SciPy
es paquete que incluye una colección de algoritmos matemáticos y funciones construidas sobre el paquete NumPy
. En esta clase nos vamos a centrar en el cálculo de integrales definidas.
Como siempre lo primero es lo primero, importemos lo paquetes que vamos a utilizar:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
Este subpaquete de SciPy
proporciona algunas técnicas de integración tanto de funciones como de ecuaciones diferenciales. En primer lugar importémoslo y ejecutemos la ayuda para ver cuáles son estas funciones:
from scipy import integrate
from IPython.display import HTML
HTML('<iframe src="http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate" width="800" height="600"></iframe>')
help(integrate)
Help on package scipy.integrate in scipy: NAME scipy.integrate DESCRIPTION ============================================= Integration and ODEs (:mod:`scipy.integrate`) ============================================= .. currentmodule:: scipy.integrate Integrating functions, given function object ============================================ .. autosummary:: :toctree: generated/ quad -- General purpose integration dblquad -- General purpose double integration tplquad -- General purpose triple integration nquad -- General purpose n-dimensional integration fixed_quad -- Integrate func(x) using Gaussian quadrature of order n quadrature -- Integrate with given tolerance using Gaussian quadrature romberg -- Integrate func using Romberg integration Integrating functions, given fixed samples ========================================== .. autosummary:: :toctree: generated/ cumtrapz -- Use trapezoidal rule to cumulatively compute integral. simps -- Use Simpson's rule to compute integral from samples. romb -- Use Romberg Integration to compute integral from -- (2**k + 1) evenly-spaced samples. .. seealso:: :mod:`scipy.special` for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting factors and regions. Integrators of ODE systems ========================== .. autosummary:: :toctree: generated/ odeint -- General integration of ordinary differential equations. ode -- Integrate ODE using VODE and ZVODE routines. complex_ode -- Convert a complex-valued ODE to real-valued and integrate. PACKAGE CONTENTS _dop _ode _odepack _quadpack lsoda odepack quadpack quadrature setup vode CLASSES builtins.UserWarning(builtins.Warning) scipy.integrate.quadpack.IntegrationWarning builtins.object scipy.integrate._ode.ode scipy.integrate._ode.complex_ode class IntegrationWarning(builtins.UserWarning) | Method resolution order: | IntegrationWarning | builtins.UserWarning | builtins.Warning | builtins.Exception | builtins.BaseException | builtins.object | | Data descriptors defined here: | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Methods inherited from builtins.UserWarning: | | __init__(self, /, *args, **kwargs) | Initialize self. See help(type(self)) for accurate signature. | | __new__(*args, **kwargs) from builtins.type | Create and return a new object. See help(type) for accurate signature. | | ---------------------------------------------------------------------- | Methods inherited from builtins.BaseException: | | __delattr__(self, name, /) | Implement delattr(self, name). | | __getattribute__(self, name, /) | Return getattr(self, name). | | __reduce__(...) | | __repr__(self, /) | Return repr(self). | | __setattr__(self, name, value, /) | Implement setattr(self, name, value). | | __setstate__(...) | | __str__(self, /) | Return str(self). | | with_traceback(...) | Exception.with_traceback(tb) -- | set self.__traceback__ to tb and return self. | | ---------------------------------------------------------------------- | Data descriptors inherited from builtins.BaseException: | | __cause__ | exception cause | | __context__ | exception context | | __dict__ | | __suppress_context__ | | __traceback__ | | args class complex_ode(ode) | A wrapper of ode for complex systems. | | This functions similarly as `ode`, but re-maps a complex-valued | equation system to a real-valued one before using the integrators. | | Parameters | ---------- | f : callable ``f(t, y, *f_args)`` | Rhs of the equation. t is a scalar, ``y.shape == (n,)``. | ``f_args`` is set by calling ``set_f_params(*args)``. | jac : callable ``jac(t, y, *jac_args)`` | Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``. | ``jac_args`` is set by calling ``set_f_params(*args)``. | | Attributes | ---------- | t : float | Current time. | y : ndarray | Current variable values. | | Examples | -------- | For usage examples, see `ode`. | | Method resolution order: | complex_ode | ode | builtins.object | | Methods defined here: | | __init__(self, f, jac=None) | | integrate(self, t, step=0, relax=0) | Find y=y(t), set y as an initial condition, and return y. | | set_initial_value(self, y, t=0.0) | Set initial conditions y(t) = y. | | set_integrator(self, name, **integrator_params) | Set integrator by name. | | Parameters | ---------- | name : str | Name of the integrator | integrator_params : | Additional parameters for the integrator. | | set_solout(self, solout) | Set callable to be called at every successful integration step. | | Parameters | ---------- | solout : callable | ``solout(t, y)`` is called at each internal integrator step, | t is a scalar providing the current independent position | y is the current soloution ``y.shape == (n,)`` | solout should return -1 to stop integration | otherwise it should return None or 0 | | ---------------------------------------------------------------------- | Data descriptors defined here: | | y | | ---------------------------------------------------------------------- | Methods inherited from ode: | | set_f_params(self, *args) | Set extra parameters for user-supplied function f. | | set_jac_params(self, *args) | Set extra parameters for user-supplied function jac. | | successful(self) | Check if integration was successful. | | ---------------------------------------------------------------------- | Data descriptors inherited from ode: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) class ode(builtins.object) | A generic interface class to numeric integrators. | | Solve an equation system :math:`y'(t) = f(t,y)` with (optional) ``jac = df/dy``. | | Parameters | ---------- | f : callable ``f(t, y, *f_args)`` | Rhs of the equation. t is a scalar, ``y.shape == (n,)``. | ``f_args`` is set by calling ``set_f_params(*args)``. | `f` should return a scalar, array or list (not a tuple). | jac : callable ``jac(t, y, *jac_args)`` | Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``. | ``jac_args`` is set by calling ``set_f_params(*args)``. | | Attributes | ---------- | t : float | Current time. | y : ndarray | Current variable values. | | See also | -------- | odeint : an integrator with a simpler interface based on lsoda from ODEPACK | quad : for finding the area under a curve | | Notes | ----- | Available integrators are listed below. They can be selected using | the `set_integrator` method. | | "vode" | | Real-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | implicit Adams method (for non-stiff problems) and a method based on | backward differentiation formulas (BDF) (for stiff problems). | | Source: http://www.netlib.org/ode/vode.f | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "vode" integrator at the same time. | | This integrator accepts the following parameters in `set_integrator` | method of the `ode` class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - lband : None or int | - rband : None or int | Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband. | Setting these requires your jac routine to return the jacobian | in packed format, jac_packed[i-j+lband, j] = jac[i,j]. | - method: 'adams' or 'bdf' | Which solver to use, Adams (non-stiff) or BDF (stiff) | - with_jacobian : bool | Whether to use the jacobian | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - min_step : float | - max_step : float | Limits for the step sizes used by the integrator. | - order : int | Maximum order used by the integrator, | order <= 12 for Adams, <= 5 for BDF. | | "zvode" | | Complex-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | implicit Adams method (for non-stiff problems) and a method based on | backward differentiation formulas (BDF) (for stiff problems). | | Source: http://www.netlib.org/ode/zvode.f | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "zvode" integrator at the same time. | | This integrator accepts the same parameters in `set_integrator` | as the "vode" solver. | | .. note:: | | When using ZVODE for a stiff system, it should only be used for | the case in which the function f is analytic, that is, when each f(i) | is an analytic function of each y(j). Analyticity means that the | partial derivative df(i)/dy(j) is a unique complex number, and this | fact is critical in the way ZVODE solves the dense or banded linear | systems that arise in the stiff case. For a complex stiff ODE system | in which f is not analytic, ZVODE is likely to have convergence | failures, and for this problem one should instead use DVODE on the | equivalent real system (in the real and imaginary parts of y). | | "lsoda" | | Real-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | automatic method switching between implicit Adams method (for non-stiff | problems) and a method based on backward differentiation formulas (BDF) | (for stiff problems). | | Source: http://www.netlib.org/odepack | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "lsoda" integrator at the same time. | | This integrator accepts the following parameters in `set_integrator` | method of the `ode` class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - lband : None or int | - rband : None or int | Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband. | Setting these requires your jac routine to return the jacobian | in packed format, jac_packed[i-j+lband, j] = jac[i,j]. | - with_jacobian : bool | Whether to use the jacobian | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - min_step : float | - max_step : float | Limits for the step sizes used by the integrator. | - max_order_ns : int | Maximum order used in the nonstiff case (default 12). | - max_order_s : int | Maximum order used in the stiff case (default 5). | - max_hnil : int | Maximum number of messages reporting too small step size (t + h = t) | (default 0) | - ixpr : int | Whether to generate extra printing at method switches (default False). | | "dopri5" | | This is an explicit runge-kutta method of order (4)5 due to Dormand & | Prince (with stepsize control and dense output). | | Authors: | | E. Hairer and G. Wanner | Universite de Geneve, Dept. de Mathematiques | CH-1211 Geneve 24, Switzerland | e-mail: [email protected], [email protected] | | This code is described in [HNW93]_. | | This integrator accepts the following parameters in set_integrator() | method of the ode class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - max_step : float | - safety : float | Safety factor on new step selection (default 0.9) | - ifactor : float | - dfactor : float | Maximum factor to increase/decrease step size by in one step | - beta : float | Beta parameter for stabilised step size control. | - verbosity : int | Switch for printing messages (< 0 for no messages). | | "dop853" | | This is an explicit runge-kutta method of order 8(5,3) due to Dormand | & Prince (with stepsize control and dense output). | | Options and references the same as "dopri5". | | Examples | -------- | | A problem to integrate and the corresponding jacobian: | | >>> from scipy.integrate import ode | >>> | >>> y0, t0 = [1.0j, 2.0], 0 | >>> | >>> def f(t, y, arg1): | >>> return [1j*arg1*y[0] + y[1], -arg1*y[1]**2] | >>> def jac(t, y, arg1): | >>> return [[1j*arg1, 1], [0, -arg1*2*y[1]]] | | The integration: | | >>> r = ode(f, jac).set_integrator('zvode', method='bdf', with_jacobian=True) | >>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0) | >>> t1 = 10 | >>> dt = 1 | >>> while r.successful() and r.t < t1: | >>> r.integrate(r.t+dt) | >>> print("%g %g" % (r.t, r.y)) | | References | ---------- | .. [HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary | Differential Equations i. Nonstiff Problems. 2nd edition. | Springer Series in Computational Mathematics, | Springer-Verlag (1993) | | Methods defined here: | | __init__(self, f, jac=None) | | integrate(self, t, step=0, relax=0) | Find y=y(t), set y as an initial condition, and return y. | | set_f_params(self, *args) | Set extra parameters for user-supplied function f. | | set_initial_value(self, y, t=0.0) | Set initial conditions y(t) = y. | | set_integrator(self, name, **integrator_params) | Set integrator by name. | | Parameters | ---------- | name : str | Name of the integrator. | integrator_params : | Additional parameters for the integrator. | | set_jac_params(self, *args) | Set extra parameters for user-supplied function jac. | | set_solout(self, solout) | Set callable to be called at every successful integration step. | | Parameters | ---------- | solout : callable | ``solout(t, y)`` is called at each internal integrator step, | t is a scalar providing the current independent position | y is the current soloution ``y.shape == (n,)`` | solout should return -1 to stop integration | otherwise it should return None or 0 | | successful(self) | Check if integration was successful. | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | y FUNCTIONS cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None) Cumulatively integrate y(x) using the composite trapezoidal rule. Parameters ---------- y : array_like Values to integrate. x : array_like, optional The coordinate to integrate along. If None (default), use spacing `dx` between consecutive elements in `y`. dx : int, optional Spacing between elements of `y`. Only used if `x` is None. axis : int, optional Specifies the axis to cumulate. Default is -1 (last axis). initial : scalar, optional If given, uses this value as the first value in the returned result. Typically this value should be 0. Default is None, which means no value at ``x[0]`` is returned and `res` has one element less than `y` along the axis of integration. Returns ------- res : ndarray The result of cumulative integration of `y` along `axis`. If `initial` is None, the shape is such that the axis of integration has one less value than `y`. If `initial` is given, the shape is equal to that of `y`. See Also -------- numpy.cumsum, numpy.cumprod quad: adaptive quadrature using QUADPACK romberg: adaptive Romberg quadrature quadrature: adaptive Gaussian quadrature fixed_quad: fixed-order Gaussian quadrature dblquad: double integrals tplquad: triple integrals romb: integrators for sampled data ode: ODE integrators odeint: ODE integrators Examples -------- >>> from scipy import integrate >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2, 2, num=20) >>> y = x >>> y_int = integrate.cumtrapz(y, x, initial=0) >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-') >>> plt.show() dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08) Compute a double integral. Return the double (definite) integral of ``func(y, x)`` from ``x = a..b`` and ``y = gfun(x)..hfun(x)``. Parameters ---------- func : callable A Python function or method of at least two variables: y must be the first argument and x the second argument. (a,b) : tuple The limits of integration in x: `a` < `b` gfun : callable The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result: a lambda function can be useful here. hfun : callable The upper boundary curve in y (same requirements as `gfun`). args : sequence, optional Extra arguments to pass to `func`. epsabs : float, optional Absolute tolerance passed directly to the inner 1-D quadrature integration. Default is 1.49e-8. epsrel : float Relative tolerance of the inner 1-D integrals. Default is 1.49e-8. Returns ------- y : float The resultant integral. abserr : float An estimate of the error. See also -------- quad : single integral tplquad : triple integral nquad : N-dimensional integrals fixed_quad : fixed-order Gaussian quadrature quadrature : adaptive Gaussian quadrature odeint : ODE integrator ode : ODE integrator simps : integrator for sampled data romb : integrator for sampled data scipy.special : for coefficients and roots of orthogonal polynomials fixed_quad(func, a, b, args=(), n=5) Compute a definite integral using fixed-order Gaussian quadrature. Integrate `func` from `a` to `b` using Gaussian quadrature of order `n`. Parameters ---------- func : callable A Python function or method to integrate (must accept vector inputs). a : float Lower limit of integration. b : float Upper limit of integration. args : tuple, optional Extra arguments to pass to function, if any. n : int, optional Order of quadrature integration. Default is 5. Returns ------- val : float Gaussian quadrature approximation to the integral See Also -------- quad : adaptive quadrature using QUADPACK dblquad : double integrals tplquad : triple integrals romberg : adaptive Romberg quadrature quadrature : adaptive Gaussian quadrature romb : integrators for sampled data simps : integrators for sampled data cumtrapz : cumulative integration for sampled data ode : ODE integrator odeint : ODE integrator newton_cotes(rn, equal=0) Return weights and error coefficient for Newton-Cotes integration. Suppose we have (N+1) samples of f at the positions x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the integral between x_0 and x_N is: :math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i) + B_N (\Delta x)^{N+2} f^{N+1} (\xi)` where :math:`\xi \in [x_0,x_N]` and :math:`\Delta x = \frac{x_N-x_0}{N}` is the averages samples spacing. If the samples are equally-spaced and N is even, then the error term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`. Parameters ---------- rn : int The integer order for equally-spaced data or the relative positions of the samples with the first sample at 0 and the last at N, where N+1 is the length of `rn`. N is the order of the Newton-Cotes integration. equal : int, optional Set to 1 to enforce equally spaced data. Returns ------- an : ndarray 1-D array of weights to apply to the function at the provided sample positions. B : float Error coefficient. Notes ----- Normally, the Newton-Cotes rules are used on smaller integration regions and a composite rule is used to return the total integral. nquad(func, ranges, args=None, opts=None) Integration over multiple variables. Wraps `quad` to enable integration over multiple variables. Various options allow improved integration of discontinuous functions, as well as the use of weighted integration, and generally finer control of the integration process. Parameters ---------- func : callable The function to be integrated. Has arguments of ``x0, ... xn``, ``t0, tm``, where integration is carried out over ``x0, ... xn``, which must be floats. Function signature should be ``func(x0, x1, ..., xn, t0, t1, ..., tm)``. Integration is carried out in order. That is, integration over ``x0`` is the innermost integral, and ``xn`` is the outermost. ranges : iterable object Each element of ranges may be either a sequence of 2 numbers, or else a callable that returns such a sequence. ``ranges[0]`` corresponds to integration over x0, and so on. If an element of ranges is a callable, then it will be called with all of the integration arguments available. e.g. if ``func = f(x0, x1, x2)``, then ``ranges[0]`` may be defined as either ``(a, b)`` or else as ``(a, b) = range0(x1, x2)``. args : iterable object, optional Additional arguments ``t0, ..., tn``, required by `func`. opts : iterable object or dict, optional Options to be passed to `quad`. May be empty, a dict, or a sequence of dicts or functions that return a dict. If empty, the default options from scipy.integrate.quadare used. If a dict, the same options are used for all levels of integraion. If a sequence, then each element of the sequence corresponds to a particular integration. e.g. opts[0] corresponds to integration over x0, and so on. The available options together with their default values are: - epsabs = 1.49e-08 - epsrel = 1.49e-08 - limit = 50 - points = None - weight = None - wvar = None - wopts = None The ``full_output`` option from `quad` is unavailable, due to the complexity of handling the large amount of data such an option would return for this kind of nested integration. For more information on these options, see `quad` and `quad_explain`. Returns ------- result : float The result of the integration. abserr : float The maximum of the estimates of the absolute error in the various integration results. See Also -------- quad : 1-dimensional numerical integration dblquad, tplquad : double and triple integrals fixed_quad : fixed-order Gaussian quadrature quadrature : adaptive Gaussian quadrature Examples -------- >>> from scipy import integrate >>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + ( ... 1 if (x0-.2*x3-.5-.25*x1>0) else 0) >>> points = [[lambda (x1,x2,x3) : 0.2*x3 + 0.5 + 0.25*x1], [], [], []] >>> def opts0(*args, **kwargs): ... return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]} >>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]], ... opts=[opts0,{},{},{}]) (1.5267454070738633, 2.9437360001402324e-14) >>> scale = .1 >>> def func2(x0, x1, x2, x3, t0, t1): ... return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0) >>> def lim0(x1, x2, x3, t0, t1): ... return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1, ... scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1] >>> def lim1(x2, x3, t0, t1): ... return [scale * (t0*x2 + t1*x3) - 1, ... scale * (t0*x2 + t1*x3) + 1] >>> def lim2(x3, t0, t1): ... return [scale * (x3 + t0**2*t1**3) - 1, ... scale * (x3 + t0**2*t1**3) + 1] >>> def lim3(t0, t1): ... return [scale * (t0+t1) - 1, scale * (t0+t1) + 1] >>> def opts0(x1, x2, x3, t0, t1): ... return {'points' : [t0 - t1*x1]} >>> def opts1(x2, x3, t0, t1): ... return {} >>> def opts2(x3, t0, t1): ... return {} >>> def opts3(t0, t1): ... return {} >>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0), opts=[opts0, opts1, opts2, opts3]) (25.066666666666666, 2.7829590483937256e-13) odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0) Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y,t0,...) where y can be a vector. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50) Compute a definite integral. Integrate func from `a` to `b` (possibly infinite interval) using a technique from the Fortran library QUADPACK. Parameters ---------- func : function A Python function or method to integrate. If `func` takes many arguments, it is integrated along the axis corresponding to the first argument. a : float Lower limit of integration (use -numpy.inf for -infinity). b : float Upper limit of integration (use numpy.inf for +infinity). args : tuple, optional Extra arguments to pass to `func`. full_output : int, optional Non-zero to return a dictionary of integration information. If non-zero, warning messages are also suppressed and the message is appended to the output tuple. Returns ------- y : float The integral of func from `a` to `b`. abserr : float An estimate of the absolute error in the result. infodict : dict A dictionary containing additional information. Run scipy.integrate.quad_explain() for more information. message : A convergence message. explain : Appended only with 'cos' or 'sin' weighting and infinite integration limits, it contains an explanation of the codes in infodict['ierlst'] Other Parameters ---------------- epsabs : float or int, optional Absolute error tolerance. epsrel : float or int, optional Relative error tolerance. limit : float or int, optional An upper bound on the number of subintervals used in the adaptive algorithm. points : (sequence of floats,ints), optional A sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinuities). The sequence does not have to be sorted. weight : float or int, optional String indicating weighting function. Full explanation for this and the remaining arguments can be found below. wvar : optional Variables for use with weighting functions. wopts : optional Optional input for reusing Chebyshev moments. maxp1 : float or int, optional An upper bound on the number of Chebyshev moments. limlst : int, optional Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point. See Also -------- dblquad : double integral tplquad : triple integral nquad : n-dimensional integrals (uses `quad` recursively) fixed_quad : fixed-order Gaussian quadrature quadrature : adaptive Gaussian quadrature odeint : ODE integrator ode : ODE integrator simps : integrator for sampled data romb : integrator for sampled data scipy.special : for coefficients and roots of orthogonal polynomials Notes ----- **Extra information for quad() inputs and outputs** If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this transformed range. Let M be the input argument limit and let K be infodict['last']. The entries are: 'neval' The number of function evaluations. 'last' The number, K, of subintervals produced in the subdivision process. 'alist' A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the partition of the integration range. 'blist' A rank-1 array of length M, the first K elements of which are the right end points of the subintervals. 'rlist' A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals. 'elist' A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the subintervals. 'iord' A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence infodict['iord'] and let E be the sequence infodict['elist']. Then E[I[1]], ..., E[I[L]] forms a decreasing sequence. If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the output dictionary. Assume the points sequence is of length P. 'pts' A rank-1 array of length P+2 containing the integration limits and the break points of the intervals in ascending order. This is an array giving the subintervals over which integration will occur. 'level' A rank-1 integer array of length M (=limit), containing the subdivision levels of the subintervals, i.e., if (aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2] are adjacent elements of infodict['pts'], then (aa,bb) has level l if |bb-aa|=|pts[2]-pts[1]| * 2**(-l). 'ndin' A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]), the error estimates over some of the intervals may have been increased artificially in order to put their subdivision forward. This array has ones in slots corresponding to the subintervals for which this happens. **Weighting the integrand** The input variables, *weight* and *wvar*, are used to weight the integrand by a select list of functions. Different integration methods are used to compute the integral with these weighting functions. The possible values of weight and the corresponding weighting functions are. ========== =================================== ===================== ``weight`` Weight function used ``wvar`` ========== =================================== ===================== 'cos' cos(w*x) wvar = w 'sin' sin(w*x) wvar = w 'alg' g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta) 'alg-loga' g(x)*log(x-a) wvar = (alpha, beta) 'alg-logb' g(x)*log(b-x) wvar = (alpha, beta) 'alg-log' g(x)*log(x-a)*log(b-x) wvar = (alpha, beta) 'cauchy' 1/(x-c) wvar = c ========== =================================== ===================== wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b are the integration limits. For the 'cos' and 'sin' weighting, additional inputs and outputs are available. For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev moments. For repeated calculations, these moments are saved in the output dictionary: 'momcom' The maximum level of Chebyshev moments that have been computed, i.e., if M_c is infodict['momcom'] then the moments have been computed for intervals of length |b-a|* 2**(-l), l=0,1,...,M_c. 'nnlog' A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals, i.e., an element of this array is equal to l if the corresponding subinterval is |b-a|* 2**(-l). 'chebmo' A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can be passed on to an integration over the same interval by passing this array as the second element of the sequence wopts and passing infodict['momcom'] as the first element. If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is also appended to the output tuple which translates the error codes in the array info['ierlst'] to English messages. The output information dictionary contains the following entries instead of 'last', 'alist', 'blist', 'rlist', and 'elist': 'lst' The number of subintervals needed for the integration (call it K_f). 'rslst' A rank-1 array of length M_f=limlst, whose first K_f elements contain the integral contribution over the interval (a+(k-1)c, a+kc) where c = (2*floor(|w|) + 1) * pi / |w| and k=1,2,...,K_f. 'erlst' A rank-1 array of length M_f containing the error estimate corresponding to the interval in the same position in infodict['rslist']. 'ierlst' A rank-1 integer array of length M_f containing an error flag corresponding to the interval in the same position in infodict['rslist']. See the explanation dictionary (last entry in the output tuple) for the meaning of the codes. Examples -------- Calculate :math:`\int^4_0 x^2 dx` and compare with an analytic result >>> from scipy import integrate >>> x2 = lambda x: x**2 >>> integrate.quad(x2, 0, 4) (21.333333333333332, 2.3684757858670003e-13) >>> print(4**3 / 3.) # analytical result 21.3333333333 Calculate :math:`\int^\infty_0 e^{-x} dx` >>> invexp = lambda x: np.exp(-x) >>> integrate.quad(invexp, 0, np.inf) (1.0, 5.842605999138044e-11) >>> f = lambda x,a : a*x >>> y, err = integrate.quad(f, 0, 1, args=(1,)) >>> y 0.5 >>> y, err = integrate.quad(f, 0, 1, args=(3,)) >>> y 1.5 quad_explain(output=<IPython.kernel.zmq.iostream.OutStream object at 0x7f3f287e60f0>) Print extra information about integrate.quad() parameters and returns. Parameters ---------- output : instance with "write" method Information about `quad` is passed to ``output.write()``. Default is ``sys.stdout``. Returns ------- None quadrature(func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=50, vec_func=True, miniter=1) Compute a definite integral using fixed-tolerance Gaussian quadrature. Integrate `func` from `a` to `b` using Gaussian quadrature with absolute tolerance `tol`. Parameters ---------- func : function A Python function or method to integrate. a : float Lower limit of integration. b : float Upper limit of integration. args : tuple, optional Extra arguments to pass to function. tol, rol : float, optional Iteration stops when error between last two iterates is less than `tol` OR the relative change is less than `rtol`. maxiter : int, optional Maximum order of Gaussian quadrature. vec_func : bool, optional True or False if func handles arrays as arguments (is a "vector" function). Default is True. miniter : int, optional Minimum order of Gaussian quadrature. Returns ------- val : float Gaussian quadrature approximation (within tolerance) to integral. err : float Difference between last two estimates of the integral. See also -------- romberg: adaptive Romberg quadrature fixed_quad: fixed-order Gaussian quadrature quad: adaptive quadrature using QUADPACK dblquad: double integrals tplquad: triple integrals romb: integrator for sampled data simps: integrator for sampled data cumtrapz: cumulative integration for sampled data ode: ODE integrator odeint: ODE integrator romb(y, dx=1.0, axis=-1, show=False) Romberg integration using samples of a function. Parameters ---------- y : array_like A vector of ``2**k + 1`` equally-spaced samples of a function. dx : array_like, optional The sample spacing. Default is 1. axis : int, optional The axis along which to integrate. Default is -1 (last axis). show : bool, optional When `y` is a single 1-D array, then if this argument is True print the table showing Richardson extrapolation from the samples. Default is False. Returns ------- romb : ndarray The integrated result for `axis`. See also -------- quad : adaptive quadrature using QUADPACK romberg : adaptive Romberg quadrature quadrature : adaptive Gaussian quadrature fixed_quad : fixed-order Gaussian quadrature dblquad : double integrals tplquad : triple integrals simps : integrators for sampled data cumtrapz : cumulative integration for sampled data ode : ODE integrators odeint : ODE integrators romberg(function, a, b, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, divmax=10, vec_func=False) Romberg integration of a callable function or method. Returns the integral of `function` (a function of one variable) over the interval (`a`, `b`). If `show` is 1, the triangular array of the intermediate results will be printed. If `vec_func` is True (default is False), then `function` is assumed to support vector arguments. Parameters ---------- function : callable Function to be integrated. a : float Lower limit of integration. b : float Upper limit of integration. Returns ------- results : float Result of the integration. Other Parameters ---------------- args : tuple, optional Extra arguments to pass to function. Each element of `args` will be passed as a single argument to `func`. Default is to pass no extra arguments. tol, rtol : float, optional The desired absolute and relative tolerances. Defaults are 1.48e-8. show : bool, optional Whether to print the results. Default is False. divmax : int, optional Maximum order of extrapolation. Default is 10. vec_func : bool, optional Whether `func` handles arrays as arguments (i.e whether it is a "vector" function). Default is False. See Also -------- fixed_quad : Fixed-order Gaussian quadrature. quad : Adaptive quadrature using QUADPACK. dblquad : Double integrals. tplquad : Triple integrals. romb : Integrators for sampled data. simps : Integrators for sampled data. cumtrapz : Cumulative integration for sampled data. ode : ODE integrator. odeint : ODE integrator. References ---------- .. [1] 'Romberg's method' http://en.wikipedia.org/wiki/Romberg%27s_method Examples -------- Integrate a gaussian from 0 to 1 and compare to the error function. >>> from scipy import integrate >>> from scipy.special import erf >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2) >>> result = integrate.romberg(gaussian, 0, 1, show=True) Romberg integration of <function vfunc at ...> from [0, 1] :: Steps StepSize Results 1 1.000000 0.385872 2 0.500000 0.412631 0.421551 4 0.250000 0.419184 0.421368 0.421356 8 0.125000 0.420810 0.421352 0.421350 0.421350 16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350 32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350 The final result is 0.421350396475 after 33 function evaluations. >>> print("%g %g" % (2*result, erf(1))) 0.842701 0.842701 simps(y, x=None, dx=1, axis=-1, even='avg') Integrate y(x) using samples along the given axis and the composite Simpson's rule. If x is None, spacing of dx is assumed. If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson's rule requires an even number of intervals. The parameter 'even' controls how this is handled. Parameters ---------- y : array_like Array to be integrated. x : array_like, optional If given, the points at which `y` is sampled. dx : int, optional Spacing of integration points along axis of `y`. Only used when `x` is None. Default is 1. axis : int, optional Axis along which to integrate. Default is the last axis. even : {'avg', 'first', 'str'}, optional 'avg' : Average two results:1) use the first N-2 intervals with a trapezoidal rule on the last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first interval. 'first' : Use Simpson's rule for the first N-2 intervals with a trapezoidal rule on the last interval. 'last' : Use Simpson's rule for the last N-2 intervals with a trapezoidal rule on the first interval. See Also -------- quad: adaptive quadrature using QUADPACK romberg: adaptive Romberg quadrature quadrature: adaptive Gaussian quadrature fixed_quad: fixed-order Gaussian quadrature dblquad: double integrals tplquad: triple integrals romb: integrators for sampled data cumtrapz: cumulative integration for sampled data ode: ODE integrators odeint: ODE integrators Notes ----- For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order 3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less. tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08) Compute a triple (definite) integral. Return the triple integral of ``func(z, y, x)`` from ``x = a..b``, ``y = gfun(x)..hfun(x)``, and ``z = qfun(x,y)..rfun(x,y)``. Parameters ---------- func : function A Python function or method of at least three variables in the order (z, y, x). (a,b) : tuple The limits of integration in x: `a` < `b` gfun : function The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result: a lambda function can be useful here. hfun : function The upper boundary curve in y (same requirements as `gfun`). qfun : function The lower boundary surface in z. It must be a function that takes two floats in the order (x, y) and returns a float. rfun : function The upper boundary surface in z. (Same requirements as `qfun`.) args : Arguments Extra arguments to pass to `func`. epsabs : float, optional Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is 1.49e-8. epsrel : float, optional Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8. Returns ------- y : float The resultant integral. abserr : float An estimate of the error. See Also -------- quad: Adaptive quadrature using QUADPACK quadrature: Adaptive Gaussian quadrature fixed_quad: Fixed-order Gaussian quadrature dblquad: Double integrals nquad : N-dimensional integrals romb: Integrators for sampled data simps: Integrators for sampled data ode: ODE integrators odeint: ODE integrators scipy.special: For coefficients and roots of orthogonal polynomials trapz(y, x=None, dx=1.0, axis=-1) Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) DATA __all__ = ['IntegrationWarning', 'absolute_import', 'complex_ode', 'cu... absolute_import = _Feature((2, 5, 0, 'alpha', 1), (3, 0, 0, 'alpha', 0... division = _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192... print_function = _Feature((2, 6, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0)... FILE /home/alex/anaconda3/lib/python3.4/site-packages/scipy/integrate/__init__.py
Como se puede ver en la ayuda, si queremos realizar una integración numérica de una función de una variable, debemos utilizar quad
(aunque también podemos usar trapz
, simps
... La forma de acceder a ella tal y como hemos importado el paquete sería ejecutando integrate.quad
. Sin emabrgo, sería más normal importar del siguiete modo:
from scipy.integrate import quad
De este modo se puede usar la función quad, simplemente como quad
. Pero todavía no sabemos cómo funciona, ¿te atreves a investigarlo tú?
help(quad)
Help on function quad in module scipy.integrate.quadpack: quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50) Compute a definite integral. Integrate func from `a` to `b` (possibly infinite interval) using a technique from the Fortran library QUADPACK. Parameters ---------- func : function A Python function or method to integrate. If `func` takes many arguments, it is integrated along the axis corresponding to the first argument. a : float Lower limit of integration (use -numpy.inf for -infinity). b : float Upper limit of integration (use numpy.inf for +infinity). args : tuple, optional Extra arguments to pass to `func`. full_output : int, optional Non-zero to return a dictionary of integration information. If non-zero, warning messages are also suppressed and the message is appended to the output tuple. Returns ------- y : float The integral of func from `a` to `b`. abserr : float An estimate of the absolute error in the result. infodict : dict A dictionary containing additional information. Run scipy.integrate.quad_explain() for more information. message : A convergence message. explain : Appended only with 'cos' or 'sin' weighting and infinite integration limits, it contains an explanation of the codes in infodict['ierlst'] Other Parameters ---------------- epsabs : float or int, optional Absolute error tolerance. epsrel : float or int, optional Relative error tolerance. limit : float or int, optional An upper bound on the number of subintervals used in the adaptive algorithm. points : (sequence of floats,ints), optional A sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinuities). The sequence does not have to be sorted. weight : float or int, optional String indicating weighting function. Full explanation for this and the remaining arguments can be found below. wvar : optional Variables for use with weighting functions. wopts : optional Optional input for reusing Chebyshev moments. maxp1 : float or int, optional An upper bound on the number of Chebyshev moments. limlst : int, optional Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point. See Also -------- dblquad : double integral tplquad : triple integral nquad : n-dimensional integrals (uses `quad` recursively) fixed_quad : fixed-order Gaussian quadrature quadrature : adaptive Gaussian quadrature odeint : ODE integrator ode : ODE integrator simps : integrator for sampled data romb : integrator for sampled data scipy.special : for coefficients and roots of orthogonal polynomials Notes ----- **Extra information for quad() inputs and outputs** If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this transformed range. Let M be the input argument limit and let K be infodict['last']. The entries are: 'neval' The number of function evaluations. 'last' The number, K, of subintervals produced in the subdivision process. 'alist' A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the partition of the integration range. 'blist' A rank-1 array of length M, the first K elements of which are the right end points of the subintervals. 'rlist' A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals. 'elist' A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the subintervals. 'iord' A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence infodict['iord'] and let E be the sequence infodict['elist']. Then E[I[1]], ..., E[I[L]] forms a decreasing sequence. If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the output dictionary. Assume the points sequence is of length P. 'pts' A rank-1 array of length P+2 containing the integration limits and the break points of the intervals in ascending order. This is an array giving the subintervals over which integration will occur. 'level' A rank-1 integer array of length M (=limit), containing the subdivision levels of the subintervals, i.e., if (aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2] are adjacent elements of infodict['pts'], then (aa,bb) has level l if |bb-aa|=|pts[2]-pts[1]| * 2**(-l). 'ndin' A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]), the error estimates over some of the intervals may have been increased artificially in order to put their subdivision forward. This array has ones in slots corresponding to the subintervals for which this happens. **Weighting the integrand** The input variables, *weight* and *wvar*, are used to weight the integrand by a select list of functions. Different integration methods are used to compute the integral with these weighting functions. The possible values of weight and the corresponding weighting functions are. ========== =================================== ===================== ``weight`` Weight function used ``wvar`` ========== =================================== ===================== 'cos' cos(w*x) wvar = w 'sin' sin(w*x) wvar = w 'alg' g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta) 'alg-loga' g(x)*log(x-a) wvar = (alpha, beta) 'alg-logb' g(x)*log(b-x) wvar = (alpha, beta) 'alg-log' g(x)*log(x-a)*log(b-x) wvar = (alpha, beta) 'cauchy' 1/(x-c) wvar = c ========== =================================== ===================== wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b are the integration limits. For the 'cos' and 'sin' weighting, additional inputs and outputs are available. For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev moments. For repeated calculations, these moments are saved in the output dictionary: 'momcom' The maximum level of Chebyshev moments that have been computed, i.e., if M_c is infodict['momcom'] then the moments have been computed for intervals of length |b-a|* 2**(-l), l=0,1,...,M_c. 'nnlog' A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals, i.e., an element of this array is equal to l if the corresponding subinterval is |b-a|* 2**(-l). 'chebmo' A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can be passed on to an integration over the same interval by passing this array as the second element of the sequence wopts and passing infodict['momcom'] as the first element. If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is also appended to the output tuple which translates the error codes in the array info['ierlst'] to English messages. The output information dictionary contains the following entries instead of 'last', 'alist', 'blist', 'rlist', and 'elist': 'lst' The number of subintervals needed for the integration (call it K_f). 'rslst' A rank-1 array of length M_f=limlst, whose first K_f elements contain the integral contribution over the interval (a+(k-1)c, a+kc) where c = (2*floor(|w|) + 1) * pi / |w| and k=1,2,...,K_f. 'erlst' A rank-1 array of length M_f containing the error estimate corresponding to the interval in the same position in infodict['rslist']. 'ierlst' A rank-1 integer array of length M_f containing an error flag corresponding to the interval in the same position in infodict['rslist']. See the explanation dictionary (last entry in the output tuple) for the meaning of the codes. Examples -------- Calculate :math:`\int^4_0 x^2 dx` and compare with an analytic result >>> from scipy import integrate >>> x2 = lambda x: x**2 >>> integrate.quad(x2, 0, 4) (21.333333333333332, 2.3684757858670003e-13) >>> print(4**3 / 3.) # analytical result 21.3333333333 Calculate :math:`\int^\infty_0 e^{-x} dx` >>> invexp = lambda x: np.exp(-x) >>> integrate.quad(invexp, 0, np.inf) (1.0, 5.842605999138044e-11) >>> f = lambda x,a : a*x >>> y, err = integrate.quad(f, 0, 1, args=(1,)) >>> y 0.5 >>> y, err = integrate.quad(f, 0, 1, args=(3,)) >>> y 1.5
Quizá esta ayuda te resulte más atractiva.
¿Qué es lo primero que necesitamos hacer para integrar una función? Pues sí, la función... definamos una:
$$f(x) = x \cdot sin(x)$$def fun(x):
return x * np.sin(x)
Antes de integrarla genera esta gráfica:
x = np.linspace(0,10,100)
y = fun(x)
plt.title('$y = x sin(x)$', fontsize = 25)
plt.plot(x,y, linewidth = 2)
x_fill = np.linspace(2,9,100)
y_fill = fun(x_fill)
plt.fill_between(x_fill, y_fill, color='gray', alpha=0.5)
plt.grid()
quad
¶Integremos la función en el intervalo $[2, 9]$. Recuerda que esto te calcula la integral, no el área:
value, err = quad(fun, 2, 9)
print("El resultado es: ", value, "con un error de: ", err)
El resultado es: 6.870699742283883 con un error de: 2.864870105641461e-13
Según figura en la documentación a estos métodos hay que pasarles las coordenadas de los puntos (no la función). Esto puede ser útil si no disponemos de una función, sino de una serie da valores, que por ejemplo, provienen de un experimento.
x = np.linspace(2,9,100)
value = integrate.trapz(fun(x), x)
print("El resultado es: ", value)
El resultado es: 6.86742266171
x = np.linspace(2,9,100)
value = integrate.simps(fun(x), x)
print("El resultado es: ", value)
El resultado es: 6.8705759095
Las siguientes celdas contienen configuración del Notebook
Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como seguro
File > Trusted Notebook
# Esta celda da el estilo al notebook
from IPython.core.display import HTML
css_file = '../styles/aeropython.css'
HTML(open(css_file, "r").read())