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Abstract

We introduce a novel technique for knowledge transfer,

where knowledge from a pretrained deep neural network

(DNN) is distilled and transferred to another DNN. As the

DNN maps from the input space to the output space through

many layers sequentially, we define the distilled knowledge

to be transferred in terms of flow between layers, which is

calculated by computing the inner product between features

from two layers. When we compare the student DNN and the

original network with the same size as the student DNN but

trained without a teacher network, the proposed method of

transferring the distilled knowledge as the flow between two

layers exhibits three important phenomena: (1) the student

DNN that learns the distilled knowledge is optimized much

faster than the original model; (2) the student DNN outper-

forms the original DNN; and (3) the student DNN can learn

the distilled knowledge from a teacher DNN that is trained

at a different task, and the student DNN outperforms the

original DNN that is trained from scratch.

1. Introduction

Over the past several years, various deep neural network

(DNN) models have provided state-of-the-art performance

in many tasks, ranging from computer vision [8, 23] to nat-

ural language processing [1, 19]. Recently, several stud-

ies on the knowledge transfer technique have been con-

ducted [11, 20]. Hinton et al. [11] first proposed the con-

cept of knowledge distillation (KD) in the teacher–student

framework by introducing the teacher’s softened output. Al-

though the KD training achieved improved accuracy over

several datasets, this method has limitations such as dif-

ficulty with optimizing very deep networks. To improve

the performance of the KD training for deeper networks,

Romero et al. [20] devised a hint-based training approach

that uses the pretrained teacher’s hint layer and student’s

Figure 1. Concept diagram of the proposed transfer learning

method. The FSP matrix, which represents the distilled knowl-

edge from the teacher DNN, is generated by the features from two

layers. By computing the inner product, which represents the di-

rection, to generate the FSP matrix, the flow between two layers

can be represented by the FSP matrix.

guided layer. Thanks to the additional hint-based train-

ing, the trained deep student network showed better accu-

racy with fewer parameters compared to the original wide

teacher network.

The knowledge transfer performance is very sensitive to

how the distilled knowledge is defined. The distilled knowl-

edge can be extracted by various features in the pretrained

DNN. Considering that a real teacher teaches a student the

flow for how to solve a problem, we defined high-level dis-

tilled knowledge as the flow for solving a problem. Because

a DNN uses many layers sequentially to map from the input

space to the output space, the flow of solving a problem can

be defined as the relationship between features from two

layers.

Gatys et al. [6] used the Gramian matrix to represent

the texture information of the input image. Because the

Gramian matrix is generated by computing the inner prod-

uct of feature vectors, it can contain the directionality be-

tween features, which can be thought of as texture infor-

mation. Similar to Gatys et al. [6], we represented the
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flow of solving a problem by using Gramian matrix con-

sisting of the inner products between features from two lay-

ers. The key difference between the Gramian matrix in [6]

and ours is that we compute the Gramian matrix across lay-

ers, whereas the Gramian matrix in [6] computes the inner

products between features within a layer. Figure 1 shows

the concept diagram of our proposed method of transferring

distilled knowledge. The extracted feature maps from two

layers are used to generate the flow of solution procedure

(FSP) matrix. The student DNN is trained to make its FSP

matrix similar to that of the teacher DNN.

Distilling the knowledge is a useful technique for various

tasks. In this study, we verified the usefulness of the pro-

posed distilled knowledge by using it to perform three tasks.

The first was fast optimization. A DNN that understands the

flow of solving a problem can be a good initial weight for

solving a main task and can learn faster than a normal DNN.

Fast optimization is a very useful technique. Researchers

have focused on achieving fast optimization not only by us-

ing advanced learning rate scheduling techniques [13, 27, 4]

but also by finding good initial weights [5, 9, 18, 20]. Our

approach is based on the initial weight method, so we only

compared it with other initial weight methods. We com-

pared the number of training iterations and performance of

our scheme with various other techniques.

The second task was to improve the performance of a

small network, which is a shallow network with fewer pa-

rameters. Because a small network learns distilled knowl-

edge from the teacher network, it is more powerful than us-

ing the student network alone without help from the teacher

network. We compared the performance of the original net-

work and a network using various knowledge transfer tech-

niques.

The third task was transfer learning. Although a new

task may provide only a small dataset, transfer learning can

take advantage of a deep and heavy DNN pretrained with

a huge dataset [2]. Because our proposed method has the

advantage of being able to transfer the distilled knowledge

to a small DNN, the small network can perform similarly to

a large DNN that uses a normal transfer learning method.

Our paper makes the following contributions: 1. We pro-

pose a novel technique to distill knowledge. 2. This ap-

proach is useful for fast optimization. 3. Using the proposed

distilled knowledge to find the initial weight can improve

the performance of a small network. 4. Even if the student

DNN is trained at a different task from the teacher DNN, the

proposed distilled knowledge improves the performance of

the student DNN.

2. Related Work

Knowledge Transfer Deep networks with many param-

eters usually perform well in computer vision tasks. The

depth of most architectures is being increased to improve

performance. When deep learning first began, Alexnet [16]

had only five convolution layers. However, the recent well-

known network GoogleNet [23] has 22 convolution layers,

and the residual network [8] has 152 layers.

A deep network with many parameters requires heavy

computation for both training and testing. These deep net-

works are difficult to use in real-life applications because a

normal computer cannot handle this work, let alone mobile

devices. Therefore, many researchers have been trying to

make networks smaller while maintaining the performance

level. A typical way is to distill knowledge from trained

deep networks and transfer it to a small network that can

be used without large storage and heavy computation. Re-

cently, Hinton et al. [11] introduced the model compression

method based on the concept of dark knowledge. It uses

a softened version of the final output of a teacher network

to teach information to a small student network. With this

teaching procedure, a small network can learn how a large

network studied given tasks in a compressed form. Romero

et al. [20] used not only the final output but also intermedi-

ate hidden layer values of the teacher network to train the

student network and showed that using these intermediate

layers can improve the performance of deeper and thinner

student networks. Net2Net [3] also uses a teacher–student

network system with a function-preserving transform to ini-

tialize the parameters of the student network according to

the parameters of the teacher network.

Fast Optimization A deep convolutional neural network

(CNN) takes a relatively long time to reach its global opti-

mum or a good local optimum. It is easy to train small

datasets such as MNIST [17] or CIFAR10 [15]. In cases

of big datasets like the ILSVRC datasets [21], however, a

big network can take a few weeks for training. Therefore,

fast optimization has become another important subject of

research recently. There are several different approaches

to fast optimization, such as finding good initial weights or

reaching the optimal point with a different technique than

the standard stochastic gradient descent (SGD) method.

In the early days, initialization by Gaussian noise with

a zero mean and unit variance became very popular. Other

various initialization techniques such as Xavier initializa-

tion [7] are also used widely. However, these simple initial-

izations are poor at training very deep networks. Therefore,

some new techniques [18, 22, 14] have appeared that are

based on mathematical approaches. With good initializa-

tion, if training starts at an appropriate location, then the

parameters can rapidly reach the global optimum.

Optimization algorithms have also evolved with the de-

velopment of deep learning. Conventionally, the SGD al-

gorithm is widely used as a baseline. However, using SGD

can make it difficult to escape from many saddle points. Be-

cause of this problem, several other algorithms have been

suggested [13, 27, 4]. These algorithms help with get-
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ting out of saddle points and reaching the global optimum

quickly.

Transfer Learning Transfer learning is a simple tech-

nique of modifying the parameters of an already trained

network to adapt to a new task. Typically, input-side layers

that play the role of feature extraction are copied from a pre-

trained network and kept frozen or fine-tuned, whereas a top

classifier for the new task is randomly initialized and then

trained at a slow learning rate. Fine-tuning often outper-

forms training from scratch because the pretrained model

already has a great deal of information. For example, many

researchers [19, 28, 1, 2] have recently used a model pre-

trained with the ILSVRC dataset to extract visual features

from an image and fine-tuned the model to improve the

final accuracy for the VQA [1] and CUB200 [25] tasks.

Many other tasks such as detection and segmentation also

use this ImageNet pre-trained model for the initial values

of the model because the ILSVRC dataset can be helpful

for generalization. Our approach also uses this fine-tuning

technique with our own good initialization method.

3. Method

The main concept of our proposed method is how to

define the important information of the teacher DNN and

transfer the distilled knowledge to the other DNN. This sec-

tion is divided into four parts to describe our main con-

cept. Sec. 3.1 presents the useful distilled knowledge that

we used in this study. Sec. 3.2 introduces the mathemati-

cal expression of our proposed distilled knowledge. Based

on the carefully designed distilled knowledge, we define the

loss term in Sec. 3.3. Finally, Sec. 3.4 presents the whole

learning procedure of the student DNN.

3.1. Proposed Distilled Knowledge

The DNN generates features layer by layer. Higher layer

features are closer to the useful features for performing a

main task. If we view the input of the DNN as the question

and the output as the answer, we can think of the generated

features at the middle of the DNN as the intermediate result

in the solution process. Following this idea, the knowledge

transfer technique proposed by Romero et al. [20] lets the

student DNN simply mimic the intermediate result of the

teacher DNN. However, in the case of the DNN, there are

many ways to solve the problem of generating the output

from the input. In this sense, mimicking the generated fea-

tures of the teacher DNN can be a hard constraint for the

student DNN.

In the case of people, the teacher explains the solution

process for a problem, and the student learns the flow of the

solution procedure. The student DNN does not necessar-

ily have to learn the intermediate output when the specific

question is input but can learn the solution method when

a specific type of question is encountered. In this manner,

we believe that demonstrating the solution process for the

problem provides better generalization than teaching the in-

termediate result.

3.2. Mathematical Expression of the Distilled
Knowledge

The flow of the solution procedure can be defined by the

relationship between two intermediate results. In the case

of a DNN, the relationship can be mathematically consid-

ered by the direction between features of two layers. We

designed the FSP matrix to represent the flow of the solu-

tion process. The FSP matrix G ∈ R
m×n is generated by

the features from two layers. Let one of the selected lay-

ers generate the feature map F 1 ∈ R
h×w×m , where h, w,

and m represent the height, width, and number of channels,

respectively. The other selected layer generates the feature

map F 2 ∈ R
h×w×n . Then, the FSP matrix G ∈Rm×n is

calculated by

Gi,j(x;W ) =
h∑

s=1

w∑

t=1

F 1

s,t,i(x;W )× F 2

s,t,j(x;W )

h× w
, (1)

where x and W represent the input image and the weights

of the DNN, respectively. We prepared residual networks

with 8, 26, 32 layers that were trained with the CIFAR-10

dataset. There are three points in the residual network for

the CIFAR-10 dataset where the spatial size changes. We

selected several points to generate the FSP matrix, as shown

in Figure 2.

3.3. Loss for the FSP Matrix

In order to help the student network, we transfer dis-

tilled knowledge from the teacher network. As described

before, the distilled knowledge is represented in the form

of an FSP matrix that contains information about the flow

of the solution procedure. We can assume that there are

n FSP matrices GT
i

, i = 1 , . . . ,n , which are generated by

the teacher network, and n FSP matrices GS
i

, i = 1 , . . . ,n ,

which are generated by the student network. In this study,

we only considered a pair of FSP matrices between the

teacher and student networks (GT
i

,GS
i

), i = 1 , . . . ,n with

the same spatial size. We took the squared L2 norm as the

cost function for each pair. The cost function of transferring

the distilled knowledge task is defined as

LFSP (Wt,Ws)

=
1

N

∑

x

n∑

i=1

λi × ∥(GT
i (x;Wt)−GS

i (x;Ws)∥
2

2
, (2)

where λi and N represent the weight for each loss term

and the number of data points, respectively. We assumed

that whole loss terms are equally significant. Therefore, we

used the same λi for all experiments.
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Figure 2. Complete architecture of our proposed method. The numbers of layers of the teacher and student networks can be changed.

The FSP matrices are extracted at the three sections that maintain the same spatial size. There are two stages of our proposed method. In

stage 1, the student network is trained to minimize the distance between the FSP matrices of the student and teacher networks. Then, the

pretrained weights of the student DNN are used for the initial weight in stage 2. Stage 2 represents the normal training procedure.

3.4. Learning Procedure

Our transfer method uses the distilled knowledge gener-

ated by the teacher network. To clearly explain what the

teacher network represents in our paper, we define two con-

ditions. First, the teacher network should be pretrained by

some dataset. This dataset can be the same or different from

the one that the student network will learn. The teacher net-

work uses a different dataset from that of the student net-

work in the case of a transfer learning task. Second, the

teacher network can be deeper or shallower than the student

network. However, we consider a teacher network that is

the same or deeper than the student network.

The learning procedure contains two stages of training.

First, we minimize the loss function LFSP to make the FSP

matrix of the student network similar to that of the teacher

network. The student network that went through the first

stage is now trained by the main task loss at the second

stage. Because we used the classification task to verify

the effectiveness of our proposed method, we can use the

softmax cross entropy loss Lori as the main task loss. The

learning procedure is explained below in Algorithm 1.

Algorithm 1 Transfer the distilled knowledge

Stage 1: Learning the FSP matrix

Weights of the student and teacher networks: Ws , Wt

1: Ws = argminWs
LFSP (Wt ,Ws)

Stage 2: Training for the original task

1: Ws = argminWs
Lori(Ws)

4. Experiments

We conducted three experiments to verify the effective-

ness of our proposed knowledge transfer technique. For all

experiment settings, we used a deep residual network [8]

for the base architecture. Interestingly, the deep resid-

ual network has shortcut connections to make an ensem-

ble structure [24]. Furthermore, the shortcut connections

allow training of much deeper networks. Because of these

two reasons, many researchers use the residual network for

various tasks. Figure 2 shows the base architecture of the

deep residual network. There are several sections that main-

tain the same spatial size of feature maps by using the zero

padding. For example, the deep residual network in this

figure consists of three sections. Although there are no con-

straints on how to select the two layers to make the FSP

matrix, we selected the first and last layers in a section. Fur-

thermore, because the FSP matrix can be generated by two

layer features with the same spatial size, we used the max

pooling layer to make the same spatial size if the sizes of

two layer features are different.

We used three representative tasks to verify the useful-

ness of the proposed knowledge transfer technique. By

learning the flow of the solution procedure, the student net-

work can study a task faster than usual, as discussed in

Sec. 4.1. Furthermore, the FSP matrix generated by the

teacher network allows the student network to outperform

a student network that is trained alone, as described in

Sec. 4.2. We considered the case where the teacher and stu-

dent networks are trained by the same dataset for the same

task. Sec. 4.3 expands on the ideas for application by deal-
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ing with the transfer learning task.

For all experiments, we compared the proposed method

with the existing knowledge transfer method, FitNet [20].

For the first stage of FitNet, hint-based training was im-

plemented by minimizing the L2 loss between outputs of

the two layers during 35 000 iterations, where the hint and

guided layer were set to the middle layer of each DNN.

The learning rate started with 1e-4 initially. Then, it was

changed to 1e-5 after 25 000 iterations. To ensure a fair

comparison of the recognition accuracy, the FitNet in the

second stage also had the same learning rate policy and

training iterations as the proposed method. At this stage, the

softening factor tau was set to 3, and the value of lambda in

the KD loss function was linearly decreased from 4 to 1.

4.1. Fast optimization

Because recent DNNs have become deeper to increase

performance, the training procedure takes many days [26,

8]. Furthermore, although a DNN takes a long time to train,

many researchers use an ensemble of DNNs to outperform

the performance of single DNN [23]. In this case, if we

use an ensemble of n DNNs, training takes n times longer.

Because of this, interest in the fast optimization technique

has been rising in recent years.

We first prepared the teacher DNN with the normal train-

ing procedure. The teacher DNN was used to train the

student DNNs with the learning procedure described in

Sec. 3.4. By using one teacher network, we generated mul-

tiple student networks. The goal of the proposed fast opti-

mization technique is to reach a similar performance with

the ensemble of student networks as that of the teacher net-

work by using less training time than the normal training

procedure.

4.1.1 CIFAR-10

The CIFAR-10 dataset [15] contains 50 000 training images

with 5000 images per class and 10 000 test images with

1000 images per class. The CIFAR-10 dataset comprises

32 × 32 pixel RGB images with 10 classes. However, we

padded 4 pixels on each side to make the image size 40×40
pixels. Randomly cropped 32× 32 pixel images were used

for training, and the original 32×32 pixel images were used

for testing.

We used a residual network with 26 layers for the teacher

DNN, which provided 92% accuracy for the CIFAR-10

dataset as reported in [8]. Furthermore, we used the same

structure of the teacher DNN for the student DNN. The

teacher network was trained according to the parameters de-

scribed below. For all experiments, we used a batch size of

256. The learning rate started with 0.1, was changed to 0.01

and 0.001 at 32 000 and 48 000 iterations, respectively, and

terminated at 64 000 iterations. We used a weight decay

Figure 3. Analysis of the optimization speed and test accuracy.

We compared the teacher DNN and student DNN that learned the

distilled knowledge (i.e., the FSP matrix).

of 0.0001 and momentum of 0.9 with the MSRA initializa-

tion [9] technique and BN [12].

A student network with the same structure as the teacher

network was used in stage 1 to set the initial weights as de-

scribed in algorithm 1. We used learning rates of 0.001,

0.0001, and 0.00001 until 11 000, 16 000, and 21 000 it-

erations, respectively. We used a weight decay of 0.0001

and momentum of 0.9. We then trained the student DNN by

using the normal procedure and the initial weights provided

at the end of stage 1. Note that we trained several student

networks in stage 2 by using the same initial weights pro-

vided by the student network trained in stage 1. As the re-

sult of stage 1 is copied to many student networks as initial

weights, stage 1 is an efficient way of initializing many stu-

dent networks. One potential drawback of sharing the same

initial weights across all student networks is that the net-

works can be more correlated than if the student networks

are independently initialized.

Figure 3 represents the test accuracy and change in the

training loss over time. The student network showed faster

optimization than the teacher network. The student network

was three times faster at reaching the saturation region than

the teacher network. Because we used the MSRA initializa-

tion technique for the teacher network, which is not a naive

initialization method but a high performance method, we

believe that the FSP matrix provides good distilled knowl-

edge for initializing the weights of the student network.

We trained student networks with one-third of the orig-

inal number of iterations in stage 2 to demonstrate the fast

optimization. In stage 2, we used learning rates of 0.1, 0.01,

and 0.001 until 11 000, 16 000, and 21 000 iterations, which

are less than one-third the original number of iterations.

From the results in Table 1, we observed that using one-

third of the iterations was enough for the student networks
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with the proposed method. Although the student networks

used fewer iterations, the proposed method outperformed

the FitNet as well as the original teacher network.

We also experimented with the FitNet method of taking

three losses applied to three intermediate layers as well as

one loss applied to the middle layer only. It turned out that

the one-loss FitNet outperformed the three-loss FitNet as in

Table 1.

The proposed method can decompose the entire network

into several modules, and each module’s behavior is cap-

tured by its FSP matrix. If the student’s FSP matrix of a

module is similar to that of the teacher network, it implies

that the module in the student network behaves similarly to

the corresponding module in teacher network. Further, each

module can be trained independently in that the module can

be trained from the correlations between inputs and outputs

of that module alone, even though the other modules are not

fully trained. In contrast, the three-loss FitNet’s upper mod-

ules, which are trained by matching only the outputs of the

module without considering the relation between the input

and the output, are less efficiently trained until the modules

below in the student network are sufficiently trained so that

the input to the upper module begins to be meaningful. This

explains why the one-loss FitNet outperformed the three-

loss FitNet. For the three-loss FitNet, the network had four

modules. The second and third modules would be difficult

to train by the intermediate results. In addition, FSP is less

restrictive than FitNet. If the student network and teacher

network have the same intermediate feature maps, they will

have the same FSP matrix. However, the converse is not

true, which allows diversity in feature maps given the same

FSP matrix.

As both teacher networks and student networks are of

the same architecture, one can also transfer knowledge by

directly copying weights. We also compared the proposed

method and the knowledge transfer by copying weights. To

this end, we simply trained three copies of one teacher net-

work for additional 21 000 iterations, which is equivalent to

copying the weights from a single teacher network and start-

ing from there. This did not provide a better result than stu-

dent*. As given in Table 1 (Teacher ‡), the individual per-

formances were slightly better than the original teacher per-

formance, but they provided a poor ensemble performance.

FSP is less restrictive than copying the weights and allows

for better diversity and ensemble performance.

In addition, the ensemble of student networks with fewer

iterations provided a similar performance as the ensemble

of teacher networks, but FitNet did not. Although the en-

semble performance of the student networks was close to

the ensemble performance of the teacher networks, there

was an obvious loss in gain achieved by the former (92.14

→ 93.26) compared to the gain achieved by the latter (91.75

→ 93.48). This is because the student networks were more

Net 1 Net 2 Net 3 Avg Ensemble #Iter

Teacher 91.61 91.56 92.09 91.75 93.48 192k

Teacher * 90.47 90.83 90.62 90.64 92.6 63k

Teacher ‡ 91.84 92.26 92.01 92.04 92.71 63k

1 loss FitNet [20]* 91.69 91.85 91.64 91.72 92.98 98k

3 loss FitNet [20]* 88.90 89.35 89.02 89.09 89.92 98k

Student * 92.28 92.08 92.07 92.14 93.26 84k

Student *† 92.28 91.89 92.08 92.08 93.67 126k

Table 1. Recognition rates (%) on CIFAR-10. The symbol * indi-

cates that each network was trained with 21 000 iterations, which

is less than one-third of the iterations for the original case, which

used 64 000 iterations. Student * was trained with 21 000 itera-

tions in stage 1, whose results are copied to net 1, net 2, and net

3, and each student network was trained with 21 000 iterations in

stage 2 to result in total 84 k iterations. The symbol ‡ represents

the teacher network trained with 21 000 iterations, which started

from the one of the teacher network trained with 64 000 iterations.

The symbol † indicates the student network that learned the ran-

domly shuffled FSP matrix in stage 1. In the case of Student * †,

each net was trained with 21 000 iterations in stage 1 and 21 000

iterations in stage 2.

closely correlated from sharing initial weights.

Interestingly, we developed a very simple but effective

way to train less correlated student networks using the same

single teacher network. The idea is that we can generate

multiple FSP matrices that are essentially equivalent but ap-

parently different. By using apparently different FSP ma-

trices for the student networks instead of sharing the same

FSP matrix, we can reduce the correlation among student

networks. The FSP matrix was generated by features from

two selected layers. Note that we can permute feature chan-

nels in the teacher network to obtain an equivalent teacher

network that behaves essentially the same way. This means

that the rows or columns of the FSP matrix can be shuf-

fled without affecting the transfer of the distilled knowl-

edge. The different FSP matrices obtained by row and col-

umn shuffling can be used in stage 1 to generate multiple

student networks with different initial weights. Then, after

stage 2, the resulting student networks would be less corre-

lated, and an improved ensemble can be obtained. As indi-

cated in Table 1, despite the fewer iterations, the ensemble

of student networks using a randomly shuffled FSP matrix

outperformed even the ensemble of teacher networks.

In terms of the training times instead of the number of it-

erations, the original model took 16 s/100 iterations, while

the proposed model took 35 s/100 iterations for stage 1.

Therefore, in terms of the total learning time, it took 8.6

h to train three teacher DNNs with the original method and

take 4.84 h to train three student DNNs with the proposed

method. The latter is 1.78 times faster. However, by learn-

ing more efficiently (e.g., storing the FSP matrices and us-

ing it directly instead of calculating the FSP matrix every

time (took 19 s/100 iterations)) student * and student *†
could be trained 2.18 and 1.39 times faster, respectively.
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Net 1 Net 2 Net 3 Avg Ensemble #Iter

Teacher 64.06 64.19 64.21 64.15 69.3 192k

Teacher * 61.29 61.26 61.41 61.32 67.2 63k

FitNet [20]* 62.85 62.46 62.35 62.55 67.6 98k

Student * 64.66 64.64 64.65 64.65 68.8 95k

Table 2. Recognition rates (%) on CIFAR-100. The symbol * indi-

cates that the network was trained with one-third of the iterations

for the original case, which used 64 000 iterations.

4.1.2 CIFAR-100

The CIFAR-100 dataset uses 50 000 training images with

500 images per class and 10 000 test images with 100 im-

ages per class. The CIFAR-100 dataset contains 32 × 32
pixel RGB images with 100 classes. Because of the small

number of images per class with 100 classes, we used a

residual network with 32 layers and four times as many

channels as the one described in Sec. 4.1.1.

We did not use augmentation methods unlike the CIFAR-

10 case to make the various experiment settings. The

teacher and student networks used the same parameters as

those described in Sec. 4.1.1. The only difference was that

we used learning rates of 0.001, 0.0001, and 0.00001 until

16 000, 24 000, and 32 000 iterations, respectively, in stage

1.

Table 2 presents the recognition rates for different set-

tings. Each setting was performed three times. The second

column from the right shows the performance of the ensem-

ble of three DNNs. Considering the difference in accuracy

between the prepared deep residual network with 32 layers

with an average of 64.15% accuracy and the same network

trained with one-third of the original iterations with an aver-

age of 61.32% accuracy, we can conclude that the number of

iterations is important for high performance. However, even

though the student network used fewer iterations for train-

ing, the student network that used the distilled knowledge

from the teacher network generated a similar performance

as the original teacher network.

We compared the other distilled knowledge transfer

method FitNet with our proposed method. As given in Table

2, the student network with FitNet outperformed the teacher

network with fewer iterations. However, when an ensemble

of three networks was used, the teacher network with fewer

iterations and student network with FitNet had similar ac-

curacies. There was not that much improvement. In terms

of the performance and number of iterations, the proposed

method was more efficient than the existing method of Fit-

Net, as presented in Table 2.

4.2. Performance improvement for the small DNN

Recently, many researchers have used a very deep neural

network with a huge number of parameters for high perfor-

mance. For example, one residual network uses more than

1000 layers for the classification task [10]. The wide resid-

ual network [26] increases the width of the residual net-

Accuracy

Teacher-original 91.91

Student-original 87.91

FitNet [20] 88.57

Proposed Method 88.70

Table 3. Recognition rates (%) on CIFAR-10. We used a resid-

ual DNN with 8 layers for the student DNN and 26 layers for the

teacher DNN.

work. However, there are many defects. Even if we use the

DNN as an inference network, we have to prepare a high-

performance system, which is very expensive. Furthermore,

many iterations are needed to train a deep and wide neural

network. It is also expensive. Thus, methods to improve the

performance of a small DNN are very important.

We conducted experiments to verify that our proposed

method can be used with DNNs of different sizes. The goal

of our proposed method is to improve the performance of a

small student network by learning the distilled knowledge

of a deep teacher network. Once again, we defined a small

network as a shallow network with few weights. As shown

in Figure 2, the teacher DNN was deeper than the student

DNN. The student DNN was constructed by simply reduc-

ing the number of residual modules in the teacher DNN.

Therefore, the student DNN used fewer parameters than the

teacher DNN.

The learning procedure was the same as that described

in Sec. 4.1. Because the student DNN and teacher DNN

had the same number of channels, the sizes of the FSP ma-

trices were the same. By minimizing the distance between

the FSP matrices of the student network and teacher net-

work, we found a good initial weight for the student net-

work. Then, the student network was trained to solve the

main task.

4.2.1 CIFAR-10

We used a residual network with 26 layers for the teacher

DNN and a residual network with 8 layers for the student

DNN. For the parameter settings and learning procedure,

we use the same parameters as described in Sec. 4.1.1 but

not the same training iterations for stage 2. The student

DNNs used the same number of training iterations as the

teacher DNN.

For fair comparison, we prepared a student DNN that

was trained from scratch. As indicated in Table 3, the meth-

ods of transferring distilled knowledge outperformed the

student DNN that used the original learning procedure. This

means that distilled knowledge from the teacher DNN can

be useful information for even a shallow student DNN. We

can conclude that the proposed method is more useful than

the existing method.

4.2.2 CIFAR-100

We also verified the network minimization ability of pro-

posed method at the CIFAR-100 dataset. As a similar exper-
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Accuracy

Teacher-original 64.06

Student-original 58.65

FitNet [20] 61.28

Proposed Method 63.33

Table 4. Recognition rates (%) on CIFAR-100. We used a residual

DNN with 14 layers for the student DNN and 32 layers for the

teacher DNN.

imental setting to Sec. 4.1.2, we used residual networks with

32 and 14 layers for the teacher DNN and student DNN, re-

spectively. For all experiments in this section, we used the

full 64 000 iterations.

Table 4 presents the recognition rates for different set-

tings. Because we did not use any augmentation methods,

the teacher DNN showed the 64% accuracy. Furthermore,

the student DNN that used the normal learning method

showed a 58.65% recognition rate. Surprisingly, the pro-

posed method made the student network generate the sim-

ilar performance to the teacher DNN. The existing knowl-

edge distillation method (i.e., FitNet) also showed improved

performance. However, when we compared the perfor-

mance of the student network with two distilled knowledge

methods and the student network with the original method,

the proposed method with distilled knowledge clearly per-

formed better than the existing ones.

4.3. Transfer Learning

In this section, we explain the applications to which the

proposed methods can be applied. The teacher DNN and

student DNN can learn not only the same task, but also

different tasks. To deal with this problem, we focused on

the transfer learning task. Transfer learning is widely used

when the dataset is too small to generate useful features. In

this case, most existing methods use a pretrained DNN that

is trained by a huge dataset, such as ImageNet dataset [21].

However, the most important issue is that most existing

methods directly use the pretrained DNN, which contains

many layers and a huge number of weights. This means that

a high-quality machine needs to be prepared to improve the

performance with a small dataset. Therefore, because the

distilled knowledge can be transferred to a small DNN, the

knowledge transfer technique can be the effective solution

for this problem.

We prepared a 34-layer residual DNN [8] that was pre-

trained with the ImageNet dataset. For the different task

containing a small number of images, we used the Caltech-

UCSD Birds (CUB) 200-2011 dataset [25]. The CUB 200-

2011 dataset contains 11,788 images of 200 bird subordi-

nates. Because of the small number of images per class, it

is difficult to generate a high level of performance by using

only this dataset. As given in Table 5, although we used the

deep structure of the 34-layer residual DNN, the accuracy

was very poor when we trained it from scratch.

Accuracy

Teacher - fine tuning 77.72

Teacher - training from scratch 47.53

Student - training from scratch 47.73

FITNET [20] 70.19

Proposed Method 74.26

Table 5. Recognition rates (%) on CUB200. We used a residual

DNN with 20 layers for the student DNN and 34 layers for the

teacher DNN.

For the shallow DNN, we prepared a 20-layer residual

DNN. The 34-layer residual DNN consisted of four parts

that generated features of the same spatial size in the same

part. The four parts contained three, four, six, and three

residual modules. The prepared student DNN (20-layer

residual DNN) contained two, two, three, and two resid-

ual modules, respectively. For all settings, we used learn-

ing rates of 0.1, 0.01, and 0.001 up to 10 000, 20 000, and

30 000 iterations. The fine-tuning technique usually uses

small learning rates. However, because we found that the

base learning rate of 0.1 was better than the learning rate of

0.001, we decided to report the results of 0.1.

Because proposed methods have to transfer the FSP ma-

trix of the teacher DNN to the student DNN, we used learn-

ing rates of 0.1, 0.01, and 0.001 up to 11 000, 16 000, and

21 000 iterations for stage 1. In this stage, we extracted

the FSP matrices at each part of the DNN. As reported in

Table 5, the proposed method generated a high level of per-

formance close to that of the teacher DNN with fine-tuning

methods. Considering that the student DNN was 1.7 times

shallower than the teacher DNN, we believe that proposed

method is an effective technique for transferring the knowl-

edge even to a different task.

5. Conclusion

We proposed a novel approach to generate distilled

knowledge from the DNN. By determining the distilled

knowledge as the flow of the solving procedure calculated

with the proposed FSP matrix, the proposed method outper-

forms state-of-the-art knowledge transfer methods. We ver-

ified the effectiveness of our proposed method in three im-

portant aspects. The proposed method optimizes the DNN

faster and generates a higher level of performance. Fur-

thermore, the proposed method can be used for the transfer

learning task.
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