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Preview: Coarse-to-Fine Cascades

VlcGwire

neared

fans
went

wild

McGwire

neared

@ 868 ®

McGwire

neared

fans
went

wild

B o0 @



linear-size dependency representation



Representation

* As McGwire neared s fans went
4 *
As
McGwire

Heads < neared

,

fans
went
\ wild
¥ Z %2 3 g 2
TN R > % B
2. %
B
- _/
~

Modifiers

wild



Representation

¥\

* As McGwire neared s fans went

4 *
As
McGwire

Heads < neared

,

fans
went 0
\ wild
> > - T 2 <
2. %
%
- _/
~

Modifiers

wild



Representation

P N N

* As McGwire neared , fans went
4 *
As
McGwire

Heads < neared .

,

fans
went D
\ wild
> > - > 2 2
2 %
)
— 4
~

Modifiers

wild



Representation

/‘\ P
* As McGwire neared , fans went wild
4 *
As
McGwire

Heads < neared C]

,

fans
D ®
\ wild
> > - T 2 £
2. %
%
- _/
~

Modifiers



Representation

VN N

* As McGwire neared , fans went wild
4 *
As
McGwire

Heads < neared C]

,

fans
|0 O
\ wild
> P - T 2 £
2. %
%
- _/
~

Modifiers



Representation

TN AN

* As McGwire neared , fans went wild
4 *
N
McGwire

Heads < neared D

fans
20 ®
\ wild
> P T 2 £
2. %
%
- _/
~

Modifiers



Representation

"

* As McGwire neared , fans went wild

4 *

o 0

McGwire

Heads < neared D

fans
went (] 080 O
\ wild
> P T 2 £
2. %
%
- _/
~

Modifiers



Representation

"

* As McGwire neared , fans went wild

[ = O
o 0

McGwire

Heads < neared D

fans
went ] 080 O
\ wild
> P T 2 £
2. %
%
- _/

~
Modifiers



First-Order Feature Calculation
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First-Order Feature Calculation
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Arc Length Examples
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Arc Length Examples
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Arc Length Examples
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Arc Length Heat Map
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Banded Matrix
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Outer Arc
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Coarse-to-Fine
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dynamic programs for parsing



Inference Questions

questions:
e How do we reduce inference time to O(n)?

e How do we decide which arcs to prune?

Vine Parsing (Eisner and Smith, 2005)



Eisner First-Order Rules



First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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First-Order Parsing
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Vine Parsing Rules

0

0 e—1

e



Vine Parsing

L i

As McGwire neared , fans went wild

As

McGwire

neared

1

fans|:

went |7%;

wild |/

7 z 2 3 3 %
Pl ® 2 ©
20
5‘.0‘

[



Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Vine Parsing
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Arc Pruning

e Prune arcs based on max-marginals.
maxmarginal(a) = max (y - w)
y:acy

e Can compute using inside-outside algorithm.

e Generic algorithm using hypergraph parsing.



Max-Marginals for First-Order Arcs
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Max-Marginals for Outer Arcs
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pruning and training



Max-Marginal Pruning

goal: Define a threshold on max-marginal score.

e Validation parameter « trades off between speed and accuracy.

1
to(w) = amax(y-w)+(1-— a)w g maxmarginal(a, w)
y
acA

e Highest scoring parse upper bounds any max-marginal.

e Assume average of max-marginals is lower than gold.
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Pruning Threshold
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runing Threshold
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Structured Cascade Training (Weiss and Taskar, 2011)

e Train a linear model with a loss function for pruning.

e Regularized risk minimization with loss based on threshold

P
1
: 2
min A + 5 Zl[l — Y w + tP(w)]
p:

e Can use a simple variant of perceptron/pegasos to train.
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Structured Cascade Training
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experiments



Implementation

Inference

e Experiments use a highly-optimized C++ implementation.
* Baseline first-order parser processes 2000 tokens/sec.
e Hypergraph parsing framework with shared inference.

Model

e Final models trained with hamming-loss MIRA.
o Full collection of dependency parsing features (Koo, 2010).

e First-, second-, and third-order models match state-of-the-art.



Baselines
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(Bergsma and Cherry, 2010)

structured  first-order  model in  cascade
(Koo, 2010)

posterior pruning cascade trained with L-BFGS

reimplementation of state-of-the-art, k-best,
transition-based parser (Zhang and Nivre, 2011).



Speed/Accuracy Experiments: First-Order Parsing
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Speed/Accuracy Experiments: Second-Order Parsing
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Speed/Accuracy Experiments: Third-Order Parsing
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Empirical Complexity: First-Order Parsing
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Empirical Complexity: Second-Order Parsing
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Empirical Complexity: Third-Order Parsing
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Multilingual Experiments: First-Order Parsing
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Multilingual Experiments: Second-Order Parsing
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Multilingual Experiments: Third-Order Parsing
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