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Abstract

We propose a novel deep learning approach to solve

simultaneous alignment and recognition problems (referred

to as “Sequence-to-sequence” learning). We decompose the

problem into a series of specialised expert systems referred

to as SubUNets. The spatio-temporal relationships between

these SubUNets are then modelled to solve the task, while

remaining trainable end-to-end.

The approach mimics human learning and educational

techniques, and has a number of significant advantages. Sub-

UNets allow us to inject domain-specific expert knowledge

into the system regarding suitable intermediate represen-

tations. They also allow us to implicitly perform transfer

learning between different interrelated tasks, which also al-

lows us to exploit a wider range of more varied data sources.

In our experiments we demonstrate that each of these proper-

ties serves to significantly improve the performance of the

overarching recognition system, by better constraining the

learning problem.

The proposed techniques are demonstrated in the challeng-

ing domain of sign language recognition. We demonstrate

state-of-the-art performance on hand-shape recognition (out-

performing previous techniques by more than 30%). Fur-

thermore, we are able to obtain comparable sign recognition

rates to previous research, without the need for an alignment

step to segment out the signs for recognition.

1. Introduction

Perception is a hierarchical process; our understanding

of the world as a whole, is based on recognising different

parts of the world and understanding their spatio-temporal

interactions. As an example, for recognising human ac-

tions we not only recognise where the different body parts

are located, but how they move relative to each other and

in relation to surrounding objects. More generally, most

spatio-temporal learning problems can be broken down into

meaningful “subunit” problems. However, the subunits often

have complex, unsynchronised, causal relationships, making

it very challenging to model them jointly.

Figure 1. Overview of a SubUNet and its building blocks. In this

example our input sequences are hand patch videos and target

sequences are hand shape classes. Hand-Icons from [31].

Until recent years, most spatio-temporal computer vi-

sion techniques have extracted hand-crafted intermediate

representations and then used classical temporal modelling

approaches such as Hidden Markov Models and Conditional

Random Fields [35]. The emergence of modern deep learning

methods [30, 13, 34] has removed the need for such tailored

representations and enabled systems to implicitly learn both

the spatial and the temporal features. However, the disad-

vantage of deep learning is that it can be difficult to encode

expert knowledge (such as suitable subunits or intermediate

representations). This is especially true when dealing with

sequence-to-sequence modelling problems, where the differ-

ent subunits may not be synchronised with each other and

can exhibit complex causal relationships.
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In this paper, we present SubUNets1, a novel deep learn-

ing architecture for sequence-to-sequence learning tasks,

where the systems are expected to produce a sequence of

outputs from a given video. Contrary to other video to text

approaches, our method explicitly models the contextual sub-

units of the task while training the network for the main task.

This allows us not only to encode expert knowledge about

the properties of the task, but also to exploit a much wider

range of annotation sources, and to exploit implicit trans-

fer learning between tasks. We demonstrate this approach

for the problem of Continuous Sign Language recognition,

where the recognition systems are expected to detect and

recognise the individual signs in a given video and produce a

text translation. This problem is particularly well suited to

our SubUNets approach as unlike spoken languages, sign

is famously multi-channel. Information is carried in the

hand shape, motions, body pose and even facial gestures.

Additionally, there is a wealth of expert linguistic knowledge

relating to sign language and the interactions between it’s

different modalities.

The contributions of this paper can be listed as:

• An end-to-end framework for explicitly modelling the

subunits during sequence-to-sequence learning.

• The first end-to-end system for continuous sign lan-

guage recognition alignment and recognition, based on

explicit subunit modelling.

• A thorough comparison of different decoding schemes

for networks using CTC loss.

The rest of the paper is organized as follows: In Section 2 we

go over the related work on sequence-to-sequence modelling,

and continuous sign language recognition. In Section 3 we

depict SubUNets and go further into detail of its components.

First we apply SubUNets to the problem of hand shape recog-

nition in Section 4, achieving state-of-the-art performance

without needing to realign the data. Then we describe our

application of SubUNets to the challenge of Continuous Sign

Language recognition in Section 5. Here we demonstrate

how SubUNets can be combined to model the asynchronous

relationship between different channels of information and

that combining different loss layers allows expert knowledge

to be incorporated which increases recognition performance.

Finally, we conclude the paper in Section 6 by discussing

our findings and the possible future work.

2. Related Work

Sequence-to-sequence learning methods can be grouped

into two categories: Encoder-Decoder Networks [38] and

approaches based on Connectionist Temporal Classification

(CTC) [16].

Encoder-Decoder networks first emerged from the field of

Neural Machine Translation (NMT) [32]. Kalchbrenner and

Blunsom [24] proposed the first encoder-decoder network

1Not to be confused with U-Nets [36]

that uses a single Recurrent Neural Network for both encod-

ing and decoding sequences. Following this Sutzkever et al.

[38] and Cho et al. [8] proposed separating the encoding

and decoding jobs into two separate RNNs. Although this

approach improved their machine translation performance,

there were still issues with modelling the long term dependen-

cies between the input and output sequences. To overcome

this problem Bahdanau et al. [4] proposed attention mech-

anisms that were able to learn where to focus on the input

sequence depending on the output. These successes in NMT

encouraged computer vision researchers to adopt encoder-

decoder networks for applications such as image captioning

[43], activity recognition [13] and lip-reading [9].

The second group of sequence-to-sequence learning ap-

proaches are based on CTC, proposed by Graves et al. [16].

This approach has been widely used in the fields of Speech

Recognition [18, 2] and Hand Writing Recognition [17]. As

CTC is an ideal method for tasks where the data is weakly

labelled, computer vision researchers have also applied this

sequence-to-sequence learning method to sentence-level lip

reading [3] and action recognition [21].

In this paper, we demonstrate our proposed sequence-to-

sequence learning techniques in the domain of continuous

sign language recognition. This is due to its multi-channel

nature [11], and the large amounts of expert linguistic knowl-

edge available.

Until recently, most sign language recognition research

was conducted on isolated sign samples [42, 5]. How-

ever, with the availability of large datasets, such as RWTH-

PHOENIX-Weather-2014 [14], research interest has started

to shift towards continuous sign language recognition. As

frame level annotations are hard to come by in continuous

datasets, most of the work to date required an alignment step

to localize individual signs in videos [10]. The work that

is most relevant to this paper is by Koller et al. [27] which

combines deep-representations with traditional HMM based

temporal modelling.

3. SubUNets

In this section we present a novel deep learning architec-

ture for generic video to sequence learning problems, employ-

ing smaller specialized sub-networks. This approach forces

the network to explicitly model domain specific expert knowl-

edge, better constraining the overarching recognition problem.

We refer to these smaller specialized networks as SubUNets,

as they are trained to model subunits of a given task.

Each SubUNet consists of three tiers of neural network.

Firstly, Convolutional Neural Networks (CNNs) take images

as inputs and extract spatial features. Secondly, Bidirectional

Long Short Term Memory Layers (BLSTM) temporally

model the spatial features extracted by the CNNs. Finally

a Connectionist Temporal Classification (CTC) Loss Layer

allows the networks to be trained with different length videos

3057



and label sequences. We depict a sample SubUNet architec-

ture that learns hand shapes from cropped hand images in

Figure 1. In the remainder of this section, we will provide

further details on each tier of the SubUNets, and describe

how to train them in an end-to-end manner.

3.1. Spatial Feature Extraction: Convolutional
Neural Networks

In SubUNets we employ 2D CNNs for learning the spatial

feature representations. Given an input image I with c

channels, the 2D convolution layers extract the feature map

F by convolving the image with the weights w as in

F (x, y) =
∑

c

∑

δx,δy

I(x+δx, y+δy, c)×w(δx, δy)+b (1)

where x and y represent the pixel coordinates of the image

I and b is the bias term. The spatial neighbourhood that δx
and δy are drawn from is defined by the kernel size of the

convolution layer.

Although the SubUNets approach can exploit any CNN

architecture for spatial modelling, our experiments use Caf-

feNet due to its low memory consumption (see Section 3.4

for further details). CaffeNet is a variant of AlexNet [30]

that has five convolutional and three fully connected layers.

We discard the last fully connected layer and use the weights

that were pre-trained on ImageNet [12].

3.2. Temporal Modelling: Bidirectional LSTMs

Two dimensional convolutional neural networks have

achieved state-of-the-art performance for many spatial recog-

nition tasks [39]. However they do not have the ability to

model temporal transitions of a video sequence. The spatio-

temporal convolutional networks [41] can theoretically model

temporal change in the spatial domain but their ability to

represent state transitions is limited. Instead, we model the

temporal aspects of our input sequences using Recurrent

Neural Networks (RNNs).

One of the main difficulties when training RNNs is the

vanishing gradient problem. The error generated from each

time step (and it’s associated gradients) diminishes during

the course of the sequence [33]. In order to preserve the long

term dependencies from the effects of vanishing gradients

Hochreiter et al. [20] proposed Long Short Term Memory

(LSTM) units.

LSTMs try to overcome the vanishing gradient problem

by proposing a cell state in addition to the hidden state that

classic RNNs use. Furthermore, it has specialized, input,

forget and update gates that minimize the diminishing effects

of long term dependencies.

An LSTM unit takes as input, the cell state, Ct−1 and

hidden state, ht−1 from the previous time step along side the

spatial data Ft at the current time step. It then computes the

input gate it, forget gate ft and the update gate C̃t as:

ft = σ(Wf · [ht−1, Ft] + bf ) (2)

it = σ(Wi · [ht−1, Ft] + bi) (3)

C̃t = tanh(Wc · [ht−1, Ft] + bc) (4)

Using the calculated gate values, the LSTM unit calculates

the output ot, cell state Ct and the hidden state ht values to

pass to the next time step as:

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

ot = σ(Wo · [ht−1, Ft] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

From these equations, it is obvious that an LSTM produces

the output at a time step t using the current spatial information

Ft and the information leading up to this point, encoded in

the hidden state ht−1. Thus, any time step following t has

no effect on the output of the LSTM at time step t. Although,

this gives LSTM the ability to operate in real-time, there is

useful information in the following frames that is not being

used to constrain the current frame’s prediction.

Therefore, we deploy BLSTMs as our temporal modelling

layer. A BLSTM contains two LSTM layers operating in

opposite directions along the time domain (See Figure 1).

The outputs of the two LSTMs are then concatenated before

being fed deeper into the network. The main idea of the

BLSTM is to provide knowledge about the full sequence

during prediction. The output of the BLSTM at time t is

based on both of the hidden states encoding F1:t−1 and

FT :t+1. In our SubUNets each BLSTM layer has 2048 units,

1024 units in each direction. Although, the use of BLSTM

layers limits the real-time capabilities, on-line prediction is

still achievable with a sliding window approach.

3.3. Sequence­to­Sequence Learning: Connection­
ist Temporal Classification

When trained with Cross Entropy Loss [15], both the

classic feed-forward and recurrent architectures require a

label for each sample or time step. However, nearly all

sequence-to-sequence problems have different length input

and target sequences. One way to overcome this problem

might be to segment the input sequences and assign a cor-

responding label to each time step. However, this level of

annotation for every sub-unit on large datasets would be

impractical. Furthermore, segmenting an input sequence in

this manner often introduces label ambiguity, as the system

is forced to predict the same class across the start, middle

and end of a segment. Therefore, an additional structure is

required to effectively train sequence-to-sequence models

using feed-forward and recurrent neural networks.

Connectionist Temporal Classification (CTC), a loss layer

proposed by Graves et al. [16], is one of the most popular

3058



approaches to training sequence-to-sequence models. When

using generic loss functions to train a network with L target

labels, (vocabulary), we structure our architecture to have |L|
outputs, each one corresponding to one of the labels. This

allows our network to produce posteriors over each label

for every time step. CTC introduces a blank label and

creates an extended vocabulary L′, where L′ = L ∪ { },

and restructures the network by adding another output unit

corresponding to the blank label. The blank label accounts

for silence and transitions that may exist between target

labels in the sequence, removing the need for per frame

annotation.

Although the blank label solves some of the problems,

the network still has to learn which parts of the input se-

quence sT , with T time steps, corresponds to silence and

transitions. To solve this, the CTC defines a mapping func-

tion B : L′T → LU (where U ≤ T ) between extended

vocabulary sequences π ∈ L′T and label sequences l ∈ LU

by collapsing repetitions and removing the blank labels in

π. Given an input sequence s, the probability of observing

a label sequence l is computed by marginalising over all

extended vocabulary sequences that would give rise to l. In

other words, if we define an inverse mapping function B−1

which produces every possible extended vocabulary sequence

π corresponding to label sequence l, then the probability of l

given an input sequence s is:

p(l|s) =
∑

π∈B−1(l)

p(π|s) (8)

However, as the length of label sequence increases, the

number of corresponding extended vocabulary sequences π

expands drastically. To overcome this, CTC uses dynamic

programming to efficiently calculate the loss and its gradient.

3.4. Implementation Details and Training

The proposed architecture is implemented using the

BLVC Caffe [23] framework and the CTC implementation

of ChWick2. Training was done on a single Titan X GPU

with Maxwell chip architecture and 12 GB VRAM. The code

of our paper is publicly available3.

While choosing our SubUNet layer architectures, memory

usage was of particular importance, so that the combined

SubUNets would fit into a single GPU. This is exacerbated

by the need for CTC to simultaneously have the posteriors

from all frames of a sequence in order to calculate the loss,

meaning entire sequences must be processed as a whole.

Therefore, a set of preliminary experiments was conducted

using a dummy SubUNet (One layer of BLSTM with 100

units in each direction) with all well known CNN architec-

tures, to check the practical limitations of memory use on

2https://github.com/BVLC/caffe/pull/4681/
3https://github.com/neccam/SubUNets

a single Titan X GPU. In these experiments images were

resized to the input size of each network, i.e. 224× 224 or

227× 227.

CNN Architecture #frames Memory (MB)

ResNet-50 [19] 35 12201

GoogLeNet [40] 160 12081

VGG-16 [37] 175 12025

SqueezeNet v1.1 [22] 320 12109

AlexNet [30] 1080 12111

VGG-F [7] 1340 12131

CaffeNet [23] 1450 12104

Table 1. Most Common Architectures and the maximum number of

frames we can load to them on a single GPU.

As can be seen in Table 1, the dummy SubUNet using

CaffeNet was able to support batches containing significantly

longer sequences. Therefore, CaffeNet is used as the spatial

encoding layer for all remaining experiments. To be able

to train variable length input and output sequences in a

single batch and to avoid the memory allocation overhead

we resized all frames to 227 × 227 and padded all input

sequences to 300 frames.

All of our networks were trained using the Adam Opti-

mization Algorithm [25] with a learning rate of 10−4 and the

default parameters: β1 = 0.9, β2 = 0.999, ǫ = 10−8.

4. Hand SubUNet: End-to-End Hand Shape

Recognition and Alignment

To demonstrate the power of the proposed SubUNet ap-

proach we focus on the challenging task of Continuous Sign

Language Recognition. One of the primary information carry-

ing modalities in sign language is the hand shape. Therefore,

as our first SubUNet, we train a network that learns to simul-

taneously recognize and time-align hand shape sequences

from videos of cropped hand patches.

Figure 2. Hand SubUNet: End-to-end Hand Shape Recognition

network from sequences.

Hand shape recognition is a challenging task in its own

right, due to a hands’ highly articulated nature. For instance,

the same hand shapes (with the same linguistic meaning)

but viewed from different directions, results in drastically

different appearances in the image due to self occlusion. To

be able to generalize across this variation, without over-fitting,

requires vast amounts of training data.

We use the One-Million Hands [27] dataset for training the

Hand SubUNet. The dataset consists of cropped hand images
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collated from publicly available datasets, including Dan-

ish [29], New Zealand [31] and German (RWTH-PHOENIX-

Weather-2014 [14] sign languages. It has over 1.2 million

hand images, from which 1 million images were labelled with

one of 60 hand shape classes. The dataset contains 23 differ-

ent signers, which helps our network to generalize over differ-

ent users as well as language. The statistics of the dataset can

be seen in Table 2. The majority of the dataset comes from

the Training set of RWTH-PHOENIX-Weather-2014, a con-

tinuous sign language dataset which will be used in our con-

tinuous sign language recognition experiments in Section 5.

Danish NZ DGS Total

duration [min] 98 192 532 882

#frames 145,720 288,593 799,006 1,233,319

#labelled frames 65,088 153,298 786,750 1,005,136

#sequences 2,149 4,155 5,672 11,976

#signs 2,149 4,155 65,227 69,382

#signers 6 8 9 23

Table 2. Statistics of the One Million Hands dataset which con-

tains cropped hand patches from existing Danish, New Zealand

(’NZ’) and German(’DGS’ - RWTH-PHOENIX-Weather-2014)

sign language datasets. See [27] for more details.

The One-Million Hands dataset provides frame-level an-

notation for these sequences. However, as we are focussing

on the more challenging sequence-to-sequence problem, we

remove repetitions of the frame-level annotations to form our

target sequence of hand shapes.

For our network architecture, we used the first 7 layers

(5 Convolution, 2 Fully Connected Layers) of the CaffeNet,

followed by a single layer of BLSTM with 1024 units in each

direction. As the size of our vocabulary for this SubUNet

is 61 (60 hand shapes and the blank CTC label) we follow

the BLSTM layer with an inner product layer of 61 units. At

the end, a CTC Loss Layer is deployed to be able to learn

both alignment and recognition in a sequence-to-sequence

manner. A simplified visualization of the network can be

seen in Figure 2, while Figure 1 illustrates the network after

being unrolled in time.

The network was trained for 5000 iterations with a mini-

batch size of 90 sequences, using the Adam Optimizer as

described in Section 3.4. Optimization is terminated when

the training loss has converged.

To evaluate the performance of our network we used

the 3361 manually annotated hand images provided by

[27], which are from the Development set of the RWTH-

PHOENIX-Weather-2014 dataset. Again, because we are

interested in the more challenging alignment & recogni-

tion problem, we run the system on the full (unseen) test

sequences from which these images were taken. We then

extract and evaluate the estimated hand shapes for the subset

of frames which have ground truth.

As shown in Table 3, our Hand SubUNet surpasses the

hand shape recognition performance of the state-of-the-art

CNN-based method proposed by Koller et al. [27], by a mar-

gin of 18% Top-1 accuracy, which is a relative improvement

of 30%. Koller et al. [27] iteratively realigned and retrained

his network whereas the SubUNet architecture automatically

overcomes the frame alignment issue. These experiments

show us that SubUNets are able to learn both the alignment

and the recognition jointly from sequences in an end-to-end

fashion, without requiring any other alignment procedure.

We will now demonstrate the power of SubUNet to the

sequence-to-sequence learning problem by applying it to end-

to-end, multi-channel, continuous sign language recognition.

Top-1 Top-3 Top-5 Top-10

Koller et al. [27] 62.8 – 85.6 –

Hand SubUNet 80.3 90.6 93.9 96.9

Table 3. Hand SubUNet’s hand shape recognition results on the

One-Million Hands dataset.

5. Sign SubUNets: End-to-End Continuous

Sign Language Recognition

Compared to their spoken counter parts, Sign Languages

are multi-channel languages. Its users convey information

using a combination of hand and face gestures, hand move-

ments, upper body pose and facial expressions. The nature

of sign languages, makes it an ideal target application for the

SubUNets-based approach.

Due to the difficulty in collecting annotations, most of the

sign language recognition datasets that have been developed,

consist of isolated sign videos [42], [6]. Although these

datasets are suitable for isolated recognition [5], they do not

support the ultimate aim of sign language recognition re-

search: the translation of sign language utterances to their spo-

ken languages equivalents. Indeed, training a sign language

recognition system using these isolated datasets is equivalent

to training a machine translation systems using a dictionary

alone. Such a system would be unable to learn the higher

order sentence-level relationship between words or signs4.

To be able to train a sentence-level sign language recogni-

tion system, we used the RWTH-PHOENIX-Weather-2014

dataset, a DGS (German Sign Language) dataset that consists

of Weather Forecast Footage. The dataset contains both the

full frames and the cropped hands of the signers. This multi-

channel data is ideal to test our SubUNet network. For both

information channels there are 6841 sequences containing

a total of 77,321 words. The statistics of the dataset can be

seen in Table 4.

To be able to assess the benefits of SubUNets for Continu-

ous Sign Language Recognition, we conducted experiments

using a variety architectures.

4It is important to note that sign languages do not contain a direct

equivalent to sentences, the term is used here to clarify the concept to the

reader and refers to a meaningful phrase which consists of a sequence of

continuous signs.
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Train Dev Test

#frames 799,006 75,186 89,472

#sequences 5,672 540 629

#words 65,227 5,564 6,530

#vocabulary 1,231 461 497

#signers 9 9 9

Table 4. Summary of RWTH-PHOENIX-Weather-2014 dataset.

All of the sign language recognition networks were trained

for 6000 iterations using the Adam Optimizer as described

in Section 3.4 with a mini-batch size of 60 sequences. Its

performance on the development set was evaluated at every

epoch, which is 96 iterations. If the training loss has not

converged after 60 epochs, we restart the training using the

best performing iteration with a lower learning rate and train

until the training loss convergence.

To evaluate the performance of a model, we fed the de-

velopment and test set sequences through the network and

extracted posterior probabilities for each word and the blank

CTC label. These posteriors are then passed through Ten-

sorFlow’s implementation of CTC beam decoder [1] with

a beam width of 100 to obtain the final sequence predic-

tions. To facilitate comparison with previous publications we

measure word error rate (WER) as:

WER =
#deletions + #insertions + #substitutions

#number of reference observations
(9)

5.1. Word SubUNet: End­to­End Continuous Sign
Language Recognition Single Channel

Figure 3. Word SubUNet: End-to-end Sentence-level Continuous

Sign Language Recognition Network.

As our first sentence-level architecture we train SubUNets

that learn the mapping between the given input sequence and

the word sequences. As depicted in Figure 3, this network

is similar to the proposed Hand SubUNet. However, as

words have a more abstract relationship to the images than

the observable hand shapes, we employ a deeper BLSTM

structure (adding BLSTM-2) to help the network model the

temporal relationships within the input sequence.

As can be seen in Table 5, having two layers in our

Word SubUNets improves our sentence-level recognition

performance. However, in order to combine multiple

SubUNets for different information channels (in subsequent

experiments), adding further layers is infeasible due to GPU

memory limitations.

In theory, full frame sequences should provide all neces-

sary channels of information for a sign. In other words hand

shape are by definition contained in the full body frame and

Dev Test

Full Frames del/ins WER del/ins WER

Single Layer 19.9/5.2 44.5 18.9/5.6 43.8

Two Layers 20.6/3.2 43.9 19.8/3.2 43.1

Table 5. Evaluation of having a deeper network.

the network should be able to find and use this information.

However, the problem is under-constrained, and it is unclear

what information the network will actually use to predict

word sequences. Due to the network’s resolution, the most

likely candidates are hand shape, arm motions and upper

body pose. To see how much the network benefits from

having the additional information in the full frame we train

another SubUNet using the same network architecture and

parameters but this time using only the cropped hands as the

input sequences.

Dev Test

Trained on del/ins WER del/ins WER

Hand Patches 24.3/2.8 45.8 23.4/2.5 44.5

Full Frames 20.6/3.2 43.9 19.8/3.2 43.1

Table 6. Evaluation of training Word SubUNets on different infor-

mation channels.

As can be seen in Table 6, training a Word SubUNet with

the hand patches worsens our performance by 2% WER. This

means the network trained on the full frames does make use

of the additional information contained in the full frames.

However, it is still unclear how redundant the information is.

Do the full frames contain all the information from the hand

patches plus a small amount of novel information? Or is the

additional context of motion in the full frame experiment

compensating for the loss of hand shape information? To

answer these questions, we propose combining networks

that model hand shape (Hand Patches Word-SubUNets and

Hand-SubUNets) with the Full Frame Word-SubUNet to see

if the sentence-level recognition performance benefits from

both sources of information.

5.2. Combining SubUNets: End­to­End Continu­
ous Sign Language Recognition from Multiple
Channels

So far we have trained three SubUNets: A hand Sub-

UNet that predicts hand shape sequences from hand patches

and two word SubUNets which perform sentence-level sign

language recognition from either full frame or hand patch

sequences. Although our experiments have demonstrated that

a word level SubUNet is able to make use of the additional

information from the Full Frames, it is unknown how novel

this information is compared to the hand shape network.

Therefore, we combine pre-trained networks, trained at the

word level, for both Hand SubUNets and and Full Frame

SubUNets to create a larger network that takes advantage of

both sources of information.
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Due to the asynchronous nature of the sign language

modalities, we put the combined information of the Full

Frame Word SubUNet and Hand SubUNet through an addi-

tional BLSTM layer. This models the temporal relationship

between the modalities.

Figure 4. Combination of Hand SubUNets and Full Frame Word

SubUNets. Blue and Green Blocks represent the weights that are

going to be fixed and the weights that are going to omitted in the

fixed setup, respectively.

As most datasets don’t have annotations for both the hand

shape and signs (making it impossible to jointly train all

streams), we investigate the effects of fixing the weights for

pre-trained SubUNets. By doing so we hope to determine

how much the SubUNets benefits from tuning themselves

to the new compound architecture. Therefore we train two

networks. In the first experiment (“Fixed”), we pre-train

the two SubUNets depicted in Figure 4. Combining the two

networks at their final BLSTM layers into a 3rd BLSTM, IP

and CTC layer and therefore maintaining 3 loss layers. In the

figure, blue blocks are pre-trained and fixed, green blocks are

removed, while white block are trained for the task. In the

second variant (“Not Fixed”), all weights are trained using

the gradients produced by all three loss layers.

Dev Test

Combined SubUNet del/ins WER del/ins WER

Fixed 24.4/2.2 44.4 23.6/2.2 44.2

Not Fixed 19.6/2.7 43.1 18.7/2.9 42.1

Table 7. Evaluation of fixing SubUNets weights or allowing them to

train end-to-end.

This experiment provides two very important insights

into combining SubUNets. Firstly, as shown in Table 7,

allowing the SubUNets to tune themselves to the new network

structure by training end-to-end yields significantly improved

results. Secondly, and more interestingly, the combination of

the different SubUNet modalities outperforms all previous

experiments using isolated SubUNets. This reinforces the

idea that guided subunit learning is extremely valuable in

sequence-to-sequence recognition.

For our final experiment, we evaluate how much the expert

knowledge embedded within the SubUNets is contributing to

the system. The inspiration behind this expert knowledge,

Figure 5. Combining Word SubUNets that model Full Frame and

Hand Patches to sentence-level sign language.

comes from how humans teach and learn similar represen-

tations. For example, both linguists, and students learning

sign, would classify the hand shape related to a sign as being

a distinct but related entity to the motion of that that sign.

We investigate this using the best performing network

from the previous section (the “Not Fixed” combination

of Hand SubUNet and Full Frame Word SubUNet from

Figure 4). As we trained this network, the additional super-

visory information of the Hand SubUNet forces the hand

patches stream to learn hand shapes explicitly, mimicking

its human counterpart, which we named Expert SubUNets.

For comparison we instead leave the network free to train

but replace the hand shape CTC with another Word CTC (as

in Figure 5), which we named Generic SubUNets. In this

case the network receives the same level of supervision, and

one could argue that the supervision is more specific to the

task at hand. The network is given the freedom to learn any

intermediate representation it wishes in order to solve the

overarching problem.

Dev Test

del/ins WER del/ins WER

Generic SubUNets 27.1/1.6 43.0 26.8/1.5 42.6

Expert SubUNets 19.6/2.7 43.1 18.7/2.9 42.1

Table 8. Comparison of Generic and Expert SubUNet systems with

other approaches.

However, as Table 8 shows, forcing networks to learn

expert knowledge representations actually results in better

performance on sentence-level sign language recognition.

Although, both of the networks have a similar WER on the

development set, the architecture that explicitly learns the

intermediate hand shape representations performs better

on the test set. Furthermore, the number of deletion and

insertions is much more balanced for the network that mimics

human learning. This implies that it is also performing better

at the alignment task. Therefore, in light of these experiments

we can conclude that training deep neural networks using

SubUNets that explicitly model expert knowledge results

in better constrained and more general solutions.
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5.3. Decoding of networks trained with CTC loss

In this final section we explore the effects of different

decoding and post-processing techniques during sequence-

to-sequence prediction. Previously, the CTC outputs were

decoded for prediction by performing a beam search on the

sum of the probabilities over all possible alignment paths

(as proposed by [16]). In other words it attempts to choose

the best label for each frame, marginalised over all previous

and future labellings. We refer to this approach as ’Full

Sum’ decoding. We contrast this against a greedy ’Viterbi’

decoding which only considers the maximum path. Table 9

compares the two decoding strategies, showing that Full Sum

decoding outperforms its counterpart by 0.5% points on dev

and 0.6% points on the test set. However, this gain comes at

a price of much higher computational complexity.

Decoding Dev Test

del/ins WER del/ins WER

Viterbi 20.4/2.9 43.6 19.4/2.9 42.7

Full Sum 19.6/2.7 43.1 18.7/2.9 42.1

Table 9. Impact of the Full Sum and Viterbi decoding variants.

The significant impact of this change in post-processing

raises an interesting question: Are there more advanced

post-processing techniques that could further improve the

performance of the system? We therefore apply an additional

pre-learnt language model during decoding, similar to that

proposed by [28].

Figure 6 shows the difference between the three tested de-

coding schemes. First the CTC topology, which binds a class

posterior state to a tied blank state. Second, an intermediate

topology referred to as LM, where the CTC style segments

are joined with optional intermediate silence states that do

not belong to the classes, but share the same distribution

as the blank states. Finally, a HMM inspired topology is

depicted, where two class states are bound together (sharing

the same probability distribution) with optional tied silence

states in between.

Table 10 summarises the decoding results employing the

different topologies. We see that the HMM topology with

a language model and the intermediate silence state outper-

forms the standard CTC topology by nearly 3% on develop-

ment set. The table also shows that our proposed technique

performs comparably to previous state-of-the-art research on

this dataset, with the significant advantages that there is no

need for a separate alignment step, the system can be trained

end-to-end, and it extends easily to additional SubUNets.

6. Conclusion and Discussion

In this paper we have proposed SubUNets, a novel deep

learning architecture that learns intermediate representations

to guide the learning procedure. We have applied the pro-

posed method to the challenging task of Continuous Sign

Language Recognition.

Figure 6. Showing three different model topologies used for de-

coding. Skip paths have only been illustrated on the first model

segments. Round circles refer to single (class) states, whereas

squares mean tied states (blank or silence). The top row shows the

standard CTC topology. The middle row shows the CTC topology

with optional silence insertions in between class symbols. The last

row shows a HMM topology, where the same class distribution is

shared across two states in a segment and optional silence can be

inserted in between class symbols.

Model Structure Dev Test

del/ins WER del/ins WER

CTC 19.6/2.7 43.1 18.7/2.9 42.1

LM 12.3/6.2 42.5 15.2/4.5 42.2

HMM-LM 14.6/4.0 40.8 14.3/4.0 40.7

[26] 23.6/4.0 57.3 23.1/4.4 55.6

[27] 16.3/4.6 47.1 15.2/4.6 45.1

Table 10. Evaluation of different decoding schemes and comparison

with previous research.

As hands are one of the most informative channels of

a sign we have trained a hand shape recognition network

using the SubUNet architecture, that learns to predict hand

shape sequences from a video. We trained and evaluated

our hand shape recognizing SubUNet on the One Million

Hands dataset [27] and reported state-of-the-art frame level

accuracy (Top 1: 80.3%, Top 5: 93.9%), improving on

previous research by around 30%.

Our experiments on Continuous Sign Language recog-

nition show that having SubUNets that learn intermediate

representations helps the network generalize better. More-

over we have thoroughly evaluated the effects of different

decoding schemes and have seen the benefits of extra post pro-

cessing, reporting competitive results to the state-of-the-art,

without the need for an explicit segmentation of the signs.

As future work, it would be interesting to investigate hier-

archical SubUNets, where each expert system is comprised

of lower level expert systems.
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