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Abstract

We demonstrate that an unlexicalizedPCFG can
parse much more accurately than previously shown,
by making use of simple, linguistically motivated
state splits, which break down false independence
assumptions latent in a vanilla treebank grammar.
Indeed, its performance of 86.36% (LP/LR F1) is
better than that of earlylexicalizedPCFG models,
and surprisingly close to the current state-of-the-
art. This result has potential uses beyond establish-
ing a strong lower bound on the maximum possi-
ble accuracy of unlexicalized models: an unlexical-
ized PCFG is much more compact, easier to repli-
cate, and easier to interpret than more complex lex-
ical models, and the parsing algorithms are simpler,
more widely understood, of lower asymptotic com-
plexity, and easier to optimize.

In the early 1990s, as probabilistic methods swept
NLP, parsing work revived the investigation of prob-
abilistic context-free grammars (PCFGs) (Booth and
Thomson, 1973; Baker, 1979). However, early re-
sults on the utility ofPCFGs for parse disambigua-
tion and language modeling were somewhat disap-
pointing. A conviction arose thatlexicalizedPCFGs
(where head words annotate phrasal nodes) were
the key tool for high performancePCFG parsing.
This approach was congruent with the great success
of word n-gram models in speech recognition, and
drew strength from a broader interest in lexicalized
grammars, as well as demonstrations that lexical de-
pendencies were a key tool for resolving ambiguities
such asPPattachments (Ford et al., 1982; Hindle and
Rooth, 1993). In the following decade, great success
in terms of parse disambiguation and even language
modeling was achieved by various lexicalizedPCFG

models (Magerman, 1995; Charniak, 1997; Collins,
1999; Charniak, 2000; Charniak, 2001).

However, several results have brought into ques-
tion how large a role lexicalization plays in such
parsers. Johnson (1998) showed that the perfor-

mance of anunlexicalizedPCFGover the Penn tree-
bank could be improved enormously simply by an-
notating each node by its parent category. The Penn
treebank coveringPCFGis a poor tool for parsing be-
cause the context-freedom assumptions it embodies
are far too strong, and weakening them in this way
makes the model much better. More recently, Gildea
(2001) discusses how taking thebilexical probabil-
ities out of a good current lexicalizedPCFG parser
hurts performance hardly at all: by at most 0.5% for
test text from the same domain as the training data,
and not at all for test text from a different domain.1

But it is precisely these bilexical dependencies that
backed the intuition that lexicalizedPCFGs should be
very successful, for example in Hindle and Rooth’s
demonstration fromPPattachment. We take this as a
reflection of the fundamental sparseness of the lex-
ical dependency information available in the Penn
Treebank. As a speech person would say, one mil-
lion words of training data just isn’t enough. Even
for topics central to the treebank’sWall Street Jour-
nal text, such as stocks, many very plausible depen-
dencies occur only once, for examplestocks stabi-
lized, while many others occur not at all, for exam-
ple stocks skyrocketed.2

The best-performing lexicalizedPCFGs have in-
creasingly made use ofsubcategorization3 of the

1There are minor differences, but all the current best-known
lexicalized PCFGs employ bothmonolexicalstatistics, which
describe the phrasal categories of arguments and adjuncts that
appear around a head lexical item, andbilexicalstatistics, or de-
pendencies, which describe the likelihood of a head word taking
as a dependent a phrase headed by a certain other word.

2This observation motivates various class- or similarity-
based approaches to combating sparseness, and this remainsa
promising avenue of work, but success in this area has proven
somewhat elusive, and, at any rate, current lexicalizedPCFGs
do simply use exact word matches if available, and interpolate
with syntactic category-based estimates when they are not.

3In this paper we use the termsubcategorizationin the origi-
nal general sense of Chomsky (1965), for where a syntactic cat-



categories appearing in the Penn treebank. Charniak
(2000) shows the value his parser gains from parent-
annotation of nodes, suggesting that this informa-
tion is at least partly complementary to information
derivable from lexicalization, and Collins (1999)
uses a range of linguistically motivated and care-
fully hand-engineered subcategorizations to break
down wrong context-freedom assumptions of the
naive Penn treebank coveringPCFG, such as differ-
entiating “baseNPs” from noun phrases with phrasal
modifiers, and distinguishing sentences with empty
subjects from those where there is an overt subject
NP. While he gives incomplete experimental results
as to their efficacy, we can assume that these features
were incorporated because of beneficial effects on
parsing that were complementary to lexicalization.

In this paper, we show that the parsing perfor-
mance that can be achieved by an unlexicalized
PCFG is far higher than has previously been demon-
strated, and is, indeed, much higher than community
wisdom has thought possible. We describe several
simple, linguistically motivated annotations which
do much to close the gap between a vanillaPCFG

and state-of-the-art lexicalized models. Specifically,
we construct anunlexicalizedPCFG which outper-
forms the lexicalized PCFGs of Magerman (1995)
and Collins (1996) (though not more recent models,
such as Charniak (1997) or Collins (1999)).

One benefit of this result is a much-strengthened
lower bound on the capacity of an unlexicalized
PCFG. To the extent that no such strong baseline has
been provided, the community has tended to greatly
overestimate the beneficial effect of lexicalization in
probabilistic parsing, rather than looking critically
at where lexicalized probabilities are bothneededto
make the right decision andavailablein the training
data. Secondly, this result affirms the value of lin-
guistic analysis for feature discovery. The result has
other uses and advantages: an unlexicalizedPCFG

is easier to interpet, reason about, and improve than
the more complex lexicalized models. The grammar
representation is much more compact, no longer re-
quiring large structures that store lexicalized proba-
bilities. The parsing algorithms have lower asymp-
totic complexity4 and have much smaller grammar

egory is divided into several subcategories, for example divid-
ing verb phrases into finite and non-finite verb phrases, rather
than in the modern restricted usage where the term refers only
to the syntactic argument frames of predicators.

4O(n3) vs. O(n5) for a naive implementation, or vs.O(n4)

if using the clever approach of Eisner and Satta (1999).

constants. An unlexicalizedPCFG parser is much
simpler to build and optimize, including both stan-
dard code optimization techniques and the investiga-
tion of methods for search space pruning (Caraballo
and Charniak, 1998; Charniak et al., 1998).

It is not our goal to argue against the use of lex-
icalized probabilities in high-performance probabi-
listic parsing. It has been comprehensively demon-
strated that lexical dependencies are useful in re-
solving major classes of sentence ambiguities, and a
parser should make use of such information where
possible. We focus here on using unlexicalized,
structural context because we feel that this infor-
mation has been underexploited and underappreci-
ated. We see this investigation as only one part of
the foundation for state-of-the-art parsing which em-
ploysboth lexical and structural conditioning.

1 Experimental Setup

To facilitate comparison with previous work, we
trained our models on sections 2–21 of theWSJsec-
tion of the Penn treebank. We used the first 20 files
(393 sentences) of section 22 as a development set
(devset). This set is small enough that there is no-
ticeable variance in individual results, but it allowed
rapid search for good features via continually repars-
ing the devset in a partially manual hill-climb. All of
section 23 was used as a test set for the final model.
For each model, input trees were annotated or trans-
formed in some way, as in Johnson (1998). Given
a set of transformed trees, we viewed the local trees
as grammar rewrite rules in the standard way, and
used (unsmoothed) maximum-likelihood estimates
for rule probabilities.5 To parse the grammar, we
used a simple array-based Java implementation of
a generalizedCKY parser, which, for our final best
model, was able to exhaustively parse all sentences
in section 23 in 1GB of memory, taking approxi-
mately 3 sec for average length sentences.6

5The tagging probabilities were smoothed to accommodate
unknown words. The quantityP(tag|word) was estimated
as follows: words were split into one of several categories
wordclass, based on capitalization, suffix, digit, and other
character features. For each of these categories, we took the
maximum-likelihood estimate ofP(tag|wordclass). This dis-
tribution was used as a prior against which observed taggings,
if any, were taken, givingP(tag|word) = [c(tag, word) +

κ P(tag|wordclass)]/[c(word)+κ]. This was then inverted to
give P(word|tag). The quality of this tagging model impacts
all numbers; for example the raw treebank grammar’s devset F1
is 72.62 with it and 72.09 without it.

6The parser is available for download as open source at:
http://nlp.stanford.edu/downloads/lex-parser.shtml



VP

<VP:[VBZ]. . . PP>

<VP:[VBZ]. . . NP>

<VP:[VBZ]>

VBZ

NP

PP

Figure 1: Thev=1, h=1 markovization ofVP → VBZ NP PP.

2 Vertical and Horizontal Markovization

The traditional starting point for unlexicalized pars-
ing is the rawn-ary treebank grammar read from
training trees (after removing functional tags and
null elements). This basic grammar is imperfect in
two well-known ways. First, the category symbols
are too coarse to adequately render the expansions
independent of the contexts. For example, subject
NP expansions are very different from objectNP ex-
pansions: a subjectNP is 8.7 times more likely than
an objectNP to expand as just a pronoun. Having
separate symbols for subject and objectNPs allows
this variation to be captured and used to improve
parse scoring. One way of capturing this kind of
external context is to useparent annotation, as pre-
sented in Johnson (1998). For example,NPs with S

parents (like subjects) will be markedNPˆS, while
NPs with VP parents (like objects) will beNPˆVP.

The second basic deficiency is that many rule
types have been seen only once (and therefore have
their probabilities overestimated), and many rules
which occur in test sentences will never have been
seen in training (and therefore have their probabili-
ties underestimated – see Collins (1999) for analy-
sis). Note that in parsing with the unsplit grammar,
not having seen a rule doesn’t mean one gets a parse
failure, but rather a possibly very weird parse (Char-
niak, 1996). One successful method of combating
sparsity is tomarkovizethe rules (Collins, 1999). In
particular, we follow that work in markovizing out
from the head child, despite the grammar being un-
lexicalized, because this seems the best way to cap-
ture the traditional linguistic insight that phrases are
organized around a head (Radford, 1988).

Both parent annotation (adding context) andRHS

markovization (removing it) can be seen as two in-
stances of the same idea. In parsing, every node has
a vertical history, including the node itself, parent,
grandparent, and so on. A reasonable assumption is
that only the pastv vertical ancestors matter to the
current expansion. Similarly, only the previoush
horizontal ancestors matter (we assume that the head

Horizontal Markov Order
Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h = ∞

v = 1 No annotation 71.27 72.5 73.46 72.96 72.62
(854) (3119) (3863) (6207) (9657)

v ≤ 2 Sel. Parents 74.75 77.42 77.77 77.50 76.91
(2285) (6564) (7619) (11398) (14247)

v = 2 All Parents 74.68 77.42 77.81 77.50 76.81
(2984) (7312) (8367) (12132) (14666)

v ≤ 3 Sel. GParents 76.50 78.59 79.07 78.97 78.54
(4943) (12374) (13627) (19545) (20123)

v = 3 All GParents 76.74 79.18 79.74 79.07 78.72
(7797) (15740) (16994) (22886) (22002)

Figure 2: Markovizations: F1 and grammar size.

child always matters). It is a historical accident that
the default notion of a treebankPCFGgrammar takes
v = 1 (only the current node matters vertically) and
h = ∞ (rule right hand sides do not decompose at
all). On this view, it is unsurprising that increasing
v and decreasingh have historically helped.

As an example, consider the case ofv = 1,
h = 1. If we start with the ruleVP → VBZ NP

PP PP, it will be broken into several stages, each a
binary or unary rule, which conceptually represent
a head-outward generation of the right hand size, as
shown in figure 1. The bottom layer will be a unary
over the head declaring the goal:〈VP: [VBZ]〉 →

VBZ. The square brackets indicate that theVBZ is
the head, while the angle brackets〈X〉 indicates that
the symbol〈X〉 is an intermediate symbol (equiv-
alently, an active or incomplete state). The next
layer up will generate the first rightward sibling of
the head child:〈VP: [VBZ]. . . NP〉 → 〈VP: [VBZ]〉
NP. Next, thePP is generated:〈VP: [VBZ]. . . PP〉 →

〈VP: [VBZ]. . . NP〉 PP. We would then branch off left
siblings if there were any.7 Finally, we have another
unary to finish theVP. Note that while it is con-
venient to think of this as a head-outward process,
these are justPCFGrewrites, and so the actual scores
attached to each rule will correspond to a downward
generation order.

Figure 2 presents a grid of horizontal and verti-
cal markovizations of the grammar. The raw tree-
bank grammar corresponds tov = 1, h = ∞ (the
upper right corner), while the parent annotation in
(Johnson, 1998) corresponds tov = 2, h = ∞, and
the second-order model in Collins (1999), is broadly
a smoothed version ofv = 2, h = 2. In addi-
tion to exactnth-order models, we tried variable-

7In our system, the last few right children carry over as pre-
ceding context for the left children, distinct from common prac-
tice. We found this wrapped horizon to be beneficial, and it
also unifies the infinite order model with the unmarkovized raw
rules.



Cumulative Indiv.
Annotation Size F1 1 F1 1 F1

Baseline (v ≤ 2, h ≤ 2) 7619 77.77 – –
UNARY-INTERNAL 8065 78.32 0.55 0.55
UNARY-DT 8066 78.48 0.71 0.17
UNARY-RB 8069 78.86 1.09 0.43
TAG-PA 8520 80.62 2.85 2.52
SPLIT-IN 8541 81.19 3.42 2.12
SPLIT-AUX 9034 81.66 3.89 0.57
SPLIT-CC 9190 81.69 3.92 0.12
SPLIT-% 9255 81.81 4.04 0.15
TMP-NP 9594 82.25 4.48 1.07
GAPPED-S 9741 82.28 4.51 0.17
POSS-NP 9820 83.06 5.29 0.28
SPLIT-VP 10499 85.72 7.95 1.36
BASE-NP 11660 86.04 8.27 0.73
DOMINATES-V 14097 86.91 9.14 1.42
RIGHT-REC-NP 15276 87.04 9.27 1.94

Figure 3: Size and devset performance of the cumulatively an-
notated models, starting with the markovized baseline. The
right two columns show the change in F1 from the baseline for
each annotation introduced, both cumulatively and for eachsin-
gle annotation applied to the baseline in isolation.

history models similar in intent to those described
in Ron et al. (1994). For variable horizontal his-
tories, we did not split intermediate states below 10
occurrences of a symbol. For example, if the symbol
〈VP: [VBZ]. . . PP PP〉 were too rare, we would col-
lapse it to〈VP: [VBZ]. . . PP〉. For vertical histories,
we used a cutoff which included both frequency and
mutual information between the history and the ex-
pansions (this was not appropriate for the horizontal
case becauseMI is unreliable at such low counts).

Figure 2 shows parsing accuracies as well as the
number of symbols in each markovization. These
symbol counts include all the intermediate states
which represent partially completed constituents.
The general trend is that, in the absence of further
annotation, more vertical annotation is better – even
exhaustive grandparent annotation. This is not true
for horizontal markovization, where the variable-
order second-order model was superior. The best
entry, v = 3, h ≤ 2, has an F1 of 79.74, already
a substantial improvement over the baseline.

In the remaining sections, we discuss other an-
notations which increasingly split the symbol space.
Since we expressly do not smooth the grammar, not
all splits are guaranteed to be beneficial, and not all
sets of useful splits are guaranteed to co-exist well.
In particular, whilev = 3, h ≤ 2 markovization is
good on its own, it has a large number of states and
does not tolerate further splitting well. Therefore,
we base all further exploration on thev ≤ 2, h ≤ 2
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Figure 4: An error which can be resolved with theUNARY-
INTERNAL annotation (incorrect baseline parse shown).

grammar. Although it does not necessarily jump out
of the grid at first glance, this point represents the
best compromise between a compact grammar and
useful markov histories.

3 External vs. Internal Annotation

The two major previous annotation strategies, par-
ent annotation and head lexicalization, can be seen
as instances of external and internal annotation, re-
spectively. Parent annotation lets us indicate an
important feature of the external environment of a
node which influences the internal expansion of that
node. On the other hand, lexicalization is a (radi-
cal) method of marking a distinctive aspect of the
otherwise hidden internal contents of a node which
influence the external distribution. Both kinds of an-
notation can be useful. To identify split states, we
add suffixes of the form -X to mark internal content
features, andX̂ to mark external features.

To illustrate the difference, consider unary pro-
ductions. In the raw grammar, there are many unar-
ies, and once any major category is constructed over
a span, most others become constructible as well us-
ing unary chains (see Klein and Manning (2001) for
discussion). Such chains are rare in real treebank
trees: unary rewrites only appear in very specific
contexts, for exampleS complements of verbs where
the S has an empty, controlled subject. Figure 4
shows an erroneous output of the parser, using the
baseline markovized grammar. Intuitively, there are
several reasons this parse should be ruled out, but
one is that the lowerS slot, which is intended pri-
marily for S complements of communication verbs,
is not a unary rewrite position (such complements
usually have subjects). It would therefore be natural
to annotate the trees so as to confine unary produc-
tions to the contexts in which they are actually ap-
propriate. We tried two annotations. First,UNARY-



INTERNAL marks (with a -U) any nonterminal node
which has only one child. In isolation, this resulted
in an absolute gain of 0.55% (see figure 3). The
same sentence, parsed using only the baseline and
UNARY-INTERNAL, is parsed correctly, because the
VP rewrite in the incorrect parse ends with anSˆVP-
U with very low probability.8

Alternately, UNARY-EXTERNAL, marked nodes
which had no siblings with Û. It was similar to
UNARY-INTERNAL in solo benefit (0.01% worse),
but provided far less marginal benefit on top of
other later features (none at all on top ofUNARY-
INTERNAL for our top models), and was discarded.9

One restricted place where external unary annota-
tion was very useful, however, was at the pretermi-
nal level, where internal annotation was meaning-
less. One distributionally salient tag conflation in
the Penn treebank is the identification of demonstra-
tives (that, those) and regular determiners (the, a).
Splitting DT tags based on whether they were only
children (UNARY-DT) captured this distinction. The
same external unary annotation was even more ef-
fective when applied to adverbs (UNARY-RB), dis-
tinguishing, for example,as well from also). Be-
yond these cases, unary tag marking was detrimen-
tal. The F1 after UNARY-INTERNAL, UNARY-DT,
andUNARY-RB was 78.86%.

4 Tag Splitting

The idea that part-of-speech tags are not fine-grained
enough to abstract away from specific-word be-
haviour is a cornerstone of lexicalization. The
UNARY-DT annotation, for example, showed that the
determiners which occur alone are usefully distin-
guished from those which occur with other nomi-
nal material. This marks theDT nodes with a single
bit about their immediate external context: whether
there are sisters. Given the success of parent anno-
tation for nonterminals, it makes sense to parent an-
notate tags, as well (TAG-PA). In fact, as figure 3
shows, exhaustively marking all preterminals with
their parent category was the most effective single
annotation we tried. Why should this be useful?
Most tags have a canonical category. For example,
NNS tags occur underNP nodes (only 234 of 70855
do not, mostly mistakes). However, when a tag

8Note that when we show such trees, we generally only
show one annotation on top of the baseline at a time. More-
over, we do not explicitly show the binarization implicit bythe
horizontal markovization.

9These two are not equivalent even given infinite data.
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Figure 5: An error resolved with theTAG-PA annotation (of the
IN tag): (a) the incorrect baseline parse and (b) the correctTAG-
PA parse.SPLIT-IN also resolves this error.

somewhat regularly occurs in a non-canonical posi-
tion, its distribution is usually distinct. For example,
the most common adverbs directly underADVP are
also (1599) andnow (544). UnderVP, they aren’t
(3779) andnot (922). UnderNP, only (215) andjust
(132), and so on.TAG-PA brought F1 up substan-
tially, to 80.62%.

In addition to the adverb case, the Penn tag set
conflates various grammatical distinctions that are
commonly made in traditional and generative gram-
mar, and from which a parser could hope to get use-
ful information. For example, subordinating con-
junctions (while, as, if), complementizers (that, for),
and prepositions (of, in, from) all get the tagIN.
Many of these distinctions are captured byTAG-
PA (subordinating conjunctions occur underS and
prepositions underPP), but are not (both subor-
dinating conjunctions and complementizers appear
under SBAR). Also, there are exclusively noun-
modifying prepositions (of), predominantly verb-
modifying ones (as), and so on. The annotation
SPLIT-IN does a linguistically motivated 6-way split
of the IN tag, and brought the total to 81.19%.

Figure 5 shows an example error in the baseline
which is equally well fixed by eitherTAG-PA or
SPLIT-IN. In this case, the more common nominal
use ofworks is preferred unless theIN tag is anno-
tated to allowif to preferS complements.

We also got value from three other annotations
which subcategorized tags for specific lexemes.
First we split off auxiliary verbs with theSPLIT-
AUX annotation, which appends ˆBE to all forms
of be and ĤAVE to all forms ofhave.10 More mi-
norly, SPLIT-CC marked conjunction tags to indicate

10This is an extended uniform version of the partial auxil-
iary annotation of Charniak (1997), wherein all auxiliaries are
marked asAUX and a -G is added to gerund auxiliaries and
gerundVPs.



whether or not they were the strings [Bb]ut or &,
each of which have distinctly different distributions
from other conjunctions. Finally, we gave the per-
cent sign (%) its own tag, in line with the dollar sign
($) already having its own. Together these three an-
notations brought the F1 to 81.81%.

5 What is an Unlexicalized Grammar?

Around this point, we must address exactly what we
mean by anunlexicalizedPCFG. To the extent that
we go about subcategorizingPOS categories, many
of them might come to represent a single word. One
might thus feel that the approach of this paper is to
walk down a slippery slope, and that we are merely
arguing degrees. However, we believe that there is a
fundamental qualitative distinction, grounded in lin-
guistic practice, between what we see as permitted
in an unlexicalizedPCFG as against what one finds
and hopes to exploit in lexicalizedPCFGs. The di-
vision rests on the traditional distinction between
function words(or closed-class words) andcontent
words (or open class or lexical words). It is stan-
dard practice in linguistics, dating back decades,
to annotate phrasal nodes with important function-
word distinctions, for example to have aCP[for]
or a PP[to], whereas content words are not part of
grammatical structure, and one would not have spe-
cial rules or constraints for anNP[stocks], for exam-
ple. We follow this approach in our model: various
closed classes are subcategorized to better represent
important distinctions, and important features com-
monly expressed by function words are annotated
onto phrasal nodes (such as whether aVP is finite,
or a participle, or an infinitive clause). However, no
use is made of lexical class words, to provide either
monolexical or bilexical probabilities.11

At any rate, we have kept ourselves honest by es-
timating our models exclusively by maximum like-
lihood estimation over our subcategorized gram-
mar, without any form of interpolation or shrink-
age to unsubcategorized categories (although we do
markovize rules, as explained above). This effec-

11It should be noted that we started with four tags in the Penn
treebank tagset that rewrite as a single word:EX (there), WP$
(whose), # (the pound sign), andTO), and some others such
as WP, POS, and some of the punctuation tags, which rewrite
as barely more. To the extent that we subcategorize tags, there
will be more such cases, but many of them already exist in other
tag sets. For instance, many tag sets, such as the Brown and
CLAWS (c5) tagsets give a separate sets of tags to each form of
the verbal auxiliariesbe, do, andhave, most of which rewrite as
only a single word (and any corresponding contractions).
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Figure 6: An error resolved with theTMP-NP annotation: (a)
the incorrect baseline parse and (b) the correctTMP-NP parse.

tively means that the subcategories that we break off
must themselves be very frequent in the language.
In such a framework, if we try to annotate cate-
gories with any detailed lexical information, many
sentences either entirely fail to parse, or have only
extremely weird parses. The resulting battle against
sparsity means that we can only afford to make a few
distinctions which have major distributional impact.
Even with the individual-lexeme annotations in this
section, the grammar still has only 9255 states com-
pared to the 7619 of the baseline model.

6 Annotations Already in the Treebank

At this point, one might wonder as to the wisdom
of stripping off all treebank functional tags, only
to heuristically add other such markings back in to
the grammar. By and large, the treebank out-of-the
package tags, such asPP-LOC or ADVP-TMP, have
negative utility. Recall that the raw treebank gram-
mar, with no annotation or markovization, had an F1

of 72.62% on our development set. With the func-
tional annotation left in, this drops to 71.49%. The
h ≤ 2, v ≤ 1 markovization baseline of 77.77%
dropped even further, all the way to 72.87%, when
these annotations were included.

Nonetheless, some distinctions present in the raw
treebank trees were valuable. For example, anNP

with an S parent could be either a temporalNP or a
subject. For the annotationTMP-NP, we retained the
original -TMP tags onNPs, and, furthermore, propa-
gated the tag down to the tag of the head of theNP.
This is illustrated in figure 6, which also shows an
example of its utility, clarifying thatCNN last night
is not a plausible compound and facilitating the oth-
erwise unusual high attachment of the smallerNP.
TMP-NP brought the cumulative F1 to 82.25%. Note
that this technique of pushing the functional tags
down to preterminals might be useful more gener-
ally; for example, locativePPs expand roughly the
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Figure 7: An error resolved with theSPLIT-VP annotation: (a)
the incorrect baseline parse and (b) the correctSPLIT-VP parse.

same way as all otherPPs (usually asIN NP), but
they do tend to have different prepositions belowIN.

A second kind of information in the original
trees is the presence of empty elements. Following
Collins (1999), the annotationGAPPED-S marks S

nodes which have an empty subject (i.e., raising and
control constructions). This brought F1 to 82.28%.

7 Head Annotation

The notion that the head word of a constituent can
affect its behavior is a useful one. However, often
the head tag is as good (or better) an indicator of how
a constituent will behave.12 We found several head
annotations to be particularly effective. First, pos-
sessiveNPs have a very different distribution than
otherNPs – in particular,NP → NP α rules are only
used in the treebank when the leftmost child is pos-
sessive (as opposed to other imaginable uses like for
New York lawyers, which is left flat). To address this,
POSS-NP marked all possessiveNPs. This brought
the total F1 to 83.06%. Second, theVP symbol is
very overloaded in the Penn treebank, most severely
in that there is no distinction between finite and in-
finitival VPs. An example of the damage this con-
flation can do is given in figure 7, where one needs
to capture the fact that present-tense verbs do not
generally take bare infinitiveVP complements. To
allow the finite/non-finite distinction, and other verb
type distinctions,SPLIT-VP annotated allVP nodes
with their head tag, merging all finite forms to a sin-
gle tagVBF. In particular, this also accomplished
Charniak’s gerund-VP marking. This was extremely
useful, bringing the cumulative F1 to 85.72%, 2.66%
absolute improvement (more than its solo improve-
ment over the baseline).

12This is part of the explanation of why (Charniak, 2000)
finds that early generation of head tags as in (Collins, 1999)
is so beneficial. The rest of the benefit is presumably in the
availability of the tags for smoothing purposes.

8 Distance

Error analysis at this point suggested that many re-
maining errors were attachment level and conjunc-
tion scope. While these kinds of errors are un-
doubtably profitable targets for lexical preference,
most attachment mistakes were overly high attach-
ments, indicating that the overall right-branching
tendency of English was not being captured. In-
deed, this tendency is a difficult trend to capture in
a PCFGbecause often the high and low attachments
involve the very same rules. Even if not, attachment
height is not modeled by aPCFG unless it is some-
how explicitly encoded into category labels. More
complex parsing models have indirectly overcome
this by modeling distance (rather than height).

Linear distance is difficult to encode in aPCFG

– marking nodes with the size of their yields mas-
sively multiplies the state space.13 Therefore, we
wish to find indirect indicators that distinguish high
attachments from low ones. In the case of twoPPs
following a NP, with the question of whether the
secondPP is a second modifier of the leftmostNP

or should attach lower, inside the firstPP, the im-
portant distinction is usually that the lower site is a
non-recursive baseNP. Collins (1999) captures this
notion by introducing the notion of a baseNP, in
which anyNP which dominates only preterminals is
marked with a -B. Further, if anNP-B does not have
a non-baseNP parent, it is given one with a unary
production. This was helpful, but substantially less
effective than marking baseNPswithout introducing
the unary, whose presence actually erased a useful
internal indicator – baseNPs are more frequent in
subject position than object position, for example. In
isolation, the Collins method actually hurt the base-
line (absolute cost to F1 of 0.37%), while skipping
the unary insertion added an absolute 0.73% to the
baseline, and brought the cumulative F1 to 86.04%.

In the case of attachment of aPP to an NP ei-
ther above or inside a relative clause, the highNP

is distinct from the low one in that the already mod-
ified one contains a verb (and the low one may be
a baseNP as well). This is a partial explanation of
the utility of verbal distance in Collins (1999). To

13The inability to encode distance naturally in a naivePCFG
is somewhat ironic. In the heart of anyPCFGparser, the funda-
mental table entry or chart item is a label over a span, for ex-
ample anNP from position 0 to position 5. The concrete use of
a grammar rule is to take two adjacent span-marked labels and
combine them (for exampleNP[0,5] andVP[5,12] intoS[0,12]).
Yet, only the labels are used to score the combination.



Length≤ 40 LP LR F1 Exact CB 0 CB
Magerman (1995) 84.9 84.6 1.26 56.6
Collins (1996) 86.3 85.8 1.14 59.9
this paper 86.9 85.7 86.3 30.9 1.10 60.3
Charniak (1997) 87.4 87.5 1.00 62.1
Collins (1999) 88.7 88.6 0.90 67.1

Length≤ 100 LP LR F1 Exact CB 0 CB
this paper 86.3 85.1 85.7 28.8 1.31 57.2

Figure 8: Results of the final model on the test set (section 23).

capture this,DOMINATES-V marks all nodes which
dominate any verbal node (V*, MD) with a -V. This
brought the cumulative F1 to 86.91%. We also tried
marking nodes which dominated prepositions and/or
conjunctions, but these features did not help the cu-
mulative hill-climb.

The final distance/depth feature we used was an
explicit attempt to model depth, rather than use
distance and linear intervention as a proxy. With
RIGHT-REC-NP, we marked allNPs which contained
anotherNP on their right periphery (i.e., as a right-
most descendant). This captured some further at-
tachment trends, and brought us to a final develop-
ment F1 of 87.04%.

9 Final Results

We took the final model and used it to parse sec-
tion 23 of the treebank. Figure 8 shows the re-
sults. The test set F1 is 86.32% for≤ 40 words,
already higher than early lexicalized models, though
of course lower than the state-of-the-art parsers.

10 Conclusion

The advantages of unlexicalized grammars are clear
enough – easy to estimate, easy to parse with, and
time- and space-efficient. However, the dismal per-
formance of basic unannotated unlexicalized gram-
mars has generally rendered those advantages irrel-
evant. Here, we have shown that, surprisingly, the
maximum-likelihood estimate of a compact unlexi-
calizedPCFGcan parse on par with early lexicalized
parsers. We do not want to argue that lexical se-
lection is not a worthwhile component of a state-of-
the-art parser – certain attachments, at least, require
it – though perhaps its necessity has been overstated.
Rather, we have shown ways to improve parsing,
some easier than lexicalization, and others of which
are orthogonal to it, and could presumably be used
to benefit lexicalized parsers as well.
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