
Programming Computer Vision
with Python

Jan Erik Solem

Programming Computer Vision with Python

Copyright ©2012 Jan Erik Solem.

This version of the work is a pre-production draft made available under the terms
of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United
States License.
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

2

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Contents

Preface 7
Prerequisites and Overview . 8
Introduction to Computer Vision . 9
Python and NumPy . 10
Notation and Conventions . 10
Acknowledgments . 11

1 Basic Image Handling and Processing 13
1.1 PIL – the Python Imaging Library . 13
1.2 Matplotlib . 16
1.3 NumPy . 20
1.4 SciPy . 31
1.5 Advanced example: Image de-noising . 39

2 Local Image Descriptors 45
2.1 Harris corner detector . 45
2.2 SIFT - Scale-Invariant Feature Transform 52
2.3 Matching Geotagged Images . 63

3 Image to Image Mappings 73
3.1 Homographies . 73
3.2 Warping images . 78
3.3 Creating Panoramas . 91

4 Camera Models and Augmented Reality 103
4.1 The Pin-hole Camera Model . 103
4.2 Camera Calibration . 109
4.3 Pose Estimation from Planes and Markers 110
4.4 Augmented Reality . 114

3

5 Multiple View Geometry 127
5.1 Epipolar Geometry . 127
5.2 Computing with Cameras and 3D Structure 136
5.3 Multiple View Reconstruction . 144
5.4 Stereo Images . 152

6 Clustering Images 161
6.1 K-means Clustering . 161
6.2 Hierarchical Clustering . 169
6.3 Spectral Clustering . 175

7 Searching Images 185
7.1 Content-based Image Retrieval . 185
7.2 Visual Words . 186
7.3 Indexing Images . 190
7.4 Searching the Database for Images . 194
7.5 Ranking Results using Geometry . 199
7.6 Building Demos and Web Applications . 202

8 Classifying Image Content 209
8.1 K-Nearest Neighbors . 209
8.2 Bayes Classifier . 218
8.3 Support Vector Machines . 223
8.4 Optical Character Recognition . 228

9 Image Segmentation 237
9.1 Graph Cuts . 237
9.2 Segmentation using Clustering . 248
9.3 Variational Methods . 252

10OpenCV 257
10.1The OpenCV Python Interface . 257
10.2OpenCV Basics . 258
10.3Processing Video . 262
10.4Tracking . 265
10.5More Examples . 273

A Installing Packages 279
A.1 NumPy and SciPy . 279
A.2 Matplotlib . 280
A.3 PIL . 280

4 CONTENTS

A.4 LibSVM . 281
A.5 OpenCV . 281
A.6 VLFeat . 282
A.7 PyGame . 282
A.8 PyOpenGL . 283
A.9 Pydot . 283
A.10Python-graph . 283
A.11Simplejson . 284
A.12PySQLite . 284
A.13CherryPy . 285

B Image Datasets 287
B.1 Flickr . 287
B.2 Panoramio . 288
B.3 Oxford Visual Geometry Group . 289
B.4 University of Kentucky Recognition Benchmark Images 289
B.5 Other . 290

C Image Credits 291

CONTENTS 5

Preface

Today, images and video are everywhere. Online photo sharing sites and social net-
works have them in the billions. Search engines will produce images of just about any
conceivable query. Practically all phones and computers come with built in cameras.
It is not uncommon for people to have many gigabytes of photos and videos on their
devices.

Programming a computer and designing algorithms for understanding what is in
these images is the field of computer vision. Computer vision powers applications like
image search, robot navigation, medical image analysis, photo management and many
more.

The idea behind this book is to give an easily accessible entry point to hands-on
computer vision with enough understanding of the underlying theory and algorithms
to be a foundation for students, researchers and enthusiasts. The Python programming
language, the language choice of this book, comes with many freely available powerful
modules for handling images, mathematical computing and data mining.

When writing this book I have had the following principles as a guideline. The book
should:

• be written in an exploratory style. Encourage readers to follow the examples on
their computers as they are reading the text.

• promote and use free and open software with a low learning threshold. Python
was the obvious choice.

• be complete and self-contained. Not complete as in covering all of computer vi-
sion (this book is far from that!) but rather complete in that all code is presented
and explained. The reader should be able to reproduce the examples and build
upon them directly.

• be broad rather than detailed, inspiring and motivational rather than theoretical.

In short: act as a source of inspiration for those interested in programming computer
vision applications.

7

Prerequisites and Overview

What you need to know

• Basic programming experience. You need to know how to use an editor and run
scripts, how to structure code as well as basic data types. Familiarity with Python
or other scripting style languages like Ruby or Matlab will help.

• Basic mathematics. To make full use of the examples it helps if you know about
matrices, vectors, matrix multiplication, the standard mathematical functions
and concepts like derivatives and gradients. Some of the more advanced mathe-
matical examples can be easily skipped.

What you will learn

• Hands-on programming with images using Python.

• Computer vision techniques behind a wide variety of real-world applications.

• Many of the fundamental algorithms and how to implement and apply them your-
self.

The code examples in this book will show you object recognition, content-based
image retrieval, image search, optical character recognition, optical flow, tracking,
3D reconstruction, stereo imaging, augmented reality, pose estimation, panorama cre-
ation, image segmentation, de-noising, image grouping and more.

Chapter Overview

Chapter 1 Introduces the basic tools for working with images and the central Python
modules used in the book. This chapter also covers many fundamental examples
needed for the remaining chapters.

Chapter 2 Explains methods for detecting interest points in images and how to use
them to find corresponding points and regions between images.

Chapter 3 Describes basic transformations between images and methods for com-
puting them. Examples range from image warping to creating panoramas.

Chapter 4 Introduces how to model cameras, generate image projections from 3D
space to image features and estimate the camera viewpoint.

8 CONTENTS

Chapter 5 Explains how to work with several images of the same scene, the fun-
damentals of multiple-view geometry and how to compute 3D reconstructions from
images.

Chapter 6 Introduces a number of clustering methods and shows how to use them
for grouping and organizing images based on similarity or content.

Chapter 7 Shows how to build efficient image retrieval techniques that can store
image representations and search for images based on their visual content.

Chapter 8 Describes algorithms for classifying image content and how to use them
recognizing objects in images.

Chapter 9 Introduces different techniques for dividing an image into meaningful
regions using clustering, user interactions or image models.

Chapter 10 Shows how to use the Python interface for the commonly used OpenCV
computer vision library and how to work with video and camera input.

Introduction to Computer Vision

Computer vision is the automated extraction of information from images. Information
can mean anything from 3D models, camera position, object detection and recognition
to grouping and searching image content. In this book we take a wide definition of
computer vision and include things like image warping, de-noising and augmented
reality1.

Sometimes computer vision tries to mimic human vision, sometimes uses a data
and statistical approach, sometimes geometry is the key to solving problems. We will
try to cover all of these angles in this book.

Practical computer vision contains a mix of programming, modeling, and mathe-
matics and is sometimes difficult to grasp. I have deliberately tried to present the ma-
terial with a minimum of theory in the spirit of "as simple as possible but no simpler".
The mathematical parts of the presentation are there to help readers understand the
algorithms. Some chapters are by nature very math heavy (chapters 4 and 5 mainly).
Readers can skip the math if they like and still use the example code.

1These examples produce new images and are more image processing than actually extracting infor-
mation from images.

CONTENTS 9

Python and NumPy

Python is the programming language used in the code examples throughout this book.
Python is a clear and concise language with good support for input/output, numerics,
images and plotting. The language has some peculiarities such as indentation and
compact syntax that takes getting used to. The code examples assume you have Python
2.6 or later as most packages are only available for these versions. The upcoming
Python 3.x version has many language differences and is not backward compatible
with Python 2.x or compatible with the ecosystem of packages we need (yet).

Some familiarity with basic Python will make the material more accessible for read-
ers. For beginners to Python, Mark Lutz’ book [20] and the online documentation at
http://www.python.org/ are good starting points.

When programming computer vision we need representations of vectors and ma-
trices and operations on them. This is handled by Python’s NumPy module where both
vectors and matrices are represented by the array type. This is also the represen-
tation we will use for images. A good NumPy reference is Travis Oliphant’s free book
[24]. The documentation at http://numpy.scipy.org/ is also a good starting point if
you are new to NumPy. For visualizing results we will use the Matplotlib module and
for more advanced mathematics, we will use SciPy. These are the central packages
you will need and will be explained and introduced in Chapter 1.

Besides these central packages there will be many other free Python packages used
for specific purposes like reading JSON or XML, loading and saving data, generating
graphs, graphics programming, web demos, classifiers and many more. These are
usually only needed for specific applications or demos and can be skipped if you are
not interested in that particular application.

It is worth mentioning IPython, an interactive Python shell that makes debug-
ging and experimentation easier. Documentation and download available at http:
//ipython.org/.

Notation and Conventions

Code is given in a special boxed environment with color highlighting (in the electronic
version) and looks like this:

some points
x = [100,100,400,400]
y = [200,500,200,500]

plot the points
plot(x,y)

10 CONTENTS

http://www.python.org/
http://numpy.scipy.org/
http://ipython.org/
http://ipython.org/

Text is typeset according to these conventions:

Italic is used for definitions, filenames and variable names.

Typewriter is used for functions and Python modules.

Small constant width is used for console printout and results from calls and APIs.

Hyperlink is used for URLs (clickable in the electronic version).

Plain text is used for everything else.

Mathematical formulas are given inline like this f(x) = w

T

x+ b or centered indepen-
dently

f(x) =
X

i

w
i

x
i

+ b ,

and are only numbered when a reference is needed.
In the mathematical sections we will use lowercase (s, r �, ✓, . . .) for scalars,

uppercase (A, V , H, . . .) for matrices (including I for the image as an array) and
lowercase bold (t, c, . . .) for vectors. We will use x = [x, y] and X = [X,Y, Z] to mean
points in 2D (images) and 3D respectively.

Acknowledgments

I’d like to express my gratitude to everyone involved in the development and produc-
tion of this book. The whole O’Reilly team has been helpful. Special thanks to Andy
Oram (O’Reilly) for editing, and Paul Anagnostopoulos (Windfall) for efficient produc-
tion work.

Many people commented on the various drafts of this book as I shared them on-
line. Klas Josephson and Håkan Ardö deserves lots of praise for thorough comments
and feedback. Fredrik Kahl and Pau Gargallo helped with fact checks. Thank you
all readers for encouraging words and for making the text and code examples bet-
ter. Receiving emails from strangers sharing their thoughts on the drafts was a great
motivator.

Finally, I’d like to thank my friends and family for support and understanding when
I spend nights and weekends on writing. Most thanks of all to my wife Sara, my long
time supporter.

CONTENTS 11

Hyperlink

Chapter 1

Basic Image Handling and
Processing

This chapter is an introduction to handling and processing images. With extensive ex-
amples, it explains the central Python packages you will need for working with images.
This chapter introduces the basic tools for reading images, converting and scaling im-
ages, computing derivatives, plotting or saving results, and so on. We will use these
throughout the remainder of the book.

1.1 PIL – the Python Imaging Library

The Python Imaging Library (PIL) provides general image handling and lots of useful
basic image operations like resizing, cropping, rotating, color conversion and much
more. PIL is free and available from http://www.pythonware.com/products/pil/.

With PIL you can read images from most formats and write to the most common
ones. The most important module is the Image module. To read an image use

from PIL import Image

pil_im = Image.open(’empire.jpg’)

The return value, pil_im, is a PIL image object.
Color conversions are done using the convert() method. To read an image and

convert it to grayscale, just add convert(0L0) like this:

pil_im = Image.open(’empire.jpg’).convert(’L’)

Here are some examples taken from the PIL documentation, available at http://
www.pythonware.com/library/pil/handbook/index.htm. Output from the examples

13

http://www.pythonware.com/products/pil/
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Figure 1.1: Examples of processing images with PIL.

is shown in Figure 1.1.

Convert images to another format

Using the save() method, PIL can save images in most image file formats. Here’s
an example that takes all image files in a list of filenames (filelist) and converts the
images to JPEG files.

from PIL import Image
import os

for infile in filelist:
outfile = os.path.splitext(infile)[0] + ".jpg"
if infile != outfile:
try:
Image.open(infile).save(outfile)

except IOError:
print "cannot convert", infile

The PIL function open() creates a PIL image object and the save() method saves the
image to a file with the given filename. The new filename will be the same as the
original with the file ending ".jpg" instead. PIL is smart enough to determine the image
format from the file extension. There is a simple check that the file is not already a
JPEG file and a message is printed to the console if the conversion fails.

Throughout this book we are going to need lists of images to process. Here’s how
you could create a list of filenames of all images in a folder. Create a file imtools.py to
store some of these generally useful routines and add the following function.

import os

def get_imlist(path):

14 1.1. PIL – the Python Imaging Library

""" Returns a list of filenames for
all jpg images in a directory. """

return [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]

Now, back to PIL.

Create thumbnails

Using PIL to create thumbnails is very simple. The thumbnail() method takes a tuple
specifying the new size and converts the image to a thumbnail image with size that fits
within the tuple. To create a thumbnail with longest side 128 pixels, use the method
like this:

pil_im.thumbnail((128,128))

Copy and paste regions

Cropping a region from an image is done using the crop() method.

box = (100,100,400,400)
region = pil_im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower).
PIL uses a coordinate system with (0, 0) in the upper left corner. The extracted region
can for example be rotated and then put back using the paste() method like this:

region = region.transpose(Image.ROTATE_180)
pil_im.paste(region,box)

Resize and rotate

To resize an image, call resize() with a tuple giving the new size.

out = pil_im.resize((128,128))

To rotate an image, use counter clockwise angles and rotate() like this:

out = pil_im.rotate(45)

Some examples are shown in Figure 1.1. The leftmost image is the original, followed
by a grayscale version, a rotated crop pasted in, and a thumbnail image.

1.1. PIL – the Python Imaging Library 15

1.2 Matplotlib

When working with mathematics and plotting graphs or drawing points, lines and
curves on images, Matplotlib is a good graphics library with much more powerful
features than the plotting available in PIL. Matplotlib produces high quality figures
like many of the illustrations used in this book. Matplotlib’s PyLab interface is the set
of functions that allow the user to create plots. Matplotlib is open source and avail-
able freely from http://matplotlib.sourceforge.net/ where detailed documenta-
tion and tutorials are available. Here are some examples showing most of the functions
we will need in this book.

Plotting images, points and lines

Although it is possible to create nice bar plots, pie charts, scatter plots, etc., only a few
commands are needed for most computer vision purposes. Most importantly, we want
to be able to show things like interest points, correspondences and detected objects
using points and lines. Here is an example of plotting an image with a few points and
a line.

from PIL import Image
from pylab import *

read image to array
im = array(Image.open(’empire.jpg’))

plot the image
imshow(im)

some points
x = [100,100,400,400]
y = [200,500,200,500]

plot the points with red star-markers
plot(x,y,’r*’)

line plot connecting the first two points
plot(x[:2],y[:2])

add title and show the plot
title(’Plotting: "empire.jpg"’)
show()

This plots the image, then four points with red star markers at the x and y coordinates
given by the x and y lists, and finally draws a line (blue by default) between the two

16 1.2. Matplotlib

http://matplotlib.sourceforge.net/

Figure 1.2: Examples of plotting with Matplotlib. An image with points and a line
with and without showing the axes.

first points in these lists. Figure 1.2 shows the result. The show() command starts the
figure GUI and raises the figure windows. This GUI loop blocks your scripts and they
are paused until the last figure window is closed. You should call show() only once
per script, usually at the end. Note that PyLab uses a coordinate origin at the top left
corner as is common for images. The axes are useful for debugging, but if you want a
prettier plot, add:

axis(’off’)

This will give a plot like the one on the right in Figure 1.2 instead.
There are many options for formatting color and styles when plotting. The most

useful are the short commands shown in Tables 1.1, 1.2 and 1.3. Use them like this.

plot(x,y) # default blue solid line

plot(x,y,’r*’) # red star-markers

plot(x,y,’go-’) # green line with circle-markers

plot(x,y,’ks:’) # black dotted line with square-markers

Image contours and histograms

Let’s look at two examples of special plots: image contours and image histograms. Vi-
sualizing image iso-contours (or iso-contours of other 2D functions) can be very useful.
This needs grayscale images, because the contours need to be taken on a single value
for every coordinate [x, y]. Here’s how to do it.

1.2. Matplotlib 17

color

’b’ blue
’g’ green
’r’ red
’c’ cyan
’m’ magenta
’y’ yellow
’k’ black
’w’ white

Table 1.1: Basic color formatting commands for plotting with PyLab.

line style

’-’ solid
’- -’ dashed
’:’ dotted

Table 1.2: Basic line style formatting commands for plotting with PyLab.

marker

’.’ point
’o’ circle
’s’ square
’*’ star
’+’ plus
’x’ x

Table 1.3: Basic plot marker formatting commands for plotting with PyLab.

18 1.2. Matplotlib

from PIL import Image
from pylab import *

read image to array
im = array(Image.open(’images/empire.jpg’).convert(’L’))

create a new figure
figure()
don’t use colors
gray()
show contours with origin upper left corner
contour(im, origin=’image’)
axis(’equal’)
axis(’off’)

As before, the PIL method convert() does conversion to grayscale.
An image histogram is a plot showing the distribution of pixel values. A number of

bins is specified for the span of values and each bin gets a count of how many pixels
have values in the bin’s range. The visualization of the (graylevel) image histogram is
done using the hist() function.

figure()
hist(im.flatten(),128)
show()

The second argument specifies the number of bins to use. Note that the image needs to
be flattened first, because hist() takes a one-dimensional array as input. The method
flatten() converts any array to a one-dimensional array with values taken row-wise.
Figure 1.3 shows the contour and histogram plot.

Interactive annotation

Sometimes users need to interact with an application, for example by marking points
in an image, or you need to annotate some training data. PyLab comes with a simple
function, ginput(), that let’s you do just that. Here’s a short example.

from PIL import Image
from pylab import *

im = array(Image.open(’empire.jpg’))
imshow(im)
print ’Please click 3 points’
x = ginput(3)
print ’you clicked:’,x
show()

1.2. Matplotlib 19

Figure 1.3: Examples of visualizing image contours and plotting image histograms
with Matplotlib.

This plots an image and waits for the user to click three times in the image region of
the figure window. The coordinates [x, y] of the clicks are saved in a list x.

1.3 NumPy

NumPy (http://www.scipy.org/NumPy/) is a package popularly used for scientific com-
puting with Python. NumPy contains a number of useful concepts such as array objects
(for representing vectors, matrices, images and much more) and linear algebra func-
tions. The NumPy array object will be used in almost all examples throughout this
book1. The array object let’s you do important operations such as matrix multiplica-
tion, transposition, solving equation systems, vector multiplication, and normalization,
which are needed to do things like aligning images, warping images, modeling varia-
tions, classifying images, grouping images, and so on.

NumPy is freely available from http://www.scipy.org/Download and the online
documentation (http://docs.scipy.org/doc/numpy/) contains answers to most ques-
tions. For more details on NumPy, the freely available book [24] is a good reference.

Array image representation

When we loaded images in the previous examples, we converted them to NumPy array
objects with the array() call but didn’t mention what that means. Arrays in NumPy are
multi-dimensional and can represent vectors, matrices, and images. An array is much

1PyLab actually includes some components of NumPy, like the array type. That’s why we could use it in
the examples in Section 1.2.

20 1.3. NumPy

http://www.scipy.org/NumPy/
http://www.scipy.org/Download
http://docs.scipy.org/doc/numpy/

like a list (or list of lists) but restricted to having all elements of the same type. Unless
specified on creation, the type will automatically be set depending on the data.

The following example illustrates this for images

im = array(Image.open(’empire.jpg’))
print im.shape, im.dtype

im = array(Image.open(’empire.jpg’).convert(’L’),’f’)
print im.shape, im.dtype

The printout in your console will look like

(800, 569, 3) uint8
(800, 569) float32

The first tuple on each line is the shape of the image array (rows, columns, color
channels), and the following string is the data type of the array elements. Images
are usually encoded with unsigned 8-bit integers (uint8), so loading this image and
converting to an array gives the type "uint8" in the first case. The second case does
grayscale conversion and creates the array with the extra argument "f". This is a short
command for setting the type to floating point. For more data type options, see [24].
Note that the grayscale image has only two values in the shape tuple; obviously it has
no color information.

Elements in the array are accessed with indexes. The value at coordinates i,j and
color channel k are accessed like this:

value = im[i,j,k]

Multiple elements can be accessed using array slicing. Slicing returns a view into the
array specified by intervals. Here are some examples for a grayscale image:

im[i,:] = im[j,:] # set the values of row i with values from row j
im[:,i] = 100 # set all values in column i to 100
im[:100,:50].sum() # the sum of the values of the first 100 rows and 50 columns
im[50:100,50:100] # rows 50-100, columns 50-100 (100th not included)
im[i].mean() # average of row i
im[:,-1] # last column
im[-2,:] (or im[-2]) # second to last row

Note the example with only one index. If you only use one index it is interpreted as the
row index. Note also the last examples. Negative indices count from the last element
backwards. We will frequently use slicing to access pixel values, and it is an important
concept to understand.

There are many operations and ways to use arrays. We will introduce them as they
are needed throughout this book. See the online documentation or the book [24] for
more explanations.

1.3. NumPy 21

Graylevel transforms

After reading images to NumPy arrays, we can perform any mathematical operation we
like on them. A simple example of this is to transform the graylevels of an image. Take
any function f that maps the interval 0 . . . 255 (or if you like 0 . . . 1) to itself (meaning
that the output has the same range as the input). Here are some examples.

from PIL import Image
from numpy import *

im = array(Image.open(’empire.jpg’).convert(’L’))

im2 = 255 - im #invert image

im3 = (100.0/255) * im + 100 #clamp to interval 100...200

im4 = 255.0 * (im/255.0)**2 #squared

The first example inverts the graylevels of the image, the second one clamps the in-
tensities to the interval 100 . . . 200 and the third applies a quadratic function, which
lowers the values of the darker pixels. Figure 1.4 shows the functions and Figure 1.5
the resulting images. You can check the minimum and maximum values of each image
using

print int(im.min()), int(im.max())

If you try that for each of the examples above, you should get the following output:

2 255
0 253
100 200
0 255

The reverse of the array() transformation can be done using the PIL function fromarray()

as:

pil_im = Image.fromarray(im)

If you did some operation to change the type from "uint8" to another data type, for
example as im3 or im4 in the example above, you need to convert back before creating
the PIL image.

pil_im = Image.fromarray(uint8(im))

If you are not absolutely sure of the type of the input, you should do this as it is the
safe choice. Note that NumPy will always change the array type to the "lowest" type
that can represent the data. Multiplication or division with floating point numbers will
change an integer type array to float.

22 1.3. NumPy

Figure 1.4: Example graylevel transforms. Three example functions together with the
identity transform showed as a dashed line.

Figure 1.5: Graylevel transforms. Applying the functions in Figure 1.4. (left) Inverting
the image with f(x) = 255 � x, (center) clamping the image with f(x) = (100/255)x +

100, (right) quadratic transformation with f(x) = 255(x/255)2.

1.3. NumPy 23

Image resizing

NumPy arrays will be our main tool for working with images and data. There is no
simple way to resize arrays, which you will want to do for images. We can use the PIL
image object conversion shown earlier to make a simple image resizing function. Add
the following to imtools.py.

def imresize(im,sz):
""" Resize an image array using PIL. """
pil_im = Image.fromarray(uint8(im))

return array(pil_im.resize(sz))

This function will come in handy later.

Histogram equalization

A very useful example of a graylevel transform is histogram equalization. This trans-
form flattens the graylevel histogram of an image so that all intensities are as equally
common as possible. This is often a good way to normalize image intensity before
further processing and also a way to increase image contrast.

The transform function is in this case a cumulative distribution function (cdf) of the
pixel values in the image (normalized to map the range of pixel values to the desired
range).

Here’s how to do it. Add this function to the file imtools.py.

def histeq(im,nbr_bins=256):
""" Histogram equalization of a grayscale image. """

get image histogram
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() # cumulative distribution function
cdf = 255 * cdf / cdf[-1] # normalize

use linear interpolation of cdf to find new pixel values
im2 = interp(im.flatten(),bins[:-1],cdf)

return im2.reshape(im.shape), cdf

The function takes a grayscale image and the number of bins to use in the histogram
as input and returns an image with equalized histogram together with the cumulative
distribution function used to do the mapping of pixel values. Note the use of the last
element (index -1) of the cdf to normalize it between 0 . . . 1. Try this on an image like
this:

24 1.3. NumPy

before transform after

Figure 1.6: Example of histogram equalization. On the left is the original image and
histogram. The middle plot is the graylevel transform function. On the right is the
image and histogram after histogram equalization.

from PIL import Image
from numpy import *

im = array(Image.open(’AquaTermi_lowcontrast.jpg’).convert(’L’))
im2,cdf = imtools.histeq(im)

Figure 1.6 and 1.7 show examples of histogram equalization. The top row shows the
graylevel histogram before and after equalization together with the cdf mapping. As
you can see, the contrast increases and the details of the dark regions now appear
clearly.

Averaging images

Averaging images is a simple way of reducing image noise and is also often used for
artistic effects. Computing an average image from a list of images is not difficult.

1.3. NumPy 25

before transform after

Figure 1.7: Example of histogram equalization. On the left is the original image and
histogram. The middle plot is the graylevel transform function. On the right is the
image and histogram after histogram equalization.

Assuming the images all have the same size, we can compute the average of all those
images by simply summing them up and dividing with the number of images. Add the
following function to imtools.py.

def compute_average(imlist):
""" Compute the average of a list of images. """

open first image and make into array of type float
averageim = array(Image.open(imlist[0]), ’f’)

for imname in imlist[1:]:
try:
averageim += array(Image.open(imname))

except:
print imname + ’...skipped’

averageim /= len(imlist)

return average as uint8
return array(averageim, ’uint8’)

This includes some basic exception handling to skip images that can’t be opened.
There is another way to compute average images using the mean() function. This
requires all images to be stacked into an array (and will use lots of memory if there

26 1.3. NumPy

are many images). We will use this function in the next section.

PCA of images

Principal Component Analysis (PCA) is a useful technique for dimensionality reduction
and is optimal in the sense that it represents the variability of the training data with
as few dimensions as possible. Even a tiny 100⇥ 100 pixel grayscale image has 10,000
dimensions, and can be considered a point in a 10,000 dimensional space. A megapixel
image has dimensions in the millions. With such high dimensionality, it is no surprise
that dimensionality reduction comes handy in many computer vision applications. The
projection matrix resulting from PCA can be seen as a change of coordinates to a
coordinate system where the coordinates are in descending order of importance.

To apply PCA on image data, the images need to be converted to a one-dimensional
vector representation, for example using NumPy’s flatten() method.

The flattened images are collected in a single matrix by stacking them, one row
for each image. The rows are then centered relative to the mean image before the
computation of the dominant directions. To find the principal components, singular
value decomposition (SVD) is usually used, but if the dimensionality is high, there is a
useful trick that can be used instead since the SVD computation will be very slow in
that case. Here is what it looks like in code.

from PIL import Image
from numpy import *

def pca(X):
""" Principal Component Analysis
input: X, matrix with training data stored as flattened arrays in rows
return: projection matrix (with important dimensions first), variance and mean.

"""

get dimensions
num_data,dim = X.shape

center data
mean_X = X.mean(axis=0)
X = X - mean_X

if dim>num_data:
PCA - compact trick used
M = dot(X,X.T) # covariance matrix
e,EV = linalg.eigh(M) # eigenvalues and eigenvectors
tmp = dot(X.T,EV).T # this is the compact trick
V = tmp[::-1] # reverse since last eigenvectors are the ones we want
S = sqrt(e)[::-1] # reverse since eigenvalues are in increasing order

1.3. NumPy 27

for i in range(V.shape[1]):
V[:,i] /= S

else:
PCA - SVD used
U,S,V = linalg.svd(X)
V = V[:num_data] # only makes sense to return the first num_data

return the projection matrix, the variance and the mean
return V,S,mean_X

This function first centers the data by subtracting the mean in each dimension. Then
the eigenvectors corresponding to the largest eigenvalues of the covariance matrix
are computed, either using a compact trick or using SVD. Here we used the function
range() which takes an integer n and returns a list of integers 0 . . . (n� 1). Feel free to
use the alternative arange() which gives an array or xrange() which gives a generator
(and might give speed improvements). We will stick with range() throughout the book.

We switch from SVD to use a trick with computing eigenvectors of the (smaller)
covariance matrix XXT if the number of data points is less than the dimension of the
vectors. There are also ways of only computing the eigenvectors corresponding to
the k largest eigenvalues (k being the number of desired dimensions) making it even
faster. We leave this to the interested reader to explore since it is really outside the
scope of this book. The rows of the matrix V are orthogonal and contain the coordinate
directions in order of descending variance of the training data.

Let’s try this on an example of font images. The file fontimages.zip contains small
thumbnail images of the character "a" printed in different fonts and then scanned. The
2359 fonts are from a collection of freely available fonts2. Assuming that the filenames
of these images are stored in a list, imlist, along with the previous code, in a file pca.py,
the principal components can be computed and shown like this:

from PIL import Image
from numpy import *
from pylab import *
import pca

im = array(Image.open(imlist[0])) # open one image to get size
m,n = im.shape[0:2] # get the size of the images
imnbr = len(imlist) # get the number of images

create matrix to store all flattened images
immatrix = array([array(Image.open(im)).flatten()

for im in imlist],’f’)

2Images courtesy of Martin Solli, http://webstaff.itn.liu.se/~marso/, collected and rendered
from publicly available free fonts.

28 1.3. NumPy

http://webstaff.itn.liu.se/~marso/

Figure 1.8: The mean image (top left) and the first seven modes, i.e. the directions
with most variation.

perform PCA
V,S,immean = pca.pca(immatrix)

show some images (mean and 7 first modes)
figure()
gray()
subplot(2,4,1)
imshow(immean.reshape(m,n))
for i in range(7):
subplot(2,4,i+2)
imshow(V[i].reshape(m,n))

show()

Note that the images need to be converted back from the one-dimensional represen-
tation using reshape(). Running the example should give eight images in one figure
window like the ones in Figure 1.8. Here we used the PyLab function subplot() to
place multiple plots in one window.

Using the Pickle module

If you want to save some results or data for later use, the pickle module, which comes
with Python, is very useful. Pickle can take almost any Python object and convert it to a
string representation. This process is called pickling. Reconstructing the object from
the string representation is conversely called unpickling. This string representation
can then be easily stored or transmitted.

Let’s illustrate this with an example. Suppose we want to save the image mean and
principal components of the font images in the previous section. This is done like this:

1.3. NumPy 29

save mean and principal components
f = open(’font_pca_modes.pkl’, ’wb’)
pickle.dump(immean,f)
pickle.dump(V,f)
f.close()

As you can see, several objects can be pickled to the same file. There are several
different protocols available for the .pkl files, and if unsure it is best to read and write
binary files. To load the data in some other Python session, just use the load() method
like this:

load mean and principal components
f = open(’font_pca_modes.pkl’, ’rb’)
immean = pickle.load(f)
V = pickle.load(f)
f.close()

Note that the order of the objects should be the same! There is also an optimized
version written in C called cpickle that is fully compatible with the standard pickle
module. More details can be found on the pickle module documentation page http:
//docs.python.org/library/pickle.html#module-pickle.

For the remainder of this book we will use the with statement to handle file reading
and writing. This is a construct that was introduced in Python 2.5 that automatically
handles opening and closing of files (even if errors occur while the files are open).
Here is what the saving and loading above looks like using with().

open file and save
with open(’font_pca_modes.pkl’, ’wb’) as f:
pickle.dump(immean,f)
pickle.dump(V,f)

and

open file and load
with open(’font_pca_modes.pkl’, ’rb’) as f:
immean = pickle.load(f)
V = pickle.load(f)

This might look strange the first time you see it but it is a very useful construct. If you
don’t like it, just use the open and close functions as above.

As an alternative to using pickle, NumPy also has simple functions for reading and
writing text files that can be useful if your data does not contain complicated struc-
tures, for example a list of points clicked in an image. To save an array x to file use

savetxt(’test.txt’,x,’%i’)

30 1.3. NumPy

http://docs.python.org/library/pickle.html#module-pickle
http://docs.python.org/library/pickle.html#module-pickle

The last parameter indicates that integer format should be used. Similarly, reading is
done like this:

x = loadtxt(’test.txt’)

You can find out more from the online documentation http://docs.scipy.org/doc/
numpy/reference/generated/numpy.loadtxt.html.

Lastly, NumPy has dedicated functions for saving and loading arrays. Look for save()
and load() in the online documentation for the details.

1.4 SciPy

SciPy (http://scipy.org/) is an open-source package for mathematics that builds on
NumPy and provides efficient routines for a number of operations, including numerical
integration, optimization, statistics, signal processing, and most importantly for us,
image processing. As the following will show, there are many useful modules in SciPy.
SciPy is free and available at http://scipy.org/Download.

Blurring images

A classic and very useful example of image convolution is Gaussian blurring of images.
In essence, the (grayscale) image I is convolved with a Gaussian kernel to create a
blurred version

I
�

= I ⇤ G
�

,

where ⇤ indicates convolution and G
�

is a Gaussian 2D-kernel with standard deviation
� defined as

G
�

=

1

2⇡�
e�(x2+y

2)/2�2
.

Gaussian blurring is used to define an image scale to work in, for interpolation, for
computing interest points, and in many more applications.

SciPy comes with a module for filtering called scipy.ndimage.filters that can be
used to compute these convolutions using a fast 1D separation. All you need to do is:

from PIL import Image
from numpy import *
from scipy.ndimage import filters

im = array(Image.open(’empire.jpg’).convert(’L’))
im2 = filters.gaussian_filter(im,5)

Here the last parameter of gaussian_filter() is the standard deviation.

1.4. SciPy 31

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://scipy.org/
http://scipy.org/Download

(a) (b) (c) (d)

Figure 1.9: An example of Gaussian blurring using the scipy.ndimage.filters module.
(a) original image in grayscale, (b) Gaussian filter with � = 2, (c) with � = 5, (d) with
� = 10.

Figure 1.9 shows examples of an image blurred with increasing �. Larger values
gives less details. To blur color images, simply apply Gaussian blurring to each color
channel.

im = array(Image.open(’empire.jpg’))
im2 = zeros(im.shape)
for i in range(3):
im2[:,:,i] = filters.gaussian_filter(im[:,:,i],5)

im2 = uint8(im2)

Here the last conversion to "uint8" is not always needed but forces the pixel values to
be in 8-bit representation. We could also have used

im2 = array(im2,’uint8’)

for the conversion.
For more information on using this module and the different parameter choices,

check out the SciPy documentation of scipy.ndimage at http://docs.scipy.org/
doc/scipy/reference/ndimage.html.

Image derivatives

How the image intensity changes over the image is important information, used for
many applications as we will see throughout this book. The intensity change is de-
scribed with the x and y derivatives I

x

and I
y

of the graylevel image I (for color images,
derivatives are usually taken for each color channel).

32 1.4. SciPy

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/ndimage.html

The image gradient is the vector rI = [I
x

I
y

]

T . The gradient has two important
properties, the gradient magnitude

|rI| =
q
I2
x

+ I2
y

,

which describes how strong the image intensity change is, and the gradient angle

↵ = arctan2(I
y

, I
x

) ,

which indicates the direction of largest intensity change at each point (pixel) in the im-
age. The NumPy function arctan2() returns the signed angle in radians, in the interval
�⇡ . . .⇡.

Computing the image derivatives can be done using discrete approximations. These
are most easily implemented as convolutions

I
x

= I ⇤ D
x

and I
y

= I ⇤ D
y

.

Two common choices for D
x

and D
y

are the Prewitt filters

D
x

=

2

4
�1 0 1

�1 0 1

�1 0 1

3

5
and D

y

=

2

4
�1 �1 �1

0 0 0

1 1 1

3

5 .

and Sobel filters

D
x

=

2

4
�1 0 1

�2 0 2

�1 0 1

3

5
and D

y

=

2

4
�1 �2 �1

0 0 0

1 2 1

3

5 .

These derivative filters are easy to implement using the standard convolution avail-
able in the scipy.ndimage.filters module. For example:

from PIL import Image
from numpy import *
from scipy.ndimage import filters

im = array(Image.open(’empire.jpg’).convert(’L’))

#Sobel derivative filters
imx = zeros(im.shape)
filters.sobel(im,1,imx)

imy = zeros(im.shape)
filters.sobel(im,0,imy)

magnitude = sqrt(imx**2+imy**2)

1.4. SciPy 33

(a) (b) (c) (d)

Figure 1.10: An example of computing image derivatives using Sobel derivative fil-
ters. (a) original image in grayscale, (b) x-derivative, (c) y-derivative, (d) gradient
magnitude.

This computes x and y derivatives and gradient magnitude using the Sobel filter. The
second argument selects the x or y derivative, and the third stores the output. Fig-
ure 1.10 shows an image with derivatives computed using the Sobel filter. In the
two derivative images, positive derivatives are shown with bright pixels and negative
derivatives are dark. Gray areas have values close to zero.

Using this approach has the drawback that derivatives are taken on the scale de-
termined by the image resolution. To be more robust to image noise and to compute
derivatives at any scale, Gaussian derivative filters can be used,

I
x

= I ⇤ G
�x

and I
y

= I ⇤ G
�y

,

where G
�x

and G
�y

are the x and y derivatives of G
�

, a Gaussian function with standard
deviation �.

The filters.gaussian_filter() function we used for blurring earlier can also take
extra arguments to compute Gaussian derivatives instead. To try this on an image,
simply do:

sigma = 5 #standard deviation

imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)

imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)

The third argument specifies which order of derivatives to use in each direction using
the standard deviation determined by the second argument. See the documentation

34 1.4. SciPy

for the details. Figure 1.11 shows the derivatives and gradient magnitude for different
scales. Compare this to the blurring at the same scales in Figure 1.9.

Morphology - counting objects

Morphology (or mathematical morphology) is a framework and a collection of image
processing methods for measuring and analyzing basic shapes. Morphology is usually
applied to binary images but can be used with grayscale also. A binary image is an
image in which each pixel takes only two values, usually 0 and 1. Binary images are
often the result of thresholding an image, for example with the intention of counting
objects or measuring their size. A good summary of morphology and how it works is
in http://en.wikipedia.org/wiki/Mathematical_morphology.

Morphological operations are included in the scipy.ndimage module morphology.
Counting and measurement functions for binary images are in the scipy.ndimage mod-
ule measurements. Let’s look at a simple example of how to use them.

Consider the binary image in Figure 1.12a3. Counting the objects in that image
can be done using

from scipy.ndimage import measurements,morphology

load image and threshold to make sure it is binary
im = array(Image.open(’houses.png’).convert(’L’))
im = 1*(im<128)

labels, nbr_objects = measurements.label(im)
print "Number of objects:", nbr_objects

This loads the image and makes sure it is binary by thresholding. Multiplying with
1 converts the boolean array to a binary one. Then the function label() finds the
individual objects and assigns integer labels to pixels according to which object they
belong to. Figure 1.12b shows the labels array. The graylevel values indicate object
index. As you can see, there are small connections between some of the objects. Using
an operation called binary opening, we can remove them.

morphology - opening to separate objects better
im_open = morphology.binary_opening(im,ones((9,5)),iterations=2)

labels_open, nbr_objects_open = measurements.label(im_open)
print "Number of objects:", nbr_objects_open

3This image is actually the result of image "segmentation". Take a look at Section 9.3 if you want to
see how this image was created.

1.4. SciPy 35

http://en.wikipedia.org/wiki/Mathematical_morphology

(a) (b) (c) (d)

Figure 1.11: An example of computing image derivatives using Gaussian derivatives.
(top) x-derivative, (middle) y-derivative and (bottom) gradient magnitude. (a) original
image in grayscale, (b) Gaussian derivative filter with � = 2, (c) with � = 5, (d) with
� = 10.

36 1.4. SciPy

The second argument of binary_opening() specifies the structuring element , an array
that indicates what neighbors to use when centered around a pixel. In this case we
used 9 pixels (4 above, the pixel itself, and 4 below) in the y direction and 5 in the
x direction. You can specify any array as structuring element, the non-zero elements
will determine the neighbors. The parameter iterations determines how many times
to apply the operation. Try this and see how the number of objects changed. The
image after opening and the corresponding label image are shown in Figure 1.12c-
d. As you might expect, there is a function named binary_closing() that does the
reverse. We leave that and the other functions in morphology and measurements to
the exercises. You can learn more about them from the scipy.ndimage documentation
http://docs.scipy.org/doc/scipy/reference/ndimage.html.

Useful SciPy modules

SciPy comes with some useful modules for input and output. Two of them are io and
misc.

Reading and writing .mat files If you have some data, or find some interesting
data set online, stored in Matlab’s .mat file format, it is possible to read this using the
scipy.io module. This is how to do it:

data = scipy.io.loadmat(’test.mat’)

The object data now contains a dictionary with keys corresponding to the variable
names saved in the original .mat file. The variables are in array format. Saving to
.mat files is equally simple. Just create a dictionary with all variables you want to save
and use savemat().

data = {}
data[’x’] = x
scipy.io.savemat(’test.mat’,data)

This saves the array x so that it has the name "x" when read into Matlab. More infor-
mation on scipy.io can be found in the online documentation, http://docs.scipy.
org/doc/scipy/reference/io.html.

Saving arrays as images Since we are manipulating images and doing computa-
tions using array objects, it is useful to be able to save them directly as image files.4

Many images in this book are created just like this.

4All PyLab figures can be saved in a multitude of image formats by clicking the "save" button in the
figure window.

1.4. SciPy 37

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/io.html
http://docs.scipy.org/doc/scipy/reference/io.html

(a) (b)

(c) (d)

Figure 1.12: An example of morphology. Binary opening to separate objects followed
by counting them. (a) original binary image, (b) label image corresponding to the
original, grayvalues indicate object index, (c) binary image after opening, (d) label
image corresponding to the opened image.

38 1.4. SciPy

The imsave() function is available through the scipy.misc module. To save an array
im to file just do:

import scipy.misc
scipy.misc.imsave(’test.jpg’,im)

The scipy.misc module also contains the famous "Lena" test image.

lena = scipy.misc.lena()

This will give you a 512 ⇥ 512 grayscale array version of the image.

1.5 Advanced example: Image de-noising

We conclude this chapter with a very useful example, de-noising of images. Image
de-noising is the process of removing image noise while at the same time trying to
preserve details and structures. We will use the Rudin-Osher-Fatemi de-noising model
(ROF) originally introduced in [28]. Removing noise from images is important for
many applications, from making your holiday photos look better to improving the qual-
ity of satellite images. The ROF model has the interesting property that it finds a
smoother version of the image while preserving edges and structures.

The underlying mathematics of the ROF model and the solution techniques are
quite advanced and outside the scope of this book. We’ll give a brief (simplified) in-
troduction before showing how to implement a ROF solver based on an algorithm by
Chambolle [5].

The total variation (TV) of a (grayscale) image I is defined as the sum of the gradi-
ent norm. In a continuous representation this is

J(I) =

Z
|rI|dx . (1.1)

In a discrete setting, the total variation becomes

J(I) =
X

x

|rI| ,

where the sum is taken over all image coordinates x = [x, y].
In the (Chambolle) version of ROF, the goal is to find a de-noised image U that

minimizes
min

U

||I � U ||2 + 2�J(U),

where the norm ||I �U || measures the difference between U and the original image I.
What this means is in essence that the model looks for images that are "flat" but allow
"jumps" at edges between regions.

Following the recipe in the paper, here’s the code.

1.5. Advanced example: Image de-noising 39

from numpy import *

def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100):
""" An implementation of the Rudin-Osher-Fatemi (ROF) denoising model
using the numerical procedure presented in eq (11) A. Chambolle (2005).

Input: noisy input image (grayscale), initial guess for U, weight of
the TV-regularizing term, steplength, tolerance for stop criterion.

Output: denoised and detextured image, texture residual. """

m,n = im.shape #size of noisy image

initialize
U = U_init
Px = im #x-component to the dual field
Py = im #y-component of the dual field
error = 1

while (error > tolerance):
Uold = U

gradient of primal variable
GradUx = roll(U,-1,axis=1)-U # x-component of U’s gradient
GradUy = roll(U,-1,axis=0)-U # y-component of U’s gradient

update the dual varible
PxNew = Px + (tau/tv_weight)*GradUx
PyNew = Py + (tau/tv_weight)*GradUy
NormNew = maximum(1,sqrt(PxNew**2+PyNew**2))

Px = PxNew/NormNew # update of x-component (dual)
Py = PyNew/NormNew # update of y-component (dual)

update the primal variable
RxPx = roll(Px,1,axis=1) # right x-translation of x-component
RyPy = roll(Py,1,axis=0) # right y-translation of y-component

DivP = (Px-RxPx)+(Py-RyPy) # divergence of the dual field.
U = im + tv_weight*DivP # update of the primal variable

update of error
error = linalg.norm(U-Uold)/sqrt(n*m);

return U,im-U # denoised image and texture residual

In this example, we used the function roll(), which as the name suggests, "rolls" the

40 1.5. Advanced example: Image de-noising

(a) (b) (c)

Figure 1.13: An example of ROF de-noising of a synthetic example. (a) original noisy
image, (b) image after Gaussian blurring (� = 10). (c) image after ROF de-noising.

values of an array cyclically around an axis. This is very convenient for computing
neighbor differences, in this case for derivatives. We also used linalg.norm() which
measures the difference between two arrays (in this case the image matrices U and
Uold). Save the function denoise() in a file rof.py.

Let’s start with a synthetic example of a noisy image:

from numpy import *
from numpy import random
from scipy.ndimage import filters
import rof

create synthetic image with noise
im = zeros((500,500))
im[100:400,100:400] = 128
im[200:300,200:300] = 255
im = im + 30*random.standard_normal((500,500))

U,T = rof.denoise(im,im)
G = filters.gaussian_filter(im,10)

save the result
import scipy.misc
scipy.misc.imsave(’synth_rof.pdf’,U)
scipy.misc.imsave(’synth_gaussian.pdf’,G)

The resulting images are shown in Figure 1.13 together with the original. As you can
see, the ROF version preserves the edges nicely.

Now, let’s see what happens with a real image:

from PIL import Image

1.5. Advanced example: Image de-noising 41

(a) (b) (c)

Figure 1.14: An example of ROF de-noising of a grayscale image. (a) original image,
(b) image after Gaussian blurring (� = 5). (c) image after ROF de-noising.

from pylab import *
import rof

im = array(Image.open(’empire.jpg’).convert(’L’))
U,T = rof.denoise(im,im)

figure()
gray()
imshow(U)
axis(’equal’)
axis(’off’)
show()

The result should look something like Figure 1.14c, which also shows a blurred version
of the same image for comparison. As you can see, ROF de-noising preserves edges
and image structures while at the same time blurring out the "noise".

Exercises

1. Take an image and apply Gaussian blur like in Figure 1.9. Plot the image contours
for increasing values of �. What happens? Can you explain why?

2. Implement an unsharp masking operation (http://en.wikipedia.org/wiki/Unsharp_

masking) by blurring an image and then subtracting the blurred version from the

42 1.5. Advanced example: Image de-noising

http://en.wikipedia.org/wiki/Unsharp_masking
http://en.wikipedia.org/wiki/Unsharp_masking

original. This gives a sharpening effect to the image. Try this on both color and
grayscale images.

3. An alternative image normalization to histogram equalization is a quotient im-
age. A quotient image is obtained by dividing the image with a blurred version
I/(I ⇤ G

�

). Implement this and try it on some sample images.

4. Write a function that finds the outline of simple objects in images (for example a
square against white background) using image gradients.

5. Use gradient direction and magnitude to detect lines in an image. Estimate the
extent of the lines and their parameters. Plot the lines overlaid on the image.

6. Apply the label() function to a thresholded image of your choice. Use histograms
and the resulting label image to plot the distribution of object sizes in the image.

7. Experiment with successive morphological operations on a thresholded image of
your choice. When you have found some settings that produce good results, try
the function center_of_mass in morphology to find the center coordinates of each
object and plot them in the image.

From Chapter 2 and onwards we assume PIL, NumPy and Matplotlib
to be included at the top of every file you create and in every code
example as

from PIL import Image
from numpy import *
from pylab import *

This makes the example code cleaner and the presentation easier to
follow. In the cases when we use SciPy modules, we will explicitly
declare that in the examples.

Purists will object to this type of blanket imports and insist on something like

import numpy as np
import matplotlib.pyplot as plt

1.5. Advanced example: Image de-noising 43

so that namespaces can be kept (to know where each function comes from) and only
import the pyplot part of Matplotlib since the NumPy parts imported with PyLab
are not needed. Purists and experienced programmers know the difference and can
choose whichever option they prefer. In the interest of making the content and exam-
ples in this book easily accessible to readers, I have chosen not to do this.
Caveat emptor.

44 1.5. Advanced example: Image de-noising

Chapter 2

Local Image Descriptors

This chapter is about finding corresponding points and regions between images. Two
different types of local descriptors are introduced with methods for matching these be-
tween images. These local features will be used in many different contexts throughout
this book and are an important building block in many applications such as creating
panoramas, augmented reality, and computing 3D reconstructions.

2.1 Harris corner detector

The Harris corner detection algorithm (or sometimes the Harris & Stephens corner
detector) is one of the simplest corner indicators available. The general idea is to
locate interest points where the surrounding neighborhood shows edges in more than
one direction, these are then image corners.

We define a matrix M

I

= M

I

(x), on the points x in the image domain, as the
positive semi-definite, symmetric matrix

M

I

= rI rIT =

I
x

I
y

� ⇥
I
x

I
y

⇤
=

I2
x

I
x

I
y

I
x

I
y

I2
y

�
, (2.1)

where as before rI is the image gradient containing the derivatives I
x

and I
y

(we
defined the derivatives and the gradient on page 32). Because of this construction,
M

I

has rank one with eigenvalues �1 = |rI|2 and �2 = 0. We now have one matrix for
each pixel in the image.

Let W be a weight matrix (typically a Gaussian filter G
�

), the component-wise
convolution

M

I

= W ⇤ M

I

, (2.2)

gives a local averaging of M
I

over the neighboring pixels. The resulting matrix M

I

is sometimes called a Harris matrix. The width of W determines a region of interest

45

around x. The idea of averaging the matrix M

I

over a region like this is that the
eigenvalues will change depending on the local image properties. If the gradients vary
in the region, the second eigenvalue of M

I

will no longer be zero. If the gradients are
the same, the eigenvalues will be the same as for M

I

.
Depending on the values of rI in the region, there are three cases for the eigen-

values of the Harris matrix, M
I

:

• If �1 and �2 are both large positive values, then there is a corner at x.

• If �1 is large and �2 ⇡ 0, then there is an edge and the averaging of M
I

over the
region doesn’t change the eigenvalues that much.

• If �1 ⇡ �2 ⇡ 0 then there is nothing.

To distinguish the important case from the others without actually having to com-
pute the eigenvalues, Harris and Stephens [12] introduced an indicator function

det(M

I

) � trace(M
I

)

2 .

To get rid of the weighting constant , it is often easier to use the quotient

det(M

I

)

trace(M

I

)

2

as an indicator.
Let’s see what this looks like in code. For this we need the scipy.ndimage.filters

module for computing derivatives using Gaussian derivative filters as described on
page 33. The reason is again that we would like to suppress noise sensitivity in the
corner detection process.

First add the corner response function to a file harris.py which will make use of
the Gaussian derivatives. Again the parameter � defines the scale of the Gaussian
filters used. You can also modify this function to take different scales in the x and y

directions as well as a different scale for the averaging to compute the Harris matrix.

from scipy.ndimage import filters

def compute_harris_response(im,sigma=3):
""" Compute the Harris corner detector response function
for each pixel in a graylevel image. """

derivatives
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)

46 2.1. Harris corner detector

filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)

compute components of the Harris matrix
Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma)

determinant and trace
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy

return Wdet / Wtr

This gives an image with each pixel containing the value of the Harris response func-
tion. Now it is just a matter of picking out the information needed from this image.
Taking all points with values above a threshold with the additional constraint that cor-
ners must be separated with a minimum distance is an approach that often gives good
results. To do this, take all candidate pixels, sort them in descending order of corner
response values and mark off regions too close to positions already marked as corners.
Add the following function to harris.py.

def get_harris_points(harrisim,min_dist=10,threshold=0.1):
""" Return corners from a Harris response image
min_dist is the minimum number of pixels separating
corners and image boundary. """

find top corner candidates above a threshold
corner_threshold = harrisim.max() * threshold
harrisim_t = (harrisim > corner_threshold) * 1

get coordinates of candidates
coords = array(harrisim_t.nonzero()).T

...and their values
candidate_values = [harrisim[c[0],c[1]] for c in coords]

sort candidates
index = argsort(candidate_values)

store allowed point locations in array
allowed_locations = zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1

select the best points taking min_distance into account
filtered_coords = []
for i in index:
if allowed_locations[coords[i,0],coords[i,1]] == 1:

2.1. Harris corner detector 47

filtered_coords.append(coords[i])
allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),

(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0

return filtered_coords

Now you have all you need to detect corner points in images. To show the corner
points in the image you can add a plotting function to harris.py using Matplotlib as
follows.

def plot_harris_points(image,filtered_coords):
""" Plots corners found in image. """

figure()
gray()
imshow(image)
plot([p[1] for p in filtered_coords],[p[0] for p in filtered_coords],’*’)
axis(’off’)
show()

Try running the following commands:

im = array(Image.open(’empire.jpg’).convert(’L’))
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim,6)
harris.plot_harris_points(im, filtered_coords)

The image is opened and converted to grayscale. Then the response function is com-
puted and points selected based on the response values. Finally, the points are plotted
overlaid on the original image. This should give you a plot like the images in Fig-
ure 2.1.

For an overview of different approaches to corner detection, including improve-
ments on the Harris detector and further developments, see for example http://en.
wikipedia.org/wiki/Corner_detection.

Finding corresponding points between images

The Harris corner detector gives interest points in images but does not contain an
inherent way of comparing these interest points across images to find matching cor-
ners. What we need is to add a descriptor to each point and a way to compare such
descriptors.

An interest point descriptor is a vector assigned to an interest point that describes
the image appearance around the point. The better the descriptor, the better your cor-
respondences will be. With point correspondence or corresponding points we mean
points in different images that refer to the same object or scene point.

48 2.1. Harris corner detector

http://en.wikipedia.org/wiki/Corner_detection
http://en.wikipedia.org/wiki/Corner_detection

(a) (b) (c) (d)

Figure 2.1: An example of corner detection with the Harris corner detector. (a) the
Harris response function, (b), (c) and (d) corners detected with threshold 0.01, 0.05,
and 0.1 respectively.

Harris corner points are usually combined with a descriptor consisting of the graylevel
values in a neighboring image patch together with normalized cross correlation for
comparison. An image patch is almost always a rectangular portion of the image cen-
tered around the point in question.

In general, correlation between two (equally sized) image patches I1(x) and I2(x)

is defined as
c(I1, I2) =

X

x

f(I1(x), I2(x)) ,

where the function f varies depending on the correlation method. The sum is taken
over all positions x in the image patches. For cross correlation f(I1, I2) = I1 I2, and
then c(I1, I2) = I1 · I2 with · denoting the scalar product (of the row- or column-stacked
patches). The larger the value of c(I1, I2), the more similar the patches I1 and I2 are1.

Normalized cross correlation is a variant of cross correlation defined as

ncc(I1, I2) =
1

n � 1

X

x

(I1(x) � µ1)

�1
· (I2(x) � µ2)

�2
, (2.3)

where n is the number of pixels in a patch, µ1 and µ2 are the mean intensities, and
�1 and �2 are the standard deviations in each patch respectively. By subtracting the
mean and scaling with the standard deviation, the method becomes robust to changes
in image brightness.

To extract image patches and compare them using normalized cross correlation,
you need two more functions in harris.py. Add these:

1Another popular function is f(I1, I2) = (I1 � I2)
2 which gives sum of squared differences (SSD).

2.1. Harris corner detector 49

def get_descriptors(image,filtered_coords,wid=5):
""" For each point return pixel values around the point
using a neighbourhood of width 2*wid+1. (Assume points are
extracted with min_distance > wid). """

desc = []
for coords in filtered_coords:
patch = image[coords[0]-wid:coords[0]+wid+1,

coords[1]-wid:coords[1]+wid+1].flatten()
desc.append(patch)

return desc

def match(desc1,desc2,threshold=0.5):
""" For each corner point descriptor in the first image,
select its match to second image using
normalized cross correlation. """

n = len(desc1[0])

pair-wise distances
d = -ones((len(desc1),len(desc2)))
for i in range(len(desc1)):
for j in range(len(desc2)):
d1 = (desc1[i] - mean(desc1[i])) / std(desc1[i])
d2 = (desc2[j] - mean(desc2[j])) / std(desc2[j])
ncc_value = sum(d1 * d2) / (n-1)
if ncc_value > threshold:
d[i,j] = ncc_value

ndx = argsort(-d)
matchscores = ndx[:,0]

return matchscores

The first function takes a square grayscale patch of odd side length centered around
the point, flattens it and adds to a list of descriptors. The second function matches each
descriptor to its best candidate in the other image using normalized cross correlation.
Note that the distances are negated before sorting since a high value means better
match. To further stabilize the matches, we can match from the second image to the
first and filter out the matches that are not the best both ways. The following function
does just that.

def match_twosided(desc1,desc2,threshold=0.5):
""" Two-sided symmetric version of match(). """

50 2.1. Harris corner detector

matches_12 = match(desc1,desc2,threshold)
matches_21 = match(desc2,desc1,threshold)

ndx_12 = where(matches_12 >= 0)[0]

remove matches that are not symmetric
for n in ndx_12:
if matches_21[matches_12[n]] != n:
matches_12[n] = -1

return matches_12

The matches can be visualized by showing the images side-by-side and connect-
ing matched points with lines using the following code. Add these two functions to
harris.py:

def appendimages(im1,im2):
""" Return a new image that appends the two images side-by-side. """

select the image with the fewest rows and fill in enough empty rows
rows1 = im1.shape[0]
rows2 = im2.shape[0]

if rows1 < rows2:
im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0)

elif rows1 > rows2:
im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0)

if none of these cases they are equal, no filling needed.

return concatenate((im1,im2), axis=1)

def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
""" Show a figure with lines joining the accepted matches
input: im1,im2 (images as arrays), locs1,locs2 (feature locations),
matchscores (as output from ’match()’),
show_below (if images should be shown below matches). """

im3 = appendimages(im1,im2)
if show_below:
im3 = vstack((im3,im3))

imshow(im3)

cols1 = im1.shape[1]
for i,m in enumerate(matchscores):
if m>0:
plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],’c’)

2.1. Harris corner detector 51

axis(’off’)

Figure 2.2 shows an example of finding such corresponding points using normal-
ized cross correlation (in this case with 11⇥ 11 pixels in a patch) using the commands:

wid = 5
harrisim = harris.compute_harris_response(im1,5)
filtered_coords1 = harris.get_harris_points(harrisim,wid+1)
d1 = harris.get_descriptors(im1,filtered_coords1,wid)

harrisim = harris.compute_harris_response(im2,5)
filtered_coords2 = harris.get_harris_points(harrisim,wid+1)
d2 = harris.get_descriptors(im2,filtered_coords2,wid)

print ’starting matching’
matches = harris.match_twosided(d1,d2)

figure()
gray()
harris.plot_matches(im1,im2,filtered_coords1,filtered_coords2,matches)
show()

If you only want to plot a subset of the matches to make the visualization clearer,
substitute matches with for example matches[:100] or a random set of indices.

As you can see in Figure 2.2, there are quite a lot of incorrect matches. This
is because cross correlation on image patches is not as descriptive as more modern
approaches. As a consequence, it is important to use robust methods for handling
these correspondences in an application. Another problem is that these descriptors
are not invariant to scale or rotation and the choice of patch sizes affect the results.

In recent years there has been a lot of development in improving feature point
detection and description. Let’s take a look at one of the best algorithms in the next
section.

2.2 SIFT - Scale-Invariant Feature Transform

One of the most successful local image descriptors in the last decade is the Scale-
Invariant Feature Transform (SIFT), introduced by David Lowe in [17]. SIFT was later
refined and described in detail in the paper [18] and has stood the test of time. SIFT
includes both an interest point detector and a descriptor. The descriptor is very robust
and is largely the reason behind the success and popularity of SIFT. Since its introduc-
tion many alternatives have been proposed with essentially the same type of descrip-
tor. The descriptor is nowadays often combined with many different interest point
detectors (and region detectors for that matter) and sometimes even applied densely

52 2.2. SIFT - Scale-Invariant Feature Transform

Figure 2.2: Example of matches resulting from applying normalized cross correlation
to patches around Harris corner points.

2.2. SIFT - Scale-Invariant Feature Transform 53

across the whole image. SIFT features are invariant to scale, rotation and intensity and
can be matched reliably across 3D viewpoint and noise. A brief overview is available
online at http://en.wikipedia.org/wiki/Scale-invariant_feature_transform.

Interest points

SIFT interest point locations are found using difference-of-Gaussian functions

D(x,�) = [G
k�

(x) � G
�

(x)] ⇤ I(x) = [G
k�

� G
�

] ⇤ I = I
k�

� I
�

,

where G
�

is the Gaussian 2D kernel described on page 31, I
�

the G
�

-blurred grayscale
image and k a constant factor determining the separation in scale. Interest points
are the maxima and minima of D(x,�) across both image location and scale. These
candidate locations are filtered to remove unstable points. Points are dismissed based
on a number of criteria like low contrast and points on edges. The details are in the
paper.

Descriptor

The interest point (keypoint) locator above gives position and scale. To achieve invari-
ance to rotation, a reference direction is chosen based on the direction and magnitude
of the image gradient around each point. The dominant direction is used as reference
and determined using an orientation histogram (weighted with the magnitude).

The next step is to compute a descriptor based on the position, scale and rotation.
To obtain robustness against image intensity, the SIFT descriptor uses image gradients
(compare that to normalized cross correlation above that uses the image intensities).
The descriptor takes a grid of subregions around the point and for each subregion
computes an image gradient orientation histogram. The histograms are concatenated
to form a descriptor vector. The standard setting uses 4 ⇥ 4 subregions with 8 bin
orientation histograms resulting in a 128 bin histogram (4 ⇤ 4 ⇤ 8 = 128). Figure 2.3
illustrates the construction of the descriptor. The interested reader should look at
[18] for the details or http://en.wikipedia.org/wiki/Scale-invariant_feature_

transform for an overview.

Detecting interest points

To compute SIFT features for images we will use the binaries available with the open
source package VLFeat [36]. A full Python implementation of all the steps in the
algorithm would not be very efficient and really is outside the scope of this book.
VLFeat is available at http://www.vlfeat.org/, with binaries for all major platforms.

54 2.2. SIFT - Scale-Invariant Feature Transform

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://www.vlfeat.org/

(a) (b) (c)

(d)

Figure 2.3: An illustration of the construction of the feature vector for the SIFT de-
scriptor. (a) a frame around an interest point, oriented according to the dominant
gradient direction. (b) an 8 bin histogram over the direction of the gradient in a part
of the grid. (c) histograms are extracted in each grid location. (d) the histograms are
concatenated to form one long feature vector.

The library is written in C but has a command line interface that we can use. There is
also a Matlab interface and a Python wrapper http://github.com/mmmikael/vlfeat/
if you prefer that to the binaries used here. The Python wrapper can be a little tricky
to install on some platforms due to its dependencies so we will focus on the binaries
instead. There is also an alternative SIFT implementation available at Lowe’s website
http://www.cs.ubc.ca/~lowe/keypoints/ (Windows and Linux only).

Create a file sift.py and add the following function that calls the executable.

def process_image(imagename,resultname,params="--edge-thresh 10 --peak-thresh 5"):
""" Process an image and save the results in a file. """

if imagename[-3:] != ’pgm’:
create a pgm file
im = Image.open(imagename).convert(’L’)
im.save(’tmp.pgm’)
imagename = ’tmp.pgm’

cmmd = str("sift "+imagename+" --output="+resultname+
" "+params)

os.system(cmmd)
print ’processed’, imagename, ’to’, resultname

2.2. SIFT - Scale-Invariant Feature Transform 55

http://github.com/mmmikael/vlfeat/
http://www.cs.ubc.ca/~lowe/keypoints/

The binaries need the image in grayscale .pgm format, so if another image format is
used we first convert to a temporary .pgm file. The result is stored in a text file in an
easy to read format. The files look something like this

318.861 7.48227 1.12001 1.68523 0 0 0 1 0 0 0 0 0 11 16 0 ...
318.861 7.48227 1.12001 2.99965 11 2 0 0 1 0 0 0 173 67 0 0 ...
54.2821 14.8586 0.895827 4.29821 60 46 0 0 0 0 0 0 99 42 0 0 ...
155.714 23.0575 1.10741 1.54095 6 0 0 0 150 11 0 0 150 18 2 1 ...
42.9729 24.2012 0.969313 4.68892 90 29 0 0 0 1 2 10 79 45 5 11 ...
229.037 23.7603 0.921754 1.48754 3 0 0 0 141 31 0 0 141 45 0 0 ...
232.362 24.0091 1.0578 1.65089 11 1 0 16 134 0 0 0 106 21 16 33 ...
201.256 25.5857 1.04879 2.01664 10 4 1 8 14 2 1 9 88 13 0 0 ...
...
...

where each row contains the coordinates, scale and rotation angle for each interest
point as the first four values, followed by the 128 values of the corresponding descrip-
tor. The descriptor is represented with the raw integer values and is not normalized.
This is something you will want to do when comparing descriptors. More on that later.

The example above shows the first part of the first eight features found in an image.
Note that the two first rows have the same coordinates but different rotation. This can
happen if several strong directions are found at the same interest point.

Here’s how to read the features to NumPy arrays from an output file like the one
above. Add this function to sift.py,

def read_features_from_file(filename):
""" Read feature properties and return in matrix form. """

f = loadtxt(filename)
return f[:,:4],f[:,4:] # feature locations, descriptors

Here we used the NumPy function loadtxt() to do all the work for us.
If you modify the descriptors in your Python session writing the result back to fea-

ture files can be useful. The function below does this for you using NumPy’s savetxt().

def write_features_to_file(filename,locs,desc):
""" Save feature location and descriptor to file. """
savetxt(filename,hstack((locs,desc)))

This uses the function hstack() that horizontally stacks the two arrays by concatenat-
ing the rows so that the descriptor part comes after the locations on each row.

Having read the features, visualizing them by plotting their locations in the image
is a simple task. Just add plot_features() as below to your file sift.py.

def plot_features(im,locs,circle=False):
""" Show image with features. input: im (image as array),
locs (row, col, scale, orientation of each feature). """

56 2.2. SIFT - Scale-Invariant Feature Transform

def draw_circle(c,r):
t = arange(0,1.01,.01)*2*pi
x = r*cos(t) + c[0]
y = r*sin(t) + c[1]
plot(x,y,’b’,linewidth=2)

imshow(im)
if circle:
for p in locs:
draw_circle(p[:2],p[2])

else:
plot(locs[:,0],locs[:,1],’ob’)

axis(’off’)

This will plot the location of the SIFT points as blue dots overlaid on the image. If the
optional parameter circle is set to "True", circles with radius equal to the scale of the
feature will be drawn instead using the helper function draw_circle().

The following commands

import sift

imname = ’empire.jpg’
im1 = array(Image.open(imname).convert(’L’))
sift.process_image(imname,’empire.sift’)
l1,d1 = sift.read_features_from_file(’empire.sift’)

figure()
gray()
sift.plot_features(im1,l1,circle=True)
show()

will create a plot like the one in Figure 2.4b with the SIFT feature locations shown. To
see the difference compared to Harris corners, the Harris corners for the same image
is shown to the right (Figure 2.4c). As you can see the two algorithms select different
locations.

Matching descriptors

A robust criteria (also introduced by Lowe) for matching a feature in one image to a
feature in another image is to use the ratio of the distance to the two closest matching
features. This ensures that only features that are distinct enough compared to the
other features in the image are used. As a consequence, the number of false matches
is lowered. Here’s what this matching function looks like in code. Add match() to
sift.py.

2.2. SIFT - Scale-Invariant Feature Transform 57

(a) (b) (c)

Figure 2.4: An example of extracting SIFT features for an image. (a) SIFT features (b)
SIFT features shown with circle indicating the scale of the feature (c) Harris points for
the same image for comparison.

def match(desc1,desc2):
""" For each descriptor in the first image,
select its match in the second image.
input: desc1 (descriptors for the first image),
desc2 (same for second image). """

desc1 = array([d/linalg.norm(d) for d in desc1])
desc2 = array([d/linalg.norm(d) for d in desc2])

dist_ratio = 0.6
desc1_size = desc1.shape

matchscores = zeros((desc1_size[0],1),’int’)
desc2t = desc2.T # precompute matrix transpose
for i in range(desc1_size[0]):
dotprods = dot(desc1[i,:],desc2t) # vector of dot products
dotprods = 0.9999*dotprods
inverse cosine and sort, return index for features in second image
indx = argsort(arccos(dotprods))

check if nearest neighbor has angle less than dist_ratio times 2nd
if arccos(dotprods)[indx[0]] < dist_ratio * arccos(dotprods)[indx[1]]:
matchscores[i] = int(indx[0])

return matchscores

58 2.2. SIFT - Scale-Invariant Feature Transform

This function uses the angle between descriptor vectors as distance measure. This
makes sense only after we have normalized the vectors to unit length2. Since the
matching is one-sided, meaning that we are matching each feature to all features
in the other image, we can pre-compute the transpose of the matrix containing the
descriptor vectors containing the points in the second image so that we don’t have to
repeat this exact same operation for each feature.

To further increase the robustness of the matches, we can reverse the procedure
and match the other way (from the features in the second image to features in the
first) and only keep the correspondences that satisfy the matching criteria both ways
(same as what we did for the Harris points). The function match_twosided() does just
this:

def match_twosided(desc1,desc2):
""" Two-sided symmetric version of match(). """

matches_12 = match(desc1,desc2)
matches_21 = match(desc2,desc1)

ndx_12 = matches_12.nonzero()[0]

remove matches that are not symmetric
for n in ndx_12:
if matches_21[int(matches_12[n])] != n:
matches_12[n] = 0

return matches_12

To plot the matches we can use the same functions used in harris.py. Just copy the
functions appendimages() and plot_matches() and add them to sift.py for convenience
(you could also import harris.py and use them from there if you like).

Figures 2.5 and 2.6 shows some examples of SIFT feature points detected in image
pairs together with pair-wise matches returned from the function match_twosided().

Figure 2.7 shows another example of matching features found in two images us-
ing match() and match_twosided(). As you can see, using the symmetric (two-sided)
matching condition removes the incorrect matches and keeps the good ones (some
correct matches are also removed).

With detection and matching of feature points we have everything needed to apply
these local descriptors to a number of applications. The coming two chapters will add
geometric constraints on correspondences in order to robustly filter out the incorrect

2In the case of unit length vectors the scalar product (without the arccos()) is equivalent to the stan-
dard Euclidean distance.

2.2. SIFT - Scale-Invariant Feature Transform 59

Figure 2.5: An example of detecting and matching SIFT features between two images.

60 2.2. SIFT - Scale-Invariant Feature Transform

Figure 2.6: An example of detecting and matching SIFT features between two images.

2.2. SIFT - Scale-Invariant Feature Transform 61

(a) (b)

Figure 2.7: An example of matching SIFT features between two images. (a) matches
from features in the left image without using the two-sided match function (b) the
remaining matches after using the two-sided version.

62 2.2. SIFT - Scale-Invariant Feature Transform

ones and apply local descriptors to examples such as automatic panorama creation,
camera pose estimation, and 3D structure computation.

2.3 Matching Geotagged Images

Let’s end this chapter by looking at an example application of using local descriptors
for matching images with geotags. Geotagged images are images with GPS coordi-
nates either added manually by the photographer or automatically by the camera.

Downloading geotagged images from Panoramio

One source of geotagged images is the photo-sharing service Panoramio (http://www.
panoramio.com/), owned by Google. Like many web services, Panoramio has an API
to access content programmatically. Their API is simple and straight-forward and is
described at http://www.panoramio.com/api/. By making a HTTP GET call to a url
like this

http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium

where minx, miny, maxx, maxy define the geographic area to select photos from (min-
imum longitude, latitude, maximum longitude and latitude, respectively). You will get
the response in easy-to-parse JSON format. JSON is a common format for data transfer
between web services and is more lightweight than XML and other alternatives. You
can read more about JSON at http://en.wikipedia.org/wiki/JSON.

An interesting location with two distinct views is the White house in Washington
D.C. which is usually photographed from Pennsylvania Avenue from the south side or
from the north. The coordinates (latitude, longitude) are:

lt=38.897661
ln=-77.036564

To convert to the format needed for the API call, subtract and add a number from
these coordinates to get all images within a square centered around the White house.
The call

http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-77.037564&miny=38.896662&maxx=-77.035564&maxy=38.898662&size=medium

returns the first 20 images within the coordinate bounds (±0.001), ordered according
to popularity. The response looks something like this

2.3. Matching Geotagged Images 63

http://www.panoramio.com/
http://www.panoramio.com/
http://www.panoramio.com/api/
http://en.wikipedia.org/wiki/JSON

{ "count": 349,
"photos": [{"photo_id": 7715073, "photo_title": "White House", "photo_url":
"http://www.panoramio.com/photo/7715073", "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/7715073.jpg", "longitude":
-77.036583, "latitude": 38.897488, "width": 500, "height": 375, "upload_date":
"10 February 2008", "owner_id": 1213603, "owner_name": "***", "owner_url":
"http://www.panoramio.com/user/1213603"}
,
{"photo_id": 1303971, "photo_title": "ÃĄÃt’Îl’ÃĆÃĘÂt’Ã́LÃöâL’ěÃĆÃĺấLd̄", "photo_url":
"http://www.panoramio.com/photo/1303971", "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/1303971.jpg", "longitude":
-77.036353, "latitude": 38.897471, "width": 500, "height": 336, "upload_date":
"13 March 2007", "owner_id": 195000, "owner_name": "***", "owner_url":
"http://www.panoramio.com/user/195000"}
...
...
]}

To parse this JSON response we can use the simplejson package. Simplejson is avail-
able at http://github.com/simplejson/simplejson and there is online documenta-
tion available on the project page.

If you are running Python 2.6 or later there is no need to use simplejson as there
is a JSON library included with these later versions of Python. To use the built in one,
just import like this

import json

If you want to use simplejson where available (it is faster and could contain newer
features than the built in one) a good idea is to import with a fallback, like this

try: import simplejson as json
except ImportError: import json

The following code will use the urllib package that comes with Python to handle
the requests and then parse the result using simplejson.

import os
import urllib, urlparse
import simplejson as json

query for images
url = ’http://www.panoramio.com/map/get_panoramas.php?order=popularity&\

set=public&from=0&to=20&minx=-77.037564&miny=38.896662&\
maxx=-77.035564&maxy=38.898662&size=medium’

c = urllib.urlopen(url)

get the urls of individual images from JSON
j = json.loads(c.read())
imurls = []
for im in j[’photos’]:

64 2.3. Matching Geotagged Images

http://github.com/simplejson/simplejson

Figure 2.8: Images taken at the same geographic location (square region centered
around the White house) downloaded from panoramio.com.

imurls.append(im[’photo_file_url’])

download images
for url in imurls:
image = urllib.URLopener()
image.retrieve(url, os.path.basename(urlparse.urlparse(url).path))
print ’downloading:’, url

As you can easily see by looking at the JSON output, it is the "photo_file_url" field we
are after. Running the code above, you should see something like this in your console.

downloading: http://mw2.google.com/mw-panoramio/photos/medium/7715073.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/1303971.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/270077.jpg
downloading: http://mw2.google.com/mw-panoramio/photos/medium/15502.jpg
...
...

Figure 2.8 shows the 20 images returned for this example. Now we just need to find
and match features between pairs of images.

2.3. Matching Geotagged Images 65

Matching using local descriptors

Having downloaded the images, we now need to extract local descriptors. In this case
we will use SIFT descriptors as described in the previous section. Let’s assume that
the images have been processed with the SIFT extraction code and the features are
stored in files with the same name as the images (but with file ending ".sift" instead of
".jpg"). The lists imlist and featlist are assumed to contain the filenames. We can do a
pairwise matching between all combinations as follows.

import sift

nbr_images = len(imlist)

matchscores = zeros((nbr_images,nbr_images))
for i in range(nbr_images):
for j in range(i,nbr_images): # only compute upper triangle
print ’comparing ’, imlist[i], imlist[j]

l1,d1 = sift.read_features_from_file(featlist[i])
l2,d2 = sift.read_features_from_file(featlist[j])

matches = sift.match_twosided(d1,d2)

nbr_matches = sum(matches > 0)
print ’number of matches = ’, nbr_matches
matchscores[i,j] = nbr_matches

copy values
for i in range(nbr_images):
for j in range(i+1,nbr_images): # no need to copy diagonal
matchscores[j,i] = matchscores[i,j]

We store the number of matching features between each pair in matchscores. The
last part of copying the values to fill the matrix completely is not necessary since this
"distance measure" is symmetric, it just looks better that way. The matchscores matrix
for these particular images looks like this:

662 0 0 2 0 0 0 0 1 0 0 1 2 0 3 0 19 1 0 2
0 901 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 2
0 0 266 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 1 0 1481 0 0 2 2 0 0 0 2 2 0 0 0 2 3 2 0
0 0 0 0 1748 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 1747 0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 2 0 0 555 0 0 0 1 4 4 0 2 0 0 5 1 0
0 1 0 2 1 0 0 2206 0 0 0 1 0 0 1 0 2 0 1 1
1 1 0 0 0 1 0 0 629 0 0 0 0 0 0 0 1 0 0 20
0 0 0 0 0 0 0 0 0 829 0 0 1 0 0 0 0 0 0 2
0 0 0 0 0 0 1 0 0 0 1025 0 0 0 0 0 1 1 1 0
1 1 0 2 0 0 4 1 0 0 0 528 5 2 15 0 3 6 0 0

66 2.3. Matching Geotagged Images

2 0 0 2 0 0 4 0 0 1 0 5 736 1 4 0 3 37 1 0
0 0 1 0 2 0 0 0 0 0 0 2 1 620 1 0 0 1 0 0
3 0 0 0 0 0 2 1 0 0 0 15 4 1 553 0 6 9 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2273 0 1 0 0
19 0 0 2 0 0 0 2 1 0 1 3 3 0 6 0 542 0 0 0
1 0 0 3 0 1 5 0 0 0 1 6 37 1 9 1 0 527 3 0
0 1 0 2 0 1 1 1 0 0 1 0 1 0 1 0 0 3 1139 0
2 2 0 0 1 0 0 1 20 2 0 0 0 0 0 0 0 0 0 499

Using this as a simple distance measure between images (images with similar content
have higher number of matching features), we can now connect images with similar
visual content.

Visualizing connected images

Let’s visualize the connections between images defined by them having matching
local descriptors. To do this we can show the images in a graph with edges in-
dicating connections. We will use the pydot package (http://code.google.com/p/
pydot/) which is a Python interface to the powerful GraphViz graphing library. Pydot
uses Pyparsing (http://pyparsing.wikispaces.com/) and GraphViz (http://www.
graphviz.org/) but don’t worry, all of them are easy to install in just a few minutes.

Pydot is very easy to use. The following code snippet illustrates this nicely by
creating a graph illustrating a tree with depth two and branching factor five adding
numbering to the nodes. The graph is shown in Figure 2.9. There are many ways to
customize the graph layout and appearance. For more details, see the Pydot docu-
mentation or the description of the DOT language used by GraphViz at http://www.
graphviz.org/Documentation.php.

import pydot

g = pydot.Dot(graph_type=’graph’)

g.add_node(pydot.Node(str(0),fontcolor=’transparent’))
for i in range(5):
g.add_node(pydot.Node(str(i+1)))
g.add_edge(pydot.Edge(str(0),str(i+1)))
for j in range(5):
g.add_node(pydot.Node(str(j+1)+’-’+str(i+1)))
g.add_edge(pydot.Edge(str(j+1)+’-’+str(i+1),str(j+1)))

g.write_png(’graph.jpg’,prog=’neato’)

Let’s get back to our example with the geotagged images. To create a graph show-
ing potential groups of images, we create an edge between nodes if the number of
matches is above a threshold. To get the images in the graph you need to use the
full path of each image (represented by the variable path in the example below). To

2.3. Matching Geotagged Images 67

http://code.google.com/p/pydot/
http://code.google.com/p/pydot/
http://pyparsing.wikispaces.com/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

Figure 2.9: An example of using pydot to create graphs.

make it look nice we also scale each image to a thumbnail with largest side 100 pixels.
Here’s how to do it:

import pydot

threshold = 2 # min number of matches needed to create link

g = pydot.Dot(graph_type=’graph’) # don’t want the default directed graph
for i in range(nbr_images):
for j in range(i+1,nbr_images):
if matchscores[i,j] > threshold:
#first image in pair
im = Image.open(imlist[i])
im.thumbnail((100,100))
filename = str(i)+’.png’
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(i),fontcolor=’transparent’,

shape=’rectangle’,image=path+filename))

second image in pair
im = Image.open(imlist[j])
im.thumbnail((100,100))
filename = str(j)+’.png’
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(j),fontcolor=’transparent’,

shape=’rectangle’,image=path+filename))

g.add_edge(pydot.Edge(str(i),str(j)))

68 2.3. Matching Geotagged Images

g.write_png(’whitehouse.png’)

The result should look something like Figure 2.10 depending on which images you
download. For this particular set, we see two groups of images, one from each side of
the White house.

This application was a very simple example of using local descriptors for matching
regions between images. For example, we did not use any verification on the matches.
This can be done (in a very robust way) using concepts that we will define in the
coming two chapters.

Exercises

1. Modify the function for matching Harris corner points to also take a maximum
pixel distance between points for them to be considered as correspondences in
order to make matching more robust.

2. Incrementally apply stronger blur (or ROF de-noising) to an image and extract
Harris corners. What happens?

3. An alternative corner detector to Harris is the FAST corner detector. There
are a number of implementations including a pure Python version available at
http://www.edwardrosten.com/work/fast.html. Try this detector, play with
the sensitivity threshold, and compare the corners with the ones from our Harris
implementation.

4. Create copies of an image with different resolutions (for example by halving the
size a few times). Extract SIFT features for each image. Plot and match features
to get a feel for how and when the scale independence breaks down.

5. The VLFeat command line tools also contain an implementation of Maximally
Stable Extremal Regions (MSER), http://en.wikipedia.org/wiki/Maximally_

stable_extremal_regions, a region detector that finds blob like regions. Create
a function for extracting MSER regions and pass them to the descriptor part of
SIFT using the "--read-frames" option and one function for plotting the ellipse
regions.

6. Write a function that matches features between a pair of images and estimates
the scale difference and in-plane rotation of the scene based on the correspon-
dences.

2.3. Matching Geotagged Images 69

http://www.edwardrosten.com/work/fast.html
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions

Figure 2.10: An example of grouping images taken at the same geographic location
using local descriptors.

70 2.3. Matching Geotagged Images

7. Download images for a location of your choice and match them as in the White
house example. Can you find a better criteria for linking images? How could you
use the graph to choose representative images for geographic locations?

2.3. Matching Geotagged Images 71

Chapter 3

Image to Image Mappings

This chapter describes transformations between images and some practical methods
for computing them. These transformations are used for warping, image registration
and finally we look at an example of automatically creating panoramas.

3.1 Homographies

A homography is a 2D projective transformation that maps points in one plane to an-
other. In our case the planes are images or planar surfaces in 3D. Homographies have
many practical uses such as registering images, rectifying images, texture warping
and creating panoramas. We will make frequent use of them. In essence a homogra-
phy H maps 2D points (in homogeneous coordinates) according to

2

4
x0

y0

w0

3

5
=

2

4
h1 h2 h3

h4 h5 h6

h7 h8 h9

3

5

2

4
x

y

w

3

5
or x

0
= Hx .

Homogeneous coordinates is a useful representation for points in image planes
(and in 3D as we will see later). Points in homogeneous coordinates are only defined
up to scale so that x = [x, y, w] = [↵x,↵y,↵w] = [x/w, y/w, 1] all refer to the same 2D
point. As a consequence, the homography H is also only defined up to scale and has
eight independent degrees of freedom. Often points are normalized with w = 1 to
have a unique identification of the image coordinates x,y. The extra coordinate makes
is easy to represent transformations with a single matrix.

Create a file homography.py and add the following functions to normalize and con-
vert to homogeneous coordinates.

def normalize(points):

73

""" Normalize a collection of points in
homogeneous coordinates so that last row = 1. """

for row in points:
row /= points[-1]

return points

def make_homog(points):
""" Convert a set of points (dim*n array) to
homogeneous coordinates. """

return vstack((points,ones((1,points.shape[1]))))

When working with points and transformations we will store the points column-wise so
that a set of n points in 2 dimensions will be a 3⇥n array in homogeneous coordinates.
This format makes matrix multiplications and point transforms easier. For all other
cases we will typically use rows to store data, for example features for clustering and
classification.

There are some important special cases of these projective transformations. An
affine transformation

2

4
x0

y0

1

3

5
=

2

4
a1 a2 t

x

a3 a4 t
y

0 0 1

3

5

2

4
x

y

1

3

5
or x

0
=

A t

0 1

�
x ,

preserves w = 1 and can not represent as strong deformations as a full projective
transformation. The affine transformation contains an invertible matrix A and a trans-
lation vector t = [t

x

, t
y

]. Affine transformations are used for example in warping.

A similarity transformation

2

4
x0

y0

1

3

5
=

2

4
s cos(✓) �s sin(✓) t

x

s sin(✓) s cos(✓) t
y

0 0 1

3

5

2

4
x

y

1

3

5
or x

0
=

sR t

0 1

�
x ,

is a rigid 2D transformation that also includes scale changes. The scalar s specifies
scaling, R is a rotation of an angle ✓ and t = [t

x

, t
y

] is again a translation. With s = 1

distances are preserved and it is then a rigid transformation. Similarity transforma-
tions are used for example in image registration.

Let’s look at algorithms for estimating homographies and then go into examples
of using affine transformations for warping, similarity transformations for registration
and finally full projective transformations for creating panoramas.

74 3.1. Homographies

The direct linear transformation algorithm

Homographies can be computed directly from corresponding points in two images (or
planes). As mentioned earlier, a full projective transformation has eight degrees of
freedom. Each point correspondence gives two equations, one each for the x and y

coordinates, and therefore four point correspondences are needed to compute H.
The direct linear transformation (DLT) is an algorithm for computing H given four

or more correspondences. By rewriting the equation for mapping points using H for
several correspondences we get an equation like

2

666664

�x1 �y1 �1 0 0 0 x1x
0
1 y1x

0
1 x01

0 0 0 �x1 �y1 �1 x1y
0
1 y1y

0
1 y01

�x2 �y2 �1 0 0 0 x2x
0
2 y2x

0
2 x02

0 0 0 �x2 �y2 �1 x2y
0
2 y2y

0
2 y02

...
...

...
...

3

777775

2

66666666666664

h1

h2

h3

h4

h5

h6

h7

h8

h9

3

77777777777775

= 0 ,

or Ah = 0 where A is a matrix with twice as many rows as correspondences. By
stacking all corresponding points a least squares solution for H can be found using
singular value decomposition (SVD). Here’s what it looks like in code. Add the function
below to homography.py.

def H_from_points(fp,tp):
""" Find homography H, such that fp is mapped to tp
using the linear DLT method. Points are conditioned
automatically. """

if fp.shape != tp.shape:
raise RuntimeError(’number of points do not match’)

condition points (important for numerical reasons)
--from points--
m = mean(fp[:2], axis=1)
maxstd = max(std(fp[:2], axis=1)) + 1e-9
C1 = diag([1/maxstd, 1/maxstd, 1])
C1[0][2] = -m[0]/maxstd
C1[1][2] = -m[1]/maxstd
fp = dot(C1,fp)

--to points--
m = mean(tp[:2], axis=1)
maxstd = max(std(tp[:2], axis=1)) + 1e-9

3.1. Homographies 75

C2 = diag([1/maxstd, 1/maxstd, 1])
C2[0][2] = -m[0]/maxstd
C2[1][2] = -m[1]/maxstd
tp = dot(C2,tp)

create matrix for linear method, 2 rows for each correspondence pair
nbr_correspondences = fp.shape[1]
A = zeros((2*nbr_correspondences,9))
for i in range(nbr_correspondences):
A[2*i] = [-fp[0][i],-fp[1][i],-1,0,0,0,

tp[0][i]*fp[0][i],tp[0][i]*fp[1][i],tp[0][i]]
A[2*i+1] = [0,0,0,-fp[0][i],-fp[1][i],-1,

tp[1][i]*fp[0][i],tp[1][i]*fp[1][i],tp[1][i]]

U,S,V = linalg.svd(A)
H = V[8].reshape((3,3))

decondition
H = dot(linalg.inv(C2),dot(H,C1))

normalize and return
return H / H[2,2]

The first thing that happens in this function is a check that the number of points
are equal. If not an exception is thrown. This is useful for writing robust code but
we will only use exceptions in very few cases in this book to make the code samples
simpler and easier to follow. You can read more about exception types at http://
docs.python.org/library/exceptions.html and how to use them at http://docs.
python.org/tutorial/errors.html.

The points are conditioned by normalizing so that they have zero mean and unit
standard deviation. This is very important for numerical reasons since the stability
of the algorithm is dependent of the coordinate representation. Then the matrix A is
created using the point correspondences. The least squares solution is found as the
last row of the matrix V of the SVD. The row is reshaped to create H. This matrix is
then de-conditioned and normalized before returned.

Affine transformations

An affine transformation has six degrees of freedom and therefore three point corre-
spondences are needed to estimate H. Affine transforms can be estimated using the
DLT algorithm above by setting the last two elements equal to zero, h7 = h8 = 0.

Here we will use a different approach, described in detail in [13] (page 130). Add
the following function to homography.py, which computes the affine transformation
matrix from point correspondences.

76 3.1. Homographies

http://docs.python.org/library/exceptions.html
http://docs.python.org/library/exceptions.html
http://docs.python.org/tutorial/errors.html
http://docs.python.org/tutorial/errors.html

def Haffine_from_points(fp,tp):
""" Find H, affine transformation, such that
tp is affine transf of fp. """

if fp.shape != tp.shape:
raise RuntimeError(’number of points do not match’)

condition points
--from points--
m = mean(fp[:2], axis=1)
maxstd = max(std(fp[:2], axis=1)) + 1e-9
C1 = diag([1/maxstd, 1/maxstd, 1])
C1[0][2] = -m[0]/maxstd
C1[1][2] = -m[1]/maxstd
fp_cond = dot(C1,fp)

--to points--
m = mean(tp[:2], axis=1)
C2 = C1.copy() #must use same scaling for both point sets
C2[0][2] = -m[0]/maxstd
C2[1][2] = -m[1]/maxstd
tp_cond = dot(C2,tp)

conditioned points have mean zero, so translation is zero
A = concatenate((fp_cond[:2],tp_cond[:2]), axis=0)
U,S,V = linalg.svd(A.T)

create B and C matrices as Hartley-Zisserman (2:nd ed) p 130.
tmp = V[:2].T
B = tmp[:2]
C = tmp[2:4]

tmp2 = concatenate((dot(C,linalg.pinv(B)),zeros((2,1))), axis=1)
H = vstack((tmp2,[0,0,1]))

decondition
H = dot(linalg.inv(C2),dot(H,C1))

return H / H[2,2]

Again the points are conditioned and de-conditioned as in the DLT algorithm. Let’s see
what these affine transformations can do with images in the next section.

3.1. Homographies 77

3.2 Warping images

Applying an affine transformation matrix H on image patches is called warping (or
affine warping) and is frequently used in computer graphics but also in several com-
puter vision algorithms. A warp can easily be performed with SciPy using the ndimage

package. The command

transformed_im = ndimage.affine_transform(im,A,b,size)

transforms the image patch im with A a linear transformation and b a translation
vector as above. The optional argument size can be used to specify the size of the
output image. The default is an image with the same size as the original. To see how
this works, try running the following commands:

from scipy import ndimage

im = array(Image.open(’empire.jpg’).convert(’L’))
H = array([[1.4,0.05,-100],[0.05,1.5,-100],[0,0,1]])
im2 = ndimage.affine_transform(im,H[:2,:2],(H[0,2],H[1,2]))

figure()
gray()
imshow(im2)
show()

This gives a result like the image to the right in Figure 3.1. As you can see, missing
pixel values in the result image are filled with zeros.

Image in image

A simple example of affine warping is to place images, or parts of images, inside
another image so that they line up with specific areas or landmarks.

Add the function image_in_image() to warp.py. This function takes two images and
the corner coordinates of where to put the first image in the second.

def image_in_image(im1,im2,tp):
""" Put im1 in im2 with an affine transformation
such that corners are as close to tp as possible.
tp are homogeneous and counter-clockwise from top left. """

points to warp from
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])

compute affine transform and apply
H = homography.Haffine_from_points(tp,fp)

78 3.2. Warping images

Figure 3.1: An example of warping an image using an affine transform, (left) original,
(right) image after warping with ndimage.affine_transform().

im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])

alpha = (im1_t > 0)

return (1-alpha)*im2 + alpha*im1_t

As you can see, there is not much needed to do this. When blending together the
warped image and the second image we create an alpha map which defines how much
of each pixel to take from each image. Here we use the fact that the warped image is
filled with zeros outside the borders of the warped area to create a binary alpha map.
To be really strict we could have added a small number to the potential zero pixels of
the first image, or done it properly, see exercises at the end of the chapter. Note that
the image coordinates are in homogeneous form.

To try this function, let’s insert an image on a billboard in another image. The
following lines of code will put the leftmost image of Figure 3.2 into the second image.
The coordinates were determined manually by looking at a plot of the image (in PyLab
figures the mouse coordinates are shown near the bottom). PyLab’s ginput() could of
course also have been used.

import warp

example of affine warp of im1 onto im2
im1 = array(Image.open(’beatles.jpg’).convert(’L’))
im2 = array(Image.open(’billboard_for_rent.jpg’).convert(’L’))

set to points

3.2. Warping images 79

Figure 3.2: An example of placing an image inside another image using an affine
transformation.

tp = array([[264,538,540,264],[40,36,605,605],[1,1,1,1]])

im3 = warp.image_in_image(im1,im2,tp)

figure()
gray()
imshow(im3)
axis(’equal’)
axis(’off’)
show()

This puts the image on the upper part of the billboard. Note again that the landmark
coordinates tp are in homogeneous coordinates. Changing the coordinates to

tp = array([[675,826,826,677],[55,52,281,277],[1,1,1,1]])

will put the image on the lower left "for rent" part.
The function Haffine_from_points() gives the best affine transform for the given

point correspondences. In the example above those were the image corners and the
corners of the billboard. If the perspective effects are small, this will give good results.
The top row of Figure 3.3 shows what happens if we try to use an affine transformation
to a billboard image with more perspective. It is not possible to transform all four
corner points to their target locations with the same affine transform (a full projective
transform would have been able to do this though). If you want to use an affine warp
so that all corner points match, there is a useful trick.

For three points an affine transform can warp an image so that the three corre-
spondences match perfectly. This is because an affine transform has six degrees of

80 3.2. Warping images

freedom and three correspondences give exactly six constraints (x and y coordinates
must match for all three). So if you really want the image to fit the billboard using
affine transforms, you can divide the image into two triangles and warp them sepa-
rately. Here’s how to do it.

set from points to corners of im1
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])

first triangle
tp2 = tp[:,:3]
fp2 = fp[:,:3]

compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],

(H[0,2],H[1,2]),im2.shape[:2])

alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im3 = (1-alpha)*im2 + alpha*im1_t

second triangle
tp2 = tp[:,[0,2,3]]
fp2 = fp[:,[0,2,3]]

compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],

(H[0,2],H[1,2]),im2.shape[:2])

alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im4 = (1-alpha)*im3 + alpha*im1_t

figure()
gray()
imshow(im4)
axis(’equal’)
axis(’off’)
show()

Here we simply create the alpha map for each triangle and then merge all images
together. The alpha map for a triangle can be computed by simply checking for each
pixel if that pixel’s coordinates has a convex combination of the triangle’s corner points

3.2. Warping images 81

that have all coefficients positive1. That means the pixel is inside the triangle. Add
the following function alpha_for_triangle(), which was used in the example above,
to warp.py.

def alpha_for_triangle(points,m,n):
""" Creates alpha map of size (m,n)
for a triangle with corners defined by points
(given in normalized homogeneous coordinates). """

alpha = zeros((m,n))
for i in range(min(points[0]),max(points[0])):
for j in range(min(points[1]),max(points[1])):
x = linalg.solve(points,[i,j,1])
if min(x) > 0: #all coefficients positive
alpha[i,j] = 1

return alpha

This is an operation your graphics card can do extremely fast. Python is a lot slower
than your graphics card (or a C/C++ implementation for that matter) but it works just
fine for our purposes. As you can see at the bottom of Figure 3.3, the corners now
match.

Piecewise affine warping

As we saw in the example above, affine warping of triangle patches can be done to
exactly match the corner points. Let’s look at the most common form of warping
between a set of corresponding points, piecewise affine warping. Given any image
with landmark points we can warp that image to corresponding landmarks in another
image by triangulating the points into a triangle mesh and then warping each triangle
with an affine transform. These are standard operations for any graphics and image
processing library. Here we show how to do this using PyLab and SciPy.

To triangulate points, Delaunay triangulation is often used. An implementation of
Delaunay triangulation comes included in Matplotlib (but outside the PyLab part) and
can be used like this:

import matplotlib.delaunay as md

x,y = array(random.standard_normal((2,100)))
centers,edges,tri,neighbors = md.delaunay(x,y)

figure()
for t in tri:

1A convex combination is a linear combination
P

j ↵jxi (in this case of the triangle points) such that
all coefficients ↵j are non-negative and sum to 1.

82 3.2. Warping images

Figure 3.3: Comparing an affine warp of the full image with an affine warp using two
triangles. The image is placed on a billboard with some perspective effects. (top) using
an affine transform for the whole image results in a bad fit. The two right hand corners
are enlarged for clarity. (bottom) using an affine warp consisting of two triangles gives
an exact fit.

3.2. Warping images 83

Figure 3.4: An example of Delaunay triangulation of a set of random 2D points.

t_ext = [t[0], t[1], t[2], t[0]] # add first point to end
plot(x[t_ext],y[t_ext],’r’)

plot(x,y,’*’)
axis(’off’)
show()

Figure 3.4 shows some example points and the resulting triangulation. Delaunay tri-
angulation chooses the triangles so that the minimum angle of all the angles of the
triangles in the triangulation is maximized2. There are four outputs of delaunay() of
which we only need the list of triangles (the third of the outputs). Create a function in
warp.py for the triangulation.

import matplotlib.delaunay as md

def triangulate_points(x,y):
""" Delaunay triangulation of 2D points. """

centers,edges,tri,neighbors = md.delaunay(x,y)
return tri

The output is an array with each row containing the indices in the arrays x and y for
the three points of each triangle.

Let’s now apply this to an example of warping an image to a non-flat object in
another image using 30 control points in a 5 by 6 grid. Figure 3.5 shows an image
to be warped to the facade of the "turning torso". The target points were manually
selected using ginput() and stored in the file turningtorso_points.txt.

2The edges are actually the dual graph of a Voronoi diagram, see http://en.wikipedia.org/wiki/
Delaunay_triangulation.

84 3.2. Warping images

http://en.wikipedia.org/wiki/Delaunay_triangulation
http://en.wikipedia.org/wiki/Delaunay_triangulation

First we need a general warp function for piecewise affine image warping. The
code below does the trick, where we also take the opportunity to show how to warp
color images (you simply warp each color channel).

def pw_affine(fromim,toim,fp,tp,tri):
""" Warp triangular patches from an image.
fromim = image to warp
toim = destination image
fp = from points in hom. coordinates
tp = to points in hom. coordinates
tri = triangulation. """

im = toim.copy()

check if image is grayscale or color
is_color = len(fromim.shape) == 3

create image to warp to (needed if iterate colors)
im_t = zeros(im.shape, ’uint8’)

for t in tri:
compute affine transformation
H = homography.Haffine_from_points(tp[:,t],fp[:,t])

if is_color:
for col in range(fromim.shape[2]):
im_t[:,:,col] = ndimage.affine_transform(
fromim[:,:,col],H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])

else:
im_t = ndimage.affine_transform(

fromim,H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])

alpha for triangle
alpha = alpha_for_triangle(tp[:,t],im.shape[0],im.shape[1])

add triangle to image
im[alpha>0] = im_t[alpha>0]

return im

Here we first check if the image is grayscale or color and in the case of colors, we warp
each color channel. The affine transform for each triangle is uniquely determined so
we use Haffine_from_points(). Add this function to the file warp.py.

To use this function on the current example, the following short script puts it all
together:

import homography

3.2. Warping images 85

import warp

open image to warp
fromim = array(Image.open(’sunset_tree.jpg’))
x,y = meshgrid(range(5),range(6))
x = (fromim.shape[1]/4) * x.flatten()
y = (fromim.shape[0]/5) * y.flatten()

triangulate
tri = warp.triangulate_points(x,y)

open image and destination points
im = array(Image.open(’turningtorso1.jpg’))
tp = loadtxt(’turningtorso1_points.txt’) # destination points

convert points to hom. coordinates
fp = vstack((y,x,ones((1,len(x)))))
tp = vstack((tp[:,1],tp[:,0],ones((1,len(tp)))))

warp triangles
im = warp.pw_affine(fromim,im,fp,tp,tri)

plot
figure()
imshow(im)
warp.plot_mesh(tp[1],tp[0],tri)
axis(’off’)
show()

The resulting image is shown in Figure 3.5. The triangles are plotted with the following
helper function (add this to warp.py):

def plot_mesh(x,y,tri):
""" Plot triangles. """

for t in tri:
t_ext = [t[0], t[1], t[2], t[0]] # add first point to end
plot(x[t_ext],y[t_ext],’r’)

This example should give you all you need to apply piece-wise affine warping of images
to your own applications. There are many improvements that can be made to the
functions used, let’s leave some to the exercises and the rest to you.

Registering images

Image registration is the process of transferring images so that they are aligned in
a common coordinate frame. Registration can be rigid or non-rigid and and is an

86 3.2. Warping images

(a) (b) (c) (d)

Figure 3.5: An example of piecewise affine warping using Delaunay triangulated land-
mark points. (a) the target image with landmarks. (b) image with triangulation. (c)
with warped image. (d) with warped image and triangulation.

important step in order to be able to do image comparisons and more sophisticated
analysis.

Let’s look at an example of rigidly registering a set of face images so that we can
compute the mean face and face appearance variations in a meaningful way. In this
type of registration we are actually looking for a similarity transform (rigid with scale)
to map correspondences. This is because the faces are not all at the same size, position
and rotation in the images.

In the file jkfaces.zip are 366 images of a single person (one for each day in 2008)3.
The images are annotated with eye and mouth coordinates in the file jkfaces.xml. Us-
ing the points, a similarity transformation can be computed and the images warped
to a normalized coordinate frame using this transformation (which as mentioned, in-
cludes scaling). To read XML files we will use minidom that comes with Python’s built
in xml.dom module.

The XML file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<faces>

<face file="jk-002.jpg" xf="46" xm="56" xs="67" yf="38" ym="65" ys="39"/>
<face file="jk-006.jpg" xf="38" xm="48" xs="59" yf="38" ym="65" ys="38"/>
<face file="jk-004.jpg" xf="40" xm="50" xs="61" yf="38" ym="66" ys="39"/>
<face file="jk-010.jpg" xf="33" xm="44" xs="55" yf="38" ym="65" ys="38"/>

...

...
</faces>

3Images are courtesy of JK Keller (with permission), see http://jk-keller.com/daily-photo/ for
more details.

3.2. Warping images 87

http://jk-keller.com/daily-photo/

To read the coordinates from the file, add the following function that uses minidom to
a new file imregistration.py.

from xml.dom import minidom

def read_points_from_xml(xmlFileName):
""" Reads control points for face alignment. """

xmldoc = minidom.parse(xmlFileName)
facelist = xmldoc.getElementsByTagName(’face’)
faces = {}
for xmlFace in facelist:
fileName = xmlFace.attributes[’file’].value
xf = int(xmlFace.attributes[’xf’].value)
yf = int(xmlFace.attributes[’yf’].value)
xs = int(xmlFace.attributes[’xs’].value)
ys = int(xmlFace.attributes[’ys’].value)
xm = int(xmlFace.attributes[’xm’].value)
ym = int(xmlFace.attributes[’ym’].value)
faces[fileName] = array([xf, yf, xs, ys, xm, ym])

return faces

The landmark points are returned in a Python dictionary with the filename of the
image as key. The format is; xf,yf coordinates of the leftmost eye in the image (the
person’s right), xs,ys coordinates of the rightmost eye and xm,ym mouth coordinates.
To compute the parameters of the similarity transformation we can use a least squares
solution. For each point x

i

= [x
i

, y
i

] (in this case there are three of them), the point
should be mapped to the target location [x̂

i

, ŷ
i

] as

x̂
i

ŷ
i

�
=

a �b

b a

�
x
i

y
i

�
+

t
x

t
y

�
.

Taking all three points, we can rewrite this as a system of equations with the unknowns
a, b, t

x

, t
y

like this 2

66666664

x̂1

ŷ1

x̂2

ŷ2

x̂3

ŷ3

3

77777775

=

2

66666664

x1 �y1 1 0

y1 x1 0 1

x2 �y2 1 0

y2 x2 0 1

x3 �y3 1 0

y3 x3 0 1

3

77777775

2

664

a

b

t
x

t
y

3

775 .

Here we used the parameterization of similarity matrices

a �b

b a

�
= s

cos(✓) � sin(✓)

sin(✓) cos(✓)

�
= sR ,

88 3.2. Warping images

with scale s =
p
a2

+ b2 and rotation matrix R.
More point correspondences would work the same way and only add extra rows

to the matrix. The least squares solution is found using linalg.lstsq(). This idea of
using least squares solutions is a standard trick that will be used many times in this
book. Actually this is the same as used in the DLT algorithm earlier.

The code looks like this (add to imregistration.py):

from scipy import linalg

def compute_rigid_transform(refpoints,points):
""" Computes rotation, scale and translation for
aligning points to refpoints. """

A = array([[points[0], -points[1], 1, 0],
[points[1], points[0], 0, 1],
[points[2], -points[3], 1, 0],
[points[3], points[2], 0, 1],
[points[4], -points[5], 1, 0],
[points[5], points[4], 0, 1]])

y = array([refpoints[0],
refpoints[1],
refpoints[2],
refpoints[3],
refpoints[4],
refpoints[5]])

least sq solution to mimimize ||Ax - y||
a,b,tx,ty = linalg.lstsq(A,y)[0]
R = array([[a, -b], [b, a]]) # rotation matrix incl scale

return R,tx,ty

The function returns a rotation matrix with scale as well as translation in the x and y di-
rections. To warp the images and store new aligned images we can apply ndimage.affine_transform()
to each color channel (these are color images). As reference frame, any three point
coordinates could be used. Here we will use the landmark locations in the first image
for simplicity.

from scipy import ndimage
from scipy.misc import imsave
import os

def rigid_alignment(faces,path,plotflag=False):
""" Align images rigidly and save as new images.
path determines where the aligned images are saved
set plotflag=True to plot the images. """

3.2. Warping images 89

take the points in the first image as reference points
refpoints = faces.values()[0]

warp each image using affine transform
for face in faces:
points = faces[face]

R,tx,ty = compute_rigid_transform(refpoints, points)
T = array([[R[1][1], R[1][0]], [R[0][1], R[0][0]]])

im = array(Image.open(os.path.join(path,face)))
im2 = zeros(im.shape, ’uint8’)

warp each color channel
for i in range(len(im.shape)):
im2[:,:,i] = ndimage.affine_transform(im[:,:,i],linalg.inv(T),offset=[-ty,-tx])

if plotflag:
imshow(im2)
show()

crop away border and save aligned images
h,w = im2.shape[:2]
border = (w+h)/20

crop away border
imsave(os.path.join(path, ’aligned/’+face),im2[border:h-border,border:w-border,:])

Here we use the imsave() function to save the aligned images to a sub-directory
"aligned".

The following short script will read the XML file containing filenames as keys and
points as values and then register all the images to align them with the first one.

import imregistration

load the location of control points
xmlFileName = ’jkfaces2008_small/jkfaces.xml’
points = imregistration.read_points_from_xml(xmlFileName)

register
imregistration.rigid_alignment(points,’jkfaces2008_small/’)

If you run this you should get aligned face images in a sub-directory. Figure 3.6 shows
six sample images before and after registration. The registered images are cropped
slightly to remove the undesired black fill pixels that may appear at the borders of the
images.

90 3.2. Warping images

Figure 3.6: Sample images before (top) and after rigid registration (bottom).

Now let’s see how this affects the mean image. Figure 3.7 shows the mean image
for the unaligned face images next to the mean image of the aligned images (note
the size difference due to cropping the borders of the aligned images). Although the
original images show very little variation in size of the face, rotation and position, the
effects on the mean computation is drastic.

Not surprisingly, using badly registered images also has a drastic impact on the
computation of principal components. Figure 3.8 shows the result of PCA on the first
150 images from this set without and with registration. Just as with the mean image,
the PCA-modes are blurry. When computing the principal components we used a mask
consisting of an ellipse centered around the mean face position. By multiplying the
images with this mask before stacking them we can avoid bringing background vari-
ations into the PCA-modes. Just replace the line that creates the matrix in the PCA
example in Section 1.3 (page 29) with:

immatrix = array([mask*array(Image.open(imlist[i]).convert(’L’)).flatten()
for i in range(150)],’f’)

where mask is a binary image of the same size, already flattened.

3.3 Creating Panoramas

Two (or more) images that are taken at the same location (that is, the camera position
is the same for the images) are homographically related. This is frequently used for
creating panoramic images where several images are stitched together into one big
mosaic. In this section we will explore how this is done.

3.3. Creating Panoramas 91

Figure 3.7: Comparing mean images. (left) without alignment. (right) with three-point
rigid alignment.

RANSAC

RANSAC , short for "RANdom SAmple Consensus", is an iterative method to fit models
to data that can contain outliers. Given a model, for example a homography between
sets of points, the basic idea is that the data contains inliers, the data points that can
be described by the model, and outliers, those that do not fit the model.

The standard example is the case of fitting a line to a set of points that contains
outliers. Simple least squares fitting will fail but RANSAC can hopefully single out
the inliers and obtain the correct fit. Let’s look at using ransac.py from http://
www.scipy.org/Cookbook/RANSAC which contains this particular example as test case.
Figure 3.10 shows an example of running ransac.test(). As you can see, the algorithm
selects only points consistent with a line model and correctly finds the right solution.

RANSAC is a very useful algorithm which we will use in the next section for homog-
raphy estimation and again for other examples. For more information, see the original
paper by Fischler and Bolles [11], Wikipedia http://en.wikipedia.org/wiki/RANSAC
or the report [40].

Robust homography estimation

We can use this RANSAC module for any model. All that is needed is a Python class
with fit() and get_error() methods, the rest is taken care of by ransac.py. Here we
are interested in automatically finding a homography for the panorama images using
a set of possible correspondences. Figure 3.11 shows the matching correspondences
found automatically using SIFT features by running the following commands:

92 3.3. Creating Panoramas

http://www.scipy.org/Cookbook/RANSAC
http://www.scipy.org/Cookbook/RANSAC
http://en.wikipedia.org/wiki/RANSAC

Figure 3.8: Comparing PCA-modes of unregistered and registered images. (top) the
mean image and the first nine principal components without registering the images
beforehand. (bottom) the same with the registered images.

3.3. Creating Panoramas 93

Figure 3.9: Five images of the main university building in Lund, Sweden. The images
are all taken from the same viewpoint.

Figure 3.10: An example of using RANSAC to fit a line to points with outliers.

94 3.3. Creating Panoramas

Figure 3.11: Matching correspondences found between consecutive image pairs using
SIFT features.

import sift

featname = [’Univ’+str(i+1)+’.sift’ for i in range(5)]
imname = [’Univ’+str(i+1)+’.jpg’ for i in range(5)]
l = {}
d = {}
for i in range(5):
sift.process_image(imname[i],featname[i])
l[i],d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
matches[i] = sift.match(d[i+1],d[i])

It is clear from the images that not all correspondences are correct. SIFT is actually
a very robust descriptor and gives fewer false matches than for example Harris points
with patch correlation, but still it is far from perfect.

3.3. Creating Panoramas 95

To fit a homography using RANSAC we first need to add the following model class
to homography.py.

class RansacModel(object):
""" Class for testing homography fit with ransac.py from
http://www.scipy.org/Cookbook/RANSAC"""

def __init__(self,debug=False):
self.debug = debug

def fit(self, data):
""" Fit homography to four selected correspondences. """

transpose to fit H_from_points()
data = data.T

from points
fp = data[:3,:4]
target points
tp = data[3:,:4]

fit homography and return
return H_from_points(fp,tp)

def get_error(self, data, H):
""" Apply homography to all correspondences,
return error for each transformed point. """

data = data.T

from points
fp = data[:3]
target points
tp = data[3:]

transform fp
fp_transformed = dot(H,fp)

normalize hom. coordinates
for i in range(3):
fp_transformed[i] /= fp_transformed[2]

return error per point
return sqrt(sum((tp-fp_transformed)**2,axis=0))

As you can see, this class contains a fit() method which just takes the four corre-
spondences selected by ransac.py (they are the first four in data) and fits a homogra-

96 3.3. Creating Panoramas

phy. Remember, four points are the minimal number to compute a homography. The
method get_error() applies the homography and returns the sum of squared distance
for each correspondence pair so that RANSAC can chose which points to keep as in-
liers and outliers. This is done with a threshold on this distance. For ease of use, add
the following function to homography.py.

def H_from_ransac(fp,tp,model,maxiter=1000,match_theshold=10):
""" Robust estimation of homography H from point
correspondences using RANSAC (ransac.py from
http://www.scipy.org/Cookbook/RANSAC).

input: fp,tp (3*n arrays) points in hom. coordinates. """

import ransac

group corresponding points
data = vstack((fp,tp))

compute H and return
H,ransac_data = ransac.ransac(data.T,model,4,maxiter,match_theshold,10,return_all=True)
return H,ransac_data[’inliers’]

The function also lets you supply the threshold and the minimum number of points
desired. The most important parameter is the maximum number of iterations, exiting
too early might give a worse solution, too many iterations will take more time. The
resulting homography is returned together with the inlier points.

Apply RANSAC to the correspondences like this.

function to convert the matches to hom. points
def convert_points(j):
ndx = matches[j].nonzero()[0]
fp = homography.make_homog(l[j+1][ndx,:2].T)
ndx2 = [int(matches[j][i]) for i in ndx]
tp = homography.make_homog(l[j][ndx2,:2].T)
return fp,tp

estimate the homographies
model = homography.RansacModel()

fp,tp = convert_points(1)
H_12 = homography.H_from_ransac(fp,tp,model)[0] #im 1 to 2

fp,tp = convert_points(0)
H_01 = homography.H_from_ransac(fp,tp,model)[0] #im 0 to 1

tp,fp = convert_points(2) #NB: reverse order
H_32 = homography.H_from_ransac(fp,tp,model)[0] #im 3 to 2

3.3. Creating Panoramas 97

tp,fp = convert_points(3) #NB: reverse order
H_43 = homography.H_from_ransac(fp,tp,model)[0] #im 4 to 3

In this example image number 2 is the central image and the one we want to warp the
others to. Image 0 and 1 should be warped from the right and image 3 and 4 from
the left. The matches were computed from the rightmost image in each pair, therefore
we reverse the order of the correspondences for the images warped from the left. We
also take only the first output (the homography) as we are not interested in the inlier
points for this warping case.

Stitching the images together

With the homographies between the images estimated (using RANSAC) we now need
to warp all images to a common image plane. It makes most sense to use the plane
of the center image (otherwise the distortions will be huge). One way to do this is to
create a very large image, for example filled with zeros, parallel to the central image
and warp all the images to it. Since all our images are taken with a horizontal rotation
of the camera we can use a simpler procedure, we just pad the central image with
zeros to the left or right to make room for the warped images. Add the following
function which handles this to warp.py.

def panorama(H,fromim,toim,padding=2400,delta=2400):
""" Create horizontal panorama by blending two images
using a homography H (preferably estimated using RANSAC).
The result is an image with the same height as toim. ’padding’
specifies number of fill pixels and ’delta’ additional translation. """

check if images are grayscale or color
is_color = len(fromim.shape) == 3

homography transformation for geometric_transform()
def transf(p):
p2 = dot(H,[p[0],p[1],1])
return (p2[0]/p2[2],p2[1]/p2[2])

if H[1,2]<0: # fromim is to the right
print ’warp - right’
transform fromim
if is_color:
pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding,3))))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],

98 3.3. Creating Panoramas

transf,(toim.shape[0],toim.shape[1]+padding))
else:
pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding))))
fromim_t = ndimage.geometric_transform(fromim,transf,

(toim.shape[0],toim.shape[1]+padding))
else:
print ’warp - left’
add translation to compensate for padding to the left
H_delta = array([[1,0,0],[0,1,-delta],[0,0,1]])
H = dot(H,H_delta)
transform fromim
if is_color:
pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding,3)),toim))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],

transf,(toim.shape[0],toim.shape[1]+padding))
else:
pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding)),toim))
fromim_t = ndimage.geometric_transform(fromim,

transf,(toim.shape[0],toim.shape[1]+padding))

blend and return (put fromim above toim)
if is_color:
all non black pixels
alpha = ((fromim_t[:,:,0] * fromim_t[:,:,1] * fromim_t[:,:,2]) > 0)
for col in range(3):
toim_t[:,:,col] = fromim_t[:,:,col]*alpha + toim_t[:,:,col]*(1-alpha)

else:
alpha = (fromim_t > 0)
toim_t = fromim_t*alpha + toim_t*(1-alpha)

return toim_t

For a general geometric_transform() a function, describing the pixel to pixel map,
needs to be specified. In this case transf() does this by multiplying with H and nor-
malizing the homogeneous coordinates. By checking the translation value in H we
can decide if the image should be padded to the left or the right. When the image is
padded to the left, the coordinates of the points in the target image changes so in the
"left" case a translation is added to the homography. For simplicity we also still use
the trick of zero pixels for finding the alpha map.

Now use this function on the images as follows

#warp the images

3.3. Creating Panoramas 99

Figure 3.12: Horizontal panorama automatically created from SIFT correspondences.
(top) the full panorama. (bottom) a crop of the central part.

delta = 2000 #for padding and translation

im1 = array(Image.open(imname[1]))
im2 = array(Image.open(imname[2]))
im_12 = warp.panorama(H_12,im1,im2,delta,delta)

im1 = array(Image.open(imname[0]))
im_02 = warp.panorama(dot(H_12,H_01),im1,im_12,delta,delta)

im1 = array(Image.open(imname[3]))
im_32 = warp.panorama(H_32,im1,im_02,delta,delta)

im1 = array(Image.open(imname[j+1]))
im_42 = warp.panorama(dot(H_32,H_43),im1,im_32,delta,2*delta)

Note that, in the last line, im_32 is already translated once. The resulting panorama
image is shown in Figure 3.12. As you can see there are effects of different exposure
and edge effects at the boundaries between individual images. Commercial panorama
software has extra processing to normalize intensity and smooth transitions to make
the result look even better.

100 3.3. Creating Panoramas

Exercises

1. Create a function that takes the image coordinates of a square (or rectangular)
object, for example a book, a poster or a 2D bar code, and estimates the trans-
form that takes the rectangle to a full on frontal view in a normalized coordinate
system. Use ginput() or the strongest Harris corners to find the points.

2. Write a function that correctly determines the alpha map for a warp like the one
in Figure 3.1.

3. Find a data set of your own that contains three common landmark points (like in
the face example or using a famous object like the Eiffel tower). Create aligned
images where the landmarks are in the same position. Compute mean and me-
dian images and visualize them.

4. Implement intensity normalization and a better way to blend the images in the
panorama example to remove the edge effects in Figure 3.12.

5. Instead of warping to a central image, panoramas can be created by warping on
to a cylinder. Try this for the example in Figure 3.12.

6. Use RANSAC to find several dominant homography inlier sets. An easy way to
do this is to first make one run of RANSAC, find the homograohy with the largest
consistent subset, then remove the inliers from the set of matches, then run
RANSAC again to get the next biggest set, and so on.

7. Modify the homography RANSAC estimation to instead estimate affine transfor-
mations using three point correspondences. Use this to determine if a pair of
images contains a planar scene, for example using the inlier count. A planar
scene will have a high inlier count for an affine transformation.

8. Build a panograph (http://en.wikipedia.org/wiki/Panography) from a col-
lection (for example from Flickr) by matching local features and using least-
squares rigid registration.

3.3. Creating Panoramas 101

http://en.wikipedia.org/wiki/Panography

Chapter 4

Camera Models and Augmented
Reality

In this chapter we will look at modeling cameras and how to effectively use such mod-
els. In the previous chapter we covered image to image mappings and transforms. To
handle mappings between 3D and images the projection properties of the camera gen-
erating the image needs to be part of the mapping. Here we show how to determine
camera properties and how to use image projections for applications like augmented
reality. In the next chapter, we will use the camera model to look at applications with
multiple views and mappings between them.

4.1 The Pin-hole Camera Model

The pin-hole camera model (or sometimes projective camera model) is a widely used
camera model in computer vision. It is simple and accurate enough for most applica-
tions. The name comes from the type of camera, like a camera obscura, that collects
light through a small hole to the inside of a dark box or room. In the pin-hole camera
model, light passes through a single point, the camera center, C, before it is projected
onto an image plane. Figure 4.1 shows an illustration where the image plane is drawn
in front of the camera center. The image plane in an actual camera would be upside
down behind the camera center but the model is the same.

The projection properties of a pin-hole camera can be derived from this illustration
and the assumption that the image axis are aligned with the x and y axis of a 3D
coordinate system. The optical axis of the camera then coincides with the z axis and
the projection follows from similar triangles. By adding rotation and translation to
put a 3D point in this coordinate system before projecting, the complete projection

103

transform follows. The interested reader can find the details in [13] and [25, 26].
With a pin-hole camera, a 3D point X is projected to an image point x (both ex-

pressed in homogeneous coordinates) as

�x = PX . (4.1)

Here the 3 ⇥ 4 matrix P is called the camera matrix (or projection matrix). Note that
the 3D point X has four elements in homogeneous coordinates, X = [X,Y, Z,W]. The
scalar � is the inverse depth of the 3D point and is needed if we want all coordinates
to be homogeneous with the last value normalized to one.

The camera matrix

The camera matrix can be decomposed as

P = K [R | t] , (4.2)

where R is a rotation matrix describing the orientation of the camera, t a 3D transla-
tion vector describing the position of the camera center, and the intrinsic calibration
matrix K describing the projection properties of the camera.

The calibration matrix depends only on the camera properties and is in a general
form written as

K =

2

4
↵f s c

x

0 f c
y

0 0 1

3

5 .

The focal length , f , is the distance between the image plane and the camera center.
The skew, s, is only used if the pixel array in the sensor is skewed and can in most
cases safely be set to zero. This gives

K =

2

4
f
x

0 c
x

0 f
y

c
y

0 0 1

3

5 , (4.3)

where we used the alternative notation f
x

and f
y

, with f
x

= ↵f
y

.
The aspect ratio, ↵ is used for non-square pixel elements. It is often safe to assume

↵ = 1. With this assumption the matrix becomes

K =

2

4
f 0 c

x

0 f c
y

0 0 1

3

5 .

Besides the focal length, the only remaining parameters are the coordinates of the
optical center (sometimes called the principal point), the image point c = [c

x

, c
y

] where

104 4.1. The Pin-hole Camera Model

X

x

C

c

f

Figure 4.1: The pin-hole camera model. The image point x is at the intersection of the
image plane and the line joining the 3D point X and the camera center C. The dashed
line is the optical axis of the camera.

the optical axis intersects the image plane. Since this is usually in the center of the
image and image coordinates are measured from the top left corner, these values are
often well approximated with half the width and height of the image. It is worth noting
that in this last case the only unknown variable is the focal length f .

Projecting 3D points

Let’s create a camera class to handle all operations we need for modeling cameras
and projections.

from scipy import linalg

class Camera(object):
""" Class for representing pin-hole cameras. """

def __init__(self,P):
""" Initialize P = K[R|t] camera model. """
self.P = P
self.K = None # calibration matrix
self.R = None # rotation
self.t = None # translation
self.c = None # camera center

4.1. The Pin-hole Camera Model 105

def project(self,X):
""" Project points in X (4*n array) and normalize coordinates. """

x = dot(self.P,X)
for i in range(3):
x[i] /= x[2]

return x

The example below shows how to project 3D points into an image view. In this
example we will use one of the Oxford multi-view datasets, the "Model House" data set,
available at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html. Download
the 3D geometry file and copy the "house.p3d" file to your working directory.

import camera

load points
points = loadtxt(’house.p3d’).T
points = vstack((points,ones(points.shape[1])))

setup camera
P = hstack((eye(3),array([[0],[0],[-10]])))
cam = camera.Camera(P)
x = cam.project(points)

plot projection
figure()
plot(x[0],x[1],’k.’)
show()

First we make the points into homogeneous coordinates and create a Camera object
with a projection matrix before projection the 3D points and plotting them. The result
looks like the middle plot in Figure 4.2.

To see how moving the camera changes the projection, try the following piece of
code that incrementally rotates the camera around a random 3D axis.

create transformation
r = 0.05*random.rand(3)
rot = camera.rotation_matrix(r)

rotate camera and project
figure()
for t in range(20):
cam.P = dot(cam.P,rot)
x = cam.project(points)
plot(x[0],x[1],’k.’)

show()

106 4.1. The Pin-hole Camera Model

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Figure 4.2: An example of projecting 3D points. (left) sample image. (middle) pro-
jected points into a view. (right) trajectory of projected points under camera rotation.
Data from the Oxford "Model House" dataset.

Here we used the helper function rotation_matrix() which creates a rotation matrix
for 3D rotations around a vector (add this to camera.py).

def rotation_matrix(a):
""" Creates a 3D rotation matrix for rotation
around the axis of the vector a. """

R = eye(4)
R[:3,:3] = linalg.expm([[0,-a[2],a[1]],[a[2],0,-a[0]],[-a[1],a[0],0]])
return R

Figure 4.2 shows one of the images from the sequence, a projection of the 3D points
and the projected 3D point tracks after the points have been rotated around a random
vector. Try this example a few times with different random rotations and you will get
a feel for how the points rotate from the projections.

Factoring the camera matrix

If we are given a camera matrix P of the form in equation (4.2), we need to be able
to recover the internal parameters K and the camera position and pose t and R. Par-
titioning the matrix is called factorization. In this case we will use a type of matrix
factorization called RQ-factorization.

Add the following method to the Camera class.

def factor(self):
""" Factorize the camera matrix into K,R,t as P = K[R|t]. """

factor first 3*3 part
K,R = linalg.rq(self.P[:,:3])

make diagonal of K positive

4.1. The Pin-hole Camera Model 107

T = diag(sign(diag(K)))
if linalg.det(T) < 0:
T[1,1] *= -1

self.K = dot(K,T)
self.R = dot(T,R) # T is its own inverse
self.t = dot(linalg.inv(self.K),self.P[:,3])

return self.K, self.R, self.t

RQ-factorization is not unique, there is a sign ambiguity in the factorization. Since
we need the rotation matrix R to have positive determinant (otherwise coordinate axis
can get flipped) we can add a transform T to change the sign when needed.

Try this on a sample camera to see that it works:

import camera

K = array([[1000,0,500],[0,1000,300],[0,0,1]])
tmp = camera.rotation_matrix([0,0,1])[:3,:3]
Rt = hstack((tmp,array([[50],[40],[30]])))
cam = camera.Camera(dot(K,Rt))

print K,Rt
print cam.factor()

You should get the same printout in the console.

Computing the camera center

Given a camera projection matrix, P , it is useful to be able to compute the camera’s
position in space. The camera center, C is a 3D point with the property PC = 0. For a
camera with P = K [R | t] this gives

K[R | t]C = KRC+Kt = 0 ,

and the camera center can be computed as

C = �RT

t .

Note that the camera center is independent of the intrinsic calibration K, as expected.
Add the following method for computing the camera center according to the for-

mula above and/or returning the camera center to the Camera class.

def center(self):
""" Compute and return the camera center. """

108 4.1. The Pin-hole Camera Model

if self.c is not None:
return self.c

else:
compute c by factoring
self.factor()
self.c = -dot(self.R.T,self.t)
return self.c

This concludes the basic functions of our Camera class. Now, let’s see how to work
with this pin-hole camera model.

4.2 Camera Calibration

Calibrating a camera means determining the internal camera parameters, in our case
the matrix K. It is possible to extend this camera model to include radial distortion
and other artifacts if your application needs precise measurements. For most appli-
cations however, the simple model in equation (4.3) is good enough. The standard
way to calibrate cameras is to take lots of pictures of a flat checkerboard pattern. For
example, the calibration tools in OpenCV use this approach, see [3] for details.

A simple calibration method

Here we will look at a simple calibration method. Since most of the parameters can be
set using basic assumptions (square straight pixels, optical center at the center of the
image) the tricky part is getting the focal length right. For this calibration method you
need a flat rectangular calibration object (a book will do), measuring tape or a ruler
and preferable a flat surface. Here’s what to do:

• Measure the sides of your rectangular calibration object. Let’s call these dX and
dY .

• Place the camera and the calibration object on a flat surface so that the camera
back and calibration object are parallel and the object is roughly in the center
of the camera’s view. You might have to raise the camera or object to get a nice
alignment.

• Measure the distance from the camera to the calibration object. Let’s call this
dZ.

• Take a picture and check that the setup is straight, meaning that the sides of the
calibration object align with the rows and columns of the image.

4.2. Camera Calibration 109

• Measure the width and height of the object in pixels. Let’s call these dx and dy.

See Figure 4.3 for an example of a setup. Now, using similar triangles (look at Fig-
ure 4.1 to convince yourself that) the following relation gives the focal lengths:

f
x

=

dx

dX
dZ , f

y

=

dy

dY
dZ .

For the particular setup in Figure 4.3, the object was measured to be 130 by 185
mm, so dX = 130 and dY = 185. The distance from camera to object was 460 mm,
so dZ = 460. You can use any unit of measurement, it doesn’t matter, only the ratios
of the measurements matter. Using ginput() to select four points in the image, the
width and height in pixels was 722 and 1040. This means that dx = 722 and dy = 1040.
Putting these values in the relationship above gives

f
x

= 2555 , f
y

= 2586 .

Now, it is important to note that this is for a particular image resolution. In this case
the image was 2592⇥ 1936 pixels. Remember that the focal length and the optical cen-
ter are measured in pixels and scale with the image resolution. If you take other image
resolutions (for example a thumbnail image) the values will change. It is convenient
to add the constants of your camera to a helper function like this

def my_calibration(sz):
row,col = sz
fx = 2555*col/2592
fy = 2586*row/1936
K = diag([fx,fy,1])
K[0,2] = 0.5*col
K[1,2] = 0.5*row
return K

This function then takes a size tuple and returns the calibration matrix. Here we
assume the optical center to be the center of the image. Go ahead and replace the focal
lengths with their mean if you like, for most consumer type cameras this is fine. Note
that the calibration is for images in landscape orientation. For portrait orientation,
you need to interchange the constants. Let’s keep this function and make use of it in
the next section.

4.3 Pose Estimation from Planes and Markers

In Chapter 3 we saw how to estimate homographies between planes. Combining this
with a calibrated camera makes it possible to compute the camera’s pose (rotation and

110 4.3. Pose Estimation from Planes and Markers

Figure 4.3: A simple camera calibration setup. (left) an image of the setup used.
(right) the image used for the calibration. Measuring the width and height of the
calibration object in the image and the physical dimensions of the setup is enough to
determine the focal length.

translation) if the image contains a planar marker object. This is marker object can be
almost any flat object.

Let’s illustrate with an example. Consider the two top images in Figure 4.4, the
following code will extract SIFT features in both images and robustly estimate a ho-
mography using RANSAC.

import homography
import camera
import sift

compute features
sift.process_image(’book_frontal.JPG’,’im0.sift’)
l0,d0 = sift.read_features_from_file(’im0.sift’)

sift.process_image(’book_perspective.JPG’,’im1.sift’)
l1,d1 = sift.read_features_from_file(’im1.sift’)

match features and estimate homography
matches = sift.match_twosided(d0,d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx,:2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2,:2].T)

model = homography.RansacModel()
H = homography.H_from_ransac(fp,tp,model)

Now we have a homography that maps points on the marker (in this case the book)

4.3. Pose Estimation from Planes and Markers 111

in one image to their corresponding locations in the other image. Let’s define our
3D coordinate system so that the marker lies in the X-Y plane (Z = 0) with the origin
somewhere on the marker.

To check our results we will need some simple 3D object placed on the marker.
Here we will use a cube and generate the cube points using the function:

def cube_points(c,wid):
""" Creates a list of points for plotting
a cube with plot. (the first 5 points are
the bottom square, some sides repeated). """

p = []
#bottom
p.append([c[0]-wid,c[1]-wid,c[2]-wid])
p.append([c[0]-wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]-wid,c[2]-wid])
p.append([c[0]-wid,c[1]-wid,c[2]-wid]) #same as first to close plot

#top
p.append([c[0]-wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]-wid,c[2]+wid]) #same as first to close plot

#vertical sides
p.append([c[0]-wid,c[1]-wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]+wid])
p.append([c[0]-wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]-wid])
p.append([c[0]+wid,c[1]+wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]+wid])
p.append([c[0]+wid,c[1]-wid,c[2]-wid])

return array(p).T

Some points are reoccurring so that plot() will generate a nice looking cube.
With a homography and a camera calibration matrix, we can now determine the

relative transformation between the two views.

camera calibration
K = my_calibration((747,1000))

3D points at plane z=0 with sides of length 0.2
box = cube_points([0,0,0.1],0.1)

project bottom square in first image

112 4.3. Pose Estimation from Planes and Markers

cam1 = camera.Camera(hstack((K,dot(K,array([[0],[0],[-1]])))))
first points are the bottom square
box_cam1 = cam1.project(homography.make_homog(box[:,:5]))

use H to transfer points to the second image
box_trans = homography.normalize(dot(H,box_cam1))

compute second camera matrix from cam1 and H
cam2 = camera.Camera(dot(H,cam1.P))
A = dot(linalg.inv(K),cam2.P[:,:3])
A = array([A[:,0],A[:,1],cross(A[:,0],A[:,1])]).T
cam2.P[:,:3] = dot(K,A)

project with the second camera
box_cam2 = cam2.project(homography.make_homog(box))

test: projecting point on z=0 should give the same
point = array([1,1,0,1]).T
print homography.normalize(dot(dot(H,cam1.P),point))
print cam2.project(point)

Here we use a version of the image with resolution 747 ⇥ 1000 and first generate the
calibration matrix for that image size. Next points for a cube at the origin is created.
The first five points generated by cube_points() correspond to the bottom, which in
this case will lie on the plane defined by Z = 0, the plane of the marker. The first
image (top left in Figure 4.4) is roughly a straight frontal view of the book and will be
used as our template image. Since the scale of the scene coordinates is arbitrary, we
create a first camera with matrix

P1 = K

2

4
1 0 0 0

0 1 0 0

0 0 1 �1

3

5 ,

which has coordinate axis aligned with the camera and placed above the marker. The
first five 3D points are projected onto the image. With the estimated homography we
can transform these to the second image. Plotting them should show the corners at
the same marker locations (see top right in Figure 4.4).

Now, composing P1 with H as a camera matrix for the second image,

P2 = HP1 ,

will transform points on the marker plane Z = 0 correctly. This means that the first
two columns and the fourth column of P2 are correct. Since we know that the first
3 ⇥ 3 block should be KR and R is a rotation matrix, we can recover the third column

4.3. Pose Estimation from Planes and Markers 113

by multiplying P2 with the inverse of the calibration matrix and replacing the third
column with the cross product of the first two.

As a sanity check we can project a point on the marker plane with the new matrix
and check that it gives the same as the same point transformed with the first camera
and the homography. You should get the same printout in your console.

Visualizing the projected points can be done like this.

im0 = array(Image.open(’book_frontal.JPG’))
im1 = array(Image.open(’book_perspective.JPG’))

2D projection of bottom square
figure()
imshow(im0)
plot(box_cam1[0,:],box_cam1[1,:],linewidth=3)

2D projection transferred with H
figure()
imshow(im1)
plot(box_trans[0,:],box_trans[1,:],linewidth=3)

3D cube
figure()
imshow(im1)
plot(box_cam2[0,:],box_cam2[1,:],linewidth=3)

show()

This should give three figures like the images in Figure 4.4. To be able to reuse these
computations for future examples, we can save the camera matrices using Pickle.

import pickle

with open(’ar_camera.pkl’,’w’) as f:
pickle.dump(K,f)
pickle.dump(dot(linalg.inv(K),cam2.P),f)

Now we have seen how to compute the camera matrix given a planar scene object.
We combined feature matching with homographies and camera calibration to produce
a simple example of placing a cube in an image. With camera pose estimation, we now
have the building blocks in place for creating simple augmented reality applications.

4.4 Augmented Reality

Augmented reality (AR) is a collective term for placing objects and information on top
of image data. The classic example is placing a 3D computer graphics model so that

114 4.4. Augmented Reality

Figure 4.4: Example of computing the projection matrix for a new view using a planar
object as marker. Matching image features to an aligned marker gives a homography
that can be used to compute the pose of the camera. (top left) template image with
a blue square. (top right) an image taken from an unknown viewpoint with the same
square transformed with the estimated homography. (bottom) a cube transformed
using the estimated camera matrix.

4.4. Augmented Reality 115

it looks like it belongs in the scene, and moves naturally with the camera motion in
the case of video. Given an image with a marker plane as in the section above, we
can compute the camera’s position and pose and use that to place computer graphics
models so that they are rendered correctly. In this last section of our camera chapter
we will show how to build a simple AR example. We will use two tools for this, PyGame
and PyOpenGL.

PyGame and PyOpenGL

PyGame is a popular package for game development that easily handles display win-
dows, input devices, events and much more. PyGame is open source and available
from http://www.pygame.org/. It is actually a Python binding for the SDL game en-
gine. For installation instructions, see the Appendix. For more details on programming
with PyGame, see for example [21].

PyOpenGL is the Python binding to the OpenGL graphics programming interface.
OpenGL comes pre-installed on almost all systems and is a crucial part for graph-
ics performance. OpenGL is cross platform and works the same across operating
systems. Take a look at http://www.opengl.org/ for more information on OpenGL.
The getting started page (http://www.opengl.org/wiki/Getting_started) has re-
sources for beginners. PyOpenGL is open source and easy to install, see the Ap-
pendix for details. More information can be found on the project website http:
//pyopengl.sourceforge.net/.

There is no way we can cover any significant portion of OpenGL programming,
we will instead just show the important parts, for example how to use camera ma-
trices in OpenGL and setting up a basic 3D model. Some good examples and de-
mos are available in the PyOpenGL-Demo package (http://pypi.python.org/pypi/
PyOpenGL-Demo). This is a good place to start if you are new to PyOpenGL.

We want to place a 3D model in a scene using OpenGL. To use PyGame and Py-
OpenGL for this application we need to import the following at the top of our scripts:

from OpenGL.GL import *
from OpenGL.GLU import *
import pygame, pygame.image
from pygame.locals import *

As you can see we need two main parts from OpenGL. The GL part contains all func-
tions stating with "gl", which you will see are most of the ones we need. The GLU
part is the OpenGL Utility library and contains some higher-level functionality. We will
mainly use it to set up the camera projection. The pygame part sets up the window
and event controls, and pygame.image is used for loading image and creating OpenGL
textures. The pygame.locals is needed for setting up the display area for OpenGL.

116 4.4. Augmented Reality

http://www.pygame.org/
http://www.opengl.org/
http://www.opengl.org/wiki/Getting_started
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pypi.python.org/pypi/PyOpenGL-Demo
http://pypi.python.org/pypi/PyOpenGL-Demo

The two main components of setting up an OpenGL scene are the projection and
model view matrices. Let’s get started and see how to create these matrices from our
pin-hole cameras.

From camera matrix to OpenGL format

OpenGL uses 4 ⇥ 4 matrices to represent transforms (both 3D transforms and projec-
tions). This is only slightly different from our use of 3 ⇥ 4 camera matrices. However,
the camera-scene transformations are separated in two matrices, the GL_PROJECTION
matrix and the GL_MODELVIEW matrix. GL_PROJECTION handles the image forma-
tion properties and is the equivalent of our internal calibration matrix K. GL_MODELVIEW
handles the 3D transformation of the relation between the objects and the camera.
This corresponds roughly to the R and t part of our camera matrix. One differ-
ence is that the coordinate system is assumed to be centered at the camera so the
GL_MODELVIEW matrix actually contains the transformation that places the objects
in front of the camera. There are many peculiarities with working in OpenGL, we will
comment on them as they are encountered in the examples below.

Given that we have a camera calibrated so that the calibration matrix K is known,
the following function translates the camera properties to an OpenGL projection ma-
trix.

def set_projection_from_camera(K):
""" Set view from a camera calibration matrix. """

glMatrixMode(GL_PROJECTION)
glLoadIdentity()

fx = K[0,0]
fy = K[1,1]
fovy = 2*arctan(0.5*height/fy)*180/pi
aspect = (width*fy)/(height*fx)

define the near and far clipping planes
near = 0.1
far = 100.0

set perspective
gluPerspective(fovy,aspect,near,far)
glViewport(0,0,width,height)

We assume the calibration to be of the simpler form in (4.3) with the optical cen-
ter at the image center. The first function glMatrixMode() sets the working ma-

4.4. Augmented Reality 117

trix to GL_PROJECTION and subsequent commands will modify this matrix1. Then
glLoadIdentity() sets the matrix to the identity matrix, basically reseting any prior
changes. We then calculate the vertical field of view in degrees with the help of the
image height and the camera’s focal length as well as the aspect ratio. An OpenGL
projection also has a near and far clipping plane to limit the depth range of what is ren-
dered. We just set the near depth to be small enough to contain the nearest object and
the far depth to some large number. We use the GLU utility function gluPerspective()

to set the projection matrix and define the whole image to be the view port (essen-
tially what is to be shown). There is also an option to load a full projection matrix
with glLoadMatrixf() similar to the model view function below. This is useful when
the simple version of the calibration matrix is not good enough.

The model view matrix should encode the relative rotation and translation that
brings the object in front of the camera (as if the camera was at the origin). It is a 4⇥4

matrix that typically looks like this

R t

0 1

�
,

where R is a rotation matrix with columns equal to the direction of the three coordinate
axis and t is a translation vector. When creating a model view matrix the rotation part
will need to hold all rotations (object and coordinate system) by multiplying together
the individual components.

The following function shows how to take a 3 ⇥ 4 pin-hole camera matrix with the
calibration removed (multiply P with K�1) and create a model view.

def set_modelview_from_camera(Rt):
""" Set the model view matrix from camera pose. """

glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

rotate teapot 90 deg around x-axis so that z-axis is up
Rx = array([[1,0,0],[0,0,-1],[0,1,0]])

set rotation to best approximation
R = Rt[:,:3]
U,S,V = linalg.svd(R)
R = dot(U,V)
R[0,:] = -R[0,:] # change sign of x-axis

set translation

1This is an odd way to handle things, but there are only two matrices to switch between,
GL_PROJECTION and GL_MODELVIEW, so it is manageable.

118 4.4. Augmented Reality

t = Rt[:,3]

setup 4*4 model view matrix
M = eye(4)
M[:3,:3] = dot(R,Rx)
M[:3,3] = t

transpose and flatten to get column order
M = M.T
m = M.flatten()

replace model view with the new matrix
glLoadMatrixf(m)

First we switch to work on the GL_MODELVIEW matrix and reset it. Then we create
a 90 degree rotation matrix since the object we want to place needs to be rotated
(you will see below). Then we make sure that the rotation part of the camera matrix
is indeed a rotation matrix in case there are errors or noise when we estimated the
camera matrix. This is done with SVD and the best rotation matrix approximation is
given by R = UV T . The OpenGL coordinate system is a little different so we flip the
x-axis around. Then we set the model view matrix M by multiplying the rotations.
The function glLoadMatrixf() sets the model view matrix and takes an array of the 16
values of the matrix taken column-wise. Transposing and then flattening accomplishes
this.

Placing virtual objects in the image

The first thing we need to do is to add the image (the one we want to place virtual
objects in) as a background. In OpenGL this is done by creating a quadrilateral, a
quad , that fills the whole view. The easiest way to do this is to draw the quad with
the projection and model view matrices reset so that the coordinates go from -1 to 1
in each dimension.

This function loads an image, converts it to an OpenGL texture and places that
texture on the quad.

def draw_background(imname):
""" Draw background image using a quad. """

load background image (should be .bmp) to OpenGL texture
bg_image = pygame.image.load(imname).convert()
bg_data = pygame.image.tostring(bg_image,"RGBX",1)

glMatrixMode(GL_MODELVIEW)
glLoadIdentity()

4.4. Augmented Reality 119

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

bind the texture
glEnable(GL_TEXTURE_2D)
glBindTexture(GL_TEXTURE_2D,glGenTextures(1))
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,GL_UNSIGNED_BYTE,bg_data)
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST)
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST)

create quad to fill the whole window
glBegin(GL_QUADS)
glTexCoord2f(0.0,0.0); glVertex3f(-1.0,-1.0,-1.0)
glTexCoord2f(1.0,0.0); glVertex3f(1.0,-1.0,-1.0)
glTexCoord2f(1.0,1.0); glVertex3f(1.0, 1.0,-1.0)
glTexCoord2f(0.0,1.0); glVertex3f(-1.0, 1.0,-1.0)
glEnd()

clear the texture
glDeleteTextures(1)

This function first uses some PyGame functions to load an image and serialize it to a
raw string representation that can be used by PyOpenGL. Then we reset the model
view and clear the color and depth buffer. Next we bind the texture so that we can use
it for the quad and specify interpolation. The quad is defined with corners at -1 and 1
in both dimensions. Note that the coordinates in the texture image goes from 0 to 1.
Finally, we clear the texture so it doesn’t interfere with what we want to draw later.

Now we are ready to place objects in the scene. We will use the "hello world"
computer graphics example, the Utah teapot http://en.wikipedia.org/wiki/Utah_

teapot. This teapot has a rich history and is available as one of the standard shapes
in GLUT:

from OpenGL.GLUT import *
glutSolidTeapot(size)

This generates a solid teapot model of relative size size.
The following function will set up the color and properties to make a pretty red

teapot.

def draw_teapot(size):
""" Draw a red teapot at the origin. """
glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)
glEnable(GL_DEPTH_TEST)
glClear(GL_DEPTH_BUFFER_BIT)

draw red teapot

120 4.4. Augmented Reality

http://en.wikipedia.org/wiki/Utah_teapot
http://en.wikipedia.org/wiki/Utah_teapot

glMaterialfv(GL_FRONT,GL_AMBIENT,[0,0,0,0])
glMaterialfv(GL_FRONT,GL_DIFFUSE,[0.5,0.0,0.0,0.0])
glMaterialfv(GL_FRONT,GL_SPECULAR,[0.7,0.6,0.6,0.0])
glMaterialf(GL_FRONT,GL_SHININESS,0.25*128.0)
glutSolidTeapot(size)

The first two lines enable lighting and a light. Lights are numbered as GL_LIGHT0,
GL_LIGHT1, etc. We will only use one light in this example. The glEnable() function
is used to turn on OpenGL features. These are defined with uppercase constants.
Turning off a feature is done with the corresponding function glDisable(). Next depth
testing is turned on so that objects are rendered according to their depth (so that far
away objects are not drawn in front of near objects) and the depth buffer is cleared.
Next the material properties of the object, such as the diffuse and specular colors, are
specified. The last line adds a solid Utah teapot with the specified material properties.

Tying it all together

The full script for generating an image like the one in Figure 4.5 looks like this (as-
suming that you also have the functions introduced above in the same file).

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import pygame, pygame.image
from pygame.locals import *
import pickle

width,height = 1000,747

def setup():
""" Setup window and pygame environment. """
pygame.init()
pygame.display.set_mode((width,height),OPENGL | DOUBLEBUF)
pygame.display.set_caption(’OpenGL AR demo’)

load camera data
with open(’ar_camera.pkl’,’r’) as f:
K = pickle.load(f)
Rt = pickle.load(f)

setup()
draw_background(’book_perspective.bmp’)
set_projection_from_camera(K)
set_modelview_from_camera(Rt)
draw_teapot(0.02)

4.4. Augmented Reality 121

while True:
event = pygame.event.poll()
if event.type in (QUIT,KEYDOWN):
break

pygame.display.flip()

First this script loads the camera calibration matrix and the rotation and translation
part of the camera matrix using Pickle. This assumes that you saved them as described
on page 114. The setup() function initializes PyGame, sets the window to the size of
the image and makes the drawing area a double buffer OpenGL window. Next the
background image is loaded and placed to fit the window. The camera and model view
matrices are set and finally the teapot is drawn at the correct position.

Events in PyGame are handled using infinite loops with regular polling for any
changes. These can be keyboard, mouse or other events. In this case we check if
the application was quit or if a key was pressed and exit the loop. The command
pygame.display.flip() draws the objects on the screen.

The result should look like Figure 4.5. As you can see, the orientation is correct
(the teapot is aligned with the sides of the cube in Figure 4.4). To check that the
placement is correct, you can try to make the teapot really small by passing a smaller
value for the size variable. The teapot should be placed close to the [0, 0, 0] corner of
the cube in Figure 4.4. An example is shown in Figure 4.5.

Loading models

Before we end this chapter, we will touch upon one last detail; loading 3D models and
displaying them. The PyGame cookbook has a script for loading models in .obj format
available at http://www.pygame.org/wiki/OBJFileLoader. You can learn more about
the .obj format and the corresponding material file format at http://en.wikipedia.
org/wiki/Wavefront_.obj_file.

Let’s see how to use that with a basic example. We will use a freely available
toy plane model from http://www.oyonale.com/modeles.php2. Download the .obj
version and save it as toyplane.obj. You can of course replace this model with any
model of your choice, the code below will be the same.

Assuming that you downloaded the file as objloader.py, add the following function
to the file you used for the teapot example above.

def load_and_draw_model(filename):
""" Loads a model from an .obj file using objloader.py.
Assumes there is a .mtl material file with the same name. """

glEnable(GL_LIGHTING)

2Models courtesy of Gilles Tran (Creative Commons License By Attribution).

122 4.4. Augmented Reality

http://www.pygame.org/wiki/OBJFileLoader
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.oyonale.com/modeles.php

Figure 4.5: Augmented reality. Placing a computer graphics model an a book in a
scene using camera parameters computed from feature matches. (top) the Utah teapot
rendered in place aligned with the coordinate axis. (bottom) sanity check to see the
position of the origin.

4.4. Augmented Reality 123

glEnable(GL_LIGHT0)
glEnable(GL_DEPTH_TEST)
glClear(GL_DEPTH_BUFFER_BIT)

set model color
glMaterialfv(GL_FRONT,GL_AMBIENT,[0,0,0,0])
glMaterialfv(GL_FRONT,GL_DIFFUSE,[0.5,0.75,1.0,0.0])
glMaterialf(GL_FRONT,GL_SHININESS,0.25*128.0)

load from a file
import objloader
obj = objloader.OBJ(filename,swapyz=True)
glCallList(obj.gl_list)

Same as before, we set the lighting and the color properties of the model. Next we
load a model file into an OBJ object and execute the OpenGL calls from the file.

You can set the texture and material properties in a corresponding .mtl file. The
objloader module actually requires a material file. Rather than modifying the loading
script, we take the pragmatic approach of just creating a tiny material file. In this case
we’ll just specify the color.

Create a file toyplane.mtl with the following lines.

newmtl lightblue
Kd 0.5 0.75 1.0
illum 1

This sets the diffuse color of the object to a light grayish blue. Now, make sure to
replace the "usemtl" tag in your .obj file to

usemtl lightblue

Adding textures we leave to the exercises. Replacing the call to draw_teapot() in the
example above with

load_and_draw_model(’toyplane.obj’)

should generate a window like the one shown in Figure 4.6.

This is as deep as we will go into augmented reality and OpenGL in this book. With
the recipe for calibrating cameras, computing camera pose, translating the cameras
into OpenGL format and rendering models in the scene, the groundwork is laid for you
to continue exploring augmented reality. In the next chapter we will continue with the
camera model and compute 3D structure and camera pose without the use of markers.

124 4.4. Augmented Reality

Figure 4.6: Loading a 3D model from an .obj file and placing it on a book in a scene
using camera parameters computed from feature matches.

Exercises

1. Modify the example code for the motion in Figure 4.2 to transform the points
instead of the camera. You should get the same plot. Experiment with different
transformations and plot the results.

2. Some of the Oxford multi-view datasets have camera matrices given. Compute
the camera positions for one of the sets an plot the camera path. Does it match
with what you are seeing in the images?

3. Take some images of a scene with a planar marker or object. Match features to a
full frontal image to compute the pose of each image’s camera location. Plot the
camera trajectory and the plane of the marker. Add the feature points if you like.

4. In our augmented reality example we assumed the object to be placed at the
origin and applied only the cameras position to the model view matrix. Modify
the example to place several objects at different locations by adding the object
transformation to the matrix. For example, place a grid of teapots on the marker.

5. Take a look at the online documentation for .obj model files and see how to use
textured models. Find a model (or create your own) and add it to the scene.

4.4. Augmented Reality 125

Chapter 5

Multiple View Geometry

This chapter will show you how to handle multiple views and how to use the geometric
relationships between them to recover camera positions and 3D structure. With im-
ages taken at different view points it is possible to compute 3D scene points as well as
camera locations from feature matches. We introduce the necessary tools and show
a complete 3D reconstruction example. The last part of the chapter shows how to
compute dense depth reconstructions from stereo images.

5.1 Epipolar Geometry

Multiple view geometry is the field studying the relationship between cameras and
features when there are correspondences between many images that are taken from
varying viewpoints. The image features are usually interest points and we will focus
on that case throughout this chapter. The most important constellation is two-view
geometry.

With two views of a scene and corresponding points in these views there are ge-
ometric constraints on the image points as a result of the relative orientation of the
cameras, the properties of the cameras, and the position of the 3D points. These ge-
ometric relationships are described by what is called epipolar geometry. This section
will give a very short description of the basic components we need. For more details
on the subject see [13].

Without any prior knowledge of the cameras, there is an inherent ambiguity in that
a 3D point, X, transformed with an arbitrary (4⇥4) homography H as HX will have the
same image point in a camera PH�1 as the original point in the camera P . Expressed
with the camera equation, this is

�x = PX = PH�1HX =

ˆP ˆ

X .

127

Because of this ambiguity, when analyzing two view geometry we can always transform
the cameras with a homography to simplify matters. Often this homography is just a
rigid transformation to change the coordinate system. A good choice is to set the
origin and coordinate axis to align with the first camera so that

P1 = K1[I | 0] and P2 = K2[R | t] .

Here we use the same notation as in Chapter 4; K1 and K2 are the calibration matrices,
R is the rotation of the second camera, and t is the translation of the second camera.
Using these camera matrices one can derive a condition for the projection of a point X
to image points x1 and x2 (with P1 and P2 respectively). This condition is what makes
it possible to recover the camera matrices from corresponding image points.

The following equation must be satisfied

x

T

2 F x1 = 0 , (5.1)

where
F = K�T

2 S
t

R K�1
1

and the matrix S
t

is the skew symmetric matrix

S
t

=

2

4
0 �t3 t2
t3 0 �t1

�t2 t1 0

3

5 . (5.2)

Equation (5.1) is called the epipolar constraint . The matrix F in the epipolar constraint
is called the fundamental matrix and as you can see, it is expressed in components of
the two camera matrices (their relative rotation R and translation t). The fundamental
matrix has rank 2 and det(F) = 0. This will be used in algorithms for estimating F .
The fundamental matrix makes it possible to compute the camera matrices and then a
3D reconstruction.

The equations above mean that the camera matrices can be recovered from F ,
which in turn can be computed from point correspondences as we will see later. With-
out knowing the internal calibration (K1 and K2) the camera matrices are only recover-
able up to a projective transformation. With known calibration, the reconstruction will
be metric. A metric reconstruction is a 3D reconstruction that correctly represents
distances and angles1.

There is one final piece of geometry needed before we can proceed to actually
using this theory on some image data. Given a point in one of the images, for example
x2 in the second view, equation (5.1) defines a line in the first image since

x

T

2 F x1 = l

T

1 x1 = 0 .

1The absolute scale of the reconstruction cannot be recovered but that is rarely a problem.

128 5.1. Epipolar Geometry

C1 C2
e1 e2

x2
x1

l1 l2

X

Figure 5.1: An illustration of epipolar geometry. A 3D point X is projected to x1 and
x2, in the two views respectively. The baseline between the two camera centers, C1

and C2, intersect the image planes in the epipoles, e1 and e2. The lines l1 and l2 are
called epipolar lines.

The equation l

T

1 x1 = 0 determines a line with all points x1 in the first image satisfying
the equation belonging to the line. This line is called an epipolar line corresponding
to the point x2. This means that a corresponding point to x2 must lie on this line. The
fundamental matrix can therefore help the search for correspondences by restricting
the search to this line.

The epipolar lines all meet in a point, e, called the epipole. The epipole is actually
the image point corresponding to the projection of the other camera center. This point
can be outside the actual image, depending on the relative orientation of the cameras.
Since the epipole lies on all epipolar lines it must satisfy Fe1 = 0. It can therefore
be computed as the null vector of F as we will see later. The other epipole can be
computed from the relation e

T

2 F = 0.

A sample data set

In the coming sections we will need a data set with image points, 3D points and camera
matrices to experiment with and illustrate the algorithms. We will use one of the sets
from the Oxford multi-view datasets available at http://www.robots.ox.ac.uk/~vgg/
data/data-mview.html. Download the zipped file for the Merton1 data. The following
script will load all the data for you.

import camera

load some images
im1 = array(Image.open(’images/001.jpg’))
im2 = array(Image.open(’images/002.jpg’))

5.1. Epipolar Geometry 129

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

load 2D points for each view to a list
points2D = [loadtxt(’2D/00’+str(i+1)+’.corners’).T for i in range(3)]

load 3D points
points3D = loadtxt(’3D/p3d’).T

load correspondences
corr = genfromtxt(’2D/nview-corners’,dtype=’int’,missing=’*’)

load cameras to a list of Camera objects
P = [camera.Camera(loadtxt(’2D/00’+str(i+1)+’.P’)) for i in range(3)]

This will load the first two images (out of three), all the image feature points2 for the
three views, the reconstructed 3D points corresponding to the image points, which
points correspond across views and finally the camera matrices (where we used the
Camera class from the previous chapter). Here we used loadtxt() to read the text files
to NumPy arrays. The correspondences contain missing data since not all points are
visible or successfully matched in all views. The correspondences need to be loaded
with this taken into account. The function genfromtxt() solves this by replacing the
missing values (denoted with ’*’ in this file) with -1.

A convenient way of running this script and getting all the data is to save the code
above in a file, for example load_vggdata.py, and use the command execfile() like
this

execfile(’load_vggdata.py’)

at the beginning of your scripts or experiments.
Let’s see what this data looks like. Try to project the 3D points into one view and

compare the results with the observed image points.

make 3D points homogeneous and project
X = vstack((points3D,ones(points3D.shape[1])))
x = P[0].project(X)

plotting the points in view 1
figure()
imshow(im1)
plot(points2D[0][0],points2D[0][1],’*’)
axis(’off’)

figure()
imshow(im1)
plot(x[0],x[1],’r.’)
axis(’off’)

2Actually Harris corner points, see Section 2.1.

130 5.1. Epipolar Geometry

Figure 5.2: The Merton1 data set from the Oxford multi-view datasets. (left) view 1
with image points shown. (right) view 1 with projected 3D points.

show()

This creates a plot with the first view and image points in that view, for comparison
the projected points are shown in a separate figure. Figure 5.2 shows the resulting
plots. If you look closely, you will see that the second plot with the projected 3D points
contains more points than the first. These are image feature points reconstructed from
view 2 and 3 but not detected in view 1.

Plotting 3D data with Matplotlib

To visualize our 3D reconstructions, we need to be able to plot in 3D. The mplot3d

toolkit in Matplotlib provides 3D plotting of points, lines, contours, surfaces and most
other basic plotting components as well as 3D rotation and scaling from the controls
of the figure window.

Making a plot in 3D is done by adding the projection="3d" keyword to the axes
object like this:

from mpl_toolkits.mplot3d import axes3d

fig = figure()
ax = fig.gca(projection="3d")

generate 3D sample data
X,Y,Z = axes3d.get_test_data(0.25)

plot the points in 3D
ax.plot(X.flatten(),Y.flatten(),Z.flatten(),’o’)

5.1. Epipolar Geometry 131

Figure 5.3: The 3D points of the Merton1 data set from the Oxford multi-view datasets
shown using Matplotlib. (left) view from above and to the side. (middle) view from
the top showing the building walls and points on the roof. (right) side view showing
the profile of one of the walls and a frontal view of points on the other wall.

show()

The function get_test_data() generates sample points on a regular x, y grid with the
parameter determining the spacing. Flattening these grids gives three lists of points
that can be sent to plot(). This should plot 3D points on what looks like a surface. Try
it out and see for yourself.

Now we can plot the Merton sample data to see what the 3D points look like.

plotting 3D points
from mpl_toolkits.mplot3d import axes3d
fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(points3D[0],points3D[1],points3D[2],’k.’)

Figure 5.3 shows the 3D points from three different views. The figure window and
controls look like the standard plot windows for images and 2D data with an additional
3D rotation tool.

Computing F - The eight point algorithm

The eight point algorithm is an algorithm for computing the fundamental matrix from
point correspondences. Here’s a brief description, the details can be found in [14] and
[13].

132 5.1. Epipolar Geometry

The epipolar constraint (5.1) can be written as a linear system like

2

6664

x1
2x

1
1 x1

2y
1
1 x1

2w
1
1 . . . w1

2w
1
1

x2
2x

2
1 x2

2y
2
1 x2

2w
2
1 . . . w2

2w
2
1

...
...

...
...

...
xn2x

n

1 xn2y
n

1 xn2w
n

1 . . . wn

2w
n

1

3

7775

2

666664

F11

F12

F13
...

F33

3

777775
= Af = 0 ,

where f contains the elements of F , xi

1 = [xi1, y
i

1, w
i

1] and x

i

2 = [xi2, y
i

2, w
i

2] is a correspon-
dence pair and there are n point correspondences in total. The fundamental matrix
has nine elements but since the scale is arbitrary, only eight equations are needed.
Eight point correspondences are therefore needed to compute F , hence the name of
the algorithm.

Create a file sfm.py, and add the following function for the eight point algorithm
that minimizes ||Af ||.

def compute_fundamental(x1,x2):
""" Computes the fundamental matrix from corresponding points
(x1,x2 3*n arrays) using the normalized 8 point algorithm.
each row is constructed as
[x’*x, x’*y, x’, y’*x, y’*y, y’, x, y, 1] """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

build matrix for equations
A = zeros((n,9))
for i in range(n):
A[i] = [x1[0,i]*x2[0,i], x1[0,i]*x2[1,i], x1[0,i]*x2[2,i],

x1[1,i]*x2[0,i], x1[1,i]*x2[1,i], x1[1,i]*x2[2,i],
x1[2,i]*x2[0,i], x1[2,i]*x2[1,i], x1[2,i]*x2[2,i]]

compute linear least square solution
U,S,V = linalg.svd(A)
F = V[-1].reshape(3,3)

constrain F
make rank 2 by zeroing out last singular value
U,S,V = linalg.svd(F)
S[2] = 0
F = dot(U,dot(diag(S),V))

return F

5.1. Epipolar Geometry 133

As usual we compute the least squares solution using SVD. Since the resulting solution
might not have rank 2 as a proper fundamental matrix should, we replace the result
with the closest rank 2 approximation by zeroing out the last singular value. This is
a standard trick and a useful one to know. The function ignores the important step
of normalizing the image coordinates. Ignoring normalization could give numerical
problems. Let’s leave that for later.

The epipole and epipolar lines

As mentioned at the start of this section, the epipole satisfies Fe1 = 0 and can be
computed from the null space of F. Add this function to sfm.py.

def compute_epipole(F):
""" Computes the (right) epipole from a
fundamental matrix F.
(Use with F.T for left epipole.) """

return null space of F (Fx=0)
U,S,V = linalg.svd(F)
e = V[-1]
return e/e[2]

If you want the epipole corresponding to the left null vector (corresponding to the
epipole in the other image), just transpose F before passing it as input.

We can try these two functions on the first two views of our sample data set like
this:

import sfm

index for points in first two views
ndx = (corr[:,0]>=0) & (corr[:,1]>=0)

get coordinates and make homogeneous
x1 = points2D[0][:,corr[ndx,0]]
x1 = vstack((x1,ones(x1.shape[1])))
x2 = points2D[1][:,corr[ndx,1]]
x2 = vstack((x2,ones(x2.shape[1])))

compute F
F = sfm.compute_fundamental(x1,x2)

compute the epipole
e = sfm.compute_epipole(F)

plotting
figure()

134 5.1. Epipolar Geometry

imshow(im1)
plot each line individually, this gives nice colors
for i in range(5):
sfm.plot_epipolar_line(im1,F,x2[:,i],e,False)

axis(’off’)

figure()
imshow(im2)
plot each point individually, this gives same colors as the lines
for i in range(5):
plot(x2[0,i],x2[1,i],’o’)

axis(’off’)

show()

First the points that are in correspondence between the two images are selected and
made into homogeneous coordinates. Here we just read them from a text file, in reality
these would be the result of extracting features and matching them like we did in
Chapter 2. The missing values in the correspondence list corr are -1 so picking indices
greater or equal to zero gives the points visible in each view. The two conditions are
combined with the array operator &.

Lastly, the first five of the epipolar lines are shown in the first view and the corre-
sponding matching points in view 2. Here we used the helper plot function.

def plot_epipolar_line(im,F,x,epipole=None,show_epipole=True):
""" Plot the epipole and epipolar line F*x=0
in an image. F is the fundamental matrix
and x a point in the other image."""

m,n = im.shape[:2]
line = dot(F,x)

epipolar line parameter and values
t = linspace(0,n,100)
lt = array([(line[2]+line[0]*tt)/(-line[1]) for tt in t])

take only line points inside the image
ndx = (lt>=0) & (lt<m)
plot(t[ndx],lt[ndx],linewidth=2)

if show_epipole:
if epipole is None:
epipole = compute_epipole(F)

plot(epipole[0]/epipole[2],epipole[1]/epipole[2],’r*’)

This function parameterizes the line with the range of the x axis and removes parts of
lines above and below the image border. If the last parameter show_epipole is true,

5.1. Epipolar Geometry 135

Figure 5.4: Epipolar lines in view 1 shown for five points in view 2 of the Merton1
data. The bottom row shows a close up of the area around the points. The lines can be
seen to converge on a point outside the image to the left. The lines show where point
correspondences can be found in the other image (the color coding matches between
lines and points).

the epipole will be plotted as well (and computed if not passed as input). The plots are
shown in Figure 5.4. The color coding matches between the plots so you can see that
the corresponding point in one image lies somewhere along the same-color line as a
point in the other image.

5.2 Computing with Cameras and 3D Structure

The previous section covered relationships between views and how to compute the
fundamental matrix and epipolar lines. Here we briefly explain the tools we need for
computing with cameras and 3D structure.

Triangulation

Given known camera matrices, a set of point correspondences can be triangulated to
recover the 3D positions of these points. The basic algorithm is fairly simple.

136 5.2. Computing with Cameras and 3D Structure

For two views with camera matrices P1 and P2, each with a projection x1 and x2

of the same 3D point X (all in homogeneous coordinates), the camera equation (4.1)
gives the following relation

P1 �x1 0

P2 0 �x2

� 2

4
X

�1

�2

3

5
= 0 .

There might not be an exact solution to these equations due to image noise, errors in
the camera matrices or other sources of errors. Using SVD, we can get a least squares
estimate of the 3D point.

Add the following function that computes the least squares triangulation of a point
pair to sfm.py.

def triangulate_point(x1,x2,P1,P2):
""" Point pair triangulation from
least squares solution. """

M = zeros((6,6))
M[:3,:4] = P1
M[3:,:4] = P2
M[:3,4] = -x1
M[3:,5] = -x2

U,S,V = linalg.svd(M)
X = V[-1,:4]

return X / X[3]

The first four values in the last eigenvector are the 3D coordinates in homogeneous
coordinates. To triangulate many points, we can add the following convenience func-
tion.

def triangulate(x1,x2,P1,P2):
""" Two-view triangulation of points in
x1,x2 (3*n homog. coordinates). """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

X = [triangulate_point(x1[:,i],x2[:,i],P1,P2) for i in range(n)]
return array(X).T

This function takes two arrays of points and returns an array of 3D coordinates.
Try the triangulation on the Merton1 data like this.

5.2. Computing with Cameras and 3D Structure 137

import sfm

index for points in first two views
ndx = (corr[:,0]>=0) & (corr[:,1]>=0)

get coordinates and make homogeneous
x1 = points2D[0][:,corr[ndx,0]]
x1 = vstack((x1,ones(x1.shape[1])))
x2 = points2D[1][:,corr[ndx,1]]
x2 = vstack((x2,ones(x2.shape[1])))

Xtrue = points3D[:,ndx]
Xtrue = vstack((Xtrue,ones(Xtrue.shape[1])))

check first 3 points
Xest = sfm.triangulate(x1,x2,P[0].P,P[1].P)
print Xest[:,:3]
print Xtrue[:,:3]

plotting
from mpl_toolkits.mplot3d import axes3d
fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(Xest[0],Xest[1],Xest[2],’ko’)
ax.plot(Xtrue[0],Xtrue[1],Xtrue[2],’r.’)
axis(’equal’)

show()

This will triangulate the points in correspondence from the first two views and print
out the coordinates of the first three points to the console before plotting the recovered
3D points next to the true values. The printout looks like this:

[[1.03743725 1.56125273 1.40720017]
[-0.57574987 -0.55504127 -0.46523952]
[3.44173797 3.44249282 7.53176488]
[1. 1. 1.]]
[[1.0378863 1.5606923 1.4071907]
[-0.54627892 -0.5211711 -0.46371818]
[3.4601538 3.4636809 7.5323397]
[1. 1. 1.]]

The estimated points are close enough. The plot looks like Figure 5.5, as you can see
the points match fairly well.

138 5.2. Computing with Cameras and 3D Structure

Figure 5.5: Triangulated points using camera matrices and point correspondences.
The estimated points are shown with black circles and the true points with red dots.
(left) view from above and to the side. (right) close up of the points from one of the
building walls.

Computing the camera matrix from 3D points

With known 3D points and their image projections, the camera matrix, P , can be
computed using a direct linear transform approach. This is essentially the inverse
problem to triangulation and is sometimes called camera resectioning. This way to
recover the camera matrix is again a least squares approach.

From the camera equation (4.1), each visible 3D point X
i

(in homogeneous coordi-
nates) is projected to an image point x

i

= [x
i

, y
i

, 1] as �
i

x

i

= PX

i

and the correspond-
ing points satisfy the relation

2

66666666664

X

T

1 0 0 �x1 0 0 . . .

0 X

T

1 0 �y1 0 0 . . .

0 0 X

T

1 �1 0 0 . . .

X

T

2 0 0 0 �x2 0 . . .

0 X

T

2 0 0 �y2 0 . . .

0 0 X

T

2 0 �1 0 . . .
...

...
...

...
...

...

3

77777777775

2

666666664

p

T

1

p

T

2

p

T

3

�1

�2
...

3

777777775

= 0 ,

where p1, p2 and p3 are the three rows of P . This can be written more compactly as

Mv = 0 .

The estimation of the camera matrix is then obtained using SVD. With the matrices
described above, the code is straight-forward. Add the function below to sfm.py.

5.2. Computing with Cameras and 3D Structure 139

def compute_P(x,X):
""" Compute camera matrix from pairs of
2D-3D correspondences (in homog. coordinates). """

n = x.shape[1]
if X.shape[1] != n:
raise ValueError("Number of points don’t match.")

create matrix for DLT solution
M = zeros((3*n,12+n))
for i in range(n):
M[3*i,0:4] = X[:,i]
M[3*i+1,4:8] = X[:,i]
M[3*i+2,8:12] = X[:,i]
M[3*i:3*i+3,i+12] = -x[:,i]

U,S,V = linalg.svd(M)

return V[-1,:12].reshape((3,4))

This function takes the image points and 3D points and builds up the matrix M above.
The first 12 values of the last eigenvector are the elements of the camera matrix and
are returned after a reshaping operation.

Again, let’s try this on our sample data set. The following script will pick out
the points that are visible in the first view (using the missing values from the corre-
spondence list), make them into homogeneous coordinates and estimate the camera
matrix.

import sfm, camera

corr = corr[:,0] # view 1
ndx3D = where(corr>=0)[0] # missing values are -1
ndx2D = corr[ndx3D]

select visible points and make homogeneous
x = points2D[0][:,ndx2D] # view 1
x = vstack((x,ones(x.shape[1])))
X = points3D[:,ndx3D]
X = vstack((X,ones(X.shape[1])))

estimate P
Pest = camera.Camera(sfm.compute_P(x,X))

compare!
print Pest.P / Pest.P[2,3]
print P[0].P / P[0].P[2,3]

140 5.2. Computing with Cameras and 3D Structure

Figure 5.6: Projected points in view 1 computed using an estimated camera matrix.

xest = Pest.project(X)

plotting
figure()
imshow(im1)
plot(x[0],x[1],’b.’)
plot(xest[0],xest[1],’r.’)
axis(’off’)

show()

To check the camera matrices they are printed to the console in normalized form (by
dividing with the last element). The printout looks like this.

[[1.06520794e+00 -5.23431275e+01 2.06902749e+01 5.08729305e+02]
[-5.05773115e+01 -1.33243276e+01 -1.47388537e+01 4.79178838e+02]
[3.05121915e-03 -3.19264684e-02 -3.43703738e-02 1.00000000e+00]]
[[1.06774679e+00 -5.23448212e+01 2.06926980e+01 5.08764487e+02]
[-5.05834364e+01 -1.33201976e+01 -1.47406641e+01 4.79228998e+02]
[3.06792659e-03 -3.19008054e-02 -3.43665129e-02 1.00000000e+00]]

The top is the estimated camera matrix and below the one computed by the creators
of the data set. As you can see, they are almost identical. Lastly, the 3D points are
projected using the estimated camera and plotted. The result looks like Figure 5.6
with the true points in blue and the estimated camera projection in red.

Computing the camera matrix from a fundamental matrix

In a two view scenario, the camera matrices can be recovered from the fundamental
matrix. Assuming the first camera matrix is normalized to P1 = [I | 0], the problem is

5.2. Computing with Cameras and 3D Structure 141

to find the second camera matrix P2. There are two different cases, the uncalibrated
case and the calibrated case.

The uncalibrated case - projective reconstruction Without any knowledge of the
camera’s intrinsic parameters the camera matrix can only be retrieved up to a pro-
jective transformation. This means that if the camera pair is used to reconstruct 3D
points, the reconstruction is only accurate up to a projective transformation (you can
get any solution out of the whole range of projective scene distortions). This means
that angles and distances are not respected.

This means that in the uncalibrated case the second camera matrix can be chosen
up to a (3 ⇥ 3) projective transformation. A simple choice is

P2 = [S
e

F | e] ,

where e is the left epipole, eTF = 0 and S
e

a skew matrix as in equation (5.2). Re-
member, a triangulation with this matrix will most likely give distortions, for example
in the form of skewed reconstructions.

Here is what it looks like in code:

def compute_P_from_fundamental(F):
""" Computes the second camera matrix (assuming P1 = [I 0])
from a fundamental matrix. """

e = compute_epipole(F.T) # left epipole
Te = skew(e)
return vstack((dot(Te,F.T).T,e)).T

We used the helper function skew() defined as.

def skew(a):
""" Skew matrix A such that a x v = Av for any v. """

return array([[0,-a[2],a[1]],[a[2],0,-a[0]],[-a[1],a[0],0]])

Add both these functions to the file sfm.py.

The calibrated case - metric reconstruction With known calibration the recon-
struction will be metric and preserve properties of Euclidean space (except for a global
scale parameter). In terms of reconstructing a 3D scene, this calibrated case is the
interesting one.

With known calibration K, we can apply its inverse K�1 to the image points x

K

=

K�1
x so that the camera equation becomes

x

K

= K�1K[R | t]X = [R | t]X ,

142 5.2. Computing with Cameras and 3D Structure

in the new image coordinates. The points in these new image coordinates satisfy the
same fundamental equation as before

x

T

K2
Fx

K1 = 0 .

The fundamental matrix for calibration normalized coordinates is called the essential
matrix and is usually denoted E instead of F to make it clear that this is the calibrated
case and the image coordinates are normalized.

The camera matrices recovered from an essential matrix respect metric relation-
ships but there are four possible solutions. Only one of them has the scene in front of
both cameras so it is easy to pick the right one.

Here is an algorithm for computing the four solutions (see [13] for the details). Add
this function to sfm.py.

def compute_P_from_essential(E):
""" Computes the second camera matrix (assuming P1 = [I 0])
from an essential matrix. Output is a list of four
possible camera matrices. """

make sure E is rank 2
U,S,V = svd(E)
if det(dot(U,V))<0:
V = -V

E = dot(U,dot(diag([1,1,0]),V))

create matrices (Hartley p 258)
Z = skew([0,0,-1])
W = array([[0,-1,0],[1,0,0],[0,0,1]])

return all four solutions
P2 = [vstack((dot(U,dot(W,V)).T,U[:,2])).T,

vstack((dot(U,dot(W,V)).T,-U[:,2])).T,
vstack((dot(U,dot(W.T,V)).T,U[:,2])).T,
vstack((dot(U,dot(W.T,V)).T,-U[:,2])).T]

return P2

First this function makes sure the essential matrix is rank 2 (with two equal non-zero
singular values), then the four solutions are created according to the recipe in [13]. A
list with four camera matrices is returned. How to pick the right one, we leave to the
example later.

This concludes all the theory needed to compute 3D reconstructions from a collec-
tion of images.

5.2. Computing with Cameras and 3D Structure 143

5.3 Multiple View Reconstruction

Let’s look at how to use the concepts above to compute an actual 3D reconstruction
from a pair of images. Computing a 3D reconstruction like this is usually referred to
as structure from motion (SfM) since the motion of a camera (or cameras) give you
3D structure.

Assuming the camera has been calibrated, the steps are as follows:

1. Detect feature points and match them between the two images.

2. Compute the fundamental matrix from the matches.

3. Compute the camera matrices from the fundamental matrix.

4. Triangulate the 3D points.

We have all the tools to do this but we need a robust way to compute a fundamental ma-
trix when the point correspondences between the images contain incorrect matches.

Robust fundamental matrix estimation

Similar to when we needed a robust way to compute homographies (Section 3.3),
we also need to be able to estimate a fundamental matrix when there is noise and
incorrect matches. As before we will use RANSAC, this time combined with the eight
point algorithm. It should be mentioned that the eight point algorithm breaks down
for planar scenes so you cannot use it for scenes where the scene points are all on a
plane.

Add this class to sfm.py.

class RansacModel(object):
""" Class for fundmental matrix fit with ransac.py from
http://www.scipy.org/Cookbook/RANSAC"""

def __init__(self,debug=False):
self.debug = debug

def fit(self,data):
""" Estimate fundamental matrix using eight
selected correspondences. """

transpose and split data into the two point sets
data = data.T
x1 = data[:3,:8]
x2 = data[3:,:8]

144 5.3. Multiple View Reconstruction

estimate fundamental matrix and return
F = compute_fundamental_normalized(x1,x2)
return F

def get_error(self,data,F):
""" Compute x^T F x for all correspondences,
return error for each transformed point. """

transpose and split data into the two point
data = data.T
x1 = data[:3]
x2 = data[3:]

Sampson distance as error measure
Fx1 = dot(F,x1)
Fx2 = dot(F,x2)
denom = Fx1[0]**2 + Fx1[1]**2 + Fx2[0]**2 + Fx2[1]**2
err = (diag(dot(x1.T,dot(F,x2))))**2 / denom

return error per point
return err

As before, we need fit() and get_error() methods. The error measure chosen here is
the Sampson distance (see [13]). The fit() method now selects eight points and uses
a normalized version of the eight point algorithm.

def compute_fundamental_normalized(x1,x2):
""" Computes the fundamental matrix from corresponding points
(x1,x2 3*n arrays) using the normalized 8 point algorithm. """

n = x1.shape[1]
if x2.shape[1] != n:
raise ValueError("Number of points don’t match.")

normalize image coordinates
x1 = x1 / x1[2]
mean_1 = mean(x1[:2],axis=1)
S1 = sqrt(2) / std(x1[:2])
T1 = array([[S1,0,-S1*mean_1[0]],[0,S1,-S1*mean_1[1]],[0,0,1]])
x1 = dot(T1,x1)

x2 = x2 / x2[2]
mean_2 = mean(x2[:2],axis=1)
S2 = sqrt(2) / std(x2[:2])
T2 = array([[S2,0,-S2*mean_2[0]],[0,S2,-S2*mean_2[1]],[0,0,1]])
x2 = dot(T2,x2)

compute F with the normalized coordinates

5.3. Multiple View Reconstruction 145

F = compute_fundamental(x1,x2)

reverse normalization
F = dot(T1.T,dot(F,T2))

return F/F[2,2]

This function normalizes the image points to zero mean and fixed variance.
Now we can use this class in a function. Add the following function to sfm.py.

def F_from_ransac(x1,x2,model,maxiter=5000,match_theshold=1e-6):
""" Robust estimation of a fundamental matrix F from point
correspondences using RANSAC (ransac.py from
http://www.scipy.org/Cookbook/RANSAC).

input: x1,x2 (3*n arrays) points in hom. coordinates. """

import ransac

data = vstack((x1,x2))

compute F and return with inlier index
F,ransac_data = ransac.ransac(data.T,model,8,maxiter,match_theshold,20,return_all=True)
return F, ransac_data[’inliers’]

Here we return the best fundamental matrix F together with the inlier index (so that
we know what matches were consistent with F). Compared to the homography esti-
mation, we increased the default max iterations and changed the matching threshold
which was in pixels before and is in Sampson distance now.

3D reconstruction example

In this section we will see a complete example of reconstructing a 3D scene from start
to finish. We will use two images taken with a camera with known calibration. The
images are of the famous Alcatraz prison and are shown in Figure 5.73.

Let’s split the code up in a few chunks so that it is easier to follow. First we extract
features, match them and estimate a fundamental matrix and camera matrices.

import homography
import sfm
import sift

calibration
K = array([[2394,0,932],[0,2398,628],[0,0,1]])

3Images courtesy of Carl Olsson http://www.maths.lth.se/matematiklth/personal/calle/.

146 5.3. Multiple View Reconstruction

http://www.maths.lth.se/matematiklth/personal/calle/

Figure 5.7: Example image pair of a scene where the images are taken at different
viewpoints.

load images and compute features
im1 = array(Image.open(’alcatraz1.jpg’))
sift.process_image(’alcatraz1.jpg’,’im1.sift’)
l1,d1 = sift.read_features_from_file(’im1.sift’)

im2 = array(Image.open(’alcatraz2.jpg’))
sift.process_image(’alcatraz2.jpg’,’im2.sift’)
l2,d2 = sift.read_features_from_file(’im2.sift’)

match features
matches = sift.match_twosided(d1,d2)
ndx = matches.nonzero()[0]

make homogeneous and normalize with inv(K)
x1 = homography.make_homog(l1[ndx,:2].T)
ndx2 = [int(matches[i]) for i in ndx]
x2 = homography.make_homog(l2[ndx2,:2].T)

x1n = dot(inv(K),x1)
x2n = dot(inv(K),x2)

estimate E with RANSAC
model = sfm.RansacModel()
E,inliers = sfm.F_from_ransac(x1n,x2n,model)

compute camera matrices (P2 will be list of four solutions)
P1 = array([[1,0,0,0],[0,1,0,0],[0,0,1,0]])
P2 = sfm.compute_P_from_essential(E)

5.3. Multiple View Reconstruction 147

The calibration is known so here we just hardcode the K matrix at the beginning.
As in earlier examples, we pick out the points that belong to matches. After that we
normalize them with K�1 and run the RANSAC estimation with the normalized eight
point algorithm. Since the points are normalized, this gives us an essential matrix.
We make sure to keep the index of the inliers, we will need them. From the essential
matrix we compute the four possible solutions of the second camera matrix.

From the list of camera matrices, we pick the one that has the most scene points
in front of both cameras after triangulation.

pick the solution with points in front of cameras
ind = 0
maxres = 0
for i in range(4):
triangulate inliers and compute depth for each camera
X = sfm.triangulate(x1n[:,inliers],x2n[:,inliers],P1,P2[i])
d1 = dot(P1,X)[2]
d2 = dot(P2[i],X)[2]
if sum(d1>0)+sum(d2>0) > maxres:
maxres = sum(d1>0)+sum(d2>0)
ind = i
infront = (d1>0) & (d2>0)

triangulate inliers and remove points not in front of both cameras
X = sfm.triangulate(x1n[:,inliers],x2n[:,inliers],P1,P2[ind])
X = X[:,infront]

We loop through the four solutions and each time triangulate the 3D points corre-
sponding to the inliers. The sign of the depth is given by the third value of each image
point after projecting the triangulated X back to the images. We keep the index with
the most positive depths and also store a boolean for each point in the best solution
so that we can pick only the ones that actually are in front. Due to noise and errors
in all of the estimations done, there is a risk that some points still are behind one
camera, even with the correct camera matrices. Once we have the right solution, we
triangulate the inliers and keep the points in front of the cameras.

Now we can plot the reconstruction.

3D plot
from mpl_toolkits.mplot3d import axes3d

fig = figure()
ax = fig.gca(projection=’3d’)
ax.plot(-X[0],X[1],X[2],’k.’)
axis(’off’)

148 5.3. Multiple View Reconstruction

The 3D plots with mplot3d have the first axis reversed compared to our coordinate
system so we change the sign.

We can then plot the reprojection in each view.

plot the projection of X
import camera

project 3D points
cam1 = camera.Camera(P1)
cam2 = camera.Camera(P2[ind])
x1p = cam1.project(X)
x2p = cam2.project(X)

reverse K normalization
x1p = dot(K,x1p)
x2p = dot(K,x2p)

figure()
imshow(im1)
gray()
plot(x1p[0],x1p[1],’o’)
plot(x1[0],x1[1],’r.’)
axis(’off’)

figure()
imshow(im2)
gray()
plot(x2p[0],x2p[1],’o’)
plot(x2[0],x2[1],’r.’)
axis(’off’)
show()

After projecting the 3D points we need to reverse the initial normalization by multiply-
ing with the calibration matrix.

The result looks like Figure 5.8. As you can see, the reprojected points (blue) don’t
exactly match the original feature locations (red) but they are reasonably close. It
is possible to further refine the camera matrices to improve the reconstruction and
reprojection but that is outside the scope of this simple example.

Extensions and more than two views

There are some steps and further extensions to multiple view reconstructions that we
cannot cover in a book like this. Here are some of them with references for further

5.3. Multiple View Reconstruction 149

Figure 5.8: Example of computing a 3D reconstruction from a pair of images using
image matches. (top) the two images with feature points shown in red and reprojected
reconstructed 3D points shown in blue. (bottom) the 3D reconstruction.

150 5.3. Multiple View Reconstruction

reading.

More views With more than two views of the same scene the 3D reconstruction
will usually be more accurate and more detailed. Since the fundamental matrix only
relates a pair of views, the process is a little different with many images.

For video sequences, one can use the temporal aspect and match features in con-
secutive frame pairs. The relative orientation needs to be added incrementally from
each pair to the next (similar to how we added homographies in the panorama example
in Figure 3.12). This approach usually works well and tracking can be used to effec-
tively find correspondences (see Section 10.4 for more on tracking). One problem is
that errors will accumulate the more views are added. This can be fixed with a final
optimization step, see below.

With still images, one approach is to find a central reference view and compute all
the other camera matrices relative to that one. Another method is to compute camera
matrices and a 3D reconstruction for one image pair and then incrementally add new
images and 3D points, see for example [34]. As a side note, there are ways to compute
3D and camera positions from three views at the same time (see for example [13]) but
beyond that an incremental approach is needed.

Bundle adjustment From our simple 3D reconstruction example in Figure 5.8 it is
clear that there will be errors in the position of the recovered points and the camera
matrices computed from the estimated fundamental matrix. With more views the er-
rors will accumulate. A final step in multiple view reconstructions is therefore often
to try to minimize the reprojection errors by optimizing the position of the 3D points
and the camera parameters. This process is called bundle adustment . Details can
be found in [13] and [35] and a short overview at http://en.wikipedia.org/wiki/
Bundle_adjustment.

Self calibration In the case of uncalibrated cameras, it is sometimes possible to
compute the calibration from image features. This process is called self-calibration.
There are many different algorithms depending on what assumptions can be made on
parameters of the camera calibration matrix and depending on what types of image
data is available (feature matches, parallel lines, planes etc.). The interested reader
can take a look at [13] and [26] (Chapter 6).

As a side note to calibration, there is a useful script extract_focal.pl as part of the
Bundler SfM system http://phototour.cs.washington.edu/bundler/. This uses a
lookup table for common cameras and estimates the focal length based on the image
EXIF data.

5.3. Multiple View Reconstruction 151

http://en.wikipedia.org/wiki/Bundle_adjustment
http://en.wikipedia.org/wiki/Bundle_adjustment
http://phototour.cs.washington.edu/bundler/

5.4 Stereo Images

A special case of multi-view imaging is stereo vision (or stereo imaging) where two
cameras are observing the same scene with only a horizontal (sideways) displacement
between the cameras. When the cameras are configured so that the two images have
the same image plane with the image rows vertically aligned, the image pair is said to
be rectified . This is common in robotics and such a setup is often called a stereo rig.

Any stereo camera setup can be rectified by warping the images to a common plane
so that the epipolar lines are image rows (a stereo rig is usually constructed to give
such rectified image pairs). This is outside the scope of this section but the interested
reader can find the details in [13] (page 303) or [3] (page 430).

Assuming that the two images are rectified, finding correspondences is constrained
to searching along image rows. Once a corresponding point is found, its depth (Z co-
ordinate) can be computed directly from the horizontal displacement as it is inversely
proportional to the displacement,

Z =

fb

x
l

� x
r

,

where f is the rectified image focal length, b the distance between the camera cen-
ters, and x

l

and x
r

the x-coordinate of the corresponding point in the left and right
image. The distance separating the camera centers is called the baseline. Figure 5.9
illustrates a rectified stereo camera setup.

Stereo reconstruction (sometimes called dense depth reconstruction) is the prob-
lem of recovering a depth map (or inversely a disparity map) where the depth (or dis-
parity) for each pixel in the image is estimated. This is a classic problem in computer
vision and there are many algorithms for solving it. The Middlebury Stereo Vision
Page (http://vision.middlebury.edu/stereo/) contains a constantly updated eval-
uation of the best algorithms with code and descriptions of many implementations. In
the next section we will implement a stereo reconstruction algorithm based on nor-
malized cross correlation.

Computing disparity maps

In this stereo reconstruction algorithm we will try a range of displacements and record
the best displacement for each pixel by selecting the one with the best score according
to normalized cross correlation of the local image neighborhood. This is sometimes
called plane sweeping since each displacement step corresponds to a plane at some
depth. While not exactly state of the art in stereo reconstruction, this is a simple
method that usually gives decent results.

152 5.4. Stereo Images

http://vision.middlebury.edu/stereo/

x

l

x

r

b

X

Figure 5.9: An illustration of a rectified stereo image setup where corresponding
points are on the same rows in both images. (Images from the Middlebury Stereo
Vision set "cones".)

5.4. Stereo Images 153

Normalized cross correlation can be efficiently computed when applied densely
across images. This is different from when we applied it between sparse point corre-
spondences in Chapter 2. We want to evaluate normalized cross correlation on a patch
(basically a local neighborhood) around each pixel. For this case we can rewrite the
NCC around a pixel, equation (2.3), as

ncc(I1, I2) =

P
x

(I1(x) � µ1)(I2(x) � µ2)pP
x

(I1(x) � µ1)
2

P
x

(I2(x) � µ2)
2

where we skip the normalizing constant in front (it is not needed here) and the sums
are taken over the pixels of a local patch around the pixel.

Now, we want this for every pixel in the image. The three sums are over a local
patch region and can be computed efficiently using image filters, just like we did for
blur and derivatives. The function uniform_filter() in the ndimage.filters module
will compute the sums over a rectangular patch.

Here’s the function that does the plane sweep and returns the best disparity for
each pixel. Create a file stereo.py and add the following.

def plane_sweep_ncc(im_l,im_r,start,steps,wid):
""" Find disparity image using normalized cross-correlation. """

m,n = im_l.shape

arrays to hold the different sums
mean_l = zeros((m,n))
mean_r = zeros((m,n))
s = zeros((m,n))
s_l = zeros((m,n))
s_r = zeros((m,n))

array to hold depth planes
dmaps = zeros((m,n,steps))

compute mean of patch
filters.uniform_filter(im_l,wid,mean_l)
filters.uniform_filter(im_r,wid,mean_r)

normalized images
norm_l = im_l - mean_l
norm_r = im_r - mean_r

try different disparities
for displ in range(steps):
move left image to the right, compute sums
filters.uniform_filter(roll(norm_l,-displ-start)*norm_r,wid,s) # sum nominator
filters.uniform_filter(roll(norm_l,-displ-start)*roll(norm_l,-displ-start),wid,s_l)

154 5.4. Stereo Images

filters.uniform_filter(norm_r*norm_r,wid,s_r) # sum denominator

store ncc scores
dmaps[:,:,displ] = s/sqrt(s_l*s_r)

pick best depth for each pixel
return argmax(dmaps,axis=2)

First we need to create some arrays to hold the filtering results as uniform_filter()
takes them as input arguments. Then we create an array to hold each of the planes
so that we can apply argmax() along the last dimension to find the best depth for each
pixel. The function iterates over all steps displacements from start. One image is
shifted using the roll() function and the three sums of the NCC are computed using
filtering.

Here is a full example of loading images and computing the displacement map
using this function.

import stereo

im_l = array(Image.open(’scene1.row3.col3.ppm’).convert(’L’),’f’)
im_r = array(Image.open(’scene1.row3.col4.ppm’).convert(’L’),’f’)

starting displacement and steps
steps = 12
start = 4

width for ncc
wid = 9

res = stereo.plane_sweep_ncc(im_l,im_r,start,steps,wid)

import scipy.misc
scipy.misc.imsave(’depth.png’,res)

Here we first load a pair of images from the classic "tsukuba" set and convert them
to grayscale. Next we set the parameters needed for the plane sweep function, the
number of displacements to try, the starting value and the width of the NCC patch.
You will notice that this method is fairly fast, at least compared to matching features
with NCC. This is because everything is computed using filters.

This approach also works for other filters. The uniform filter gives all pixels in a
square patch equal weight but in some cases other filters for the NCC computation
might be preferred. Here is one alternative using a Gaussian filter that produces
smoother disparity maps, add this to stereo.py.

def plane_sweep_gauss(im_l,im_r,start,steps,wid):

5.4. Stereo Images 155

""" Find disparity image using normalized cross-correlation
with Gaussian weighted neigborhoods. """

m,n = im_l.shape

arrays to hold the different sums
mean_l = zeros((m,n))
mean_r = zeros((m,n))
s = zeros((m,n))
s_l = zeros((m,n))
s_r = zeros((m,n))

array to hold depth planes
dmaps = zeros((m,n,steps))

compute mean
filters.gaussian_filter(im_l,wid,0,mean_l)
filters.gaussian_filter(im_r,wid,0,mean_r)

normalized images
norm_l = im_l - mean_l
norm_r = im_r - mean_r

try different disparities
for displ in range(steps):
move left image to the right, compute sums
filters.gaussian_filter(roll(norm_l,-displ-start)*norm_r,wid,0,s) # sum nominator
filters.gaussian_filter(roll(norm_l,-displ-start)*roll(norm_l,-displ-start),wid,0,s_l)
filters.gaussian_filter(norm_r*norm_r,wid,0,s_r) # sum denominator

store ncc scores
dmaps[:,:,displ] = s/sqrt(s_l*s_r)

pick best depth for each pixel
return argmax(dmaps,axis=2)

The code is the same as for the uniform filter with the exception of the extra argument
in the filtering. We need to pass a zero to gaussian_filter() to indicate that we want
a standard Gaussian and not any derivatives (see page 1.4 for details).

Use this function the same way as the previous plane sweep function. Figures 5.10
and fig-stereo-cones show some results of these two plane sweep implementations on
some standard stereo benchmark images. The images are from [29] and [30] and
are available at http://vision.middlebury.edu/stereo/data/. Here we used the
"tsukuba" and "cones" images and set wid to 9 in the standard version and 3 for the
Gaussian version. The top row shows the image pair, bottom left is the standard NCC
plane sweep, and bottom right is the Gaussian version. As you can see, the Gaussian

156 5.4. Stereo Images

http://vision.middlebury.edu/stereo/data/

Figure 5.10: Example of computing disparity maps from a stereo image pair with
normalized cross-correlation.

version is less noisy but also has less detail than the standard version.

Exercises

1. Use the techniques introduced in this chapter to verify matches in the White
house example on page 66 (or even better, an example of your own) and see if
you can improve on the results.

2. Compute feature matches for an image pair and estimate the fundamental ma-
trix. Use the epipolar lines to do a second pass to find more matches by searching
for the best match along the epipolar line for each feature.

3. Take a set with three or more images. Pick one pair and compute 3D points
and camera matrices. Match features to the remaining images to get correspon-
dences. Then take the 3D points for the correspondences and compute camera
matrices for the other images using resection. Plot the 3D points and the camera
positions. Use a set of your own or one of the Oxford multi-view sets.

4. Implement a stereo version that uses sum of squared differences (SSD) instead
of NCC using filtering the same way as in the NCC example.

5.4. Stereo Images 157

Figure 5.11: Example of computing disparity maps from a stereo image pair with
normalized cross-correlation.

158 5.4. Stereo Images

5. Try smoothing the stereo depth maps using the ROF de-noising from Section 1.5.
Experiment with the size of the cross-correlation patches to get sharp edges with
noise levels that can be removed with smoothing.

6. One way to improve the quality of the disparity maps is to compare the disparities
from moving the left image to the right and the right image to the left and only
keep the parts that are consistent. This will for example clean up the parts
where there is occlusion. Implement this idea and compare the results to the
one-directional plane sweeping.

7. The New York Public Library has many old historic stereo photographs. Browse
the gallery at http://stereo.nypl.org/gallery and download some images
you like (you can right click and save JPEGs). The images should be rectified
already. Cut the image in two parts and try the dense depth reconstruction code.

5.4. Stereo Images 159

http://stereo.nypl.org/gallery

Chapter 6

Clustering Images

This chapter introduces several clustering methods and shows how to use them for
clustering images for finding groups of similar images. Clustering can be used for
recognition, for dividing data sets of images and for organization and navigation. We
also look at using clustering for visualizing similarity between images.

6.1 K-means Clustering

K-means is a very simple clustering algorithm that tries to partition the input data in
k clusters. K-means works by iteratively refining an initial estimate of class centroids
as follows:

1. Initialize centroids µ
i

, i = 1 . . . k, randomly or with some guess.

2. Assign each data point to the class c
i

of its nearest centroid.

3. Update the centroids as the average of all data points assigned to that class.

4. Repeat 2 & 3 until convergence.

K-means tries to minimize the total within-class variance

V =

kX

i=1

X

xj2ci
(x

j

� µ
i

)

2 ,

where x

j

are the data vectors. The algorithm above is a heuristic refinement algorithm
that works fine for most cases but does not guarantee that the best solution is found.
To avoid the effects of choosing a bad centroid initialization, the algorithm is often
run several times with different initialization centroids. Then the solution with lowest
variance V is selected.

161

The main drawback of this algorithm is that the number of clusters needs to be
decided beforehand and an inappropriate choice will give poor clustering results. The
benefits are that it is simple to implement, it is parallelizable and works well for a
large range of problems without any need for tuning.

The SciPy clustering package

Although simple to implement, there is no need to. The SciPy vector quantization
package scipy.cluster.vq comes with a k-means implementation. Here’s how to use
it.

Let’s start with creating some sample 2D data to illustrate.

from scipy.cluster.vq import *

class1 = 1.5 * randn(100,2)
class2 = randn(100,2) + array([5,5])
features = vstack((class1,class2))

This generates two normally distributed classes in two dimensions. To try to cluster
the points, run k-means with k = 2 like this.

centroids,variance = kmeans(features,2)

The variance is returned but we don’t really need it since the SciPy implementation
computes several runs (default is 20) and selects the one with smallest variance for us.
Now you can check where each data point is assigned using the vector quantization
function in the SciPy package.

code,distance = vq(features,centroids)

By checking the value of code we can see if there are any incorrect assignments. To
visualize, we can plot the points and the final centroids.

figure()
ndx = where(code==0)[0]
plot(features[ndx,0],features[ndx,1],’*’)
ndx = where(code==1)[0]
plot(features[ndx,0],features[ndx,1],’r.’)
plot(centroids[:,0],centroids[:,1],’go’)
axis(’off’)
show()

Here the function where() gives the indices for each class. This should give a plot like
the one in Figure 6.1.

162 6.1. K-means Clustering

Figure 6.1: An example of k-means clustering of 2D points. Class centroids are marked
as green rings and the predicted classes are blue stars and red dots respectively.

Clustering images

Let’s try k-means on the font images described on page 28. The file selectedfontim-
ages.zip contains 66 images from this font data set (these are selected for easy overview
when illustrating the clusters). As descriptor vector for each image we will use the
projection coefficients after projecting on the 40 first principal components computed
earlier. Loading the model file using pickle, projecting the images on the principal
components and clustering is then done like this.

import imtools
import pickle
from scipy.cluster.vq import *

get list of images
imlist = imtools.get_imlist(’selected_fontimages/’)
imnbr = len(imlist)

load model file
with open(’a_pca_modes.pkl’,’rb’) as f:
immean = pickle.load(f)
V = pickle.load(f)

create matrix to store all flattened images
immatrix = array([array(Image.open(im)).flatten()

for im in imlist],’f’)

6.1. K-means Clustering 163

project on the 40 first PCs
immean = immean.flatten()
projected = array([dot(V[:40],immatrix[i]-immean) for i in range(imnbr)])

k-means
projected = whiten(projected)
centroids,distortion = kmeans(projected,4)

code,distance = vq(projected,centroids)

Same as before, code contains the cluster assignment for each image. In this case we
tried k = 4. We also chose to "whiten" the data using SciPy’s whiten(), normalizing
so that each feature has unit variance. Try to vary parameters like the number of
principal components used and the value of k to see how the clustering results change.
The clusters can be visualized like this:

plot clusters
for k in range(4):

ind = where(code==k)[0]
figure()
gray()
for i in range(minimum(len(ind),40)):

subplot(4,10,i+1)
imshow(immatrix[ind[i]].reshape((25,25)))
axis(’off’)

show()

Here we show each cluster in a separate figure window in a grid with maximum 40
images from the cluster shown. We use the PyLab function subplot() to define the
grid. A sample cluster result can look like the one in Figure 6.2.

For more details on the k-means SciPy implementation and the scipy.cluster.vq

package see the reference guide http://docs.scipy.org/doc/scipy/reference/cluster.
vq.html.

Visualizing the images on principal components

To see how the clustering using just a few principal components as above can work,
we can visualize the images on their coordinates in a pair of principal component
directions. One way is to project on two components by changing the projection to

projected = array([dot(V[[0,2]],immatrix[i]-immean) for i in range(imnbr)])

to only get the relevant coordinates (in this case V [[0, 2]] gives the first and third).
Alternatively, project on all components and afterwards just pick out the columns you
need.

164 6.1. K-means Clustering

http://docs.scipy.org/doc/scipy/reference/cluster.vq.html
http://docs.scipy.org/doc/scipy/reference/cluster.vq.html

Figure 6.2: An example of k-means clustering with k = 4 of the font images using 40
principal components.

For the visualization we will use the ImageDraw module in PIL. Assuming that you
have the projected images and image list as above, the following short script will
generate a plot like the one in Figure 6.3

from PIL import Image, ImageDraw

height and width
h,w = 1200,1200

create a new image with a white background
img = Image.new(’RGB’,(w,h),(255,255,255))
draw = ImageDraw.Draw(img)

draw axis
draw.line((0,h/2,w,h/2),fill=(255,0,0))
draw.line((w/2,0,w/2,h),fill=(255,0,0))

scale coordinates to fit
scale = abs(projected).max(0)
scaled = floor(array([(p / scale) * (w/2-20,h/2-20) +

(w/2,h/2) for p in projected]))

paste thumbnail of each image

6.1. K-means Clustering 165

Figure 6.3: The projection of the font images on pairs of principal components. (left)
the first and second principal components. (right) the second and third.

for i in range(imnbr):
nodeim = Image.open(imlist[i])
nodeim.thumbnail((25,25))
ns = nodeim.size
img.paste(nodeim,(scaled[i][0]-ns[0]//2,scaled[i][1]-

ns[1]//2,scaled[i][0]+ns[0]//2+1,scaled[i][1]+ns[1]//2+1))

img.save(’pca_font.jpg’)

Here we used the integer or floor division operator // which returns an integer pixel
position by removing any values after the decimal point.

Plots like these illustrate how the images are distributed in the 40 dimensions
and can be very useful for choosing a good descriptor. Already in just these two-
dimensional projections the closeness of similar font images is clearly visible.

Clustering pixels

Before closing this section we will take a look at an example of clustering individual
pixels instead of entire images. Grouping image regions (and pixels) into "meaningful"
components is called image segmentation and will be the topic of chapter 9. Naively
applying k-means on the pixel values will not give anything meaningful except in very
simple images. More sophisticated class models (than average pixel color) or spatial
consistency is needed to produce useful results. For now, let’s just apply k-means to
the RGB values and worry about solving segmentation problems later (Section 9.2 has

166 6.1. K-means Clustering

the details).
The following code sample takes an image, reduces it to a lower resolution version

with pixels as mean values of the original image regions (taken over a square grid of
size steps ⇥ steps) and clustering the regions using k-means.

from scipy.cluster.vq import *
from scipy.misc import imresize

steps = 50 #image is divided in steps*steps region
im = array(Image.open(’empire.jpg’))

dx = im.shape[0] / steps
dy = im.shape[1] / steps

compute color features for each region
features = []
for x in range(steps):
for y in range(steps):
R = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,0])
G = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,1])
B = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,2])
features.append([R,G,B])

features = array(features,’f’) # make into array

cluster
centroids,variance = kmeans(features,3)
code,distance = vq(features,centroids)

create image with cluster labels
codeim = code.reshape(steps,steps)
codeim = imresize(codeim,im.shape[:2],interp=’nearest’)

figure()
imshow(codeim)
show()

The input to k-means is an array with steps*steps rows, each containing the R, G and
B mean values. To visualize the result we use SciPy’s imresize() function to show the
steps*steps image at the original image coordinates. The parameter interp specifies
what type of interpolation to use, here we use nearest neighbor so we don’t introduce
new pixel values at the transitions between classes.

Figure 6.4 shows results using 50 ⇥ 50 and 100 ⇥ 100 regions for two relatively
simple example images. Note the ordering of the k-means labels (in this case the
colors in the result images) is arbitrary. As you can see, the result is noisy despite
down-sampling to only use a few regions. There is no spatial consistency and it is
hard to separate regions, like the boy and the grass in the lower example. Spatial

6.1. K-means Clustering 167

Figure 6.4: Clustering of pixels based on their color value using k-means. (left) original
image. (center) cluster result with k = 3 and 50 ⇥ 50 resolution. (right) cluster result
with k = 3 and 100 ⇥ 100 resolution.

168 6.1. K-means Clustering

consistency and better separation will be dealt with later, together with other image
segmentation algorithms. Now let’s move on to the next basic clustering algorithm.

6.2 Hierarchical Clustering

Hierarchical clustering (or agglomerative clustering) is another simple but powerful
clustering algorithm. The idea is to build a similarity tree based on pairwise distances.
The algorithm starts with grouping the two closest objects (based on the distance
between feature vectors) and creates an "average" node in a tree with the two objects
as children. Then the next closest pair is found among the remaining objects but
also including any average nodes, and so on. At each node the distance between the
two children is also stored. Clusters can then be extracted by traversing this tree
and stopping at nodes with distance smaller some threshold that then determines the
cluster size.

Hierarchical clustering has several benefits. For example, the tree structure can
be used to visualize relationships and show how clusters are related. A good feature
vector will give a nice separation in the tree. Another benefit is that the tree can be
reused with different cluster thresholds without having to recompute the tree. The
drawback is that one needs to choose a threshold if the actual clusters are needed.

Let’s see what this looks like in code1. Create a file hcluster.py and add the follow-
ing code (inspired by the hierarchical clustering example in [31]).

from itertools import combinations

class ClusterNode(object):
def __init__(self,vec,left,right,distance=0.0,count=1):
self.left = left
self.right = right
self.vec = vec
self.distance = distance
self.count = count # only used for weighted average

def extract_clusters(self,dist):
""" Extract list of sub-tree clusters from
hcluster tree with distance<dist. """

if self.distance < dist:
return [self]

return self.left.extract_clusters(dist) + self.right.extract_clusters(dist)

1There is also a version of hierarchical clustering in the SciPy clustering package that you can look
at if you like. We will not use that here as parts of the implementation below (creating trees, visualizing
dendrograms) is interesting and will be useful later.

6.2. Hierarchical Clustering 169

def get_cluster_elements(self):
""" Return ids for elements in a cluster sub-tree. """
return self.left.get_cluster_elements() + self.right.get_cluster_elements()

def get_height(self):
""" Return the height of a node,
height is sum of each branch. """

return self.left.get_height() + self.right.get_height()

def get_depth(self):
""" Return the depth of a node, depth is
max of each child plus own distance. """

return max(self.left.get_depth(), self.right.get_depth()) + self.distance

class ClusterLeafNode(object):
def __init__(self,vec,id):
self.vec = vec
self.id = id

def extract_clusters(self,dist):
return [self]

def get_cluster_elements(self):
return [self.id]

def get_height(self):
return 1

def get_depth(self):
return 0

def L2dist(v1,v2):
return sqrt(sum((v1-v2)**2))

def L1dist(v1,v2):
return sum(abs(v1-v2))

def hcluster(features,distfcn=L2dist):
""" Cluster the rows of features using
hierarchical clustering. """

cache of distance calculations
distances = {}

170 6.2. Hierarchical Clustering

initialize with each row as a cluster
node = [ClusterLeafNode(array(f),id=i) for i,f in enumerate(features)]

while len(node)>1:
closest = float(’Inf’)

loop through every pair looking for the smallest distance
for ni,nj in combinations(node,2):
if (ni,nj) not in distances:
distances[ni,nj] = distfcn(ni.vec,nj.vec)

d = distances[ni,nj]
if d<closest:
closest = d
lowestpair = (ni,nj)

ni,nj = lowestpair

average the two clusters
new_vec = (ni.vec + nj.vec) / 2.0

create new node
new_node = ClusterNode(new_vec,left=ni,right=nj,distance=closest)
node.remove(ni)
node.remove(nj)
node.append(new_node)

return node[0]

We created two classes for tree nodes, ClusterNode and ClusterLeafNode, to be used
to create the cluster tree. The function hcluster() builds the tree. First a list of leaf
nodes is created, then the closest pairs are iteratively grouped together based on the
distance measure chosen. Returning the final node will give you the root of the tree.
Running hcluster() on a matrix with feature vectors as rows will create and return
the cluster tree.

The choice of distance measure depends on the actual feature vectors, here we
used the Euclidean (L2) distance (a function for L1 distance is also provided) but you
can create any function and use that as parameter to hcluster(). We also used the
average feature vector of all nodes in a sub-tree as a new feature vector to represent
the sub-tree and treat each sub-tree as objects. There are other choices for decid-
ing which two nodes to merge next, such as using single linking (use the minimum
distance between objects in two sub-trees) and complete linking (use the maximum
distance between objects in two sub-trees). The choice of linking will affect the type
of clusters produced.

To extract the clusters from the tree you need to traverse the tree from the top until

6.2. Hierarchical Clustering 171

a node with distance value smaller than some threshold is found. This is easiest done
recursively. The ClusterNode method extract_clusters() handles this by returning
a list with the node itself if below the distance threshold, otherwise call the child
nodes (leaf nodes always returns themselves). Calling this function will return a list
of sub-trees containing the clusters. To get the leaf nodes for each cluster sub-tree
that contain the object ids, traverse each sub-tree and return a list of leaves using the
method get_cluster_elements().

Let’s try this on a simple example to see it all in action. First create some 2D data
points (same as for k-means above).

class1 = 1.5 * randn(100,2)
class2 = randn(100,2) + array([5,5])
features = vstack((class1,class2))

Cluster the points and extract the clusters from the list using some threshold (here we
used 5) and print the clusters in the console.

import hcluster

tree = hcluster.hcluster(features)

clusters = tree.extract_clusters(5)

print len(clusters)
for c in clusters:
print c.get_cluster_elements()

This should give a printout similar to this:
number of clusters 2
[184, 187, 196, 137, 174, 102, 147, 145, 185, 109, 166, 152, 173, 180, 128, 163, 141, 178, 151, 158, 108,
182, 112, 199, 100, 119, 132, 195, 105, 159, 140, 171, 191, 164, 130, 149, 150, 157, 176, 135, 123, 131,
118, 170, 143, 125, 127, 139, 179, 126, 160, 162, 114, 122, 103, 146, 115, 120, 142, 111, 154, 116, 129,
136, 144, 167, 106, 107, 198, 186, 153, 156, 134, 101, 110, 133, 189, 168, 183, 148, 165, 172, 188, 138,
192, 104, 124, 113, 194, 190, 161, 175, 121, 197, 177, 193, 169, 117, 155]

[56, 4, 47, 18, 51, 95, 29, 91, 23, 80, 83, 3, 54, 68, 69, 5, 21, 1, 44, 57, 17, 90, 30, 22, 63, 41, 7, 14, 59,

96, 20, 26, 71, 88, 86, 40, 27, 38, 50, 55, 67, 8, 28, 79, 64, 66, 94, 33, 53, 70, 31, 81, 9, 75, 15, 32, 89, 6,

11, 48, 58, 2, 39, 61, 45, 65, 82, 93, 97, 52, 62, 16, 43, 84, 24, 19, 74, 36, 37, 60, 87, 92, 181, 99, 10, 49,

12, 76, 98, 46, 72, 34, 35, 13, 73, 78, 25, 42, 77, 85]

Ideally you should get two clusters but depending on the actual data you might get
three or even more. In this simple example of clustering 2D points, one cluster should
contain values lower than 100 and the other values 100 and above.

172 6.2. Hierarchical Clustering

Clustering images

Let’s look at an example of clustering images based on their color content. The file
sunsets.zip contains 100 images downloaded from Flickr using the tag "sunset" or
"sunsets". For this example we will use a color histogram of each image as feature
vector. This is a bit crude and simple but good enough for illustrating what hierarchical
clustering does. Try running the following code in a folder containing the sunset
images.

import os
import hcluster

create a list of images
path = ’flickr-sunsets/’
imlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]

extract feature vector (8 bins per color channel)
features = zeros([len(imlist), 512])
for i,f in enumerate(imlist):
im = array(Image.open(f))

multi-dimensional histogram
h,edges = histogramdd(im.reshape(-1,3),8,normed=True,range=[(0,255),(0,255),(0,255)])
features[i] = h.flatten()

tree = hcluster.hcluster(features)

Here we take the R,G and B color channels as vectors and feed them into NumPy’s
histogramdd() which computes multi-dimensional histograms (in this case three di-
mensions). We chose 8 bins in each color dimension (8 ⇤ 8 ⇤ 8) which after flattening
gives 512 bins in the feature vector. We use the "normed=True" option to normalize
the histograms in case the images are of different size and set the range to 0 . . . 255 for
each color channel. The use of reshape() with one dimension set to �1 will automat-
ically determine the correct size and thereby create an input array to the histogram
computation consisting of the RGB color values as rows.

To visualize the cluster tree, we can draw a dendrogram. A dendrogram is a dia-
gram that shows the tree layout. This often gives useful information on how good a
given descriptor vector is and what is considered similar in a particular case. Add the
following code to hcluster.py.

from PIL import Image,ImageDraw

def draw_dendrogram(node,imlist,filename=’clusters.jpg’):
""" Draw a cluster dendrogram and save to a file. """

6.2. Hierarchical Clustering 173

height and width
rows = node.get_height()*20
cols = 1200

scale factor for distances to fit image width
s = float(cols-150)/node.get_depth()

create image and draw object
im = Image.new(’RGB’,(cols,rows),(255,255,255))
draw = ImageDraw.Draw(im)

initial line for start of tree
draw.line((0,rows/2,20,rows/2),fill=(0,0,0))

draw the nodes recursively
node.draw(draw,20,(rows/2),s,imlist,im)
im.save(filename)
im.show()

Here the dendrogram drawing uses a draw() method for each node. Add this method
to the ClusterNode class:

def draw(self,draw,x,y,s,imlist,im):
""" Draw nodes recursively with image
thumbnails for leaf nodes. """

h1 = int(self.left.get_height()*20 / 2)
h2 = int(self.right.get_height()*20 /2)
top = y-(h1+h2)
bottom = y+(h1+h2)

vertical line to children
draw.line((x,top+h1,x,bottom-h2),fill=(0,0,0))

horizontal lines
ll = self.distance*s
draw.line((x,top+h1,x+ll,top+h1),fill=(0,0,0))
draw.line((x,bottom-h2,x+ll,bottom-h2),fill=(0,0,0))

draw left and right child nodes recursively
self.left.draw(draw,x+ll,top+h1,s,imlist,im)
self.right.draw(draw,x+ll,bottom-h2,s,imlist,im)

The leaf nodes have their own special method to draw thumbnails of the actual images.
Add this to the ClusterLeafNode class:

def draw(self,draw,x,y,s,imlist,im):
nodeim = Image.open(imlist[self.id])

174 6.2. Hierarchical Clustering

nodeim.thumbnail([20,20])
ns = nodeim.size
im.paste(nodeim,[int(x),int(y-ns[1]//2),int(x+ns[0]),int(y+ns[1]-ns[1]//2)])

The height of a dendrogram (and the sub parts) is determined by the distance values.
These need to be scaled to fit inside the chosen image resolution. The nodes are drawn
recursively with the coordinates passed down to the level below. Leaf nodes are drawn
with small thumbnail images of 20⇥ 20 pixels. Two helper methods are used to get the
height and width of the tree, get_height() and get_depth()

The dendrogram is drawn like this:

hcluster.draw_dendrogram(tree,imlist,filename=’sunset.pdf’)

The cluster dendrogram for the sunset images is shown in Figure 6.5. As can be
seen, images with similar color are close in the tree. Three example clusters are shown
in Figure 6.6. The clusters are in this example extracted as follows.

visualize clusters with some (arbitrary) threshold
clusters = tree.extract_clusters(0.23*tree.distance)

plot images for clusters with more than 3 elements
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>3:
figure()
for p in range(minimum(nbr_elements,20)):
subplot(4,5,p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis(’off’)

show()

As a final example we can create a dendrogram for the font images

tree = hcluster.hcluster(projected)
hcluster.draw_dendrogram(tree,imlist,filename=’fonts.jpg’)

where projected and imlist refer to the variables used in the k-means example in
Section 6.1. The resulting font images dendrogram is shown in Figure 6.7.

6.3 Spectral Clustering

An interesting type of clustering algorithms are spectral clustering methods which
have a different approach compared to k-means and hierarchical clustering.

6.3. Spectral Clustering 175

Figure 6.5: An example of hierarchical clustering of 100 images of sunsets using a 512
bin histogram in RGB coordinates as feature vector. Images close together in the tree
have similar color distribution.

176 6.3. Spectral Clustering

Figure 6.6: Example clusters from the 100 images of sunsets obtained with hierar-
chical clustering using a threshold set to 23% of the maximum node distance in the
tree.

A similarity matrix (or affinity matrix, or sometimes distance matrix) for n elements
(for example images) is an n ⇥ n matrix with pair-wise similarity scores. Spectral
clustering gets its name from the use of the spectrum of a matrix constructed from a
similarity matrix. The eigenvectors of this matrix are used for dimensionality reduction
and then clustering.

One of the benefits of spectral clustering methods is that the only input needed
is this matrix and it can be constructed from any measure of similarity you can think
of. Methods like k-means and hierarchical clustering compute mean of feature vectors
and this restricts the features (or descriptors) to vectors (in order to be able to com-
pute the mean). With spectral methods, there is no need to have feature vectors of
any kind, just a notion of "distance" or "similarity".

Here’s how it works. Given a n⇥n similarity matrix S with similarity scores s
ij

, we
can create a matrix, called the Laplacian matrix2,

L = I � D�1/2SD�1/2 ,

where I is the identity matrix and D is the diagonal matrix containing the row sums

2Sometimes L = D�1/2SD�1/2 is used as the Laplacian matrix instead but the choice doesn’t really
matter since it only changes the eigenvalues, not the eigenvectors.

6.3. Spectral Clustering 177

Figure 6.7: An example of hierarchical clustering of 66 selected font images using 40
principal components as feature vector.

178 6.3. Spectral Clustering

of S, D = diag(d
i

), d
i

=

P
j

s
ij

. The matrix D�1/2 used in the construction of the
Laplacian matrix is then

D�1/2
=

2

66664

1p
d1

1p
d2

. . .
1p
dn

3

77775
.

In order to make the presentation clearer, let’s use low values of s
ij

for similar ele-
ments and require s

ij

� 0 (the term distance matrix is perhaps more fitting in this
case).

The clusters are found by computing the eigenvectors of L and using the k eigen-
vectors corresponding to the k largest eigenvalues to construct a set of feature vectors
(remember that we may not have had any to start with!). Create a matrix with the k

eigenvectors as columns, the rows will then be treated as new feature vectors (of
length k). These new feature vectors can then be clustered using for example k-means
to produce the final clusters. In essence, what the algorithm does is to transform the
original data into new feature vectors that can be more easily clustered (and in some
cases using cluster algorithms that could not be used in the first place).

Enough about the theory, let’s see what it looks like in code when applied to a real
example. Again, we take the font images used in the k-means example above (and
introduced on page 28).

from scipy.cluster.vq import *

n = len(projected)

compute distance matrix
S = array([[sqrt(sum((projected[i]-projected[j])**2))

for i in range(n)] for j in range(n)], ’f’)

create Laplacian matrix
rowsum = sum(S,axis=0)
D = diag(1 / sqrt(rowsum))
I = identity(n)
L = I - dot(D,dot(S,D))

compute eigenvectors of L
U,sigma,V = linalg.svd(L)

k = 5
create feature vector from k first eigenvectors
by stacking eigenvectors as columns
features = array(V[:k]).T

6.3. Spectral Clustering 179

Figure 6.8: Spectral clustering of font images using the eigenvectors of the Laplacian
matrix.

k-means
features = whiten(features)
centroids,distortion = kmeans(features,k)
code,distance = vq(features,centroids)

plot clusters
for c in range(k):

ind = where(code==c)[0]
figure()
for i in range(minimum(len(ind),39)):

im = Image.open(path+imlist[ind[i]])
subplot(4,10,i+1)
imshow(array(im))
axis(’equal’)
axis(’off’)

show()

In this case we just create S using pair-wise Euclidean distances and compute a stan-
dard k-means clustering on the k eigenvectors (k = 5 in this particular case). Remem-
ber that the matrix V contains the eigenvectors sorted with respect to the eigenvalues.
Finally, the clusters are plotted. Figure 6.8 shows the clusters for an example run (re-
member that the k-means step might give different results each run).

We can also try this on an example where we don’t have any feature vectors or any
strict definition of similarity. The geotagged Panoramio images on page 63 were linked
based on how many matching local descriptors were found between them. The matrix

180 6.3. Spectral Clustering

on page 67 is a similarity matrix with scores equal to the number of matching features
(without any normalization). With imlist containing the filenames of the images and
the similarity matrix saved to a file using NumPy’s savetxt() we only need to modify
the first rows of the code above to:

n = len(imlist)

load the similarity matrix and reformat
S = loadtxt(’panoramio_matches.txt’)
S = 1 / (S + 1e-6)

where we invert the scores to have low values for similar images (so we don’t have to
modify the code above). We add a small number to avoid division with zero. The rest
of the code you can leave as is.

Choosing k is a bit tricky in this case. Most people would consider there to be only
two classes (the two sides of the White House) and then some junk images. With k = 2,
you get something like Figure 6.9, with one large cluster of images of one side and the
other cluster containing the other side plus all the junk images. Picking a larger value
of k like k = 10 gives several clusters with only one image (hopefully the junk images)
and some real clusters. An example run is shown in Figure 6.10. In this case there
were only two actual clusters, each containing images of one side of the White House.

There are many different versions and alternatives to the algorithm presented here.
Each of them with its own idea of how to construct the matrix L and what to do with
the eigenvectors. For further reading on spectral clustering and the details of some
common algorithms see for example the review paper [37].

Exercises

1. Hierarchical k-means is a clustering method that applies k-means recursively to
the clusters to create a tree of incrementally refined clusters. In this case, each
node in the tree will branch to k child nodes. Implement this and try it on the
font images.

2. Using the hierarchical k-means from the previous exercise, make a tree visu-
alization (similar to the dendrogram for hierarchical clustering) that shows the
average image for each cluster node. Tip: you can take the average PCA coef-
ficients feature vector and use the PCA basis to synthesize an image for each
feature vector.

3. By modifying the class used for hierarchical clustering to include the number of
images below the node you have a simple and fast way of finding similar (tight)

6.3. Spectral Clustering 181

Figure 6.9: Spectral clustering of geotagged images of the White House with k = 2

and the similarity scores as the number of matching local descriptors.

182 6.3. Spectral Clustering

Figure 6.10: Spectral clustering of geotagged images of the White House with k =

10 and the similarity scores as the number of matching local descriptors. Only the
clusters with more than one image shown.

groups of a given size. Implement this small change and try it out on some real
data. How does it perform?

4. Experiment with using single and complete linking for building the hierarchical
cluster tree. How do the resulting clusters differ?

5. In some spectral clustering algorithms the matrix D�1S is used instead of L. Try
replacing the Laplacian matrix with this and apply this on a few different data
sets.

6. Download some image collections from Flickr searches with different tags. Ex-
tract the RGB histogram like you did for the sunset images. Cluster the images
using one of the methods from this chapter. Can you separate the classes with
the clusters?

6.3. Spectral Clustering 183

Chapter 7

Searching Images

This chapter shows how to use text mining techniques to search for images based
on their visual content. The basic ideas of using visual words are presented and the
details of a complete setup are explained and tested on an example image data set.

7.1 Content-based Image Retrieval

Content-based image retrieval (CBIR) deals with the problem of retrieving visually
similar images from a (large) database of images. This can be images with similar
color, similar textures or similar objects or scenes, basically any information contained
in the images themselves.

For high-level queries, like finding similar objects, it is not feasible to do a full com-
parison (for example using feature matching) between a query image and all images in
the database. It would simply take too much time to return any results if the database
is large. In the last couple of years, researchers have successfully introduced tech-
niques from the world of text mining for CBIR problems making it possible to search
millions of images for similar content.

Inspiration from text mining - the vector space model

The vector space model is a model for representing and searching text documents. As
we will see, it can be applied to essentially any kind of objects, including images. The
name comes from the fact that text documents are represented with vectors that are
histograms of the word frequencies in the text1. In other words, the vector will contain
the number of occurrences of every word (at the position corresponding to that word)

1Often you see "term" used instead of "word", the meaning is the same.

185

and zeros everywhere else. This model is also called a bag-of-word representation
since order and location of words is ignored.

Documents are indexed by doing a word count to construct the document his-
togram vector v, usually with common words like "the", "and", "is" etc. ignored. These
common words are called stop words. To compensate for document length, the vec-
tors can be normalized to unit length by dividing with the total histogram sum. The
individual components of the histogram vector are usually weighted according to the
importance of each word. Usually, the importance of a word increases proportional
to how often it appears in the document but decreases if the word is common in all
documents in a data set (or "corpus").

The most common weighting is tf-idf weighting (term frequency - inverse document
frequency) where the term frequency of a word w in document d, is

tf

w,d

=

n
wP
j

n
j

,

where n
w

is the number of occurrences of w in d. To normalize, this is divided by the
total number of occurrences of all words in the document.

The inverse document frequency is

idf

w,d

= log

|D|
|{d : w 2 d}| ,

where |D| is the number of documents in the corpus D and the denominator the num-
ber of documents d in D containing w. Multiplying the two gives the tf-idf weight which
is then the elements in v. You can read more about tf-idf at http://en.wikipedia.
org/wiki/Tf-idf.

This is really all we need at the moment. Let’s see how to carry this model over to
indexing and searching images based on their visual content.

7.2 Visual Words

To apply text mining techniques to images, we first need to create the visual equiva-
lent of words. This is usually done using local descriptors like the SIFT descriptor in
Section 2.2. The idea is to quantize the descriptor space into a number of typical exam-
ples and assign each descriptor in the image to one of those examples. These typical
examples are determined by analyzing a training set of images and can be considered
as visual words and the set of all words is then a visual vocabulary (sometimes called
a visual codebook). This vocabulary can be created specifically for a given problem or
type of images or just try to represent visual content in general.

186 7.2. Visual Words

http://en.wikipedia.org/wiki/Tf-idf
http://en.wikipedia.org/wiki/Tf-idf

The visual words are constructed using some clustering algorithm applied to the
feature descriptors extracted from a (large) training set of images. The most common
choice is k-means2, which is what we will use here. Visual words are nothing but a
collection of vectors in the given feature descriptor space, in the case of k-means they
are the cluster centroids. Representing an image with a histogram of visual words is
then called a bag of visual words model.

Let’s introduce an example data set and use that to illustrate the concept. The file
first1000.zip contains the first 1000 images from the University of Kentucky object
recognition benchmark set (also known as "ukbench"). The full set, reported bench-
marks and some supporting code can be found at http://www.vis.uky.edu/~stewe/
ukbench/. The ukbench set contains many sets of four images, each of the same scene
or object (stored consecutively so that 0 . . . 3, 4 . . . 7, etc. belong together). Figure 7.1
shows some examples from the data set. The appendix has the details on the set and
how to get the data.

Creating a vocabulary

To create a vocabulary of visual words we first need to extract descriptors. Here we
will use the SIFT descriptor. Running the following lines of code, with imlist, as usual,
containing the filenames of the images,

nbr_images = len(imlist)
featlist = [imlist[i][:-3]+’sift’ for i in range(nbr_images)]

for i in range(nbr_images):
sift.process_image(imlist[i],featlist[i])

will give you descriptor files for each image. Create a file vocabulary.py and add the
following code for a vocabulary class and a method for training a vocabulary on some
training image data.

from scipy.cluster.vq import *
import vlfeat as sift

class Vocabulary(object):

def __init__(self,name):
self.name = name
self.voc = []
self.idf = []
self.trainingdata = []

2Or in the more advanced cases hierarchical k-means.

7.2. Visual Words 187

http://www.vis.uky.edu/~stewe/ukbench/
http://www.vis.uky.edu/~stewe/ukbench/

Figure 7.1: Some examples of images from the ukbench (University of Kentucky object
recognition benchmark) data set.

188 7.2. Visual Words

self.nbr_words = 0

def train(self,featurefiles,k=100,subsampling=10):
""" Train a vocabulary from features in files listed
in featurefiles using k-means with k number of words.
Subsampling of training data can be used for speedup. """

nbr_images = len(featurefiles)
read the features from file
descr = []
descr.append(sift.read_features_from_file(featurefiles[0])[1])
descriptors = descr[0] #stack all features for k-means
for i in arange(1,nbr_images):
descr.append(sift.read_features_from_file(featurefiles[i])[1])
descriptors = vstack((descriptors,descr[i]))

k-means: last number determines number of runs
self.voc,distortion = kmeans(descriptors[::subsampling,:],k,1)
self.nbr_words = self.voc.shape[0]

go through all training images and project on vocabulary
imwords = zeros((nbr_images,self.nbr_words))
for i in range(nbr_images):
imwords[i] = self.project(descr[i])

nbr_occurences = sum((imwords > 0)*1 ,axis=0)

self.idf = log((1.0*nbr_images) / (1.0*nbr_occurences+1))
self.trainingdata = featurefiles

def project(self,descriptors):
""" Project descriptors on the vocabulary
to create a histogram of words. """

histogram of image words
imhist = zeros((self.nbr_words))
words,distance = vq(descriptors,self.voc)
for w in words:
imhist[w] += 1

return imhist

The class Vocabulary contains a vector of word cluster centers voc together with the
idf values for each word. To train the vocabulary on some set of images, the method
train() takes a list of .sift descriptor files and k, the desired number of words for the

7.2. Visual Words 189

vocabulary. There is also an option of subsampling the training data for the k-means
step which (will take a long time if too many features are used).

With the images and the feature files in a folder on your computer, the following
code will create a vocabulary of length k ⇡ 1000 (again assuming that imlist contains
a list of filenames for the images).

import pickle
import vocabulary

nbr_images = len(imlist)
featlist = [imlist[i][:-3]+’sift’ for i in range(nbr_images)]

voc = vocabulary.Vocabulary(’ukbenchtest’)
voc.train(featlist,1000,10)

saving vocabulary
with open(’vocabulary.pkl’, ’wb’) as f:
pickle.dump(voc,f)

print ’vocabulary is:’, voc.name, voc.nbr_words

The last part also saves the entire vocabulary object for later use using the pickle

module.

7.3 Indexing Images

Setting up the database

To start indexing images we first need to set up a database. Indexing images in
this context means extracting descriptors from the images, converting them to vi-
sual words using a vocabulary and storing the visual words and word histograms with
information about which image they belong to. This will make it possible to query the
database using an image and get the most similar images back as search result.

Here we will use SQLite as database. SQLite is a database which stores everything
in a single file and is very easy to set up and use. We are using it here since it is
the easiest way to get started without having to go into database and server config-
urations and other details way outside the scope of this book. The Python version,
pysqlite, is available from http://code.google.com/p/pysqlite/ (and also through
many package repositories on Mac and Linux). SQLite uses the SQL query language
so the transition should be easy if you want to use another database.

To get started we need to create tables and indexes and an indexer class to write
image data to the database. First, create a file imagesearch.py and add the following
code:

190 7.3. Indexing Images

http://code.google.com/p/pysqlite/

imlist

rowid
filename

imwords

imid
wordid
vocname

imhistograms

imid
histogram
vocname

Table 7.1: A simple database schema for storing images and visual words.

import pickle
from pysqlite2 import dbapi2 as sqlite

class Indexer(object):

def __init__(self,db,voc):
""" Initialize with the name of the database
and a vocabulary object. """

self.con = sqlite.connect(db)
self.voc = voc

def __del__(self):
self.con.close()

def db_commit(self):
self.con.commit()

First of all, we need pickle for encoding and decoding these arrays to and from
strings. SQLite is imported from the pysqlite2 module (see appendix for installa-
tion details). The Indexer class connects to to a database and stores a vocabulary
object upon creation (where the __init__() method is called). The __del__() method
makes sure to close the database connection and db_commit() writes the changes to
the database file.

We only need a very simple database schema of three tables. The table imlist

contains the filenames of all indexed images, imwords contains a word index of the
words, which vocabulary was used, and which images the words appear in. Finally,
imhistograms contains the full word histograms for each image. We need those to
compare images according to our vector space model. The schema is shown in Ta-
ble 7.1.

The following method for the Indexer class creates the tables and some useful
indexes to make searching faster.

7.3. Indexing Images 191

def create_tables(self):
""" Create the database tables. """

self.con.execute(’create table imlist(filename)’)
self.con.execute(’create table imwords(imid,wordid,vocname)’)
self.con.execute(’create table imhistograms(imid,histogram,vocname)’)
self.con.execute(’create index im_idx on imlist(filename)’)
self.con.execute(’create index wordid_idx on imwords(wordid)’)
self.con.execute(’create index imid_idx on imwords(imid)’)
self.con.execute(’create index imidhist_idx on imhistograms(imid)’)
self.db_commit()

Adding images

With the database tables in place, we can start adding images to the index. To do
this, we need a method add_to_index() for our Indexer class. Add this method to
imagesearch.py.

def add_to_index(self,imname,descr):
""" Take an image with feature descriptors,
project on vocabulary and add to database. """

if self.is_indexed(imname): return
print ’indexing’, imname

get the imid
imid = self.get_id(imname)

get the words
imwords = self.voc.project(descr)
nbr_words = imwords.shape[0]

link each word to image
for i in range(nbr_words):
word = imwords[i]
wordid is the word number itself
self.con.execute("insert into imwords(imid,wordid,vocname)

values (?,?,?)", (imid,word,self.voc.name))

store word histogram for image
use pickle to encode NumPy arrays as strings
self.con.execute("insert into imhistograms(imid,histogram,vocname)

values (?,?,?)", (imid,pickle.dumps(imwords),self.voc.name))

This method takes the image filename and a NumPy array with the descriptors found in
the image. The descriptors are projected on the vocabulary and inserted in imwords

192 7.3. Indexing Images

(word by word) and imhistograms. We used two helper functions, is_indexed() which
checks if the image has been indexed already, and get_id() which gives the image id
for an image filename. Add these to imagesearch.py.

def is_indexed(self,imname):
""" Returns True if imname has been indexed. """

im = self.con.execute("select rowid from imlist where
filename=’%s’" % imname).fetchone()

return im != None

def get_id(self,imname):
""" Get an entry id and add if not present. """

cur = self.con.execute(
"select rowid from imlist where filename=’%s’" % imname)
res=cur.fetchone()
if res==None:
cur = self.con.execute(
"insert into imlist(filename) values (’%s’)" % imname)
return cur.lastrowid

else:
return res[0]

Did you notice that we used pickle in add_to_index()? Databases like SQLite do
not have a standard type for storing objects or arrays. Instead, we can create a string
representation using Pickle’s dumps() function and write the string to the database.
Consequently, we need to un-pickle the string when reading from the database. More
on that in the next section.

The following code example will go through the ukbench sample images and add
them to our index. Here we assume that the lists imlist and featlist contain the file-
names of the images and the descriptor files and that the vocabulary you trained ear-
lier was pickled to a file vocabulary.pkl.

import pickle
import sift
import imagesearch

nbr_images = len(imlist)

load vocabulary
with open(’vocabulary.pkl’, ’rb’) as f:
voc = pickle.load(f)

create indexer
indx = imagesearch.Indexer(’test.db’,voc)

7.3. Indexing Images 193

indx.create_tables()

go through all images, project features on vocabulary and insert
for i in range(nbr_images)[:100]:
locs,descr = sift.read_features_from_file(featlist[i])
indx.add_to_index(imlist[i],descr)

commit to database
indx.db_commit()

We can now inspect the contents of our database:

from pysqlite2 import dbapi2 as sqlite
con = sqlite.connect(’test.db’)
print con.execute(’select count (filename) from imlist’).fetchone()
(1000,)
print con.execute(’select * from imlist’).fetchone()
(u’ukbench00000.jpg’,)

If you try fetchall() instead of fetchone() in the last line you will get a long list of all
the filenames.

7.4 Searching the Database for Images

With a set of images indexed we can search the database for similar images. Here
we have used a bag-of-word representation for the whole image but the procedure
explained here is generic and can be used to find similar objects, similar faces, similar
colors etc. It all depends on the images and descriptors used.

To handle searches we introduce a Searcher class to imagesearch.py.

class Searcher(object):

def __init__(self,db,voc):
""" Initialize with the name of the database. """
self.con = sqlite.connect(db)
self.voc = voc

def __del__(self):
self.con.close()

A new Searcher object connects to the database and closes the connection upon dele-
tion, same as for the Indexer class before.

If the number of images is large, it is not feasible to do a full histogram comparison
across all images in the database. We need a way to find a reasonably sized set of

194 7.4. Searching the Database for Images

candidates (where "reasonable" can be determined by search response time, memory
requirements etc.). This is where the word index comes into play. Using the index we
can get a set of candidates and then do the full comparison against that set.

Using the index to get candidates

We can use our index to find all images that contain a particular word. This is just
a simple query to the database. Add candidates_from_word() as a method for the
Searcher class.

def candidates_from_word(self,imword):
""" Get list of images containing imword. """

im_ids = self.con.execute(
"select distinct imid from imwords where wordid=%d" % imword).fetchall()

return [i[0] for i in im_ids]

This gives the image ids for all images containing the word. To get candidates for more
than one word, for example all the nonzero entries in a word histogram, we can loop
over each word, get images with that word and aggregate the lists3. Here we should
also keep track of how many times each image id appears in the aggregate list since
this shows how many words that matches the ones in the word histogram. This can be
done with the following Searcher method:

def candidates_from_histogram(self,imwords):
""" Get list of images with similar words. """

get the word ids
words = imwords.nonzero()[0]

find candidates
candidates = []
for word in words:
c = self.candidates_from_word(word)
candidates+=c

take all unique words and reverse sort on occurrence
tmp = [(w,candidates.count(w)) for w in set(candidates)]
tmp.sort(cmp=lambda x,y:cmp(x[1],y[1]))
tmp.reverse()

return sorted list, best matches first
return [w[0] for w in tmp]

3If you don’t want to use all words, try ranking them according to their idf weight and use the ones
with highest weights.

7.4. Searching the Database for Images 195

This method creates a list of word ids from the nonzero entries in a word histogram
of an image. Candidates for each word are retrieved and aggregated in the list candi-
dates. Then we create a list of tuples (word id, count) with the number of occurrences
of each word in the candidate list and sort this list (in place for efficiency) using sort()

with a custom comparison function that compares the second element in the tuple.
The comparison function is declared inline using lambda functions, convenient one-
line function declarations. The result is returned as a list of image ids with the best
matching image first.

Consider the example

src = imagesearch.Searcher(’test.db’)
locs,descr = sift.read_features_from_file(featlist[0])
iw = voc.project(descr)

print ’ask using a histogram...’
print src.candidates_from_histogram(iw)[:10]

which prints the first 10 lookups from the index and gives the output (this will vary
depending on your vocabulary):

ask using a histogram...
[655, 656, 654, 44, 9, 653, 42, 43, 41, 12]

None of the top 10 candidates are correct. Don’t worry, we can now take any number
of elements from this list and compare histograms. As you will see, this improves
things considerably.

Querying with an image

There is not much more needed to do a full search using an image as query. To do
word histogram comparisons a Searcher object needs to be able to read the image
word histograms from the database. Add this method to the Searcher class.

def get_imhistogram(self,imname):
""" Return the word histogram for an image. """

im_id = self.con.execute(
"select rowid from imlist where filename=’%s’" % imname).fetchone()

s = self.con.execute(
"select histogram from imhistograms where rowid=’%d’" % im_id).fetchone()

use pickle to decode NumPy arrays from string
return pickle.loads(str(s[0]))

Again we use pickle to convert between string and NumPy arrays, this time with loads().
Now we can combine everything into a query method:

196 7.4. Searching the Database for Images

def query(self,imname):
""" Find a list of matching images for imname"""

h = self.get_imhistogram(imname)
candidates = self.candidates_from_histogram(h)

matchscores = []
for imid in candidates:

get the name
cand_name = self.con.execute(

"select filename from imlist where rowid=%d" % imid).fetchone()
cand_h = self.get_imhistogram(cand_name)
cand_dist = sqrt(sum((h-cand_h)**2)) #use L2 distance
matchscores.append((cand_dist,imid))

return a sorted list of distances and database ids
matchscores.sort()
return matchscores

This Searcher method takes the filename of an image, retrieves the word histogram
and a list of candidates (which should be limited to some maximum number if you
have a large data set). For each candidate, we compare histograms using standard
Euclidean distance and return a sorted list of tuples containing distance and image id.

Let’s try a query for the same image as in the previous section:

src = imagesearch.Searcher(’test.db’)
print ’try a query...’
print src.query(imlist[0])[:10]

This will again print the top 10 results, including the distance, and should look some-
thing like this:
try a query...
[(0.0, 1), (100.03999200319841, 2), (105.45141061171255, 3), (129.47200469599596, 708),
(129.73819792181484, 707), (132.68006632497588, 4), (139.89639023220005, 10),
(142.31654858097141, 706), (148.1924424523734, 716), (148.22955170950223, 663)]

Much better. The image has distance zero to itself and two out of the three images of
the same scene are on the first two positions. The third image coming in on position
five.

Benchmarking and plotting the results

To get a feel for how good the search results are, we can compute the number of
correct images on the top four positions. This is the measure used to report perfor-
mance for the ukbench image set. Here’s a function that computes this score. Add it
to imagesearch.py and you can start optimizing your queries.

7.4. Searching the Database for Images 197

def compute_ukbench_score(src,imlist):
""" Returns the average number of correct

images on the top four results of queries."""

nbr_images = len(imlist)
pos = zeros((nbr_images,4))
get first four results for each image
for i in range(nbr_images):

pos[i] = [w[1]-1 for w in src.query(imlist[i])[:4]]

compute score and return average
score = array([(pos[i]//4)==(i//4) for i in range(nbr_images)])*1.0
return sum(score) / (nbr_images)

This function gets the top four results and subtracts one from the index returned by
query() since the database index starts at one and the list of images at zero. Then we
compute the score using integer division, using the fact that the correct images are
consecutive in groups of four. A perfect result gives a score of 4, nothing right gives
a score of 0 and only retrieving the identical images gives a score of 1. Finding the
identical image together with two of the three other images gives a score of 3.

Try it out like this:

imagesearch.compute_ukbench_score(src,imlist)

or if you don’t want to wait (it will take some time to do 1000 queries), just use a
subset of the images

imagesearch.compute_ukbench_score(src,imlist[:100])

We can consider a score close to 3 as pretty good in this case. The state-of-the-art
results reported on the ukbench website are just over 3 (note that they are using more
images and your score will decrease with a larger set).

Finally, a function for showing the actual search results will be useful. Add this
function,

def plot_results(src,res):
""" Show images in result list ’res’."""

figure()
nbr_results = len(res)
for i in range(nbr_results):

imname = src.get_filename(res[i])
subplot(1,nbr_results,i+1)
imshow(array(Image.open(imname)))
axis(’off’)

show()

198 7.4. Searching the Database for Images

which can be called with any number of search results in the list res. For example like
this:

nbr_results = 6
res = [w[1] for w in src.query(imlist[0])[:nbr_results]]
imagesearch.plot_results(src,res)

The helper function

def get_filename(self,imid):
""" Return the filename for an image id"""

s = self.con.execute(
"select filename from imlist where rowid=’%d’" % imid).fetchone()

return s[0]

translates image id to filenames which we need for loading the images when plotting.
Some example queries on our data set are shown using plot_results() in Figure 7.2.

7.5 Ranking Results using Geometry

Let’s briefly look at a common way of improving results obtained using a bag of visual
words model. One of the drawbacks if the model is that the visual words representa-
tion of an image does not contain the positions of the image features. This was the
price paid to get speed and scalability.

One way to have the feature points improve results is to re-rank the top results
using some criteria that takes the features geometric relationships into account. The
most common approach is to fit homographies between the feature locations in the
query image and the top result images.

To make this efficient the feature locations can be stored in the database and cor-
respondences determined by the word id of the features (this only works if the vocab-
ulary is large enough so that the word id matches contain mostly correct matches).
This would require a major rewrite of our database and code above and complicate
the presentation. To illustrate we will just reload the features for the top images and
match them.

Here is what a complete example of loading all the model files and re-ranking the
top results using homographies looks like.

import pickle
import sift
import imagesearch
import homography

load image list and vocabulary

7.5. Ranking Results using Geometry 199

Figure 7.2: Some example search results on the ukbench data set. The query image is
shown on the far left followed by the top five retrieved images.

200 7.5. Ranking Results using Geometry

with open(’ukbench_imlist.pkl’,’rb’) as f:
imlist = pickle.load(f)
featlist = pickle.load(f)

nbr_images = len(imlist)

with open(’vocabulary.pkl’, ’rb’) as f:
voc = pickle.load(f)

src = imagesearch.Searcher(’test.db’,voc)

index of query image and number of results to return
q_ind = 50
nbr_results = 20

regular query
res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]]
print ’top matches (regular):’, res_reg

load image features for query image
q_locs,q_descr = sift.read_features_from_file(featlist[q_ind])
fp = homography.make_homog(q_locs[:,:2].T)

RANSAC model for homography fitting
model = homography.RansacModel()

rank = {}
load image features for result
for ndx in res_reg[1:]:
locs,descr = sift.read_features_from_file(featlist[ndx])

get matches
matches = sift.match(q_descr,descr)
ind = matches.nonzero()[0]
ind2 = matches[ind]
tp = homography.make_homog(locs[:,:2].T)

compute homography, count inliers. if not enough matches return empty list
try:
H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4)

except:
inliers = []

store inlier count
rank[ndx] = len(inliers)

7.5. Ranking Results using Geometry 201

sort dictionary to get the most inliers first
sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]]+[s[0] for s in sorted_rank]
print ’top matches (homography):’, res_geom

plot the top results
imagesearch.plot_results(src,res_reg[:8])
imagesearch.plot_results(src,res_geom[:8])

First the image list, feature list (containing the filenames of the images and SIFT
feature files respectively) and the vocabulary is loaded. Then a Searcher object is
created and a regular query is performed and stored in the list res_reg. The features
for the query image are loaded. Then for each image in the result list, the features
are loaded and matched against the query image. Homographies are computed from
the matches and the number of inliers counted. If the homography fitting fails we set
the inlier list to an empty list. Finally we sort the dictionary rank that contains image
index and inlier count according to decreasing number of inliers. The result lists are
printed to the console and the top images visualized.

The output looks like this:

top matches (regular): [39, 22, 74, 82, 50, 37, 38, 17, 29, 68, 52, 91, 15, 90, 31, ...]
top matches (homography): [39, 38, 37, 45, 67, 68, 74, 82, 15, 17, 50, 52, 85, 22, 87, ...]

Figure 7.3 shows some sample results with the regular and re-ranked top images.

7.6 Building Demos and Web Applications

In this last section on searching we’ll take a look at a simple way of building demos and
web applications with Python. By making demos as web pages, you automatically get
cross platform support and an easy way to show and share your project with minimal
requirements. In the sections below we will go through an example of a simple image
search engine.

Creating web applications with CherryPy

To build these demos we will use the CherryPy package, available at http://www.
cherrypy.org/. CherryPy is a pure Python lightweight web server that uses an object
oriented model. See the appendix for more details on how to install and configure
CherryPy. Assuming that you have studied the tutorial examples enough to have an
initial idea of how CherryPy works, let’s build an image search web demo on top of the
image searcher you created earlier in this chapter.

202 7.6. Building Demos and Web Applications

http://www.cherrypy.org/
http://www.cherrypy.org/

Figure 7.3: Some example search results with re-ranking based on geometric consis-
tency using homographies. For each example, the top row is the regular result and
the bottom row the re-ranked result.

7.6. Building Demos and Web Applications 203

Image search demo

First we need to initialize with a few html tags and load the data using Pickle. We need
the vocabulary for the Searcher object that interfaces with the database. Create a file
searchdemo.py and add the following class with two methods.

import cherrypy, os, urllib, pickle
import imagesearch

class SearchDemo(object):

def __init__(self):
load list of images
with open(’webimlist.txt’) as f:
self.imlist = f.readlines()

self.nbr_images = len(self.imlist)
self.ndx = range(self.nbr_images)

load vocabulary
with open(’vocabulary.pkl’, ’rb’) as f:
self.voc = pickle.load(f)

set max number of results to show
self.maxres = 15

header and footer html
self.header = """
<!doctype html>
<head>
<title>Image search example</title>
</head>
<body>
"""

self.footer = """
</body>
</html>
"""

def index(self,query=None):
self.src = imagesearch.Searcher(’web.db’,self.voc)

html = self.header
html += """

Click an image to search. Random selection of images.

"""

204 7.6. Building Demos and Web Applications

if query:
query the database and get top images
res = self.src.query(query)[:self.maxres]
for dist,ndx in res:
imname = self.src.get_filename(ndx)
html += ""
html += ""
html += ""

else:
show random selection if no query
random.shuffle(self.ndx)
for i in self.ndx[:self.maxres]:
imname = self.imlist[i]
html += ""
html += ""
html += ""

html += self.footer
return html

index.exposed = True

cherrypy.quickstart(SearchDemo(), ’/’,
config=os.path.join(os.path.dirname(__file__), ’service.conf’))

As you can see, this simple demo consists of a single class with one method for ini-
tialization and one for the "index" page (the only page in this case). Methods are
automatically mapped to URLs and arguments to the methods can be passed directly
in the URL. The index method has a query parameter which in this case is the query
image to sort the others agains. If it is empty, a random selection of images is shown
instead. The line

index.exposed = True

makes the index URL accessible and the last line starts the CherryPy web server with
configurations read from service.conf. Our configuration file for this example has the
following lines

[global]
server.socket_host = "127.0.0.1"
server.socket_port = 8080
server.thread_pool = 50
tools.sessions.on = True

[/]
tools.staticdir.root = "tmp/"
tools.staticdir.on = True
tools.staticdir.dir = ""

7.6. Building Demos and Web Applications 205

The first part specifies which IP address and port to use. The second part enables a
local folder for reading (in this case "tmp/"). This should be set to the folder containing
your images.

Note: Don’t put anything secret in that folder if you plan to show this to people. The
content of the folder will be accessible through CherryPy.

Start you web server with

$ python searchdemo.py

from the command line. Opening your browser and pointing it at the right URL (in this
case http://127.0.0.1:8080/) should show the initial screen with a random selection
of images. This should look like Figure 7.4a. Clicking an image starts a query and
shows the top results. Clicking an image in the results starts a new query with that
image, and so on. There is a link to get back to the starting state of a random selection
(by passing an empty query). Some examples are shown in Figure 7.4.

This example shows a full integration from webpage to database queries and pre-
sentation of results. Naturally, we kept the styling and options to a minimum and there
are many possibilities for improvement. For example, adding a stylesheet to make it
prettier or upload files to use as queries.

Exercises

1. Try to speed up queries by only using part of the words in the query image to
construct the list of candidates. Use the idf weight as a criteria for which words
to use.

2. Implement a visual stop word list of the most common visual words in your vo-
cabulary (say the top 10%) and ignore these words. How does this change the
search quality?

3. Visualize a visual word by saving all image features that are mapped to a given
word id. Crop image patches around the feature locations (at the given scale)
and plot them in a figure. Do the patches for a given word look the same?

4. Experiment with using different distance measures and weighting in the query()

method. Use the score from compute_ukbench_score() to measure your progress.

5. Throughout this chapter we only used SIFT features in our vocabulary. This
completely disregards the color information as you can see in the example results

206 7.6. Building Demos and Web Applications

http://127.0.0.1:8080/

Figure 7.4: Some example search results on the ukbench data set. (top) The starting
page which shows a random selection of the images. (bottom) Sample queries. The
query image is shown on the top left corner followed by the top image results shown
row-wise.

7.6. Building Demos and Web Applications 207

in Figure 7.2. Try to add color descriptors and see if you can improve the search
results.

6. For large vocabularies using arrays to represent the visual word frequencies is
inefficient since most of the entries will be zero (think of the case with a few hun-
dred thousand words and images with typically a thousand features). One way
to overcome this inefficiency is to use dictionaries as sparse array representa-
tions. Replace the arrays with a sparse class of your own and add the necessary
methods. Alternatively, try to use the scipy.sparse module.

7. As you try to increase the size of the vocabulary the clustering time will take too
long and the projection of features to words also becomes slower. Implement a
hierarchical vocabulary using hierarchical k-mean clustering and see how this
improves scaling. See the paper [23] for details and inspiration.

208 7.6. Building Demos and Web Applications

Chapter 8

Classifying Image Content

This chapter introduces algorithms for classifying images and image content. We look
at some simple but effective methods as well as state of the art classifiers and apply
them to two-class and multi-class problems. We show examples with applications in
gesture recognition and object recognition.

8.1 K-Nearest Neighbors

One of the simplest and most used methods for classification is the k-nearest neigh-
bor classifier (kNN). The algorithm simply compares an object (for example a feature
vector) to be classified with all objects in a training set with known class labels and
lets the k nearest vote for which class to assign. This method often performs well
but has a number of drawbacks. Same as with the k-means clustering algorithm, the
number k needs to be chosen and the value will affect performance. Furthermore, the
method requires the entire training set to be stored and if this set is large it will be
slow to search. For large training sets some form of binning is usually used to reduce
the number of comparisons needed1. On the positive side, there are no restrictions on
what distance measure to use, practically anything you can think of will work (which
is not the same as saying that it will perform well). The algorithm is also trivially
parallelizable.

Implementing kNN in a basic form is pretty straightforward. Given a set of training
examples and a list of associated labels, the code below does the job. The training
examples and labels can be rows in an array or just in a list. They can be numbers,
strings, whatever you like. Add this class to a file called knn.py.

class KnnClassifier(object):

1Another option is to only keep a selected subset of the training set. This can however impact accuracy.

209

def __init__(self,labels,samples):
""" Initialize classifier with training data. """

self.labels = labels
self.samples = samples

def classify(self,point,k=3):
""" Classify a point against k nearest
in the training data, return label. """

compute distance to all training points
dist = array([L2dist(point,s) for s in self.samples])

sort them
ndx = dist.argsort()

use dictionary to store the k nearest
votes = {}
for i in range(k):
label = self.labels[ndx[i]]
votes.setdefault(label,0)
votes[label] += 1

return max(votes)

def L2dist(p1,p2):
return sqrt(sum((p1-p2)**2))

It is easiest to define a class and initialize with the training data. That way we don’t
have to store and pass the training data as arguments every time we want to classify
something. Using a dictionary for storing the k nearest labels makes it possible to
have labels as text strings or numbers. In this example we used the Euclidean (L2)
distance measure, if you have other measures, just add them as functions.

A simple 2D example

Let’s first create some simple 2D example data sets to illustrate and visualize how this
classifier works. The following script will create two different 2D point sets, each with
two classes, and save the data using Pickle.

from numpy.random import randn
import pickle

create sample data of 2D points

210 8.1. K-Nearest Neighbors

n = 200

two normal distributions
class_1 = 0.6 * randn(n,2)
class_2 = 1.2 * randn(n,2) + array([5,1])
labels = hstack((ones(n),-ones(n)))

save with Pickle
with open(’points_normal.pkl’, ’w’) as f:
pickle.dump(class_1,f)
pickle.dump(class_2,f)
pickle.dump(labels,f)

normal distribution and ring around it
class_1 = 0.6 * randn(n,2)
r = 0.8 * randn(n,1) + 5
angle = 2*pi * randn(n,1)
class_2 = hstack((r*cos(angle),r*sin(angle)))
labels = hstack((ones(n),-ones(n)))

save with Pickle
with open(’points_ring.pkl’, ’w’) as f:
pickle.dump(class_1,f)
pickle.dump(class_2,f)
pickle.dump(labels,f)

Run the script twice with different filenames, for example points_normal_test.pkl and
points_ring_test.pkl the second time. You will now have four files with 2D data sets,
two files for each of the distributions. We can use one for training and the other for
testing.

Let’s see how to do that with the kNN classifier. Create a script with the following
commands.

import pickle
import knn
import imtools

load 2D points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

model = knn.KnnClassifier(labels,vstack((class_1,class_2)))

8.1. K-Nearest Neighbors 211

This will create a kNN classifier model using the data in the Pickle file. Now add the
following:

load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

test on the first point
print model.classify(class_1[0])

This loads the other data set (the test set) and prints the estimated class label of the
first point to your console.

To visualize the classification of all the test points and show how well the classifier
separates the two classes we can add these lines.

define function for plotting
def classify(x,y,model=model):
return array([model.classify([xx,yy]) for (xx,yy) in zip(x,y)])

plot the classification boundary
imtools.plot_2D_boundary([-6,6,-6,6],[class_1,class_2],classify,[1,-1])
show()

Here we created a small helper function that takes arrays of 2D coordinates x and y
and the classifier and returns an array of estimated class labels. Now we can pass this
function as an argument to the actual plotting function. Add the following function to
your file imtools.

def plot_2D_boundary(plot_range,points,decisionfcn,labels,values=[0]):
""" Plot_range is (xmin,xmax,ymin,ymax), points is a list
of class points, decisionfcn is a funtion to evaluate,
labels is a list of labels that decisionfcn returns for each class,
values is a list of decision contours to show. """

clist = [’b’,’r’,’g’,’k’,’m’,’y’] # colors for the classes

evaluate on a grid and plot contour of decision function
x = arange(plot_range[0],plot_range[1],.1)
y = arange(plot_range[2],plot_range[3],.1)
xx,yy = meshgrid(x,y)
xxx,yyy = xx.flatten(),yy.flatten() # lists of x,y in grid
zz = array(decisionfcn(xxx,yyy))
zz = zz.reshape(xx.shape)
plot contour(s) at values
contour(xx,yy,zz,values)

212 8.1. K-Nearest Neighbors

Figure 8.1: Classifying 2D data using a k nearest neighbor classifier. For each example
the color shows the class label (blue and red). Correctly classified points are shown
with stars and misclassified points with circles. The curve is the classifier decision
boundary.

for each class, plot the points with ’*’ for correct, ’o’ for incorrect
for i in range(len(points)):
d = decisionfcn(points[i][:,0],points[i][:,1])
correct_ndx = labels[i]==d
incorrect_ndx = labels[i]!=d
plot(points[i][correct_ndx,0],points[i][correct_ndx,1],’*’,color=clist[i])
plot(points[i][incorrect_ndx,0],points[i][incorrect_ndx,1],’o’,color=clist[i])

axis(’equal’)

This function takes a decision function (the classifier) and evaluates it on a grid using
meshgrid(). The contours of the decision function can be plotted to show where the
boundaries are. The default is the zero contour. The resulting plots look like the ones
in Figure 8.1. As you can see the kNN decision boundary can adapt to the distribution
of the classes without any explicit modeling.

Dense SIFT as image feature

Let’s look at classifying some images. To do so we need a feature vector for the image.
We saw feature vectors with average RGB and PCA coefficients as examples in the
clustering chapter. Here we will introduce another representation, the dense SIFT
feature vector.

A dense SIFT representation is created by applying the descriptor part of SIFT

8.1. K-Nearest Neighbors 213

to a regular grid across the whole image2. We can use the same executables as in
Section 2.2 and get dense SIFT features by adding some extra parameters. Create a
file dsift.py as a place-holder for the dense SIFT computation and add the following
function:

import sift

def process_image_dsift(imagename,resultname,size=20,steps=10,
force_orientation=False,resize=None):

""" Process an image with densely sampled SIFT descriptors
and save the results in a file. Optional input: size of features,
steps between locations, forcing computation of descriptor orientation
(False means all are oriented upwards), tuple for resizing the image."""

im = Image.open(imagename).convert(’L’)
if resize!=None:
im = im.resize(resize)

m,n = im.size

if imagename[-3:] != ’pgm’:
create a pgm file
im.save(’tmp.pgm’)
imagename = ’tmp.pgm’

create frames and save to temporary file
scale = size/3.0
x,y = meshgrid(range(steps,m,steps),range(steps,n,steps))
xx,yy = x.flatten(),y.flatten()
frame = array([xx,yy,scale*ones(xx.shape[0]),zeros(xx.shape[0])])
savetxt(’tmp.frame’,frame.T,fmt=’%03.3f’)

if force_orientation:
cmmd = str("sift "+imagename+" --output="+resultname+

" --read-frames=tmp.frame --orientations")
else:
cmmd = str("sift "+imagename+" --output="+resultname+

" --read-frames=tmp.frame")
os.system(cmmd)
print ’processed’, imagename, ’to’, resultname

Compare this to the function process_image() in Section 2.2. We use the function
savetxt() to store the frame array in a text file for command line processing. The
last parameter of this function can be used to resize the image before extracting the
descriptors. For example, passing imsize=(100,100) will resize to square images 100⇥
100 pixels. Lastly, if force_orientation is true the descriptors will be normalized based

2Another common name is Histogram of Oriented Gradients (HOG).

214 8.1. K-Nearest Neighbors

Figure 8.2: An example of applying dense SIFT descriptors over an image.

on the local dominant gradient direction, if it is false all descriptors are simply oriented
upwards.

Use it like this to compute the dense SIFT descriptors and visualize the locations:

import dsift,sift

dsift.process_image_dsift(’empire.jpg’,’empire.sift’,90,40,True)
l,d = sift.read_features_from_file(’empire.sift’)

im = array(Image.open(’empire.jpg’))
sift.plot_features(im,l,True)
show()

This will compute SIFT features densely across the image with the local gradient ori-
entation used to orient the descriptors (by setting force_orientation to true). The
locations are shown in Figure 8.2.

Classifying images - hand gesture recognition

In this application, we will look at applying the dense SIFT descriptor to images of
hand gestures to build a simple hand gesture recognition system. We will use some
images from the Static Hand Posture Database (available at http://www.idiap.ch/
resource/gestures/) to illustrate. Download the smaller test set ("test set 16.3Mb"
on the webpage) and take all the images in the "uniform" folders and split each class
evenly into two folders called "train" and "test".

Process the images with the dense SIFT function above to get feature vectors for

8.1. K-Nearest Neighbors 215

http://www.idiap.ch/resource/gestures/
http://www.idiap.ch/resource/gestures/

"A" "B" "C"

"Five" "Point" "V"

Figure 8.3: Dense SIFT descriptors on sample images from the six categories of hand
gesture images. (images from the Static Hand Posture Database)

all images. Again, assuming the filenames are in a list imlist, this is done like this.

import dsift

process images at fixed size (50,50)
for filename in imlist:
featfile = filename[:-3]+’dsift’
dsift.process_image_dsift(filename,featfile,10,5,resize=(50,50))

This creates feature files for each image with the extension ".dsift". Note the resizing
of the images to some common fixed size. This is very important, otherwise your
images will have varying number of descriptors and therefore varying length of the
feature vectors. This will cause errors when comparing them later. Plotting the images
with the descriptors looks like in Figure 8.3.

Define a helper function for reading the dense SIFT descriptor files as this

import os, sift

def read_gesture_features_labels(path):

216 8.1. K-Nearest Neighbors

create list of all files ending in .dsift
featlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.dsift’)]

read the features
features = []
for featfile in featlist:
l,d = sift.read_features_from_file(featfile)
features.append(d.flatten())

features = array(features)

create labels
labels = [featfile.split(’/’)[-1][0] for featfile in featlist]

return features,array(labels)

Then we can read the features and labels for our test and training sets using the
following commands.

features,labels = read_gesture_features_labels(’train/’)

test_features,test_labels = read_gesture_features_labels(’test/’)

classnames = unique(labels)

Here we used the first letter in the filename to create class labels. Using the NumPy
function unique() we get a sorted list of unique class names.

Now we can try our nearest neighbor code on this data:

test kNN
k = 1
knn_classifier = knn.KnnClassifier(labels,features)
res = array([knn_classifier.classify(test_features[i],k) for i in

range(len(test_labels))])

accuracy
acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

First the classifier object is created with the training data and labels as input. Then
we iterate over the test set and classify each image using the classify() method. The
accuracy is computed by multiplying the boolean array with one and summing. In this
case the true values are 1 so it is a simple thing to count the correct classifications.
This gives a printout like this

Accuracy: 0.811518324607

which means that 81% were correctly classified in this case. The value will vary with
the choice of k and the parameters for the dense SIFT image descriptor.

8.1. K-Nearest Neighbors 217

The accuracy above shows how many correct classifications there are for a given
test set but does not tell us which signs are hard to classify or which mistakes are
typically made. A confusion matrix is a matrix that shows how many samples of each
class is classified as each of the classes. It shows how the errors are distributed and
what classes are often "confused" for each other.

The following function will print the labels and the corresponding confusion matrix.

def print_confusion(res,labels,classnames):

n = len(classnames)

confusion matrix
class_ind = dict([(classnames[i],i) for i in range(n)])

confuse = zeros((n,n))
for i in range(len(test_labels)):
confuse[class_ind[res[i]],class_ind[test_labels[i]]] += 1

print ’Confusion matrix for’
print classnames
print confuse

The printout of running

print_confusion(res,test_labels,classnames)

looks like this:

Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[26. 0. 2. 0. 1. 1.]
[0. 26. 0. 1. 1. 1.]
[0. 0. 25. 0. 0. 1.]
[0. 3. 0. 37. 0. 0.]
[0. 1. 2. 0. 17. 1.]
[3. 1. 3. 0. 14. 24.]]

This shows that, for example, in this case "P" ("Point") is often misclassified as "V".

8.2 Bayes Classifier

Another simple but powerful classifier is the Bayes classifier3 (or naive Bayes classi-
fier). A Bayes classifier is a probabilistic classifier based on applying Bayes’ theorem
for conditional probabilities. The assumption is that all features are independent and
unrelated to each other (this is the "naive" part). Bayes classifiers can be trained very

3After Thomas Bayes, an 18th century English mathematician and minister.

218 8.2. Bayes Classifier

efficiently since the model chosen is applied to each feature independently. Despite
their simplistic assumptions, Bayes classifiers have been very successful in practical
applications, in particular for email spam filtering. Another benefit of this classifier is
that once the model is learned, no training data needs to be stored. Only the model
parameters are needed.

The classifier is constructed by multiplying the individual conditional probabilities
from each feature to get the total probability of a class. Then the class with highest
probability is selected.

Let’s look at a basic implementation of a Bayes classifier using Gaussian probability
distribution models. This means that each feature is individually modeled using the
feature mean and variance, computed from a set of training data. Add the following
classifier class to a file called bayes.py.

class BayesClassifier(object):

def __init__(self):
""" Initialize classifier with training data. """

self.labels = [] # class labels
self.mean = [] # class mean
self.var = [] # class variances
self.n = 0 # nbr of classes

def train(self,data,labels=None):
""" Train on data (list of arrays n*dim).
Labels are optional, default is 0...n-1. """

if labels==None:
labels = range(len(data))

self.labels = labels
self.n = len(labels)

for c in data:
self.mean.append(mean(c,axis=0))
self.var.append(var(c,axis=0))

def classify(self,points):
""" Classify the points by computing probabilities
for each class and return most probable label. """

compute probabilities for each class
est_prob = array([gauss(m,v,points) for m,v in zip(self.mean,self.var)])

get index of highest probability, this gives class label
ndx = est_prob.argmax(axis=0)
est_labels = array([self.labels[n] for n in ndx])

8.2. Bayes Classifier 219

return est_labels, est_prob

The model has two variables per class, the class mean and covariance. The train()

method takes a lists of feature arrays (one per class) and computes mean and covari-
ance for each. The method classify() computes the class probabilities for an array of
data points and selects the class with highest probability. The estimated class labels
and probabilities are returned. The helper function for the actual Gaussian function is
also needed:

def gauss(m,v,x):
""" Evaluate Gaussian in d-dimensions with independent
mean m and variance v at the points in (the rows of) x. """

if len(x.shape)==1:
n,d = 1,x.shape[0]

else:
n,d = x.shape

covariance matrix, subtract mean
S = diag(1/v)
x = x-m
product of probabilities
y = exp(-0.5*diag(dot(x,dot(S,x.T))))

normalize and return
return y * (2*pi)**(-d/2.0) / (sqrt(prod(v)) + 1e-6)

This function computes the product of the individual Gaussian distributions and re-
turns the probability for a given pair of model parameters m,v. For more details on this
function see for example http://en.wikipedia.org/wiki/Multivariate_normal_distribution.

Try this Bayes classifier on the 2D data from the previous section. This script will
load the exact same point sets and train a classifier.

import pickle
import bayes
import imtools

load 2D example points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

train Bayes classifier
bc = bayes.BayesClassifier()
bc.train([class_1,class_2],[1,-1])

220 8.2. Bayes Classifier

http://en.wikipedia.org/wiki/Multivariate_normal_distribution

Figure 8.4: Classifying 2D data using a Bayes classifier. For each example the color
shows the class label (blue and red). Correctly classified points are shown with stars
and misclassified points with circles. The curve is the classifier decision boundary.

Now, we can load the other one and test the classifier.

load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

test on some points
print bc.classify(class_1[:10])[0]

plot points and decision boundary
def classify(x,y,bc=bc):
points = vstack((x,y))
return bc.classify(points.T)[0]

imtools.plot_2D_boundary([-6,6,-6,6],[class_1,class_2],classify,[1,-1])
show()

This prints the classification result for the first 10 points to the console. It might look
like this:

[1 1 1 1 1 1 1 1 1 1]

Again, we used a helper function classify() to pass to the plotting function for visu-
alizing the classification results by evaluating the function on a grid. The plots for the
two sets look like Figure 8.4. The decision boundary in this case will be the ellipse-like
level curves of a 2D Gaussian function.

8.2. Bayes Classifier 221

Using PCA to reduce dimensions

Now, let’s try the gesture recognition problem. Since the feature vectors are very
large for the dense SIFT descriptor (more than 10000 for the parameter choices in the
example above) it is a good idea to do dimensionality reduction before fitting models
to the data. Principal Component Analysis, PCA, (see Section 1.3) usually does a good
job. Try the following script that uses PCA from the file pca.py (page 28):

import pca

V,S,m = pca.pca(features)

keep most important dimensions
V = V[:50]
features = array([dot(V,f-m) for f in features])
test_features = array([dot(V,f-m) for f in test_features])

Here features and test_features are the same arrays that we loaded for the kNN exam-
ple. In this case we apply PCA on the training data and keep the 50 dimensions with
most variance. This is done by subtracting the mean m (computed on the training
data) and multiplying with the basis vectors V . The same transformation is applied to
the test data.

Train and test the Bayes classifier like this:

test Bayes
bc = bayes.BayesClassifier()
blist = [features[where(labels==c)[0]] for c in classnames]

bc.train(blist,classnames)
res = bc.classify(test_features)[0]

Since BayesClassifier takes a list of arrays (one array for each class) we transform
the data before passing it to the train() method. Since we don’t need the probabilities
for now we chose to return only the labels of the classification.

Checking the accuracy

acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

gives something like this

Accuracy: 0.717277486911

and checking the confusion matrix

print_confusion(res,test_labels,classnames)

gives a print out like this:

222 8.2. Bayes Classifier

Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[20. 0. 0. 4. 0. 0.]
[0. 26. 1. 7. 2. 2.]
[1. 0. 27. 5. 1. 0.]
[0. 2. 0. 17. 0. 0.]
[0. 1. 0. 4. 22. 1.]
[8. 2. 4. 1. 8. 25.]]

Not as good as the kNN classifier but with the Bayes classifier we don’t need to keep
any training data, just the model parameters for each of the classes. The result will
vary greatly with the choice of dimensions after PCA.

8.3 Support Vector Machines

Support Vector Machines (SVM) are a powerful type of classifiers that often give state-
of-the-art results for many classification problems. In its simplest form an SVM finds
a linear separating hyperplane (a plane in higher dimensional spaces) with the best
possible separation between two classes. The decision function for a feature vector x

is
f(x) = w · x � b ,

where w is the hyperplane normal and b an offset constant. The zero level of this
function then ideally separates the two classes so that one class has positive values
and the other negative. The parameters w and b are found by solving an optimization
problem on a training set of labelled feature vectors x

i

with labels y
i

2 {�1, 1} so
that the hyperplane has maximal separation between the two classes. The normal is a
linear combination of some of the training feature vectors

w =

X

i

↵
i

y
i

x

i

,

so that the decision function can be written

f(x) =
X

i

↵
i

y
i

x

i

· x � b .

Here i runs over a selection of the training vectors, the selected vectors x

i

are called
support vectors since they help define the classification boundary.

One of the strengths of SVM is that by using kernel functions, that is functions
that map the feature vectors to a different (higher) dimensional space, non-linear or
very difficult classification problems can be effectively solved while still keeping some
control over the decision function. Kernel functions replace the inner product of the
classification function, x

i

· x, with a function K(x

i

,x).
Some of the most common kernel functions are:

8.3. Support Vector Machines 223

• linear, a hyperplane in feature space, the simplest case, K(x

i

,x) = x

i

· x.

• polynomial, features are mapped with polynomials of a defined degree d, K(x

i

,x) =

(�x
i

· x+ r)d, � > 0.

• radial basis functions, exponential functions, usually a very effective choice,
K(x

i

,x) = e(��||xi�x||2), � > 0.

• sigmoid, a smoother alternative to hyperplane, K(x

i

,x) = tanh(�x
i

· x+ r).

The parameters of each kernel are also determined during training.
For multi-class problems, the usual procedure is to train multiple SVMs that each

separates one class from the rest (also known as "one-versus-all" classifiers). For
more details on SVMs see for example the book [9] and the online references at http:
//www.support-vector.net/references.html.

Using LibSVM

We will use one of the best and most commonly used implementation available, Lib-
SVM [7]. LibSVM comes with a nice Python interface (there are also interfaces for
many other programming languages). For installation instructions, see Appendix A.4.

Let’s use LibSVM on the sample 2D point data to see how it works. This script will
load the same points and train a SVM classifier using radial basis functions.

import pickle
from svmutil import *
import imtools

load 2D example points using Pickle
with open(’points_normal.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

convert to lists for libsvm
class_1 = map(list,class_1)
class_2 = map(list,class_2)
labels = list(labels)
samples = class_1+class_2 # concatenate the two lists

create SVM
prob = svm_problem(labels,samples)
param = svm_parameter(’-t 2’)
train SVM on data
m = svm_train(prob,param)

224 8.3. Support Vector Machines

http://www.support-vector.net/references.html
http://www.support-vector.net/references.html

how did the training do?
res = svm_predict(labels,samples,m)

Loading the data set is the same as before but this time we have to convert the arrays
to lists since LibSVM does not support array objects as input. Here we used Python’s
built in map() function that applies the conversion function list() to each element. The
next lines create a SVM problem object and sets some parameters. The svm_train()
call solves the optimization problem for determining the model parameters. The model
can then be used in a predictions. The last call to svm_predict() will classify the
training data with the model m and shows how successful the training was. The print
out looks something like this:

Accuracy = 100% (400/400) (classification)

This means that the classifier completely separates the training data and correctly
classifies all 400 data points.

Note that we added a string of parameter choices in the call to train the classifier.
These parameters are used to control the kernel type, degree and other choices for
the classifier. Most of them are outside the scope of this book but the important ones
to know are "t" and "k". The parameter "t" determines the type of kernel used. The
options are:

"-t" kernel
0 linear
1 polynomial
2 radial basis function (default)
3 sigmoid

The parameter "k" determines the degree of the polynomial (default is 3).
Now, load the other point set and test the classifier:

load test data using Pickle
with open(’points_normal_test.pkl’, ’r’) as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)

convert to lists for libsvm
class_1 = map(list,class_1)
class_2 = map(list,class_2)

define function for plotting
def predict(x,y,model=m):
return array(svm_predict([0]*len(x),zip(x,y),model)[0])

8.3. Support Vector Machines 225

Figure 8.5: Classifying 2D data using a Support Vector Machine classifier. For each
example the color shows the class label (blue and red). Correctly classified points
are shown with stars and misclassified points with circles. The curve is the classifier
decision boundary.

plot the classification boundary
imtools.plot_2D_boundary([-6,6,-6,6],[array(class_1),array(class_2)],predict,[-1,1])
show()

Again we have to convert the data to lists for LibSVM. As before, we also define a
helper function predict() for plotting the classification boundary. Note the use of a list
of zeros [0]*len(x) as a replacement for the label list if true labels are unavailable.
You can use any list as long as it has the correct length. The 2D plots for the two
different point data sets are shown in Figure 8.5.

Hand gesture recognition again

Using LibSVM on our multi-class hand gesture recognition problem is fairly straight
forward. Multiple classes are automatically handled, we only need to format the data
so that the input and output matches the requirements of LibSVM.

With training and testing data features and test_features as in the previous exam-
ples, the following will load the data and train a linear SVM classifier.

features = map(list,features)
test_features = map(list,test_features)

create conversion function for the labels
transl = {}
for i,c in enumerate(classnames):
transl[c],transl[i] = i,c

226 8.3. Support Vector Machines

create SVM
prob = svm_problem(convert_labels(labels,transl),features)
param = svm_parameter(’-t 0’)

train SVM on data
m = svm_train(prob,param)

how did the training do?
res = svm_predict(convert_labels(labels,transl),features,m)

test the SVM
res = svm_predict(convert_labels(test_labels,transl),test_features,m)[0]
res = convert_labels(res,transl)

Same as before, we convert the data to lists using a map() call. Then the labels need
to be converted since LibSVM does not handle string labels. The dictionary transl will
contain a conversion between string and integer labels. Try to print it to your console
to see what happens. The parameter "-t 0" makes it a linear classifier and the decision
boundary will be a hyperplane in the original feature space of some 10000 dimensions.

Now compare the labels, just like before

acc = sum(1.0*(res==test_labels)) / len(test_labels)
print ’Accuracy:’, acc

print_confusion(res,test_labels,classnames)

The output using this linear kernel should look like this:

Accuracy: 0.916230366492
Confusion matrix for
[’A’ ’B’ ’C’ ’F’ ’P’ ’V’]
[[26. 0. 1. 0. 2. 0.]
[0. 28. 0. 0. 1. 0.]
[0. 0. 29. 0. 0. 0.]
[0. 2. 0. 38. 0. 0.]
[0. 1. 0. 0. 27. 1.]
[3. 0. 2. 0. 3. 27.]]

Now if we apply PCA to reduce the dimensions to 50, as we did in Section 8.2, this
changes the accuracy to

Accuracy: 0.890052356021

Not bad seeing that the feature vectors are about 200 times smaller than the original
data (and the space to store the support vectors then also 200 times less).

8.3. Support Vector Machines 227

Sunday, October 16, 2011

Figure 8.6: Sample training images for the 10 classes of the sudoku OCR classifier.

8.4 Optical Character Recognition

As an example of a multi-class problem, let’s look at interpreting images of sudokus.
Optical character recognition (OCR) is the process of interpreting images of hand- or
machine written text. A common example is text extraction from scanned documents
such as zip codes on letters or book pages as the library volumes in Google Books
(http://books.google.com/). Here we will look at a simple OCR problem of recog-
nizing numbers in images of printed sudokus. Sudokus are a form of logic puzzles
where the goal is to fill a 9 ⇥ 9 grid with the numbers 1 . . . 9 so that each column, each
row, and each 3 ⇥ 3 sub-grid contains all nine digits4. In this example we are just in-
terested in reading the puzzle and interpreting it correctly, actually solving the puzzle
we leave to you.

Training a classifier

For this classification problem we have ten classes, the numbers 1 . . . 9 and the empty
cells. Let’s give the empty cells the label 0 so that our class labels are 0 . . . 9. To
train this ten-class classifier, we will use a dataset of images of cropped sudoku cells5.
In the file sudoku_images.zip are two folders, "ocr_data" and "sudokus". The latter
contains images of sudokus under varying conditions. We will save those for later. For
now, take a look at the folder "ocr_data". It contains two sub-folders with images one
for training and one for testing. The images are named with the first character equal
to the class (0 . . . 9). Figure 8.6 shows some samples from the training set. The images
are grayscale and roughly 80 ⇥ 80 pixels (with some variation).

4See http://en.wikipedia.org/wiki/Sudoku for more details if you are unfamiliar with the concept.
5Images courtesy of Martin Byröd [4], http://www.maths.lth.se/matematiklth/personal/byrod/,

collected and cropped from photos of actual sudokus.

228 8.4. Optical Character Recognition

http://books.google.com/
http://en.wikipedia.org/wiki/Sudoku
http://www.maths.lth.se/matematiklth/personal/byrod/

Selecting features

We need to decide on what feature vector to use for representing each cell image.
There are many good choices, here we’ll try something simple but still effective.
The following function takes an image and returns a feature vector of the flattened
grayscale values.

def compute_feature(im):
""" Returns a feature vector for an
ocr image patch. """

resize and remove border
norm_im = imresize(im,(30,30))
norm_im = norm_im[3:-3,3:-3]

return norm_im.flatten()

This function uses the resizing function imresize() from imtools to reduce the length
of the feature vector. We also crop away about 10% border pixels since the crops often
get parts of the grid lines on the edges as you can see in Figure 8.6.

Now we can read the training data using a function like this.

def load_ocr_data(path):
""" Return labels and ocr features for all images
in path. """

create list of all files ending in .jpg
imlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith(’.jpg’)]
create labels
labels = [int(imfile.split(’/’)[-1][0]) for imfile in imlist]

create features from the images
features = []
for imname in imlist:
im = array(Image.open(imname).convert(’L’))
features.append(compute_feature(im))

return array(features),labels

The labels are extracted as the first character of the filename of each of the JPEG files
and stored in the labels list as integers. The feature vectors are computed using the
function above and stored in an array.

Multi-class SVM

With the training data in place, we are ready to learn a classifier. Here we’ll use a
multi-class support vector machine. The code looks just like in the previous section.

8.4. Optical Character Recognition 229

from svmutil import *

TRAINING DATA
features,labels = load_ocr_data(’training/’)

TESTING DATA
test_features,test_labels = load_ocr_data(’testing/’)

train a linear SVM classifier
features = map(list,features)
test_features = map(list,test_features)

prob = svm_problem(labels,features)
param = svm_parameter(’-t 0’)

m = svm_train(prob,param)

how did the training do?
res = svm_predict(labels,features,m)

how does it perform on the test set?
res = svm_predict(test_labels,test_features,m)

This trains a linear SVM classifier and tests the performance on the unseen images
in the test set. You should get the following printout from the last two svm_predict()
calls.

Accuracy = 100% (1409/1409) (classification)
Accuracy = 99.2979% (990/997) (classification)

Great news. The 1409 images of the training set are perfectly separated in the ten
classes and the recognition performance on the test set is around 99%. We can now
use this classifier on crops from new sudoku images.

Extracting cells and recognizing characters

With a classifier that recognizes cell contents, the next step is to automatically find
the cells. Once we solve that, we can crop them and pass the crops to the classifier.
Let’s for now assume that the image of the sudoku is aligned so that the horizontal
and vertical lines of the grid are parallel to the image sides (like the left image of
Figure 8.8). Under these conditions, we can threshold the image and sum up the pixel
values horizontally and vertically. Since the edges will have values of one and the
other parts values of zeros, this should give strong response at the edges and tells us
where to crop.

230 8.4. Optical Character Recognition

The following function takes a grayscale image and a direction and returns the ten
edges for that direction.

from scipy.ndimage import measurements

def find_sudoku_edges(im,axis=0):
""" Finds the cell edges for an aligned sudoku image. """

threshold and sum rows and columns
trim = 1*(im<128)
s = trim.sum(axis=axis)

find center of strongest lines
s_labels,s_nbr = measurements.label(s>(0.5*max(s)))
m = measurements.center_of_mass(s,s_labels,range(1,s_nbr+1))
x = [int(x[0]) for x in m]

if only the strong lines are detected add lines in between
if len(x)==4:
dx = diff(x)
x = [x[0],x[0]+dx[0]/3,x[0]+2*dx[0]/3,

x[1],x[1]+dx[1]/3,x[1]+2*dx[1]/3,
x[2],x[2]+dx[2]/3,x[2]+2*dx[2]/3,x[3]]

if len(x)==10:
return x

else:
raise RuntimeError(’Edges not detected.’)

First the image is thresholded at the midpoint to give ones on the dark areas. Then
these are added up in the specified direction (axis=0 or 1). The scipy.ndimage pack-
age contains a module, measurements, that is very useful for counting and measur-
ing regions in binary or label arrays. First labels() finds the connected compo-
nents of a binary array computed by thresholding the sum at the midpoint. Then
the center_of_mass() function computes the center point of each independent compo-
nent. Depending on the graphic design of the sudoku (all lines equally strong or the
sub-grid lines stronger than the other) you might get four or ten points. In the case of
four, the intermediary lines are interpolated at even intervals. If the end result does
not have ten lines, an exception is raised.

In the "sudokus" folder are a collection of sudoku images of varying difficulty. There
is also a file for each image containing the true values of the sudoku so that we can
check our results. Some of the images are aligned with the image sides. Picking one
of them, you can check the performance of the cropping and classification like this.

imname = ’sudokus/sudoku18.jpg’
vername = ’sudokus/sudoku18.sud’

8.4. Optical Character Recognition 231

im = array(Image.open(imname).convert(’L’))

find the cell edges
x = find_sudoku_edges(im,axis=0)
y = find_sudoku_edges(im,axis=1)

crop cells and classify
crops = []
for col in range(9):
for row in range(9):
crop = im[y[col]:y[col+1],x[row]:x[row+1]]
crops.append(compute_feature(crop))

res = svm_predict(loadtxt(vername),map(list,crops),m)[0]
res_im = array(res).reshape(9,9)

print ’Result:’
print res_im

The edges are found and then crops are extracted for each cell. The crops are passed
to the same feature extraction function used for the training and stored in an array.
These feature vectors are classified using svm_predict() with the true labels read us-
ing loadtxt(). The result in your console should be:

Accuracy = 100% (81/81) (classification)
Result:
[[0. 0. 0. 0. 1. 7. 0. 5. 0.]
[9. 0. 3. 0. 0. 5. 2. 0. 7.]
[0. 0. 0. 0. 0. 0. 4. 0. 0.]
[0. 1. 6. 0. 0. 4. 0. 0. 2.]
[0. 0. 0. 8. 0. 1. 0. 0. 0.]
[8. 0. 0. 5. 0. 0. 6. 4. 0.]
[0. 0. 9. 0. 0. 0. 0. 0. 0.]
[7. 0. 2. 1. 0. 0. 8. 0. 9.]
[0. 5. 0. 2. 3. 0. 0. 0. 0.]]

Now, this was one of the easier images. Try some of the others and see what the errors
look like and where the classifier makes mistakes.

If you plot the crops using a 9 ⇥ 9 subplot, they should look like the right image of
Figure 8.7.

Rectifying images

If you are happy with the performance of your classifier, the next challenge is to apply
it to non-aligned images. We will end our sudoku example with a simple way of rectify-
ing an image given that the four outer corner points of the grid have been detected or

232 8.4. Optical Character Recognition

Figure 8.7: An example of detecting and cropping the fields of a sudoku grid. (left)
image of a sudoku grid. (right) the 9 ⇥ 9 cropped images of the individual cells to be
sent to the OCR classifier.

marked manually. The left image in Figure 8.8 shows an example of a sudoku image
with strong perspective effects.

A homography can map the grid to align the edges as in the examples above, all we
need to do is estimate the transform. The example below shows the case of manually
marking the four corner points and then warping the image to a square target image
of 1000 ⇥ 1000 pixels.

from scipy import ndimage
import homography

imname = ’sudoku8.jpg’
im = array(Image.open(imname).convert(’L’))

mark corners
figure()
imshow(im)
gray()
x = ginput(4)

top left, top right, bottom right, bottom left
fp = array([array([p[1],p[0],1]) for p in x]).T
tp = array([[0,0,1],[0,1000,1],[1000,1000,1],[1000,0,1]]).T

estimate the homography
H = homography.H_from_points(tp,fp)

8.4. Optical Character Recognition 233

Figure 8.8: An example of rectifying an image using a full perspective transform. (left)
the original image with the four corners of the sudoku marked. (right) rectified image
warped to a square image of 1000 ⇥ 1000 pixels.

helper function for geometric_transform
def warpfcn(x):
x = array([x[0],x[1],1])
xt = dot(H,x)
xt = xt/xt[2]
return xt[0],xt[1]

warp image with full perspective transform
im_g = ndimage.geometric_transform(im,warpfcn,(1000,1000))

In most of these sample images an affine transform, as we used in Chapter 3, is not
enough. Here we instead used the more general transform function geometric_transform()
from scipy.ndimage. This function takes a 2D to 2D mapping instead of a transform
matrix so we need to use a helper function (using a piece-wise affine warp on trian-
gles will introduce artifacts in this case). The warped image is shown to the right in
Figure 8.8.

This concludes our sudoku OCR example. There are many improvements to be
made and alternatives to investigate. Some are mentioned in the following exercises,
the rest we leave to you.

234 8.4. Optical Character Recognition

Exercises

1. The performance of the kNN classifier depends on the value of k. Try to vary this
number and see how the accuracy changes. Plot the decision boundaries of the
2D point sets to see how they change.

2. The hand gesture data set in Figure 8.3 also contains images with more complex
background (in the "complex/" folders). Try to train and test a classifier on these
images. What is the difference in performance? Can you suggest improvements
to the image descriptor?

3. Try to vary the number of dimensions after PCA projection of the gesture recog-
nition features for the Bayes classifier. What is a good choice? Plot the singular
values S, they should give a typical "knee" shaped curve as the one below. A good
compromise between ability to generate the variability of the training data and
keeping the number of dimensions low is usually found at a number before the
curve flattens out.

4. Modify the Bayes classifier to use a different probability model than Gaussian
distributions. For example, try using the frequency counts of each feature in
the training set. Compare the results to using a Gaussian distribution for some
different datasets.

5. Experiment with using non-linear SVMs for the gesture recognition problem. Try
polynomial kernels and increase the degree (using the "-d" parameter) incremen-
tally. What happens to the classification performance on the training set and the
test set. With a non-linear classifier there is a risk of training and optimizing
it for a specific set so that performance is close to perfect on the training set
but the classifier has poor performance on other test sets. This phenomenon of
breaking the generalization capabilities of a classifier is called overfitting and
should be avoided.

8.4. Optical Character Recognition 235

6. Try some more advanced feature vectors for the sudoku character recognition
problem. If you need inspiration, look at [4].

7. Implement a method for automatically aligning the sudoku grid. Try for exam-
ple feature detection with RANSAC, line detection or detecting the cells using
morphological and measurement operations from scipy.ndimage (http://docs.
scipy.org/doc/scipy/reference/ndimage.html). Bonus task, solve the rota-
tion ambiguity of finding the "up" direction. For example, you could try rotating
the rectified grid and let the OCR classifier’s accuracy vote for the best orienta-
tion.

8. For a more challenging classification problem than the sudoku digits, take a look
at the MNIST database of handwritten digits http://yann.lecun.com/exdb/
mnist/. Try to extract some features and apply SVM to that set. Check where
your performance ends up on the ranking of best methods (some are insanely
good).

9. If you want to dive deeper in classifiers and machine learning algorithms, take a
look at the scikit.learn package (http://scikit-learn.org/) and try some of
the algorithms on the data in this chapter.

236 8.4. Optical Character Recognition

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/

Chapter 9

Image Segmentation

Image segmentation is the process of partitioning an image into meaningful regions.
Regions can be foreground versus background or individual objects in the image. The
regions are constructed using some feature such as color, edges or neighbor similarity.
In this chapter we will look at some different techniques for segmentation.

9.1 Graph Cuts

A graph is a set of nodes (sometimes called vertices) with edges between them. See
Figure 9.1 for an example1. The edges can be directed (as illustrated with arrows in
Figure 9.1) or undirected and may have weights associated with them.

A graph cut is the partitioning of a directed graph into two disjoint sets. Graph cuts
can be used for solving many different computer vision problems like stereo depth
reconstruction, image stitching and image segmentation. By creating a graph from
image pixels and their neighbors and introducing an energy or a "cost" it is possible
to use a graph cut process to segment an image in two or more regions. The basic
idea is that similar pixels that are also close to each other should belong to the same
partition.

The cost of a graph cut C (where C is a set of edges) is defined as the sum of the
edge weights of the cuts

E
cut

=

X

(i,j)2C

w
ij

, (9.1)

where w
ij

is the weight of the edge (i, j) from node i to node j in the graph and the
sum is taken over all edges in the cut C.

1You also saw graphs in action in Section 2.3, this time we are going to use them to partition images.

237

The idea behind graph cut segmentation is to partition a graph representation of
the image such that the cut cost E

cut

is minimized. In this graph representation, two
additional nodes, a source and a sink node, are added to the graph and only cuts that
separate the source and sink are considered.

Finding the minimum cut (or min cut) is equivalent to finding the maximum flow
(or max flow) between the source and the sink (see [2] for details). There are efficient
algorithms for solving these max flow / min cut problems.

For our graph cut examples we will use the python � graph package. This pack-
age contains many useful graph algorithms. The website with downloads and docu-
mentation is http://code.google.com/p/python-graph/. We will need the function
maximum_flow() which computes the max flow / min cut using the Edmonds-Karp al-
gorithm http://en.wikipedia.org/wiki/Edmonds-Karp_algorithm. The good thing
about using a package written fully in Python is ease of installation and compatibility,
the downside is speed. Performance is adequate for our purposes but for anything but
small images, a faster implementation is needed.

Here’s a simple example of using python � graph to compute the max flow / min
cut of a small graph2.

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

gr = digraph()
gr.add_nodes([0,1,2,3])

gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)

flows,cuts = maximum_flow(gr,0,3)
print ’flow is:’, flows
print ’cut is:’, cuts

First a directed graph is created with four nodes with index 0 . . . 3. Then the edges
are added using add_edge() with an edge weight specified. This will be used as the
maximum flow capacity of the edge. The maximum flow is computed with node 0 as
source and node 3 as sink. The flow and the cuts are printed and should look like this:

flow is: {(0, 1): 4, (1, 2): 0, (1, 3): 4, (2, 3): 3, (0, 2): 3}
cut is: {0: 0, 1: 1, 2: 1, 3: 1}

2Same graph as the example at http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem.

238 9.1. Graph Cuts

http://code.google.com/p/python-graph/
http://en.wikipedia.org/wiki/Edmonds-Karp_algorithm
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

Figure 9.1: A simple directed graph created using python � graph.

These two python dictionaries contain the flow through each edge and the label for
each node, 0 for the part of the graph containing the source, 1 for the nodes connected
to the sink. You can verify manually that the cut is indeed the minimum. The graph is
shown in Figure 9.1.

Graphs from images

Given a neighborhood structure, we can define a graph using the image pixels as
nodes. Here we will focus on the simplest case of 4-neighborhood of pixels and two
image regions (which we can call foreground and background). A 4-neighborhood is
where a pixel is connected to the pixels directly above, below, left, and right3.

In addition to the pixel nodes, we will also need two special nodes a "source" node
and a "sink" node, representing the foreground and background respectively. We will
use a simple model where all pixels are connected to the source and the sink.

Here’s how to build the graph:

• Every pixel node has an incoming edge from the source node.

• Every pixel node has an outgoing edge to the sink node.

3Another common option is 8-neighborhood where the diagonal pixels are also connected

9.1. Graph Cuts 239

• Every pixel node has one incoming and one outgoing edge to each of its neigh-
bors.

To determine the weights on these edges, you need a segmentation model that de-
termines the edge weights (representing the maximum flow allowed for that edge)
between pixels and between pixels and the source and sink. As before we call the
edge weight between pixel i and pixel j, w

ij

. Let’s call the weight from the source to
pixel i, w

si

, and from pixel i to the sink, w
it

.
Let’s look at using a naive Bayesian classifier from Section 8.2 on the color val-

ues of the pixels. Given that we have trained a Bayes classifier on foreground and
background pixels (from the same image or from other images), we can compute the
probabilities p

F

(I
i

) and p
B

(I
i

) for the foreground and background. Here I
i

is the color
vector of pixel i.

We can now create a model for the edge weights as follows:

w
si

=

p
F

(I
i

)

p
F

(I
i

) + p
B

(I
i

)

w
it

=

p
B

(I
i

)

p
F

(I
i

) + p
B

(I
i

)

w
ij

= e�|Ii�Ij |2/� .

With this model, each pixel is connected to the foreground and background (source
and sink) with weights equal to a normalized probability of belonging to that class.
The w

ij

describe the pixel similarity between neighbors, similar pixels have weight
close to , dissimilar close to 0. The parameter � determines how fast the values
decay towards zero with increasing dissimilarity.

Create a file graphcut.py and add the following function that creates this graph
from an image.

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

import bayes

def build_bayes_graph(im,labels,sigma=1e2,kappa=2):
""" Build a graph from 4-neighborhood of pixels.
Foreground and background is determined from
labels (1 for foreground, -1 for background, 0 otherwise)
and is modeled with naive Bayes classifiers."""

m,n = im.shape[:2]

240 9.1. Graph Cuts

RGB vector version (one pixel per row)
vim = im.reshape((-1,3))

RGB for foreground and background
foreground = im[labels==1].reshape((-1,3))
background = im[labels==-1].reshape((-1,3))
train_data = [foreground,background]

train naive Bayes classifier
bc = bayes.BayesClassifier()
bc.train(train_data)

get probabilities for all pixels
bc_lables,prob = bc.classify(vim)
prob_fg = prob[0]
prob_bg = prob[1]

create graph with m*n+2 nodes
gr = digraph()
gr.add_nodes(range(m*n+2))

source = m*n # second to last is source
sink = m*n+1 # last node is sink

normalize
for i in range(vim.shape[0]):
vim[i] = vim[i] / linalg.norm(vim[i])

go through all nodes and add edges
for i in range(m*n):
add edge from source
gr.add_edge((source,i), wt=(prob_fg[i]/(prob_fg[i]+prob_bg[i])))

add edge to sink
gr.add_edge((i,sink), wt=(prob_bg[i]/(prob_fg[i]+prob_bg[i])))

add edges to neighbors
if i%n != 0: # left exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i-1])**2)/sigma)
gr.add_edge((i,i-1), wt=edge_wt)

if (i+1)%n != 0: # right exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i+1])**2)/sigma)
gr.add_edge((i,i+1), wt=edge_wt)

if i//n != 0: # up exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i-n])**2)/sigma)
gr.add_edge((i,i-n), wt=edge_wt)

if i//n != m-1: # down exists
edge_wt = kappa*exp(-1.0*sum((vim[i]-vim[i+n])**2)/sigma)

9.1. Graph Cuts 241

gr.add_edge((i,i+n), wt=edge_wt)

return gr

Here we used a label image with values 1 for foreground training data and -1 for
background training data. Based on this labeling, a Bayes classifier is trained on the
RGB values. Then classification probabilities are computed for each pixel. These are
then used as edge weights for the edges going from the source and to the sink. A
graph with n ⇤ m + 2 nodes is created. Note the index of the source and sink, we
choose them as the last two to simplify the indexing of the pixels.

To visualize the labeling overlaid on the image we can use the function contourf()

which fills the regions between contour levels of an image (in this case the label im-
age). The alpha variable sets the transparency. Add the following function to graph-
cut.py.

def show_labeling(im,labels):
""" Show image with foreground and background areas.
labels = 1 for foreground, -1 for background, 0 otherwise."""

imshow(im)
contour(labels,[-0.5,0.5])
contourf(labels,[-1,-0.5],colors=’b’,alpha=0.25)
contourf(labels,[0.5,1],colors=’r’,alpha=0.25)
axis(’off’)

Once the graph is built it needs to be cut at the optimal location. The following
function computes the min cut and reformats the output to a binary image of pixel
labels.

def cut_graph(gr,imsize):
""" Solve max flow of graph gr and return binary
labels of the resulting segmentation."""

m,n = imsize
source = m*n # second to last is source
sink = m*n+1 # last is sink

cut the graph
flows,cuts = maximum_flow(gr,source,sink)

convert graph to image with labels
res = zeros(m*n)
for pos,label in cuts.items()[:-2]: #don’t add source/sink
res[pos] = label

return res.reshape((m,n))

242 9.1. Graph Cuts

Again, note the indices for the source and sink. We need to take the size of the image
as input to compute these indices and to reshape the output before returning the
segmentation. The cut is returned as a dictionary which needs to be copied to an
image of segmentation labels. This is done using the .items() method that returns a
list of (key, value) pairs. Again we skip the last two elements of that list.

Let’s see how to use these functions for segmenting an image. The following is a
complete example of reading an image and creating a graph with class probabilities
estimated from two rectangular image regions.

from scipy.misc import imresize
import graphcut

im = array(Image.open(’empire.jpg’))
im = imresize(im,0.07,interp=’bilinear’)
size = im.shape[:2]

add two rectangular training regions
labels = zeros(size)
labels[3:18,3:18] = -1
labels[-18:-3,-18:-3] = 1

create graph
g = graphcut.build_bayes_graph(im,labels,kappa=1)

cut the graph
res = graphcut.cut_graph(g,size)

figure()
graphcut.show_labeling(im,labels)

figure()
imshow(res)
gray()
axis(’off’)

show()

We use the imresize() function to make the image small enough for our Python graph
library, in this case uniform scaling to 7% of the original size. The graph is cut and the
result plotted together with an image showing the training regions. Figure 9.2 shows
the training regions overlaid on the image and the final segmentation result.

The variable kappa (in the equations) determines the relative weight of the edges
between neighboring pixels. The effect of changing kappa can be seen in Figure 9.3.
With increasing value, the segmentation boundary will be smoother and details will

9.1. Graph Cuts 243

Figure 9.2: An example of graph cut segmentation using a Bayesian probability model.
Image is downsampled to size 54 ⇥ 38. (left) label image for model training. (center)
training regions shown on the image. (right) segmentation.

be lost. Choosing the right value is up to you, the right value will depend on your
application and the type of result you desire.

Segmentation with user input

Graph cut segmentation can be combined with user input in a number of ways. For
example, a user can supply markers for foreground and background by drawing on an
image. Another way is to select a region that contains the foreground with a bounding
box or using a "lasso" tool.

Let’s look at this last example using some images from the Grab Cut dataset from
Microsoft Research Cambridge, see [27] and Appendix B.5 for details.

These images come with ground truth labels for measuring segmentation perfor-
mance. They also come with annotations simulating a user selecting a rectangular
image region or drawing on the image with a "lasso" type tool to mark foreground and
background. We can use these user inputs to get training data and apply graph cuts
to segment the image guided by the user input.

The user input is encoded in bitmap images with the following meaning.

244 9.1. Graph Cuts

(a) (b) (c) (d)

Figure 9.3: The effect of changing the relative weighting between pixel similarity and
class probability. The same segmentation as in Figure 9.2 with: (a) = 1, (b) = 2,
(c) = 5 and (d) = 10.

pixel value meaning

0, 64 background
128 unknown
255 foreground

Here’s a complete code example of loading an image and annotations and passing
that to our graph cut segmentation routine.

from scipy.misc import imresize
import graphcut

def create_msr_labels(m,lasso=False):
""" Create label matrix for training from
user annotations. """

labels = zeros(im.shape[:2])

background
labels[m==0] = -1
labels[m==64] = -1

foreground
if lasso:
labels[m==255] = 1

else:
labels[m==128] = 1

return labels

9.1. Graph Cuts 245

load image and annotation map
im = array(Image.open(’376043.jpg’))
m = array(Image.open(’376043.bmp’))

resize
scale = 0.1
im = imresize(im,scale,interp=’bilinear’)
m = imresize(m,scale,interp=’nearest’)

create training labels
labels = create_msr_labels(m,False)

build graph using annotations
g = graphcut.build_bayes_graph(im,labels,kappa=2)

cut graph
res = graphcut.cut_graph(g,im.shape[:2])

remove parts in background
res[m==0] = 1
res[m==64] = 1

plot the result
figure()
imshow(res)
gray()
xticks([])
yticks([])
savefig(’labelplot.pdf’)

First we define a helper function to read the annotation images and format them so
we can pass them to our function for training background and foreground models.
The bounding rectangles contain only background labels. In this case we set the fore-
ground training region to the whole "unknown" region (the inside of the rectangle).
Next we build the graph and cut it. Since we have user input we remove results that
have any foreground in the marked background area. Last, we plot the resulting seg-
mentation and remove the tick markers by setting them to an empty list. That way we
get a nice bounding box (otherwise the boundaries of the image will be hard to see in
this black and white plot).

Figure 9.4 shows some results using RGB vector as feature with the original image,
a downsampled mask and downsampled resulting segmentation. The image on the
right is the plot generated by the script above.

246 9.1. Graph Cuts

Figure 9.4: Sample graph cut segmentation results using images from the Grab Cut
data set. (left) original image, downsampled. (middle) mask used for training. (right)
resulting segmentation using RGB values as feature vectors.

9.1. Graph Cuts 247

9.2 Segmentation using Clustering

The graph cut formulation in the previous section solves the segmentation problem
by finding a discrete solution using max flow / min cut over an image graph. In this
section we will look at an alternative way to cut the image graph. The normalized
cut algorithm, based on spectral graph theory, combines pixel similarities with spatial
proximity to segment the image.

The idea comes from defining a cut cost that takes into account the size of the
groups and "normalizes" the cost with the size of the partitions. The normalized cut
formulation modifies the cut cost of equation (9.1) to

E
ncut

=

E
cutP

i2Aw
ix

+

E
cutP

j2B w
jx

,

where A and B indicate the two sets of the cut and the sums add the weights from
A and B respectively to all other nodes in the graph (which is pixels in the image in
this case). This sum is called the association and for images where pixels have the
same number of connections to other pixels it is a rough measure of the size of the
partitions. In the paper [32] the cost function above was introduced together with an
algorithm for finding a minimizer. The algorithm is derived for two-class segmentation
and will be described next.

Define W as the edge weight matrix with elements w
ij

containing the weight of the
edge connecting pixel i with pixel j. Let D be the diagonal matrix of the row sums of S,
D = diag(d

i

), d
i

=

P
j

w
ij

(same as in Section 6.3). The normalized cut segmentation
is obtained as the minimum of the following optimization problem

min

y

y

T

(D � W)y

y

TDy

,

where the vector y contains the discrete labels that satisfy the constraints y
i

2 {1,�b}
for some constant b (meaning that y only takes two discrete values) and y

TD sum to
zero. Because of these constraints, this is not easily solvable4.

However, by relaxing the constraints and letting y take any real value, the problem
becomes an eigenvalue problem that is easily solved. The drawback is that you need
to threshold or cluster the output to make it a discrete segmentation again.

Relaxing the problem results in solving for eigenvectors of a Laplacian matrix

L = D�1/2WD�1/2 ,

just like the spectral clustering case. The only remaining difficulty is now to define the
between-pixel edge weights w

ij

. Normalized cuts have many similarities to spectral

4In fact this problem is NP-hard.

248 9.2. Segmentation using Clustering

clustering and the underlying theory overlaps somewhat, see [32] for an explanation
and the details.

Let’s use the edge weights from the original normalized cuts paper [32]. The edge
weight connecting two pixels i and j is given by

w
ij

= e�|Ii�Ij |2/�g e�|xi�xj |2/�d .

The first part measures the pixel similarity between the pixels with I
i

and I
j

denoting
either the RGB vectors or the grayscale values. The second part measures the prox-
imity between the pixels in the image with x

i

and x

j

denoting the coordinate vector of
each pixel. The scaling factors �

g

and �
d

determine the relative scales and how fast
each component approaches zero.

Let’s see what this looks like in code. Add the following function to a file ncut.py.

def ncut_graph_matrix(im,sigma_d=1e2,sigma_g=1e-2):
""" Create matrix for normalized cut. The parameters are
the weights for pixel distance and pixel similarity. """

m,n = im.shape[:2]
N = m*n

normalize and create feature vector of RGB or grayscale
if len(im.shape)==3:
for i in range(3):
im[:,:,i] = im[:,:,i] / im[:,:,i].max()

vim = im.reshape((-1,3))
else:
im = im / im.max()
vim = im.flatten()

x,y coordinates for distance computation
xx,yy = meshgrid(range(n),range(m))
x,y = xx.flatten(),yy.flatten()

create matrix with edge weights
W = zeros((N,N),’f’)
for i in range(N):
for j in range(i,N):
d = (x[i]-x[j])**2 + (y[i]-y[j])**2
W[i,j] = W[j,i] = exp(-1.0*sum((vim[i]-vim[j])**2)/sigma_g) * exp(-d/sigma_d)

return W

This function takes an image array and creates a feature vector using either RGB
values or grayscale values depending on the input image. Since the edge weights
contain a distance component we use meshgrid() to get the x and y values for each

9.2. Segmentation using Clustering 249

pixel feature vector. Then the function loops over all N pixels and fills out the values
in the N ⇥ N normalized cut matrix W .

We can compute the segmentation either by sequentially cutting each eigenvector
or by taking a number of eigenvectors and apply clustering. We chose the second
approach which also works without modification for any number of segments. We take
the top ndim eigenvectors of the Laplacian matrix corresponding to W and cluster the
pixels. The following function implements the clustering, as you can see it is almost
the same as the spectral clustering example in Section 6.3.

from scipy.cluster.vq import *

def cluster(S,k,ndim):
""" Spectral clustering from a similarity matrix."""

check for symmetry
if sum(abs(S-S.T)) > 1e-10:
print ’not symmetric’

create Laplacian matrix
rowsum = sum(abs(S),axis=0)
D = diag(1 / sqrt(rowsum + 1e-6))
L = dot(D,dot(S,D))

compute eigenvectors of L
U,sigma,V = linalg.svd(L)

create feature vector from ndim first eigenvectors
by stacking eigenvectors as columns
features = array(V[:ndim]).T

k-means
features = whiten(features)
centroids,distortion = kmeans(features,k)
code,distance = vq(features,centroids)

return code,V

Here we used the k-means clustering algorithm (see Section 6.1 for details) to group
the pixels based on the values in the eigenvector images. You could try any clustering
algorithm or grouping criteria if you feel like experimenting with the results.

Now we are ready to try this on some sample images. The following script shows a
complete example:

import ncut
from scipy.misc import imresize

250 9.2. Segmentation using Clustering

im = array(Image.open(’C-uniform03.ppm’))
m,n = im.shape[:2]

resize image to (wid,wid)
wid = 50
rim = imresize(im,(wid,wid),interp=’bilinear’)
rim = array(rim,’f’)

create normalized cut matrix
A = ncut.ncut_graph_matrix(rim,sigma_d=1,sigma_g=1e-2)

cluster
code,V = ncut.cluster(A,k=3,ndim=3)

reshape to original image size
codeim = imresize(code.reshape(wid,wid),(m,n),interp=’nearest’)

plot result
figure()
imshow(codeim)
gray()
show()

Here we resize the image to a fixed size (50 ⇥ 50 in this example) in order to make
the eigenvector computation fast enough. The NumPy linalg.svd() function is not
fast enough to handle large matrices (and sometimes gives inaccurate results for too
large matrices). We use bilinear interpolation when resizing the image but nearest
neighbor interpolation when resizing the resulting segmentation label image since we
don’t want to interpolate the class labels. Note the use of first reshaping the one-
dimensional array to (wid,wid) followed by resizing to the original image size.

In the example we used one of the hand gesture images from the Static Hand
Posture Database (see Section 8.1 for more details) with k = 3. The resulting segmen-
tation is shown in Figure 9.5 together with the first four eigenvectors.

The eigenvectors are returned as the array V in the example and can be visualized
as images like this:

imshow(imresize(V[i].reshape(wid,wid),(m,n),interp=’bilinear’))

This will show eigenvector i as an image at the original image size.
Figure 9.6 shows some more examples using the same script above. The airplane

image is from the "airplane" category in the Caltech 101 dataset. For these examples
we kept the parameters �

d

and �
g

to the same values as above. Changing them can
give you smoother more regularized results and quite different eigenvector images.
We leave the experimentation to you.

9.2. Segmentation using Clustering 251

Figure 9.5: Image segmentation using the normalized cuts algorithm. (top) the orig-
inal image and the resulting three-class segmentation. (bottom) the first four eigen-
vectors of the graph similarity matrix.

It is worth noting that even for these fairly simple examples a thresholding of the
image would not have given the same result, neither would clustering the RGB or
graylevel values. This is because neither of these take the pixel neighborhoods into
account.

9.3 Variational Methods

In this book you have seen a number of examples of minimizing a cost or energy to
solve computer vision problems. In the previous sections it was minimizing the cut
in a graph but we also saw examples like the ROF de-noising, k-means and support
vector machines. These are examples of optimization problems.

When the optimization is taken over functions, the problems are called variational
problems and algorithms for solving such problems are called variational methods.
Let’s look at a simple and effective variational model.

The Chan-Vese segmentation model [6] assumes a piece-wise constant image model
for the image regions to be segmented. Here we will focus on the case of two regions,
for example foreground and background, but the model extends to multiple regions as
well, see for example [38]. The model can be described as follows.

If we let a collection of curves � separate the image into two regions ⌦1 and ⌦2 as

252 9.3. Variational Methods

Figure 9.6: Examples of two-class image segmentation using the normalized cuts al-
gorithm. (left) original image. (right) segmentation result.

9.3. Variational Methods 253

Chapter 3

Image Segmentation

??

3.1 Segmentation using Clustering

Finns kmeans improvement
Spectral clustering: Normalized cuts using 4/8 connectivity (intro-

duce connectivity)
Watershed + NC/kmeans

3.2 Graph Cuts

3.3 Variational Methods

Level Set methods, curve/region evolution Variational methods, evo-
lution gives local minima

The Chan-Vese segmentation model [1] assumes a piece-wise con-
stant model for the image regions. Let’s look at the case of two regions,
for example foreground and background. If we let a collection of curves
� separate the image into two regions �1 and �2 as in Figure 3.1 the
segmentation is given by minima of the Chan-Vese model

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx +

Z

⌦2

(I � c2)
2dx ,

37

Chapter 3

Image Segmentation

??

3.1 Segmentation using Clustering

Finns kmeans improvement
Spectral clustering: Normalized cuts using 4/8 connectivity (intro-

duce connectivity)
Watershed + NC/kmeans

3.2 Graph Cuts

3.3 Variational Methods

Level Set methods, curve/region evolution Variational methods, evo-
lution gives local minima

The Chan-Vese segmentation model [1] assumes a piece-wise con-
stant model for the image regions. Let’s look at the case of two regions,
for example foreground and background. If we let a collection of curves
� separate the image into two regions �1 and �2 as in Figure 3.1 the
segmentation is given by minima of the Chan-Vese model

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx +

Z

⌦2

(I � c2)
2dx ,

37

Chapter 3

Image Segmentation

??

3.1 Segmentation using Clustering

Finns kmeans improvement
Spectral clustering: Normalized cuts using 4/8 connectivity (intro-

duce connectivity)
Watershed + NC/kmeans

3.2 Graph Cuts

3.3 Variational Methods

Level Set methods, curve/region evolution Variational methods, evo-
lution gives local minima

The Chan-Vese segmentation model [1] assumes a piece-wise con-
stant model for the image regions. Let’s look at the case of two regions,
for example foreground and background. If we let a collection of curves
� separate the image into two regions �1 and �2 as in Figure 3.1 the
segmentation is given by minima of the Chan-Vese model

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx +

Z

⌦2

(I � c2)
2dx ,

37

Chapter 3

Image Segmentation

??

3.1 Segmentation using Clustering

Finns kmeans improvement
Spectral clustering: Normalized cuts using 4/8 connectivity (intro-

duce connectivity)
Watershed + NC/kmeans

3.2 Graph Cuts

3.3 Variational Methods

Level Set methods, curve/region evolution Variational methods, evo-
lution gives local minima

The Chan-Vese segmentation model [1] assumes a piece-wise con-
stant model for the image regions. Let’s look at the case of two regions,
for example foreground and background. If we let a collection of curves
� separate the image into two regions �1 and �2 as in Figure 3.1 the
segmentation is given by minima of the Chan-Vese model

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx +

Z

⌦2

(I � c2)
2dx ,

37

Chapter 3

Image Segmentation

??

3.1 Segmentation using Clustering

Finns kmeans improvement
Spectral clustering: Normalized cuts using 4/8 connectivity (intro-

duce connectivity)
Watershed + NC/kmeans

3.2 Graph Cuts

3.3 Variational Methods

Level Set methods, curve/region evolution Variational methods, evo-
lution gives local minima

The Chan-Vese segmentation model [1] assumes a piece-wise con-
stant model for the image regions. Let’s look at the case of two regions,
for example foreground and background. If we let a collection of curves
� separate the image into two regions �1 and �2 as in Figure 3.1 the
segmentation is given by minima of the Chan-Vese model

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx +

Z

⌦2

(I � c2)
2dx ,

37

Figure 9.7: The piece-wise constant Chan-Vese segmentation model.

in Figure 9.7 the segmentation is given by minima of the Chan-Vese model energy

E(�) = � length(�) +

Z

⌦1

(I � c1)
2dx+

Z

⌦2

(I � c2)
2dx ,

which measures the deviation from the constant graylevels in each region, c1 and c2.
Here the integrals are taken over each region and the length of the separating curves
are there to prefer smoother solutions.

With a piece-wise constant image U = �1c1 + �2c2 this can we re-written as

E(�) = �
|c1 � c2|

2

Z
|rU |dx+ ||I � U ||2 ,

where �1 and �2 are characteristic (indicator) functions for the two regions5. This
transformation is non-trivial and requires some heavy mathematics that are not needed
for understanding and are well outside the scope of this book.

The point is that this equation is now the same as the ROF equation (1.1) with �

replaced by �|c1 � c2|. The only difference is that in the Chan-Vese case we are looking
for an image U which is piece-wise constant. It can be shown that thresholding the
ROF solution will give a good minimizer. The interested reader can check [8] for the
details.

Minimizing the Chan-Vese model now becomes a ROF de-noising followed by thresh-
olding.

5Characteristic functions are 1 in the region and 0 outside.

254 9.3. Variational Methods

(a) (b) (c)

Figure 9.8: Examples image segmentation by minimizing the Chan-Vese model using
ROF de-noising. (a) original image, (b) image after ROF de-noising. (c) final segmen-
tation.

import rof

im = array(Image.open(’ceramic-houses_t0.png’).convert("L"))
U,T = rof.denoise(im,im,tolerance=0.001)
t = 0.4 #threshold

import scipy.misc
scipy.misc.imsave(’result.pdf’,U < t*U.max())

In this case we turn down the tolerance threshold for stopping the ROF iterations to
make sure we get enough iterations. Figure 9.8 shows the result on two rather difficult
images.

Exercises

1. It is possible to speed up computation for the graph cut optimization by reducing
the number of edges. This graph construction is described in Section 4.2 of [16].

9.3. Variational Methods 255

Try this out and measure the difference graph size and in segmentation time
compared to the simpler construction we used.

2. Create a user interface or simulate a user selecting regions for graph cut seg-
mentation. Then try "hard coding" background and foreground by setting weights
to some large value.

3. Change the feature vector in the graph cut segmentation from a RGB vector to
some other descriptor. Can you improve on the segmentation results?

4. Implement an iterative segmentation approach using graph cut where a current
segmentation is used to train new foreground and background models for the
next. Does it improve segmentation quality?

5. The Microsoft Research Grab Cut dataset contains ground truth segmentation
maps. Implement a function that measures the segmentation error and evaluate
different settings and some of the ideas in the exercises above.

6. Try to vary the parameters of the normalized cuts edge weight and see how they
affect the eigenvector images and the segmentation result.

7. Compute image gradients on the first normalized cuts eigenvectors. Combine
these gradient images to detect image contours of objects.

8. Implement a linear search over the threshold value for the de-noised image in
Chan-Vese segmentation. For each threshold, store the energy E(�) and pick the
segmentation with the lowest value.

256 9.3. Variational Methods

Chapter 10

OpenCV

This chapter gives a brief overview of how to use the popular computer vision library
OpenCV through the Python interface. OpenCV is a C++ library for real time computer
vision initially developed by Intel, now maintained by Willow Garage. OpenCV is open
source and released under a BSD license, meaning it is free for both academic and
commercial use. As of version 2.0, Python support has been greatly improved. We will
go through some basic examples and look deeper into tracking and video.

10.1 The OpenCV Python Interface

OpenCV is a C++ library with modules that cover many areas of computer vision. Be-
sides C++ (and C) there is growing support for Python as a simpler scripting language
through a Python interface on top of the C++ code base. The Python interface is still
under development and not all parts of OpenCV are exposed and many functions are
undocumented. This is likely to change as there is an active community behind this
interface. The Python interface is documented at http://opencv.willowgarage.com/
documentation/python/index.html. See the appendix for installation instructions.

The current OpenCV version (2.3.1) actually comes with two Python interfaces.
The old cv module uses internal OpenCV datatypes and can be a little tricky to use
from NumPy. The new cv2 module uses NumPy arrays and is much more intuitive to
use1. The module is available as

import cv2

and the old module can be accessed as

1The names and location of these two modules are likely to change over time, check the online docu-
mentation for changes.

257

http://opencv.willowgarage.com/documentation/python/index.html
http://opencv.willowgarage.com/documentation/python/index.html

import cv2.cv

We will focus on the cv2 module in this chapter. Look out for future name changes, as
well as changes in function names and definitions in future versions. OpenCV and the
Python interface is under rapid development.

10.2 OpenCV Basics

OpenCV comes with functions for reading and writing images as well as matrix oper-
ations and math libraries. For the details on OpenCV, there is an excellent book [3]
(C++ only). Let’s look at some of the basic components and how to use them.

Reading and writing images

This short example will load an image, print the size and convert and save the image
in .png format.

import cv2

read image
im = cv2.imread(’empire.jpg’)
h,w = im.shape[:2]
print h,w

save image
cv2.imwrite(’result.png’,im)

The function imread() returns the image as a standard NumPy array and can handle
a wide range of image formats. You can use this function as an alternative to the
PIL image reading if you like. The function imwrite() automatically takes care of any
conversion based on the file ending.

Color spaces

In OpenCV images are not stored using the conventional RGB color channels, they are
stored in BGR order (the reverse order). When reading an image the default is BGR,
however there are several conversions available. Color space conversion are done
using the function cvtColor(). For example, converting to grayscale is done like this.

im = cv2.imread(’empire.jpg’)
create a grayscale version
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

258 10.2. OpenCV Basics

After the source image there is an OpenCV color conversion code. Some of the most
useful conversion codes are:

• cv2.COLOR_BGR2GRAY

• cv2.COLOR_BGR2RGB

• cv2.COLOR_GRAY2BGR

In each of these, the number of color channels for resulting images will match the
conversion code (single channel for gray and three channels for RGB and BGR). The
last version converts grayscale images to BGR and is useful if you want to plot or
overlay colored objects on the images. We will use this in the examples.

Displaying images and results

Let’s look at some examples of using OpenCV for image processing and how to show
results with OpenCV plotting and window management.

The first example reads an image from file and creates an integral image represen-
tation.

import cv2

read image
im = cv2.imread(’fisherman.jpg’)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

compute integral image
intim = cv2.integral(gray)

normalize and save
intim = (255.0*intim) / intim.max()
cv2.imwrite(’result.jpg’,intim)

After reading the image and converting to grayscale the function integral() creates
an image where the value at each pixel is the sum of the intensities above and to the
left. This is a very useful trick for quickly evaluating features. Integral images are
used in OpenCV’s CascadeClassifier which is based on a framework introduced by
Viola and Jones [39]. Before saving the resulting image, we normalize the values to
0 . . . 255 by dividing with the largest value. Figure 10.1 shows the result for an example
image.

The second example applies flood filling starting from a seed pixel.

import cv2

10.2. OpenCV Basics 259

Figure 10.1: Example of computing an integral image using OpenCV’s integral()

function.

read image
filename = ’fisherman.jpg’
im = cv2.imread(filename)
h,w = im.shape[:2]

flood fill example
diff = (6,6,6)
mask = zeros((h+2,w+2),uint8)
cv2.floodFill(im,mask,(10,10), (255,255,0),diff,diff)

show the result in an OpenCV window
cv2.imshow(’flood fill’,im)
cv2.waitKey()

save the result
cv2.imwrite(’result.jpg’,im)

This example applies flood fill to the image and shows the result in an OpenCV window.
The function waitKey() pauses until a key is pressed and the window is automatically
closed. Here the function floodFill() takes the image (grayscale or color), a mask
with non-zero pixels indicating areas not to be filled, a seed pixel, the new color value
to replace the flooded pixels together with lower and upper difference thresholds to
accept new pixels. The flood fill starts at the seed pixel and keeps expanding as long as
new pixels can be added within the difference thresholds. The difference thresholds
are given as tuples (R,G,B). The result looks like Figure 10.2.

As a third and final example, we look at extracting SURF features, a faster version
of SIFT introduced by [1]. Here we also show how to use some basic OpenCV plotting
commands.

260 10.2. OpenCV Basics

Figure 10.2: Flood fill of a color image. The cyan area marks all pixels filled using a
single seed in the upper left corner.

import cv2

read image
im = cv2.imread(’empire.jpg’)

down sample
im_lowres = cv2.pyrDown(im)

convert to grayscale
gray = cv2.cvtColor(im_lowres,cv2.COLOR_RGB2GRAY)

detect feature points
s = cv2.SURF()
mask = uint8(ones(gray.shape))
keypoints = s.detect(gray,mask)

show image and points
vis = cv2.cvtColor(gray,cv2.COLOR_GRAY2BGR)

for k in keypoints[::10]:
cv2.circle(vis,(int(k.pt[0]),int(k.pt[1])),2,(0,255,0),-1)
cv2.circle(vis,(int(k.pt[0]),int(k.pt[1])),int(k.size),(0,255,0),2)

cv2.imshow(’local descriptors’,vis)
cv2.waitKey()

After reading the image it is down sampled using the function pyrDown() which if no
new size is given, creates a new image half the size of the original. Then the image
is converted to grayscale and passed to a SURF keypoint detection object. The mask
determines what areas to apply the keypoint detector. When it comes to plotting we

10.2. OpenCV Basics 261

Figure 10.3: Sample SURF features extracted and plotted using OpenCV.

convert the grayscale image to a color image and use the green channel for plotting.
We loop over every tenth keypoint and plot a circle at the center and one circle showing
the scale (size) of the keypoint. The plotting function circle() takes an image, a tuple
with image coordinates (integer only), a radius, a tuple with plot color and finally the
line thickness (-1 gives a solid circle). Figure 10.3 shows the result.

10.3 Processing Video

Video with pure Python is hard. There is speed, codecs, cameras, operating systems
and file formats to consider. There is currently no video library for Python. OpenCV
with its Python interface is the only good option. In this section we’ll look at some
basic examples using video.

Video input

Reading video from a camera is very well supported in OpenCV. A basic complete
example that captures frames and shows them in an OpenCV window looks like this.

import cv2

262 10.3. Processing Video

setup video capture
cap = cv2.VideoCapture(0)

while True:
ret,im = cap.read()
cv2.imshow(’video test’,im)
key = cv2.waitKey(10)
if key == 27:
break

if key == ord(’ ’):
cv2.imwrite(’vid_result.jpg’,im)

The capture object VideoCapture captures video from cameras or files. Here we pass
an integer at initialization. This is the id of the video device, with a single camera
connected this is 0. The method read() decodes and returns the next video frame.
The first value is a success flag and the second the actual image array. The waitKey()

function waits for a key to be pressed and quit the application if the ’esc’ key (Ascii
number 27) is pressed or saves the frame if the ’space’ key is pressed.

Let’s extend this example with some simple processing by taking the camera input
and show a blurred (color) version of the input in an OpenCV window. This is only a
slight modification to the base example above:

import cv2

setup video capture
cap = cv2.VideoCapture(0)

get frame, apply Gaussian smoothing, show result
while True:
ret,im = cap.read()
blur = cv2.GaussianBlur(im,(0,0),5)
cv2.imshow(’camera blur’,blur)
if cv2.waitKey(10) == 27:
break

Each frame is passed to the function GaussianBlur() which applies a Gaussian filter to
the image. In this case we are passing a color image so each color channel is blurred
separately. The function takes a tuple for filter size and the standard deviation for the
Gaussian function (in this case 5). If the filter size is set to zero, it will automatically
be determined from the standard deviation. The result looks like Figure 10.4.

Reading video from files works the same way but with the call to VideoCapture()

taking the video filename as input.

capture = cv2.VideoCapture(’filename’)

10.3. Processing Video 263

Figure 10.4: Screenshot of a blurred video of the author as he’s writing this chapter.

Reading video to NumPy arrays

Using OpenCV it is possible to read video frames from a file and convert them to NumPy
arrays. Here is an example of capturing video from a camera and storing the frames
in a NumPy array.

import cv2

setup video capture
cap = cv2.VideoCapture(0)

frames = []
get frame, store in array
while True:
ret,im = cap.read()
cv2.imshow(’video’,im)
frames.append(im)
if cv2.waitKey(10) == 27:
break

frames = array(frames)

check the sizes
print im.shape
print frames.shape

Each frame array is added to the end of a list until the capturing is stopped. The
resulting array will have size (number of frames,height,width,3). The printout confirms

264 10.3. Processing Video

this:

(480, 640, 3)
(40, 480, 640, 3)

In this case there were 40 frames recorded. Arrays with video data like this are useful
for video processing such as computing frame differences and tracking.

10.4 Tracking

Optical flow

Optical flow (sometimes called optic flow) is the image motion of objects as the objects,
scene or camera moves between two consecutive images. It is a 2D vector field of
within-image translation. Is is a classic and well studied field in computer vision with
many successful applications in for example video compression, motion estimation,
object tracking and image segmentation.

Optical flow relies on three major assumptions.

1. Brightness constancy: The pixel intensities of an object in an image does not
change between consecutive images.

2. Temporal regularity: The between-frame time is short enough to consider the
motion change between images using differentials (used to derive the central
equation below).

3. Spatial consistency: Neighboring pixels have similar motion.

In many cases these assumptions break down, but for small motions and short time
steps between images it is a good model. Assuming that an object pixel I(x, y, t) at
time t has the same intensity at time t+ �t after motion [�x, �y]) means that I(x, y, t) =
I(x+ �x, y + �y, t+ �t). Differentiating this constraint gives the optical flow equation:

rITv = �I
t

,

where v = [u, v] is the motion vector and I
t

the time derivative. For individual points
in the image, this equation is under-determined and cannot be solved (one equation
with two unknowns in v). By enforcing some spatial consistency, it is possible to
obtain solutions though. In the Lucas-Kanade algorithm below we will see how that
assumption is used.

OpenCV contains several optical flow implementations, CalcOpticalFlowBM() which
uses block matching, CalcOpticalFlowHS() which uses [15] (both of these currently
only in the old cv module), the pyramidal Lucas-Kanade algorithm [19] calcOpticalFlowPyrLK()

10.4. Tracking 265

and finally calcOpticalFlowFarneback() based on [10]. The last one is considered one
of the best methods for obtaining dense flow fields. Let’s look at an example of using
this to find motion vectors in video (the Lucas-Kanade version is the subject of the next
section).

Try running the following script.

import cv2

def draw_flow(im,flow,step=16):
""" Plot optical flow at sample points
spaced step pixels apart. """

h,w = im.shape[:2]
y,x = mgrid[step/2:h:step,step/2:w:step].reshape(2,-1)
fx,fy = flow[y,x].T

create line endpoints
lines = vstack([x,y,x+fx,y+fy]).T.reshape(-1,2,2)
lines = int32(lines)

create image and draw
vis = cv2.cvtColor(im,cv2.COLOR_GRAY2BGR)
for (x1,y1),(x2,y2) in lines:
cv2.line(vis,(x1,y1),(x2,y2),(0,255,0),1)
cv2.circle(vis,(x1,y1),1,(0,255,0), -1)

return vis

setup video capture
cap = cv2.VideoCapture(0)

ret,im = cap.read()
prev_gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

while True:
get grayscale image
ret,im = cap.read()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

compute flow
flow = cv2.calcOpticalFlowFarneback(prev_gray,gray,None,0.5,3,15,3,5,1.2,0)
prev_gray = gray

plot the flow vectors
cv2.imshow(’Optical flow’,draw_flow(gray,flow))
if cv2.waitKey(10) == 27:
break

266 10.4. Tracking

Figure 10.5: Optical flow vectors (sampled at every 16th pixel) shown on video of a
translating book and a turning head.

This example will capture images from a webcam and call the optical flow estimation
on every consecutive pair of images. The motion flow vectors are stored in the two-
channel image flow returned by calcOpticalFlowFarneback(). Besides the previous
frame and the current frame, this function takes a sequence of parameters. Look
them up in the documentation if you are interested. The helper function draw_flow()
plots the motion vectors at regularly sample points in the image. It uses the OpenCV
drawing functions line() and circle() and the variable step controls the spacing of
the flow samples. The result can look like the screenshots in Figure 10.5. Here the
positions of the flow samples are shown as a grid of green circles and the flow vectors
with lines show how each sample point moves.

The Lucas-Kanade algorithm

Tracking is the process of following objects through a sequence of images or video.
The most basic form of tracking is to follow interest points such as corners. A popular
algorithm for this is the Lucas-Kanade tracking algorithm which uses a sparse optical
flow algorithm.

Lucas-Kanade tracking can be applied to any type of features but usually makes
use of corner points similar to the Harris corner points in Section 2.1. The function
goodFeaturesToTrack() detects corners according to an algorithm by Shi and Tomasi
[33] where corners are points with two large eigenvalues of the structure tensor (Har-
ris matrix) equation (2.2) and where the smaller eigenvalue is above a threshold.

The optical flow equation is under-determined (meaning that there are too many
unknowns per equation) if considered on a per-pixel basis. Using the assumption that
neighboring pixels have the same motion it is possible to stack many of these equations

10.4. Tracking 267

into one system of equations like this

2

664

rIT (x1)

rIT (x2)

. . .

rIT (x
n

)

3

775v =

2

664

I
x

(x1) I
y

(x1)

I
x

(x2) I
y

(x2)

. . .

I
x

(x

n

) I
y

(x

n

)

3

775

u

v

�
= �

2

664

I
t

(x1)

I
t

(x2)

. . .

I
t

(x

n

)

3

775

for some neighborhood of n pixels. This has the advantage that the system now has
more equations than unknowns and can be solved with least square methods. Typi-
cally, the contribution from the surrounding pixels is weighted so that pixels farther
away have less influence. A Gaussian weighting is the most common choice. This turns
the matrix above into the structure tensor in equation (2.2) and we have the relation

M

I

v = �

2

664

I
t

(x1)

I
t

(x2)

. . .

I
t

(x

n

)

3

775 or simpler Av = b .

This over-determined equation system can be solved in a least square sense and the
motion vector is given by

v = (ATA)

�1AT

b .

This is solvable only when ATA is invertible, which it is by construction if applied at
Harris corner points or the "good features to track" of Shi-Tomasi. This is how the
motion vectors are computed in the Lucas-Kanade tracking algorithms.

Standard Lucas-Kanade tracking works for small displacements. To handle larger
displacements a hierarchical approach is used. In this case the optical flow is com-
puted at coarse to fine versions of the image. This is what the OpenCV function
calcOpticalFlowPyrLK() does.

The Lucas-Kanade functions are included in OpenCV. Let’s look at how to use those
to build a Python tracker class. Create a file lktrack.py and add the following class
and constructor.

import cv2

some constants and default parameters
lk_params = dict(winSize=(15,15),maxLevel=2,

criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,10,0.03))

subpix_params = dict(zeroZone=(-1,-1),winSize=(10,10),
criteria = (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS,20,0.03))

feature_params = dict(maxCorners=500,qualityLevel=0.01,minDistance=10)

268 10.4. Tracking

class LKTracker(object):
""" Class for Lucas-Kanade tracking with
pyramidal optical flow."""

def __init__(self,imnames):
""" Initialize with a list of image names. """

self.imnames = imnames
self.features = []
self.tracks = []
self.current_frame = 0

The tracker object is initialized with a list of filenames. The variables features and
tracks will hold the corner points and their tracked positions. We also use a variable
to keep track of the current frame. We define three dictionaries with parameters for
the feature extraction, the tracking, and the subpixel feature point refinement.

Now, to start detecting points, we need to load the actual image, create grayscale
version and extract the "good features to track" points. The OpenCV function doing
the main work is goodFeaturesToTrack(). Add this detect_points() method to the
class.

def detect_points(self):
""" Detect ’good features to track’ (corners) in the current frame
using sub-pixel accuracy. """

load the image and create grayscale
self.image = cv2.imread(self.imnames[self.current_frame])
self.gray = cv2.cvtColor(self.image,cv2.COLOR_BGR2GRAY)

search for good points
features = cv2.goodFeaturesToTrack(self.gray, **feature_params)

refine the corner locations
cv2.cornerSubPix(self.gray,features, **subpix_params)

self.features = features
self.tracks = [[p] for p in features.reshape((-1,2))]

self.prev_gray = self.gray

The point locations are refined using cornerSubPix() and stored in the member vari-
ables features and tracks. Note that running this function clears the track history.

Now that we can detect the points, we also need to track them. First we need
to get the next frame, then apply the OpenCV function calcOpticalFlowPyrLK() that
finds out where the points moved and remove and clean the lists of tracked points.

10.4. Tracking 269

The method track_points() below does this.

def track_points(self):
""" Track the detected features. """

if self.features != []:
self.step() # move to the next frame

load the image and create grayscale
self.image = cv2.imread(self.imnames[self.current_frame])
self.gray = cv2.cvtColor(self.image,cv2.COLOR_BGR2GRAY)

reshape to fit input format
tmp = float32(self.features).reshape(-1, 1, 2)

calculate optical flow
features,status,track_error = cv2.calcOpticalFlowPyrLK(self.prev_gray,

self.gray,tmp,None,**lk_params)

remove points lost
self.features = [p for (st,p) in zip(status,features) if st]

clean tracks from lost points
features = array(features).reshape((-1,2))
for i,f in enumerate(features):
self.tracks[i].append(f)

ndx = [i for (i,st) in enumerate(status) if not st]
ndx.reverse() #remove from back
for i in ndx:
self.tracks.pop(i)

self.prev_gray = self.gray

This makes use of a simple helper method step() that moves to the next available
frame.

def step(self,framenbr=None):
""" Step to another frame. If no argument is
given, step to the next frame. """

if framenbr is None:
self.current_frame = (self.current_frame + 1) % len(self.imnames)

else:
self.current_frame = framenbr % len(self.imnames)

This method jumps to a given frame or just to the next if no argument is given.
Finally, we also want to be able to draw the result using OpenCV windows and

drawing functions. Add this draw() method to the LKTracker class.

270 10.4. Tracking

def draw(self):
""" Draw the current image with points using
OpenCV’s own drawing functions.
Press ant key to close window."""

draw points as green circles
for point in self.features:
cv2.circle(self.image,(int(point[0][0]),int(point[0][1])),3,(0,255,0),-1)

cv2.imshow(’LKtrack’,self.image)
cv2.waitKey()

Now we have a complete self-contained tracking system using OpenCV functions.

Using the tracker Let’s tie it all together by using this tracker class on a real track-
ing scenario. The following script will initialize a tracker object, detect and track
points through the sequence and draw the result.

import lktrack

imnames = [’bt.003.pgm’, ’bt.002.pgm’, ’bt.001.pgm’, ’bt.000.pgm’]

create tracker object
lkt = lktrack.LKTracker(imnames)

detect in first frame, track in the remaining
lkt.detect_points()
lkt.draw()
for i in range(len(imnames)-1):
lkt.track_points()
lkt.draw()

The drawing is one frame at a time and show the points currently tracked. Pressing
any key will move to the next image in the sequence. The resulting figure windows
for the first four images of the Oxford corridor sequence (one of the Oxford multi-view
datasets available at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html) looks
like Figure 10.6.

Using generators Add the following method to the LKTracker class.

def track(self):
""" Generator for stepping through a sequence."""

for i in range(len(self.imnames)):
if self.features == []:

10.4. Tracking 271

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Figure 10.6: Tracking using the Lucas-Kanade algorithm through the LKTrack class.

272 10.4. Tracking

self.detect_points()
else:
self.track_points()

create a copy in RGB
f = array(self.features).reshape(-1,2)
im = cv2.cvtColor(self.image,cv2.COLOR_BGR2RGB)
yield im,f

This creates a generator which makes it easy to step through a sequence and get
tracks and the images as RGB arrays so that it is easy to plot the result. To use it on
the classic Oxford "dinosaur" sequence (from the same multi-view dataset page as the
corridor above) and plot the points and their tracks, the code looks like this:

import lktrack

imnames = [’viff.000.ppm’, ’viff.001.ppm’,
’viff.002.ppm’, ’viff.003.ppm’, ’viff.004.ppm’]

track using the LKTracker generator
lkt = lktrack.LKTracker(imnames)
for im,ft in lkt.track():
print ’tracking %d features’ % len(ft)

plot the tracks
figure()
imshow(im)
for p in ft:
plot(p[0],p[1],’bo’)

for t in lkt.tracks:
plot([p[0] for p in t],[p[1] for p in t])

axis(’off’)
show()

This generator makes it really easy to use the tracker class and completely hides the
OpenCV functions from the user. The example generates a plot like the one shown in
Figure 10.7 and the bottom right of Figure 10.6.

10.5 More Examples

With OpenCV comes a number of useful sample examples of how to use the python
interface. These are in the sub-directory samples/python2/ and are a good way to
get familiar with OpenCV. Here are a few selected examples to illustrate some other
capabilities of OpenCV.

10.5. More Examples 273

Figure 10.7: An example of using Lucas-Kanade tracking on a turntable sequence and
plotting the tracks of points.

Inpainting

The reconstruction of lost or deteriorated parts of images is called inpainting. This
covers both algorithms to recover lost or corrupted parts of image data for restoration
purposes as well as removing red-eyes or objects in photo editing applications. Typi-
cally a region of the image is marked as "corrupt" and needs to be filled using the data
from the rest of the image.

Try the following command:

$ python inpaint.py empire.jpg

This will open an interactive window where you can draw regions to be inpainted. The
results are shown in a separate window. An example is shown in Figure 10.8.

Segmentation with the watershed transform

Watershed is an image processing technique that can be used for segmentation. A
(graylevel) image is treated as a topological landscape that is "flooded" from a number
of seed regions. Usually a gradient magnitude image is used since this has ridges at
strong edges and will make the segmentation stop at image edges.

274 10.5. More Examples

Figure 10.8: An example of inpainting with OpenCV. The left image shows areas
marked by a user as "corrupt". The right image shows the result after inpainting.

The implementation in OpenCV uses an algorithm by Meyer [22]. Try it using the
command:

$ python watershed.py empire.jpg

This will open an interactive window where you can draw the seed regions you want
the algorithm to use as input. The results are shown in a second window with colors
representing regions overlaid on a grayscale version of the input image.

Line detection with a Hough transform

The Hough transform (http://en.wikipedia.org/wiki/Hough_transform) is a method
for finding shapes in images. It works by using a voting procedure in the parameter
space of the shapes. The most common use is to find line structures in images. In that
case edges and line segments can be grouped together by them voting for the same
line parameters in the 2D parameter space of lines.

The OpenCV sample detects lines using this approach2. Try the following com-
mand:

$ python houghlines.py empire.jpg

2This sample is currently in the /samples/python folder.

10.5. More Examples 275

http://en.wikipedia.org/wiki/Hough_transform

Figure 10.9: An example of segmenting an image using a watershed transform. The
left image is the input image with seed regions drawn. The right image shows the
resulting segmentation starting.

This gives two windows like the ones shown in Figure 10.10. One window shows the
source image in grayscale, the other shows the edge map used together with lines
detected as those with most votes in parameter space. Note that the lines are always
infinite, if you want to find the endpoints of line segments in the image you can use
the edge map to try to find them.

Exercises

1. Use optical flow to build a simple gesture recognition system. For example, you
could sample the flow as in the plotting function and use these sample vectors as
input.

2. There are two warp functions available in OpenCV, cv2.warpAffine() and cv2.warpPerspective().
Try to use them on some of the examples from Chapter 3.

3. Use the flood fill function to do background subtraction on the Oxford "dinosaur"
images used in Figure 10.7. Create new images with the dinosaur placed on a
different color background or on a different image.

276 10.5. More Examples

Figure 10.10: An example of detecting lines using a Hough transform. The left image
is the source in grayscale. The right image shows an edge map with detected lines in
red.

4. OpenCV has a function ccv2.findChessboardCorners() which automatically finds
the corners of a chessboard pattern. Use this function to get correspondences
for calibrating a camera with the function cv2.calibrateCamera().

5. If you have two cameras, mount them in a stereo rig setting and capture stereo
image pairs using cv2.VideoCapture() with different video device ids. Try 0 and
1 for starters. Compute depth maps for some varying scenes.

6. Use Hu moments with cv2.HuMoments() as features for the sudoku OCR classifi-
cation problem in Section 8.4 and check the performance.

7. OpenCV has an implementation of the Grab Cut segmentation algorithm. Use
the function cv2.grabCut() on the Microsoft Research Grab Cut dataset (see Sec-
tion 9.1). Hopefully you will get better results that the low resolution segmenta-
tion in our examples.

8. Modify the Lucas-Kanade tracker class to take a video file as input and write a
script that tracks points between frames and detects new points every k frames.

10.5. More Examples 277

Appendix A

Installing Packages

Here are short installation instructions for the packages used in the book. They are
written based on the latest versions as of writing of this book. Things change (urls
change!), so if the instructions become outdated, check the individual project websites
for help.

In addition to the specific instructions, an option that often works on most plat-
forms is Python’s easy_install. If you run into problems with the installation instruc-
tions given here, easy_install is worth a try. Find out more on the package website
http://packages.python.org/distribute/easy_install.html.

A.1 NumPy and SciPy

Installing NumPy and SciPy is a little different depending on your operating system.
Follow the applicable instructions below. The current versions are 2.0 (NumPy) and
0.11 (SciPy) on most platforms. A package that currently works on all major platforms
is the Enthought EPD Free bundle, a free light version of the commercial Enthought
distribution, available for free at http://enthought.com/products/epd_free.php.

Windows

The easiest way to install NumPy and SciPy is to download and install the binary distri-
butions from http://www.scipy.org/Download.

Mac OS X

Later versions of Mac OS X (10.7.0 (Lion) and up) comes with NumPy pre-installed.

279

http://packages.python.org/distribute/easy_install.html
http://enthought.com/products/epd_free.php
http://www.scipy.org/Download

An easy way to install NumPy and SciPy for Mac OS X is with the "superpack" from
https://github.com/fonnesbeck/ScipySuperpack. This also gives you Matplotlib.

Another alternative is to use the package system MacPorts (http://www.macports.
org/). This also works for Matplotlib instead of the instructions below.

If none of those work, the project webpage has other alternatives listed (http:
//scipy.org/).

Linux

Installation requires that you have administrator rights on your computer. On some
distributions NumPy comes pre-installed, on others not. Both NumPy and SciPy is easiest
installed with the built in package handler (for example Synaptic on Ubuntu). You can
also use the package handler for Matplotlib instead of the instructions below.

A.2 Matplotlib

Here are instructions for installing Matplotlib in case your NumPy/SciPy installation
did not also install Matplotlib. Matplotlib is freely available at http://matplotlib.
sourceforge.net/. Click the "download" link and download the installer for the latest
version for your system and Python version. Currently the latest version is 1.1.0.

Alternatively, just download the source and unpack. Run

$ python setup.py install

from the command line and everything should work. General tips on installing for dif-
ferent systems can be found at http://matplotlib.sourceforge.net/users/installing.
html but the process above should work for most platforms and Python versions.

A.3 PIL

PIL, the Python Imaging Library is available at http://www.pythonware.com/products/
pil/. The latest free version is 1.1.7. Download the source kit and unpack the folder.
In the downloaded folder run

$ python setup.py install

from the command line.
You need to have JPEG (libjpeg) and PNG (zlib) supported if you want to save im-

ages using PIL. See the README file or the PIL website if you encounter any problems.

280 A.2. Matplotlib

https://github.com/fonnesbeck/ScipySuperpack
http://www.macports.org/
http://www.macports.org/
http://scipy.org/
http://scipy.org/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/users/installing.html
http://matplotlib.sourceforge.net/users/installing.html
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

A.4 LibSVM

The current release is version 3.1 (released April 2011). Download the zip file from
the LibSVM website http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Unzip the file
(a directory "libsvm-3.1" will be created). In a terminal window go to this directory
and type "make".

$ cd libsvm-3.0
$ make

Then go to the "python" directory and do the same:

$ cd python/
$ make

This should be all you need to do. To test your installation, start python from the
command line and try

import svm

The authors wrote a practical guide for using LivSVM [7]. This is a good starting point.

A.5 OpenCV

Installing OpenCV is a bit different depending on your operating system. Follow the
applicable instructions below.

To check your installation, start python and try the cookbook examples http://
opencv.willowgarage.com/documentation/python/cookbook.html. The online OpenCV
Python reference guide gives more examples and details http://opencv.willowgarage.
com/documentation/python/index.html on how to use OpenCV with Python.

Windows and Unix

There are installers for Windows and Unix available at the SourceForge repository
http://sourceforge.net/projects/opencvlibrary/.

Mac OS X

Mac OS X support has been lacking but is on the rise. There are several ways to
install from source as described on the OpenCV wiki http://opencv.willowgarage.
com/wiki/InstallGuide. MacPorts is one option that works well if you are using
Python/Numpy/Scipy/Matplotlib also from MacPorts. Building OpenCV from source
can be done like this:

A.4. LibSVM 281

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://opencv.willowgarage.com/documentation/python/cookbook.html
http://opencv.willowgarage.com/documentation/python/cookbook.html
http://opencv.willowgarage.com/documentation/python/index.html
http://opencv.willowgarage.com/documentation/python/index.html
http://sourceforge.net/projects/opencvlibrary/
http://opencv.willowgarage.com/wiki/InstallGuide
http://opencv.willowgarage.com/wiki/InstallGuide

$ svn co https://code.ros.org/svn/opencv/trunk/opencv
$ cd opencv/
$ sudo cmake -G "Unix Makefiles" .
$ sudo make -j8
$ sudo make install

If you have all the dependencies in place, everything should build and install properly.
If you get an error like

import cv2
Traceback (most recent call last):
File "", line 1, in

ImportError: No module named cv2

then you need to add the directory containing cv2.so to PYTHONPATH. For example:

$ export PYTHONPATH=/usr/local/lib/python2.7/site-packages/

Linux

Linux users could try the package installer for the distribution (the package is usually
called "opencv") or install from source as described in the Mac OS X section.

A.6 VLFeat

To install VLFeat, download and unpack the latest binary package from http://vlfeat.
org/download.html (currently the latest version is 0.9.14). Add the paths to your en-
vironment or copy the binaries to a directory in your path. The binaries are in the bin/
directory, just pick the sub-directory for your platform.

The use of the VLFeat command line binaries is described in the src/ sub-directory.
Alternatively you can find the documentation online at http://vlfeat.org/man/man.
html.

A.7 PyGame

PyGame can be downloaded from http://www.pygame.org/download.shtml. The lat-
est version is 1.9.1. The easiest way is to get the binary install package for your system
and Python version.

Alternatively, you can download the source and in the downloaded folder do:

$ python setup.py install

from the command line.

282 A.6. VLFeat

http://vlfeat.org/download.html
http://vlfeat.org/download.html
http://vlfeat.org/man/man.html
http://vlfeat.org/man/man.html
http://www.pygame.org/download.shtml

A.8 PyOpenGL

Installing PyOpenGL is easiest done by downloading the package from http://pypi.
python.org/pypi/PyOpenGL as suggested on the PyOpenGL webpage http://pyopengl.
sourceforge.net/. Get the latest version, currently 3.0.1.

In the downloaded folder do the usual:

$ python setup.py install

from the command line. If you get stuck or need information on dependencies etc,
more documentation can be found at http://pyopengl.sourceforge.net/documentation/
installation.html. Some good demo scripts for getting started are available at
http://pypi.python.org/pypi/PyOpenGL-Demo.

A.9 Pydot

Begin by installing the dependencies, GraphViz and Pyparsing. Go to http://www.
graphviz.org/ and download the latest GraphViz binary for your platform. The install
files should install GraphViz automatically.

Then, go to the Pyparsing project page http://pyparsing.wikispaces.com/. The
download page is at http://sourceforge.net/projects/pyparsing/. Get the latest
version (currently 1.5.5) and unzip the file to a directory. Type

$ python setup.py install

from the command line.
Finally, go to the project page http://code.google.com/p/pydot/ and click "down-

load". From the download page, download the latest version (currently 1.0.4). Unzip
and again type

$ python setup.py install

from the command line. Now you should be able to import pydot in your python
sessions.

A.10 Python-graph

Python-graph is a python module for working with graphs and contains lots of useful
algorithms like traversals, shortest path, pagerank and maximum flow. The latest
version is 1.8.1 and can be found on the project website http://code.google.com/
p/python-graph/. If you have easy_install on your system, the simplest way to get
python-graph is:

A.8. PyOpenGL 283

http://pypi.python.org/pypi/PyOpenGL
http://pypi.python.org/pypi/PyOpenGL
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/documentation/installation.html
http://pyopengl.sourceforge.net/documentation/installation.html
http://pypi.python.org/pypi/PyOpenGL-Demo
http://www.graphviz.org/
http://www.graphviz.org/
http://pyparsing.wikispaces.com/
http://sourceforge.net/projects/pyparsing/
http://code.google.com/p/pydot/
http://code.google.com/p/python-graph/
http://code.google.com/p/python-graph/

$ easy_install python-graph-core

Alternatively, download the source code from http://code.google.com/p/python-graph/
downloads/list and run

$ python setup.py install

To write and visualize the graphs (using the DOT language) you need python-graph-dot
which comes with the download or through easy_install:

$ easy_install python-graph-dot

Python-graph-dot depends on pydot, see above. The documentation (in html) is in the
"docs/" folder.

A.11 Simplejson

Simplejson is the independently maintained version of the JSON module that comes
with later versions of python (2.6 or later). The syntax is the same for both modules
but simplejson is more optimized and will give better performance.

To install, go to the project page https://github.com/simplejson/simplejson
and click the Download button. Then select the latest version from the "Download
Packages" section (currently this is 2.1.3). Unzip the folder and type

$ python setup.py install

from the command line. This should be all you need.

A.12 PySQLite

PySQLite is an SQLite binding for python. SQLite is a lightweight disk-based database
that can be queried with SQL and is easy to install and use. The latest version is 2.6.3,
see the project website http://code.google.com/p/pysqlite/ for more details.

To install, download from http://code.google.com/p/pysqlite/downloads/list
and unzip to a folder. Run

$ python setup.py install

from the command line.

284 A.11. Simplejson

http://code.google.com/p/python-graph/downloads/list
http://code.google.com/p/python-graph/downloads/list
https://github.com/simplejson/simplejson
http://code.google.com/p/pysqlite/
http://code.google.com/p/pysqlite/downloads/list

A.13 CherryPy

CherryPy (http://www.cherrypy.org/) is a fast, stable and lightweight web server
built on python using an object oriented model. CherryPy is easy to install, just down-
load the latest version from http://www.cherrypy.org/wiki/CherryPyInstall. The
latest stable release is 3.2.0. Unpack and run

$ python setup.py install

from the command line. After installing, look at the ten tiny tutorial examples that
come with CherryPy in the cherrypy/tutorial/ folder. These examples show you how
to pass GET/POST variables, inheritance of page properties, file upload and download
etc.

A.13. CherryPy 285

http://www.cherrypy.org/
http://www.cherrypy.org/wiki/CherryPyInstall

Appendix B

Image Datasets

B.1 Flickr

The immensely popular photo sharing site Flickr (http://flickr.com/) is a gold mine
for computer vision researchers and hobbyists. With hundreds of millions of images,
many of them tagged by users, it is a great resource to get training data or for do-
ing experiments on real data. Flickr has an API for interfacing with the service that
makes it possible to upload, download and annotate images (and much more). A full
description of the API is available here http://flickr.com/services/api/ and there
are kits for many programming languages, including Python.

Let’s look at using a library called flickrpy available freely at http://code.google.
com/p/flickrpy/. Download the file flickr.py. You will need an API Key from Flickr
to get this to work. Keys are free for non-commercial use and can be requested for
commercial use. Just click the link "Apply for a new API Key" on the Flickr API page
and follow the instructions. Once you have an API key, open flickr.py and replace the
empty string on the line

API_KEY = ’’

with your key. It should look something like this:

API_KEY = ’123fbbb81441231123cgg5b123d92123’

Let’s create a simple command line tool that downloads images tagged with a par-
ticular tag. Add the following code to a new file called tagdownload.py.

import flickr
import urllib, urlparse
import os
import sys

287

http://flickr.com/
http://flickr.com/services/api/
http://code.google.com/p/flickrpy/
http://code.google.com/p/flickrpy/

if len(sys.argv)>1:
tag = sys.argv[1]

else:
print ’no tag specified’

downloading image data
f = flickr.photos_search(tags=tag)
urllist = [] #store a list of what was downloaded

downloading images
for k in f:

url = k.getURL(size=’Medium’, urlType=’source’)
urllist.append(url)
image = urllib.URLopener()
image.retrieve(url, os.path.basename(urlparse.urlparse(url).path))
print ’downloading:’, url

If you also want to write the list of urls to a text file, add the following lines at the end.

write the list of urls to file
fl = open(’urllist.txt’, ’w’)
for url in urllist:

fl.write(url+’\n’)
fl.close()

From the command line, just type

$ python tagdownload.py goldengatebridge

and you will get the 100 latest images tagged with "goldengatebridge". As you can
see, we chose to take the "Medium" size. If you want thumbnails or full size originals
or something else, there are many sizes available, check the documentation on the
Flickr website http://flickr.com/api/.

Here we were just interested in downloading images, for API calls that require
authentication the process is slightly more complicated. See the API documentation
for more information on how to set up authenticated sessions.

B.2 Panoramio

A good source of geotagged images is Google’s photo-sharing service Panoramio (http:
//www.panoramio.com/). This web service has an API to access content programmat-
ically. The API is described at http://www.panoramio.com/api/. You can get website
widgets and access the data using JavaScript objects. To download images, the sim-
plest way is to use a GET call. For example:

288 B.2. Panoramio

http://flickr.com/api/
http://www.panoramio.com/
http://www.panoramio.com/
http://www.panoramio.com/api/

http://www.panoramio.com/map/get_panoramas.php?order=popularity&set=public&
from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium

where minx, miny, maxx, maxy define the geographic area to select photos from (mini-
mum longitude, latitude, maximum longitude and latitude, respectively). The response
will be in JSON and look like this:

{"count": 3152, "photos":
[{"upload_date": "02 February 2006", "owner_name": "***", "photo_id": 9439, "longitude":
-151.75, "height": 375, "width": 500, "photo_title": "***", "latitude": -16.5, "owner_url":
"http://www.panoramio.com/user/1600", "owner_id": 1600, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/9439.jpg", "photo_url": "http://www.panoramio.com/photo/9439"},
{"upload_date": "18 January 2011", "owner_name": "***", "photo_id": 46752123, "longitude":
120.52718600000003, "height": 370, "width": 500, "photo_title": "***", "latitude": 23.327833999999999, "owner_url":
"http://www.panoramio.com/user/2780232", "owner_id": 2780232, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/46752123.jpg", "photo_url": "http://www.panoramio.com/photo/46752123"},
{"upload_date": "20 January 2011", "owner_name": "***", "photo_id": 46817885, "longitude":
-178.13709299999999, "height": 330, "width": 500, "photo_title": "***", "latitude": -14.310613, "owner_url":
"http://www.panoramio.com/user/919358", "owner_id": 919358, "photo_file_url":
"http://mw2.google.com/mw-panoramio/photos/medium/46817885.jpg", "photo_url": "http://www.panoramio.com/photo/46817885"},
...
...
], "has_more": true}

Using a JSON package you can get the "photo_file_url" field of the result, see Sec-
tion 2.3 for an example.

B.3 Oxford Visual Geometry Group

The Visual Geometry research group at Oxford University has many datasets avail-
able at http://www.robots.ox.ac.uk/~vgg/data/. We used some of the multi-view
datasets in this book, for example the "Merton1", "Model House", "dinosaur" and "cor-
ridor" sequences. The data is available for download (some with camera matrices and
point tracks) at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.

B.4 University of Kentucky Recognition Benchmark Im-
ages

The UK Benchmark image set, also called the "ukbench" set, is a set with 2550 groups
of images. Each group has four images of an object or scene from varying viewpoints.
This is a good set to test object recognition and image retrieval algorithms. The data
set is available for download (the full set is around 1.5GB) at http://www.vis.uky.
edu/~stewe/ukbench/. It is described in detail in the paper [23].

In this book we used a smaller subset using only the first 1000 images.

B.3. Oxford Visual Geometry Group 289

http://www.robots.ox.ac.uk/~vgg/data/
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.vis.uky.edu/~stewe/ukbench/
http://www.vis.uky.edu/~stewe/ukbench/

B.5 Other

Prague Texture Segmentation Datagenerator and Benchmark

This set used in the segmentation chapter can generate many different types of texture
segmentation images. Available at http://mosaic.utia.cas.cz/index.php.

MSR Cambridge Grab Cut Dataset

Originaly used in the Grab Cut paper [27], this set provides segmentation images with
user annotations. The data set and some papers are available from http://research.
microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/
grabcut.htm. The original images in the data set are from a data set that now is part
of the Berkeley Segmentation Dataset http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/.

Caltech 101

This is a classic dataset that contains pictures of objects from 101 different categories
and can be used to test object recognition algorithms. The data set is available at
http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

Static Hand Posture Database

This dataset from Sebastien Marcel is available at http://www.idiap.ch/resource/
gestures/ together with a few other sets with hands and gestures.

Middlebury Stereo Datasets

These are datasets used to benchmark stereo algorithms. They are available for down-
load at http://vision.middlebury.edu/stereo/data/. Every stereo pair comes with
ground truth depth images to compare results against.

290 B.5. Other

http://mosaic.utia.cas.cz/index.php
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.idiap.ch/resource/gestures/
http://www.idiap.ch/resource/gestures/
http://vision.middlebury.edu/stereo/data/

Appendix C

Image Credits

Throughout this book we have made use of publicly available datasets and images
available from web services, these were listed in Appendix B. The contributions of the
researchers behind these datasets are greatly appreciated.

Some of the reoccurring example images are the author’s own. You are free to use
these images under a Creative Commons Attribution 3.0 (CC BY 3.0) license http:
//creativecommons.org/licenses/by/3.0/, for example by citing this book.

These images are:

• The Empire State building image used in almost every example throughout the
book.

• The low contrast image in Figure 1.7.

• The feature matching examples used in Figures 2.2, 2.5, 2.6, and 2.7.

• The Fisherman’s Wharf sign used in Figures 9.6, 10.1, and 10.2.

• The little boy on top of a hill used in Figures 6.4, 9.6.

• The book image for calibration used in Figures 4.3.

• The two images of the O’Reilly open source book used in Figures 4.4, 4.5, and
4.6.

Images from Flickr

We used some images from Flickr available with a Creative Commons Attribution 2.0
Generic (CC BY 2.0) license http://creativecommons.org/licenses/by/2.0/deed.
en. The contributions from these photographers is greatly appreciated.

291

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en

The images used from Flickr are (names are the ones used in the examples, not the
original filenames):

• billboard_for_rent.jpg by @striatic http://flickr.com/photos/striatic/21671910/
used in Figures 3.2.

• blank_billboard.jpg by @mediaboytodd http://flickr.com/photos/23883605@
N06/2317982570/ used in Figures 3.3.

• beatles.jpg by @oddsock http://flickr.com/photos/oddsock/82535061/ used
in Figures 3.2, 3.3.

• turningtorso1.jpg by @rutgerblom http://www.flickr.com/photos/rutgerblom/
2873185336/ used in Figure 3.5.

• sunset_tree.jpg by @jpck http://www.flickr.com/photos/jpck/3344929385/
used in Figure 3.5.

Other images

• The face images used in Figures 3.6, 3.7, and 3.8 are courtesy of JK Keller. The
eye and mouth annotations are the author’s.

• The Lund University building images used in Figures 3.9, 3.11, and 3.12 are from
a dataset used at the Mathematical Imaging Group, Lund University. Photogra-
pher was probably Magnus Oskarsson.

• The toy plane 3D model used in Figure 4.6 is from Gilles Tran (Creative Commons
License By Attribution).

• The Alcatraz images in Figures 5.7 and 5.8 are courtesy of Carl Olsson.

• The font data set used in Figures 1.8, 6.2, 6.3 6.7, and 6.8 is courtesy of Martin
Solli.

• The sudoku images in Figures 8.6, 8.7, and 8.8 are courtesy of Martin Byröd.

Illustrations

The epipolar geometry illustration in Figure 5.1 is based on an illustration by Klas
Josephson and adapted for this book.

292

http://flickr.com/photos/striatic/21671910/
http://flickr.com/photos/23883605@N06/2317982570/
http://flickr.com/photos/23883605@N06/2317982570/
http://flickr.com/photos/oddsock/82535061/
http://www.flickr.com/photos/rutgerblom/2873185336/
http://www.flickr.com/photos/rutgerblom/2873185336/
http://www.flickr.com/photos/jpck/3344929385/

Bibliography

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust
features. In European Conference on Computer Vision, 2006.

[2] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23:2001, 2001.

[3] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media Inc., 2008.

[4] Martin Byröd. An optical sudoku solver. In Swedish Symposium on Image Analy-
sis, SSBA. http://www.maths.lth.se/matematiklth/personal/byrod/papers/
sudokuocr.pdf, 2007.

[5] Antonin Chambolle. Total variation minimization and a class of binary mrf mod-
els. In Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, Lecture Notes in Computer Science, pages 136–152. Springer Berlin /
Heidelberg, 2005.

[6] T. Chan and L. Vese. Active contours without edges. IEEE Trans. Image Process-
ing, 10(2):266–277, 2001.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[8] D. Cremers, T. Pock, K. Kolev, and A. Chambolle. Convex relaxation techniques
for segmentation, stereo and multiview reconstruction. In Advances in Markov
Random Fields for Vision and Image Processing. MIT Press, 2011.

[9] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press,
2000.

293

http://www.maths.lth.se/matematiklth/personal/byrod/papers/sudokuocr.pdf
http://www.maths.lth.se/matematiklth/personal/byrod/papers/sudokuocr.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[10] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion.
In Proceedings of the 13th Scandinavian Conference on Image Analysis, pages
363–370, 2003.

[11] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications-of-the-ACM, 24(6):381–95, 1981.

[12] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey
Conf., pages 189–192, 1988.

[13] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[14] Richard Hartley. In defense of the eight-point algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19:580–593, 1997.

[15] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artifical
Intelligence, 17:185–203, 1981.

[16] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26:65–81, 2004.

[17] David G. Lowe. Object recognition from local scale-invariant features. In Inter-
national Conference on Computer Vision, pages 1150–1157, 1999.

[18] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, 2004.

[19] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with
an application to stereo vision. pages 674–679, 1981.

[20] Mark Lutz. Learning Python. O’Reilly Media Inc., 2009.

[21] Will McGugan. Beginning Game Development with Python and Pygame. Apress,
2007.

[22] F. Meyer. Color image segmentation. In Proc. of the 4th Conference on Image
Processing and its Applications, pages 302–306, 1992.

[23] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2,
pages 2161–2168, 2006.

294 BIBLIOGRAPHY

[24] Travis E. Oliphant. Guide to NumPy. http://www.tramy.us/numpybook.pdf,
2006.

[25] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and
R. Koch. Visual modeling with a hand-held camera. International Journal of Com-
puter Vision, 59(3):207–232, 2004.

[26] Marc Pollefeys. Visual 3d modeling from images – tutorial notes. Technical report,
University of North Carolina âĂŞ- Chapel Hill.

[27] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive
foreground extraction using iterated graph cuts. ACM Transactions on Graphics,
23:309–314, 2004.

[28] L. I. Rudin, S. J. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

[29] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of Computer
Vision, 2001.

[30] Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps using
structured light. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003.

[31] Toby Segaran. Programming Collective Intelligence. O’Reilly Media, 2007.

[32] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22:888–905, August 2000.

[33] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[34] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3d. In SIGGRAPH Conference Proceedings, pages 835–846.
ACM Press, 2006.

[35] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, ICCV ’99, pages 298–372.
Springer-Verlag, 2000.

[36] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer
vision algorithms. http://www.vlfeat.org/, 2008.

BIBLIOGRAPHY 295

http://www.tramy.us/numpybook.pdf
http://www.vlfeat.org/

[37] Deepak Verma and Marina Meila. A comparison of spectral clustering algorithms.
Technical report, 2003.

[38] Luminita A. Vese and Tony F. Chan. A multiphase level set framework for image
segmentation using the mumford and shah model. Int. J. Comput. Vision, 50:271–
293, December 2002.

[39] Paul Viola and Michael Jones. Robust real-time object detection. In International
Journal of Computer Vision, 2001.

[40] Marco Zuliani. Ransac for dummies. Technical report, Vision Research Lab,
UCSB, 2011.

296 BIBLIOGRAPHY

Index

K-means, 215
3D plotting, 175
3D reconstruction, 197
4-neighborhood, 324

affine transformation, 95
affine warping, 100
affinity matrix, 235
agglomerative clustering, 224
alpha map, 102
AR, 153
array, 25
array slicing, 26
aspect ratio, 137
association, 336
Augmented reality, 153

bag of visual words, 250
bag-of-word representation, 248
baseline, 205
Bayes classifier, 294
binary image, 44
blurring, 39
bundle adustment, 203

calibration matrix, 137
camera calibration, 143
camera center, 136
camera matrix, 136
camera model, 135
camera resectioning, 186
CBIR, 247

Chan-Vese segmentation, 344
Characteristic functions, 345
CherryPy, 273, 275
class centroids, 215
classifying images, 281
clustering images, 215, 231
complete linking, 230
confusion matrix, 293
Content-based image retrieval, 247
convex combination, 106
corner detection, 57
correlation, 63
corresponding points, 63
cpickle, 37
cross correlation, 63
cumulative distribution function, 29
cv, 350, 361
cv2, 350

de-noising, 49
Delaunay triangulation, 108
dendrogram, 232
dense depth reconstruction, 205
dense image features, 287
dense SIFT, 287
descriptor, 63
difference-of-Gaussian, 69
digit classification, 308
direct linear transformation, 96
directed graph, 321
distance matrix, 235

297

Edmonds-Karp algorithm, 322
eight point algorithm, 177
epipolar constraint, 171
epipolar geometry, 170
epipolar line, 172
epipole, 172
essential matrix, 192

factorization, 141
feature matches, 66
feature matching, 75
flood fill, 354
focal length, 137
fundamental matrix, 171

Gaussian blurring, 39
Gaussian derivative filters, 43
Gaussian distributions, 297
Geotagged images, 80
gesture recognition, 290
GL_MODELVIEW, 155
GL_PROJECTION, 155
Grab Cut dataset, 331
gradient angle, 41
gradient magnitude, 41
graph, 321
graph cut, 321
GraphViz, 86
graylevel transforms, 26

Harris corner detection, 57
Harris matrix, 58
Hierarchical clustering, 224
Hierarchical k-means, 244
histogram equalization, 29
Histogram of Oriented Gradients, 288
HOG, 288
Homogeneous coordinates, 94
homography, 93
Hough transform, 374

Image, 15
image contours, 22
image gradient, 41
image graph, 324
image histograms, 22
image patch, 63
image plane, 136
Image registration, 113
image retrieval, 247
image search demo, 273
image segmentation, 222, 321
image thumbnails, 18
ImageDraw, 221
inliers, 120
inpainting, 373
integral image, 352
interest point descriptor, 63
interest points, 57
inverse depth, 136
inverse document frequency, 249
io, 47
iso-contours, 22

JSON, 81

k-nearest neighbor classifier, 281
kernel functions, 302
kNN, 281

Laplacian matrix, 239
least squares triangulation, 183
LibSVM, 302
local descriptors, 57
Lucas-Kanade tracking algorithm, 363

marking points, 24
mathematical morphology, 44
Matplotlib, 19
max flow, 322
maximum flow, 322

298 INDEX

measurements, 44, 47, 313
metric reconstruction, 171, 191
min cut, 322
minidom, 113, 114
minimum cut, 322
misc, 47
Morphology, 44
morphology, 44, 47, 55
mplot3d, 175, 200
multi-class SVM, 310
multi-dimensional arrays, 25
multi-dimensional histograms, 232
Multiple view geometry, 169

naive Bayes classifier, 294
ndimage, 100
ndimage.filters, 207
Normalized cross correlation, 63
normalized cut, 336
Numpy, 24

objloader, 165
OCR, 308
OpenCV, 10, 349
OpenGL, 153
OpenGL projection matrix, 155
optic flow, 360
optical axis, 136
optical center, 137
Optical character recognition, 308
Optical flow, 360
optical flow equation, 360
outliers, 120
overfitting, 318

panograph, 133
panorama, 120
PCA, 33
pickle, 37, 218, 254, 255, 259
pickling, 37

piece-wise constant image model, 344
piecewise affine warping, 106
PIL, 15
pin-hole camera, 135
plane sweeping, 205
plot formatting, 20
plotting, 19
point correspondence, 63
pose estimation, 146
Prewitt filters, 42
Principal Component Analysis, 33, 299
principal point, 137
projection, 135
projection matrix, 136
projective camera, 135
projective transformation, 93
pydot, 86
PyGame, 153
pygame, 154
pygame.image, 154
pygame.locals, 154
Pylab, 19
PyOpenGL, 153
pyplot, 56
pysqlite, 255
pysqlite2, 255
Python Imaging Library, 15
python-graph, 322, 324

quad, 158
query with image, 263
quotient image, 54

radial basis functions, 302
RANSAC, 120, 194
rectified, 204
registration, 113
rigid transformation, 95
ROF, 49, 345
RQ-factorization, 141

INDEX 299

Rudin-Osher-Fatemi de-noising model, 49

Scale-Invariant Feature Transform, 69
scikit.learn, 319
Scipy, 39
scipy.cluster.vq, 216, 220
scipy.io, 47
scipy.misc, 49
scipy.ndimage, 40, 44, 47, 313, 316, 319
scipy.ndimage.filters, 39, 41, 42, 59
scipy.sparse, 279
searching images, 247, 260
segmentation, 321
self-calibration, 203
separating hyperplane, 301
SfM, 193
SIFT, 69
similarity matrix, 235
similarity transformation, 95
similarity tree, 224
simplejson, 82, 83
single linking, 229
Slicing, 26
Sobel filter, 43
Sobel filters, 42
spectral clustering, 235, 336
SQLite, 254
SSD, 63
stereo imaging, 204
Stereo reconstruction, 205
stereo rig, 204
stereo vision, 204
stitching images, 128
stop words, 248
structure from motion, 193
structuring element, 46
sudoku reader, 308
sum of squared differences, 63
Support Vector Machines, 301

support vectors, 302
SVM, 301

term frequency, 248
term frequency - inverse document frequency,

248
text mining, 248
tf-idf weighting, 248
total variation, 50
total within-class variance, 216
tracking, 360
triangulation, 183

unpickling, 37
unsharp masking, 54
urllib, 83

variational methods, 344
variational problems, 344
vector quantization, 216
vector space model, 248
vertical field of view, 156
video, 356
visual codebook, 249
visual vocabulary, 249
visual words, 249
visualizing image distribution, 222
VLFeat, 71

warping, 100
watershed, 373
web applications, 273
webcam, 362
word index, 256

XML, 113
xml.dom, 113

300 INDEX

	Preface
	Prerequisites and Overview
	Introduction to Computer Vision
	Python and NumPy
	Notation and Conventions
	Acknowledgments

	Basic Image Handling and Processing
	PIL – the Python Imaging Library
	Matplotlib
	NumPy
	SciPy
	Advanced example: Image de-noising

	Local Image Descriptors
	Harris corner detector
	SIFT - Scale-Invariant Feature Transform
	Matching Geotagged Images

	Image to Image Mappings
	Homographies
	Warping images
	Creating Panoramas

	Camera Models and Augmented Reality
	The Pin-hole Camera Model
	Camera Calibration
	Pose Estimation from Planes and Markers
	Augmented Reality

	Multiple View Geometry
	Epipolar Geometry
	Computing with Cameras and 3D Structure
	Multiple View Reconstruction
	Stereo Images

	Clustering Images
	K-means Clustering
	Hierarchical Clustering
	Spectral Clustering

	Searching Images
	Content-based Image Retrieval
	Visual Words
	Indexing Images
	Searching the Database for Images
	Ranking Results using Geometry
	Building Demos and Web Applications

	Classifying Image Content
	K-Nearest Neighbors
	Bayes Classifier
	Support Vector Machines
	Optical Character Recognition

	Image Segmentation
	Graph Cuts
	Segmentation using Clustering
	Variational Methods

	OpenCV
	The OpenCV Python Interface
	OpenCV Basics
	Processing Video
	Tracking
	More Examples

	Installing Packages
	NumPy and SciPy
	Matplotlib
	PIL
	LibSVM
	OpenCV
	VLFeat
	PyGame
	PyOpenGL
	Pydot
	Python-graph
	Simplejson
	PySQLite
	CherryPy

	Image Datasets
	Flickr
	Panoramio
	Oxford Visual Geometry Group
	University of Kentucky Recognition Benchmark Images
	Other

	Image Credits

