01 2.20000000e+01] [ 3.00000000e-01 2.40000000e+01 3.00000000e+01] [ 3.00000000e-01 3.50000000e+01 2.10000000e+01] [ 3.00000000e-01 3.20000000e+01 2.50000000e+01] [ 4.00000000e-01 3.70000000e+01 2.70000000e+01] [ 4.00000000e-01 4.20000000e+01 2.30000000e+01] [ 3.00000000e-01 3.30000000e+01 3.90000000e+01] [ 3.00000000e-01 2.70000000e+01 5.10000000e+01] [ 3.00000000e-01 2.50000000e+01 5.40000000e+01] [ 3.00000000e-01 2.90000000e+01 5.00000000e+01] [ 3.00000000e-01 3.20000000e+01 4.60000000e+01] [ 3.00000000e-01 3.00000000e+01 4.90000000e+01] [ 3.00000000e-01 3.40000000e+01 4.40000000e+01] [ 4.00000000e-01 5.40000000e+01 2.40000000e+01] [ 4.00000000e-01 5.40000000e+01 2.30000000e+01] [ 4.00000000e-01 5.20000000e+01 2.20000000e+01] [ 4.00000000e-01 5.50000000e+01 2.10000000e+01] [ 4.00000000e-01 5.50000000e+01 1.90000000e+01] [ 3.00000000e-01 3.20000000e+01 3.60000000e+01] [ 3.00000000e-01 2.80000000e+01 3.70000000e+01] [ 3.00000000e-01 3.60000000e+01 2.70000000e+01] [ 3.00000000e-01 4.60000000e+01 1.60000000e+01] [ 3.00000000e-01 3.10000000e+01 2.80000000e+01] [ 2.00000000e-01 2.90000000e+01 2.90000000e+01] [ 2.00000000e-01 2.60000000e+01 3.40000000e+01] [ 3.00000000e-01 3.70000000e+01 2.50000000e+01] [ 4.00000000e-01 6.20000000e+01 8.00000000e+00] [ 6.00000000e-01 6.50000000e+01 1.00000000e+01] [ 4.00000000e-01 6.60000000e+01 1.10000000e+01] [ 4.00000000e-01 6.00000000e+01 1.70000000e+01] [ 5.00000000e-01 4.00000000e+01 3.70000000e+01] [ 4.00000000e-01 5.20000000e+01 3.20000000e+01] [ 3.00000000e-01 4.20000000e+01 4.30000000e+01] [ 3.00000000e-01 4.90000000e+01 3.60000000e+01] [ 4.00000000e-01 5.30000000e+01 2.70000000e+01] [ 4.00000000e-01 6.10000000e+01 1.40000000e+01] [ 6.00000000e-01 7.70000000e+01 9.00000000e+00] [ 5.00000000e-01 7.70000000e+01 8.00000000e+00] [ 5.00000000e-01 7.60000000e+01 1.00000000e+01] [ 5.00000000e-01 7.70000000e+01 8.00000000e+00] [ 4.00000000e-01 6.10000000e+01 1.70000000e+01] [ 3.00000000e-01 4.80000000e+01 2.50000000e+01] [ 3.00000000e-01 3.00000000e+01 3.90000000e+01] [ 2.00000000e-01 1.60000000e+01 4.80000000e+01] [ 2.00000000e-01 1.10000000e+01 5.30000000e+01] [ 2.00000000e-01 8.00000000e+00 5.60000000e+01] [ 2.00000000e-01 7.00000000e+00 5.50000000e+01] [ 2.00000000e-01 1.00000000e+01 4.90000000e+01] [ 2.00000000e-01 1.40000000e+01 4.90000000e+01] [ 3.00000000e-01 3.50000000e+01 2.90000000e+01] [ 4.00000000e-01 5.10000000e+01 1.50000000e+01] [ 4.00000000e-01 6.20000000e+01 8.00000000e+00] [ 5.00000000e-01 6.30000000e+01 9.00000000e+00] [ 4.00000000e-01 5.00000000e+01 1.60000000e+01] [ nan nan 1.40000000e+01] [ nan nan 1.20000000e+01] [ 5.00000000e-01 6.00000000e+01 nan] [ 5.00000000e-01 6.50000000e+01 2.00000000e+01] [ 5.00000000e-01 6.20000000e+01 2.20000000e+01] [ 4.00000000e-01 5.10000000e+01 2.70000000e+01] [ 5.00000000e-01 6.10000000e+01 1.20000000e+01] [ 5.00000000e-01 6.10000000e+01 1.00000000e+01] [ 4.00000000e-01 5.40000000e+01 2.00000000e+01] [ 4.00000000e-01 5.40000000e+01 2.20000000e+01] [ 3.00000000e-01 4.00000000e+01 3.10000000e+01] [ 3.00000000e-01 3.00000000e+01 3.80000000e+01] [ 3.00000000e-01 2.40000000e+01 4.30000000e+01]]
Ya hemos aprendido a efectuar algunas operaciones útiles con NumPy e incluso hemos hecho nuestro primer ejercicio de lectura de datos. Estamos en condiciones de empezar a escribir programas más interesantes, pero aún queda lo mejor.
Si quieres saber más sobre lectura y escritura de ficheros en Python, puedes consultar al documentación oficial:
https://docs.python.org/3.5/tutorial/inputoutput.html#reading-and-writing-files
Las siguientes celdas contienen configuración del Notebook
Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como seguro
File > Trusted Notebook
# Esta celda da el estilo al notebook
from IPython.core.display import HTML
css_file = '../styles/aeropython.css'
HTML(open(css_file, "r").read())