Probabilistic Entity-Relationship Models,
PRMs, and Plate Models

David Heckerman, Chris Meek, Daphne Koller

In this chapter, we introduce a graphical language for relational data called the
probabilistic entity-relationship (PER) model. The model is an extension of the
entity-relationship model, a common model for the abstract representation of
database structure. We concentrate on the directed version of this model—the
directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER
model is closely related to the plate model and the probabilistic relational model
(PRM), existing models for relational data. The DAPER model is more expressive
than either existing model, and also helps to demonstrate their similarity. In
addition to describing the new language, we discuss important facets of modeling
relational data, including the use of restricted relationships, self relationships, and
probabilistic relationships. Many examples are provided.

7.1

Introduction

For over a century, statistical modeling has focused primarily on “flat” data—data
that can be encoded naturally in a single two-dimensional table having rows and
columns. The disciplines of pattern recognition, machine learning, and data mining
have had a similar focus. Notable exceptions include hierarchical models (e.g., [11])
and spatial statistics (e.g., [1]). Over the last decade, however, perhaps due to the
ever-increasing volumes of data being stored in databases, the modeling of nonflat
or relational data has increased significantly. During this time, several graphical
languages for relational data have emerged including plate models (e.g.,[3, 9]) and
probabilistic relational models (PRMs) (e.g., [5]). These models are to relational
data what ordinary graphical models (e.g., directed acyclic graphs and undirected
graphs) are to flat data.

In this chapter, we introduce a new graphical model for relational data—the
probabilistic entity-relationship (PER) model. This model class is more expressive

202

Probabilistic Entity-Relationship Models, PRMs, and Plate Models

than either PRMs or plate models. We concentrate on a particular type of PER
model—the directed acyclic probabilistic entity-relationship (DAPER) model—in
which all probabilistic arcs are directed. It is this version of the PER model that is
most similar to the plate model and the PRM. We define new versions of the plate
model and the PRM such that their expressiveness is equivalent to the DAPER
model, and then compare the new and old definitions. Consequently, we both
demonstrate the similarity among the original languages as well as enhance their
abilities to express conditional independence in relational data. Our hope is that
this demonstration of similarity will foster greater communication and collaboration
among statisticians who mostly use plate models and computer scientists who
mostly use PRMs.

We in fact began this work with an effort to unify traditional PRMs and plate
models. In the process, we discovered that it was important to distinguish between
the concepts of entity and relationship (discussed in detail in the next section).
We in turn discovered an existing language that does so—the entity-relationship
(ER) model—a commonly used model for the abstract representation of database
structure. We then extended this language to handle probabilistic relationships,
creating the PER model.

We should emphasize that the languages we discuss are neither meant to serve
as a database schema nor meant to be built on top of one. In practice, database
schemata are built up over a long period of time as the needs of the database
consumers change. Consequently, schemata for real databases are often not optimal
or are completely unusable as the basis for statistical modeling. The languages we
describe here are meant to be used as statistical modeling tools, independent of the
schema of the database being modeled.

This work borrows heavily from concepts surrounding PRMs described in, e.g.,
Friedman et al. [5] and Getoor et al. [8]. Where possible, we use similar nomencla-
ture, notation, and examples.

7.2

Background: Graphical Models

As mentioned, we shall concentrate on directed models in this chapter. Accordingly,
we first review (ordinary) directed acyclic models.

A directed acyclic graphical (DAG) model for a finite set of attributes X =
(X1,...,X,) with joint distribution p(x) has two components: (1) a directed
acyclic graph—sometimes referred to as the structure of the model—that encodes
a set of conditional independencies among the attributes, and (2) a collection
of local distributions. The nodes in the directed acyclic graph are in one-to-one
correspondence with the attributes in X. To keep notation simple, we use X; to
refer to the node corresponding to attribute X;. Whether X; refers to an attribute
or node will be clear from the context. The absence of arcs in the directed acyclic
graph encode probabilistic independencies that allow the joint distribution for X

7.2 Background: Graphical Models 203

to be written as

n

p(x) = [[p(=ilpay), (7.1)

i=1
where pa,; are the attributes corresponding to the parents of node X;. The local
distributions of the DAG model is the set of conditional probability distributions
p(z;|pa;), i = 1,...,n. Thus, a DAG model for X specifies the joint distribution
for X.

An example DAG model structure for attributes (X,Y, Z, W) is shown in fig-
ure 7.1(a). The structure (i.e., the missing arcs) encode the independencies: (1) X
and Z are independent given Y, and (2) (Y, Z) and W are independent given X.
We note that DAG models can be interpreted as a generative model for the data. In
our example, we can generate a sample for (X,Y, Z, W) by first sampling X, then
Y and W given X, and finally Z given Y.

As we shall see, when working with relational data, it is often necessary to express
constraints or restrictions among attributes. Such restrictions can be encoded in a
DAG model, which we review here.

As a simple example, suppose we have a generative story for binary (0/1)
attributes X,Y, Z, and W that can be described by the DAG model structure
shown in figure 7.1(a). In addition, suppose we know that at most two of these
attributes take on the value 1. We can add this restriction to the model as shown
in figure 7.1(b). Here, we have added a binary node named R. Associated with this
node (not shown in the figure) is a local distribution wherein R = 1 with probability
1 when at most two of its parents take on value 1, and with probability zero
otherwise. To encode the restriction, we set R = 1. Note that R is a deterministic
attribute. That is, given the parents of R, R is known with certainty. As is commonly
done in the graphical modeling literature, we indicate deterministic nodes with
double ovals.1

Assuming that the restriction always holds—that is, R is always equal to 1—it
is not meaningful to work with the joint distribution p(z,y, z,w,r). Instead, the
appropriate distribution to make inferences with is

p(x|r =1) = p(z) p(ylx) p(zly) p(wlz) p(r = 1|z, y, z, w). (7.2)

Readers familiar with directed factor-graph models [4] will recognize that this
distribution for (X,Y, Z, W) can be encoded by a directed factor-graph model in
which node R is replaced by the factor f(x,y,z,w) = p(r = 1|z,y, z,w). More
generally, the factor-graph model is perhaps a more natural model for situations

1. DAG models can also be used to encode “soft” restrictions. For example, if we know that
zero, one, two, three, and four of the attributes X take on the value 1 with probabilities
Do, P1, P2, P3, and pa, respectively, we can encode this soft restriction using the DAG model
structure in figure 7.1(b) where R is no longer deterministic and has the appropriate local
probability distribution.

204 Probabilistic Entity-Relationship Models, PRMs, and Plate Models
(@ (b)

Figure 7.1 (a) A DAG model. (b) A similar DAG model with an added restriction
among the attributes.
having both a generative component and restrictions. In this chapter, however, we
use the DAG representation of restrictions so that we remain within the class of
DAG models and thereby simplify the presentation.

7.3 The Basic Ideas

Before we describe languages for the statistical modeling of relational data, we be-
gin with a description of a language for modeling the data itself. The language we
discuss is the entity-relationship (ER) model, a commonly used abstract represen-
tation of database structure (e.g., [19]). The creation of an ER model is often the
first step in the process of building a relational database. Features of anticipated
data and how they interrelate are encoded in an ER model. The ER model is then
used to create a relational schema for the database, which in turn is used to build
the database itself.

It is important to note that an ER model is a representation of a database
structure, not of a particular database that contains data. That is, an ER model
can be developed prior to the collection of any data, and is meant to anticipate the
data and the relationships therein.

When building ER models, we distinguish between entities, relationships, and
attributes. An entity corresponds to a thing or object that is or may be stored in
a database or data setQ; a relationship corresponds to a specific interaction among
entities; and an attribute corresponds to a variable describing some property of
an entity or relationship. Throughout the chapter, we use examples to illustrate
concepts.

Example 7.1

A university database maintains records on students and their IQs, courses and
their difficulty, and the courses taken by students and the grades they receive.

2. In what follows, we make no distinction between a database and a data set.

7.3

The Basic Ideas 205

In this example, we can think of individual students (e.g., john, mary) and in-
dividual courses (e.g., ¢s107, stat10) as entities.3 Naturally, there will be many
students and courses in the database. We refer to the set of students (e.g.,
{john,mary,...}) as an entity set. The set of courses (e.g., {cs107,stat10,...}) is
another entity set. Most important, because an ER model can be built before any
data is collected, we need the concept of an entity class—a reference to a set of
entities without a specification of the entities in the set. In our example, the entity
classes are Student and Course.

A relationship is a list of entities. In our example, a possible relationship is the
pair (john, ¢s107), meaning that john took the course ¢s107. Using nomenclature
similar to that for entities, we talk about relationship sets and relationship classes.
A relationship set is a collection of like relationships—that is, a collection of
relationships each relating entities from a fixed list of entity classes. In our example,
we have the relationship set of student-course pairs. A relationship class refers to
an unspecified set of like relationships. In our example, we have the relationship
class Takes.

The IQ of john and the difficulty of c¢s107 are examples of attributes. We use the
term attribute class to refer to an unspecified collection of like attributes. In our
example, Student has the single attribute class Student.IQ and Course has the single
attribute class Course.Diff. Relationships also can have attributes; and relationship
classes can have attribute classes. In our example, Takes has the attribute class
Takes.Grade.

An ER model for the structure of a database graphically depicts entity classes,
relationships classes, attribute classes, and their interconnections. An ER model for
Example 7.1 is shown in figure 7.2(a). The entity classes (Student and Course) are
shown as rectangular nodes; the relationship class (Takes) is shown as a diamond-
shaped node; and the attribute classes (Student.IQ, Course.Diff, and Takes.Grade)
are shown as oval nodes. Attribute classes are connected to their corresponding
entity or relationship class, and the relationship class is connected to its associated
entity classes. (Solid edges are customary in ER models. Here, we use dashed edges
so that we can later use solid edges to denote probabilistic dependencies.)

An ER model describes the potential attributes and relationships in a database. It
says little about actual data. A skeleton for a set of entity and relationship classes is
specification of the entities and relationships associated with a particular database.
That is, a skeleton for a set of entity and relationship classes is a collection of
corresponding entity and relationship sets. An example skeleton for our university
database example is shown in figure 7.2(b).

An ER model applied to a skeleton defines a specific set of attributes. In particu-
lar, for every entity class and every attribute class of that entity class, an attribute
is defined for every entity in the class; and for every relationship class and every at-

3. In areal database, longer names would be needed to define unique students and courses.
We keep the names short in our example to make reading easier.

206 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Student

john

Course |--- mary

Course

cs107
o - stat10

i Takes
: Student Course
Student {--- o s
mary cs107
(a) (b) mary stat10

©

Figure 7.2 (a) An ER model depicting the structure of a university database. (b)
An example skeleton for the entity and relationship classes in the ER model. (c)
The attributes defined by the application of the ER model to the skeleton. The
attribute names are abbreviated.

tribute class of that relationship class, an attribute is defined for every relationship
in the class. The attributes defined by the ER model in figure 7.2(a) applied to the
skeleton in figure 7.2(b) are shown in figure 7.2(c). In what follows, we use ER model
to mean both the ER diagram—the graph in figure 7.2(a)—and the mechanism by
which attributes are generated from skeletons.

A skeleton still says nothing about the values of attributes. An instance for an
ER model consists of (1) a skeleton for the entity and relationship classes in that
model, and (2) an assignment of a value to every attribute generated by the ER
model and the skeleton. That is, an instance of an ER model is an actual database.

Let us now turn to the probabilistic modeling of relational data. To do so, we
introduce a specific type of probabilistic ER model: the DAPER model. Roughly

7.8 The Basic Ideas 207

speaking, a DAPER model is an ER model with directed (solid) arcs among the
attribute classes that represent probabilistic dependencies among corresponding at-
tributes, and local distribution classes that define local distributions for attributes.
Recall that an ER model applied to a skeleton defines a set of attributes. Simi-
larly, a DAPER model applied to a skeleton defines a set of attributes as well as
a DAG model for these attributes. Thus, a DAPER model can be thought of as a
language for expressing conditional independence among unrealized attributes that
eventually become realized given a skeleton.

As with the ER diagram and model, we sometimes distinguish between a DAPER
diagram, which consists of the graph only, and the DAPER model, which consists of
the diagram, the local distribution classes, and the mechanism by which a DAPER
model defines a DAG model given a skeleton.

Ezxzample 7.2
In the university database (Example 7.1), a student’s grade in a course depends
both on the student’s I1Q) and on the difficulty of the course.

The DAPER model (or diagram) for this example is shown in figure 7.3(a). The
model extends the ER model in figure 7.2 with the addition of arc classes and
local distribution classes. In particular, there is an arc class from Student.IQ to
Takes.Grade and an arc class from Course.Diff to Takes.Grade. These arc classes
are denoted as a solid directed arc. A local distribution class for Takes.Grade (not
shown) represents the probabilistic dependence of grade on IQ and difficulty.

Just as we expand attribute classes in a DAPER model to attributes in a
DAG model given a skeleton, we expand arc classes to arcs. In doing so, we
sometimes want to limit the arcs that are added to a DAG model. In the current
problem, for example, we want to draw an arc from attribute c.Diff for course ¢ to
attribute Takes(s, ¢’).Grade for course ¢’ and any student s, only when ¢ = ¢’. This
limitation is achieved by adding a constraint to the arc class—namely, the constraint
course[Diff] = course[Grade] (see figure 7.3(a)). Here, the terms “course[Diff]” and
“course[Grade]” refer to the entities ¢ and ¢/, respectively—the entities associated
with the attributes at the ends of the arc.

The arc class from Student.IQ to Takes.Grade has a similar constraint: stu-
dent[IQ] = student[Grade]. This constraint says that we draw an arc from attribute
5.1Q for student s =student[IQ] to Takes(s’, ¢).Grade for student s’=student[Grade]
and any course ¢ only when s = s’. As we shall see, constraints in DAPER models
can be quite expressive—for example, they may include first-order expressions on
entities and relationships.

Figure 7.3(c) shows the DAG (structure) generated by the application of
the DAPER model in figure 7.3(a) to the skeleton in figure 7.3(b). (The at-
tribute names in the DAG model are abbreviated.) The arc from stat10.Diff to
Takes(mary,cs107).Grade, e.g., is disallowed by the constraint on the arc class from
Course.Diff to Takes.Grade.

Regardless of what skeleton we use, the DAG model generated by the DAPER
model in figure 7.3(a) will be acyclic. In general, as we show in section 7.7, if the

208 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

attribute classes and arc classes in the DAPER diagram form an acyclic graph,
then the DAG model generated from any skeleton for the DAPER model will be
acyclic. Weaker conditions are also sufficient to guarantee acyclicity. We describe
one in section 7.7.

In general, a local distribution class for an attribute class is a specification from
which local distributions for attributes corresponding to the attribute class can be
constructed, when a DAPER model is expanded to a DAG model. In our example,
the local distribution class for Takes.Grade—written p(Takes.Grade|Student.IQ,
Course.Diff)—is a specification from which the local distributions for Takes(s, ¢).Grade,
for all students s and courses ¢, can be constructed. In our example, each attribute
Takes(s, ¢).Grade will have two parents: s.IQ and c.Diff. Consequently, the local
distribution class need only be a single local probability distribution. We discuss
more complex situations in section 7.4.

Whereas most of this chapter concentrates on issues of representation, the
problems of probabilistic inference, learning local distributions, and learning model
structure are also of interest. For all of these problems, it is natural to extend
the concept of an instance to that of a partial instance; an instance in which
some of the attributes do not have values. A simple approach for performing
probabilistic inference about attributes in a DAPER model given a partial instance
is to (1) explicitly construct a ground graph, (2) instantiate known attributes from
the partial instance, and (3) apply standard probabilistic inference techniques to
the ground graph to compute the quantities of interest. One can improve upon
this simple approach by utilizing the additional structure provided by a relational
model—for example, by caching inferences in subnetworks. Koller and Pfeffer[15],
for example, have done preliminary work in this direction. With regard to learning,
note that from a Bayesian perspective, learning about both the local distributions
and model structure can be viewed as probabilistic inference about (missing)
attributes (e.g., parameters) from a partial instance. In addition, there has been
substantial research on learning PRMSs (e.g., [8]) and much of this work is applicable
to DAPER models.

We shall explore PER models in much more detail in subsequent sections. Here,
let us examine two alternate languages for relational data: plate models and PRMs.

Plate models were developed independently by Buntine[3] and the BUGS team
(e.g., [9]) as a language for compactly representing graphical models in which there
are repeated measurements. We know of no formal definition of a plate model, and
so we provide one here. This definition deviates slightly from published examples of
plate models, but it enhances the expressivity of such models while retaining their
essence (see section 7.5).

According to our definition, plate and DAPER models are equivalent. The
invertible mapping from a DAPER to a plate model is as follows. Each entity
class in a DAPER model is drawn as a large rectangle—called a plate. The plate
is labeled with the entity-class name. Plates are allowed to intersect or overlap. A
relationship class for a set of entity classes is drawn at the named intersection of
the plates corresponding to those entities. If there is more than one relationship

7.8 The Basic Ideas 209

Student
john
Course |-~ mary
! course[Diff] =
! course[Grade] Course
cs107
T stat10
! student[IQ] = m—
' student[Grade]
L Student Course
Student --- john cs107
mary cs107
(a) (b) mary stat10

Figure 7.3 (a) A DAPER model showing that a student’s grade in a course
depends on both the student’s 1QQ and the difficulty of the course. The solid
directed arcs correspond to probabilistic dependencies. These arcs are annotated
with constraints. (b) An example skeleton for the entity and relationship classes in
the ER model (the same one shown in figure 6.2). (¢) The DAG model (structure)
defined by the application of the DAPER model to the ER skeleton.

class among the same set of entity classes, the plates are drawn such that there
is a distinct intersection for each of the relationship classes. Attribute classes of
an entity class are drawn as ovals inside the rectangle corresponding to the entity
but outside any intersection. Attribute classes associated with a relationship class
are drawn in the intersection corresponding to the relationship class. Arc classes
and constraints are drawn just as they are in DAPER models. In addition, local
distribution classes are specified just as they are in DAPER models.

The plate model corresponding to the DAPER model in figure 7.3(a) is shown in
figure 7.4(a). The two rectangles are the plates corresponding to the Student and

210

Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Course entity classes. The single relationship class between Student and Course—
Takes—is represented as the named intersection of the two plates. The attribute
class Student.IQ is drawn inside the Student plate and outside the Course plate;
the attribute class Course.Diff is drawn inside the Course plate and outside the
Student plate; and the attribute class Takes.Grade is drawn in the intersection of
the Student and Course plate. The arc classes and their constraints are identical to
those in the DAPER model.

PRMs were developed in [5] explicitly for the purpose of representing relational
data. The PRM extends the relational model—another commonly used represen-
tation for the structure of a database—in much the same way as the PER model
extends the ER model. In this chapter, we shall define directed PRMs such that
they are equivalent to DAPER models and, hence, plate models. This definition de-
viates from the one given by, e.g., [5], but enhances the expressivity of the language
as previously defined (see section 7.6).

The invertible mapping from a DAPER model to a directed PRM (by our
definition) takes place in two stages. First, the ER model component of the DAPER
model is mapped to a relational model in a standard way (e.g., see [19]). In
particular, both entity and relationship classes are represented as tables. Foreign
keys—or what Getoor et al.[8] call reference slots—are used in the relationship-
class tables to enocde the ER connections in the ER model. Attribute classes
for entity and relationship classes are represented as attributes or columns in the
corresponding tables of the relational model. Second, the probabilistic components
of the DAPER model are mapped to those of the directed PRM. In particular, arc
classes and constraints are drawn just as they are in the DAPER model.

The directed PRM corresponding to the DAPER model in figure 7.3(a) is shown
in figure 7.4(b). (The local distribution for Takes.Grade is not shown.) The Student
entity class and its attribute class Student.IQ appear in a table, as does the Course
entity class and its attribute class Course.Diff. The Takes relationship and its
attribute class Takes.Grade is shown as a table containing the foreign keys Student
and Course. The arc classes and their constraints are drawn just as they are in the
DAPER model.

7.4

Probabilistic Entity-Relationship Models

We now examine DAPER models in detail. After reviewing the fundamentals,
we discuss the representation of restricted relationships, self relationships, and
probabilistic relationships.

In what follows, we use the following conventions in our notation. We use ei-
ther capitalized friendly names (e.g., Student, Course) or tokens (e.g., F) for
entity classes. We use non capitalized friendly names or abbreviations (e.g., stu-
dent[Grade], s) for corresponding entities. Similarly, we use capitalized friendly
names (e.g., Takes) or tokens (e.g., R) for relationship classes. We use, e.g., R(s,¢)
to say that entities s and c are a relationship associated with the relationship class

7.4 Probabilistic Entity-Relationship Models 211

Course - - N P
Diff !
1 Diff —
course[Diff] = .
course[Grade] E)
' Takes course[Diff] =
Takes v ! course[Grade]
Grade '-4- Course
--F- Student
N Grade
student[1Q] = ! X -
student[Grade] ! studen =
- -3~ Student) student[Grade]
A
@) o (b) IQ
Student

Figure 7.4 A plate model (a) and probabilistic relational model (b) corresponding
to the DAPER model in Figure7.3(a).

R. We use X to refer to an arbitrary class when the distinction between an entity
and relationship class is unimportant. We use expressions such as X.A to represent
an attribute class of class X, and x.A to represent an (ordinary) attribute of entity
x.

7.4.1 Fundamentals

A DAPER model can be viewed as a macro language—a language that, given a
skeleton, expands to a DAG model. We use the term ground graph to refer to
the structure of the DAG model created by the expansion of a DAPER model
given a skeleton. An important part of this expansion is the drawing of arcs in the
ground graph. Because the DAPER model is so compact, a mechanism is needed to
constrain the drawing of arcs. Without such a mechanism, important conditional
independence relations could not be expressed. As we have seen, this mechanism in
a DAPER model takes the form of constraints on arc classes. To better understand
how these constraints work, consider the following four related examples.

Ezxzample 7.3
A database contains diseases and symptoms for a given patient. Every disease is a
potential cause of every symptom.

The DAPER model for this example is shown in figure 7.5(a). The entity classes
Disease and Symptom have attribute classes Disease.Present and Symptom.Present,
respectively, and there are no relationship classes. In the diagram, the arc class
from Disease.Present to Symptom.Present has no constraint. Because there is no
constraint, the ground graph generated by the application of this DAPER model to
any given skeleton is a full bipartite graph. The bipartite graph generated by the

212 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Disease --- Present

Symptom |*~- Present

(@)

o>
o>

Figure 7.5 (a) A DAPER model for a complete bipartite graph between symptoms
and diseases. (b) A ground graph (a DAG model structure) generated from the
DAPER model given a skeleton with three diseases and three symptoms.

DAPER model applied to a skeleton in which there are three diseases and three
symptoms is shown in figure 7.5(b).

We give this example first to emphasize that arc classes need not have constraints.
Now, let us see what happens when we include such constraints.

Example 7.4
Extending example 7.3, suppose a physician has identified the possible causes of
each symptom.

The DAPER model for example 7.4 is shown in figure 7.6(a). With respect to the
model in figure 7.5(a), there is now the relationship class Causes, where Causes(d, s)
is true if the physician has identified disease d as a possible cause of symptom s.
Also new is the constraint Causes(d, s) on the arc class. This constraint says that,
when we expand the DAPER model to a DAG model given a skeleton, we draw
an arc from d.Present to s.Present only when Causes(d, s) holds. Note that, in the
diagram we use “d” and “s” to refer to the entities associated with Disease.Present
and Symptom.Present, respectively. In what follows, we will continue to make strong
abbreviations as in this example, although such abbreviations are not required and
may be undesirable for computer implementations of the PER language.

In the next two examples, we consider more complex constraints.

Example 7.5
Extending example 7.3 in a different way, suppose the physician has identified both
primary (major) and secondary (minor) causes of disease.

The DAPER model for example 7.5 is shown in figure 7.7(a). There are now two
relationship classes—Primary (1°) Causes and Secondary (2°) Causes—between
the two entity classes, and the constraint is a disjunctive one: 1°Causes(d, s) V
2°Causes(d, s). This constraint says that, when the DAPER model is expanded to
a DAG model given a skeleton, an arc is drawn from d.Present to s.Present only
when d is a primary and/or secondary cause of s.

7.4 Probabilistic Entity-Relationship Models 213

. o Causes
Disease

: Disease | Symptom
A d; S
Causes(d, s) d, s
Y d S
! d; S
(@ (b) (©

Figure 7.6 (a) A DAPER model for incomplete bipartite graph of diseases and
symptoms. (b) A possible skeleton identifying diseases, symptoms, and potential
causes of symptoms. (¢) A DAG model resulting from the expansion of the DAPER
model to the skeleton.

Example 7.6
Ezxtending example 7.3 in a different way, suppose that both diseases and symptoms
have category labels—labels drawn from the same set of categories. The possible
causes of a symptom are diseases that have at least one category in common with
that symptom.

The DAPER model for this example is shown in figure 7.7(b). Here, we have
introduced a third entity class—Category—whose entities have relationships with
Disease and Symptom. In particular, R1(d,c) holds when disease d is in category
¢; and R2(s, c¢) holds when symptom s is in category c. In this model, the arc class
has the constraint 3cR1(d, ¢) A R2(c, s), where ¢ is an arbitrary entity in Category.
Thus, when the DAPER model is expanded to a DAG given a skeleton, an arc will
be drawn from d.Present to s.Present only when d and s share at least one category.

To understand how constraints are written and used in general, consider a
DAPER model with an arc class from X.A to Y.B. When this model is expanded
to a ground graph given a skeleton, depending on the constraint, we might draw
an arc from x.A to y.B for any x and y in the skeleton. To determine whether we
do so, we look at the tail and head entities associated with this putative arc. The
tail entities of the putative arc from x.A to y.B are the set of entities associated
with x. If X is an entity class, then the tail entity is just the entity x. If X is
a relationship class, then the tail entities are those entities in the relationship
tuple x. Similarly, the head entities of this arc are the set of entities associated
with y. For example, given the DAPER model and skeleton in figure 7.3 for the
university database, the tail and head entities of the putative arc from john.IQ to
Takes(john,cs107).Grade are (john) and (john,cs107), respectively. A constraint on
the arc class from X.A to Y.B in a DAPER model is any first-order expression
involving entities and relationship classes in the DAPER model such that the
expression is bound when the tail and head entities are taken to be constants.
To determine whether we draw an arc from z.A to y.B, we evaluate the first-order
expression using the tail and head entities of the putative arc. It must evaluate

214 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Disease "“@
Disease | ~~ @

1°Causes(d, s) v ' X R(d.0)
0 . ,C) A
<) 2" Causes(d, s) Category R,(s.c)

\ ’ [
L 1

sympon -+ Present <R>

H v

(@ &) | symptom |- Coresent >

Figure 7.7 (a) A disjunctive constraint. (b) A constraint containing the existence
quantifier.

to true or false. We draw the arc from z.A to y.B only if the expression is true.
Continuing with the same university database example, let us determine whether
to draw an arc from john.IQ to Takes(john,cs107).Grade. The relevant constraint—
“student[IQ] = student[Grade]”—references the tail entity student[IQ] = john and
the head entity student[Grade] = john. Thus, the expression evaluates to true and
we draw the arc.

Next, let us consider the local distribution class. A local distribution class for
attribute class X.A is any specification from which the local distributions for
attribute x.A, for any entity or relationship x in class X, may be constructed. In
figure 7.3(c), each attribute for a student’s grade in a course has two parents—one
attribute corresponding to the difficulty of the course and another corresponding to
the IQ of the student. Consequently, the local distribution class for Takes.Grade in
the DAPER model can be a single (ordinary) local distribution. In general, however,
a more complicated specification is needed. For example, in the ground graph
of figure 7.6(c), the attribute s;.Present has one parent, whereas the attributes
so.Present and s3.Present have two parents. Consequently, the local distribution
class for Symptom.Present must be something more than a single local distribution.

In general, a local distribution class for X.A may take the form of an enumeration
of local distributions. In our example, we could specify a local distribution for every
possible parent set of s.Present for every symptom s in every possible skeleton. Of
course, such enumerations are cumbersome. Instead, a local distribution class is
typically expressed as a canonical distribution such as noisy OR, logistic, or linear
regression. Friedman et al.[5] refer to such specifications as aggregators.

So far, we have considered only DAPER models in which all attributes derive
from attributes classes. In practice, however, it is often convenient to include
(ordinary) attributes in a DAPER model. For example, in a Bayesian approach to
learning the conditional probability distribution of Takes.Grade given Student.IQ

7.4 Probabilistic Entity-Relationship Models 215

and Course.Diff in example 7.2, we may add to the DAPER model an ordinary
attribute 6 corresponding to this uncertain distribution, as shown in figure 7.8(a).
(If Grade is binary, e.g., # would correspond to the parameter of a Bernoulli
distribution.) The ground graph obtained from this DAPER model applied to the
skeleton in figure 7.8(b) is shown in figure 7.8(c). Note that the attribute 6 appears
only once in the ground graph and that, because there is no annotation on the arc
class from 6 to Takes.Grade, there is an arc from 6 to each grade attribute.
Although this view makes DAPER models easy to understand, formally, we do
not allow such models to contain (ordinary) attributes. Instead, we specify that,
for any DAPER model, (1) there is an entity class—Global—that is not drawn; (2)
for any skeleton, this entity class has precisely one entity; and (3) every attribute
class not connected explicitly to some visible entity class is connected to Global.
This view is equivalent to the informal one just presented, but leads to simpler
definitions and notation in our formal treatment of DAPER models in section 7.7.

7.4.2 Restricted Relationships

We now consider restricted relationships or, more precisely, restricted relationship
classes. A relationship class R in an ER (or PER) model is restricted when some
skeletons for the entity and relationship classes of the ER model are prohibited. In
practice, many ER models contain restricted relationship classes; and graphical no-
tation has been developed for common restrictions (e.g., [20]). Similarly, restricted
relationship classes are an extremely useful tool for modeling with PER models. In
this section, we consider several examples.

Exzample 7.7

A binary outcome O is measured on patients in multiple hospitals. Each patient is
treated in exactly one hospital. It is believed that outcomes in any given hospital h
are i.i.d. given Bernoulli parameter h.0; and that these Bernoulli parameters are
themselves i.i.d. across hospitals given hyperparameters «.

A DAPER model for this example is shown in figure 7.9(a). Here, entity classes
Patient and Hospital are related by the relationship class In. The ground graph
for a skeleton containing m hospitals and n; patients in hospital ¢ is shown in
figure 7.9(b). This ground graph is the DAG model (structure) of what is often
called a hierarchical model in the Bayesian literature (e.g., [7]).

In this example, the relationship class In is restricted in the sense that (pa-
tient,hospital) pairs are many to one—each patient is in exactly one hospital. This
restriction is represented graphically by a curved arrowhead on the edge from In
to Hospital in figure 7.9(a). The curved arrowhead is a standard notation in the
language of ER models [20]; and we adopt this same notation for PER models.
In general, given an ER or PER model with relationship class R connecting en-
tity classes E1,. .., By, if knowing entities in classes F1, ..., E;_1,..., Eiy1,..., Ep
uniquely determines entity E; for any allowed skeleton, then a curved arrowhead is
attached to the edge from R to E;.

216 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Student
john
mary
Course
:I Course
. 5107
@ stat10
: Takes
:' Student Course
Student john cs107
ucen mary ¢s107
mary stat10
(a) (b)

T(mary.stat10).G

Figure 7.8 A modification to figure7.3 in which the local distribution for
Takes.Grade given Student.IQ and Course.Diff is uncertain. (a) The DAPER model.
(b) A skeleton (identical to the one in figure7.3). (¢) The ground graph.

Note that, due to the many-to-one restriction in this problem, we could equiva-
lently attach the attribute class O to In rather than to Patient. A DAPER model
equivalent to the one in figure 7.9(a) is shown in figure 7.9(c).

Example 7.8

The occurrence of words in a document is used to infer its topic. The occurrence
of words is mutually independent given document topic. Document topics are i.i.d.
giwen multinomial parameters 0;. The occurrence of word w in a document with
topic t is i.i.d. given t and Bernoulli parameters 0,,);.

This example is commonly referred to a binary naive Bayes classification [18]. A
DAPER model for this problem is shown in figure 7.10. The entity classes Document

7.4 Probabilistic Entity-Relationship Models 217

Hospital =~ o

Patient [~ °

Hospital ~ [*=~ °

i h[6]=hO]
Pat;ent
©)

Figure 7.9 (a) A DAPER model for patient outcomes across multiple hospitals
(example 7.7). (b) The ground graph (a hierarchical model structure) for a skeleton
containing m hospitals and n; patients in hospital i applied to the DAPER model
in (a). (¢) A DAPER model equivalent to the one in (a).

and Word are related by the single relationship class F. The attribute classes are
Document.Topic representing the topic of a document, Word.f,,; representing the
set of Bernoulli parameters 6,,; for a word, and F(d,w).In representing whether
word w is in document d. The relationship class F is restricted to be a Full
relationship class. That is, in any allowed skeleton, all pairs (document,word) must
be represented.4 We indicate this restriction on the DAPER diagram by placing
the annotation Full next to the relationship class. As we shall see in what follows,
the Full restriction is useful in many situations.

4. In a practical database implementation, this relationship would be encoded sparsely,
despite the Full restriction. That is, relationship (d,w) would be stored in the database
only when word w appears in document d.

218 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Document |77~ @

: d[T]=d[In]
; WO,]=wIn]

woo |- g D

Figure 7.10 A DAPER model for binary naive Bayes document classification.

7.4.3 Self Relationships

Self relationships are relationships that relate like entities (and perhaps other
entities as well). A self-relationship class is one that contains self relationships.
Examples of self-relationship classes are common in databases: people are managers
of other people, cities are near other cities, timestamps follow timestamps, and so
on. ER models can represent self relationships in a natural manner. The extension
to PER models is also straightforward, as we illustrate with the following three
examples.

Example 7.9
In the university database example (example 7.2), a student’s grade in a course
depends on whether an advisor of the student is a friend of a teacher of the course.

The ER model for the data in this example is shown in figure 7.11(a). With
respect to the ER model in figure 7.2(a), Professor is a new entity class and Advises,
Teaches, and F are new relationship classes. Advises(p, s) means that professor p
is an advisor of student s. Teaches(p,c) means that professor p teaches course c.
(Students may have more than one advisor and courses may have more than one
teacher.)

The relationship class F is introduced to model whether one professor is a friend of
another. F is our first example of a self-relationship class—it contains relationships
between professor pairs. The two dashed lines connecting F and the Professor entity
class in the diagram indicate that F is a self-relationship class. F has one attribute
class F.Friend, where the attribute F(p, p¢).Friend is true if professor py is a friend
of professor p. Note that F has the Full constraint so that we can model whether
any one professor is a friend of another. Also note that F(p1, p2).Friend may be true
while F(pa, p1).Friend may be false.

The DAPER model for this example, including the new probabilistic relationship
between F.Friend and Takes.Grade, is shown in figure 7.11(b). The constraint on
the arc class from F.Friend to Takes.Grade is Teaches(p, c) A Advises(py, s). Thus,
in any ground graph generated from this model, there is an arc from attribute
F(p, ps).Friend to attribute Takes(s, c).Grade whenever a teacher of the course is p

7.4 Probabilistic Entity-Relationship Models 219

and an advisor of the student is ps—precisely the additional dependence described
in the example.

In the diagram, note that the relationship class F has the label “F(p,ps)”. The
ordered pair (p, py) following F is introduced to unambiguously identify the different

’ refer to

roles of the entity class in the self relationship. In this case, “p” and “py’
the roles of professor and professor’s friend, respectively. This added notation in
DAPER models is needed for the unambiguous specification of constraints. For
example, suppose we had written the constraint on the arc class from F.Friend to
Takes.Grade as Teaches(py,c) A Advises(p, s). This constraint means something
different than the previous one—namely, that the student’s grade depends on
whether the course’s teacher is a friend of the student’s advisor.

Although not a standard convention for ER models, we allow an alternative
representation for self relationships. Namely, we allow entity classes participating
in a self-relationship class to be copied. The DAPER model in figure 7.11(b) drawn
with this alternative convention is shown in figure 7.11(c). Here, there are two
instances of the Professor entity class named “Professor (Teacher)” and “Professor
(Advisor)”. Note that copying allows us to annotate the role that each copy of
the entity class plays in the self-relationship class. Models drawn with this copy
convention are sometimes (but not always) more transparent. A similar convention
is used in PRMs [5].

Ezxzample 7.10
A hidden Markov model (HMM) has hidden attributes slice.H, observed attributes
slice. X', and uncertain parameters 0y, and 0,y

A DAPER model for such an HMM is shown in figure 7.12(a). The only entity
class in the model is Slice. Its entities correspond to the time slices in the HMM. The
only relationship class in the model—Next—is a restricted, self-relationship class.
Next(s, s+1) holds precisely when time slice s;; immediately follows time slice s.
Thus, Next is an example of a relationship class whose constraint induces a total
order on its entities. We use Order to annotate this restriction. The attributes H
and X correspond to the hidden and observed attributes in the HMM, respectively.
The attribute classes 0, and 6, (connected to the Global entity class, which is
not shown) represent the uncertain distributions.

Because arc classes can have constraints, DAPER models may contain arc classes
that are self arcs—arcs whose head and tail nodes are the same.? In this example,
the self arc is used to represent the Markov chain of hidden attributes H. Another
graphical model-—Markov transition diagrams—uses self arcs in the much the same
way. When a self arc appears in a DAPER model, it is not clear which way to draw
arcs when expanding the model to a DAG model. In our example, do we draw arcs
from s.H to sy1.H, or in the opposite direction? To remove the ambiguity, we use

5. We use the term “self arc” to refer both to arc classes and to arcs. The use will be clear
from the context.

220 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

: Full H Full
.. : N

Professor

Teaches(p,c) A
Advises(p;,s)

Student "' Student [
(b)

Professor' Proféssor
(Advisor) (Teacher)
! ' Teaches(p,c) A
i Advises (p;,S)
E Course
Student [
(©)

Figure 7.11 (a) An ER model showing Student, Course, and Professor entities and
relationships among them. (b) A DAPER model showing that a student’s grade in
a course depends on whether the course’s teacher likes the student’s advisor. (c)
The same model in (b) in which the Professor entity class has been copied.

7.4

Probabilistic Entity-Relationship Models 221

bar—hat notation. In this example, the constraint is written Next(3, §;1) indicating
that the arc in drawn from s.H to sy1.H. In general, we use a bar and hat to denote
head and tail entities, respectively.

When this DAPER model is expanded to a ground graph, the attribute sq.H—
where sg corresponds to the first time slice—has no parents. In contrast, the
attribute s.H where s corresponds to any other slice has one parent. Consequently,
the local distribution class for Slice.H may be specified by two (ordinary) local
distributions: p(so.H) and p(s;+1.H|s;.H) for ¢ > 0.

A DAPER model using the copy convention for the HMM is shown in fig-
ure 7.12(b). Note that the attribute class Slice.X need be represented in only one
copy of the entity class. The probabilistic dependencies between s.H and s.X, for
all slices s, are captured by the inclusion of X in one copy. Also note that, in
this example and in any diagram where the copy convention is used, the bar—hat
notation is not needed.

Ezxzample 7.11
A gene is transmitted through inheritance. The gene-allele frequencies 0 are uncer-
tain.

A DAPER model for this example is shown in figure 7.13(a). The model contains
a single entity class Person and a single three-way, restricted, self relationship class
Family. The relationship Family(pc, pm,ps) holds when child p. has mother and
father p,, and py, respectively. The relationship class has the 2DAG constraint,
meaning that each child has at most two parents and cannot be his or her own
ancestor. The constraint on the single arc class indicates that only the gene of
a child’s mother and father influences the gene of the child. Note that the local
distribution class for Gene has three components: (1) p(gene|no parents) = 6, (2)
p(gene|one parent), and (3) and p(gene|two parents). Figure 7.13(b) shows the same
model in which the entity class Person appears three times.

When a DAPER model contains self relationships, its expansion can produce an
invalid DAG model—in particular, one with a ground graph that contains directed
cycles. For example, suppose we have a DAPER model where entity class F has
a self-relationship class R, and F.A has a self arc with no constraint. Then when
we expand this model given a skeleton containing R(e,e), the ground graph will
contain the self arc from e. A to e.A. In general, we need to ensure the ground graph
is ayclic given all skeletons under consideration. In section 7.7, we describe sufficient
conditions (including the absence of self relationships) that guarantee the acyclicity
of ground graphs. In general, to determine whether the DAPER model produces
only acyclic ground graphs for a given set of skeletons, one can check each ground
graph individually.

7.4.4 Probabilistic Relationships

In many situations, relationships may be uncertain or random. In this section, we
consider several examples and how they are represented with DAPER models.

222 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Next(s, S,;)

Order

\
\

Slice gH]=HX]

d)rder

Slice (+1)

(b)

Figure 7.12 (a) The DAPER model representation of a hidden Markov model.
(b) The same model in which Slice is copied.

Example 7.12 Relationship Existence

A database contains academic papers and citations for a subset of those papers.
Using the citations we have, we model how the topics of two papers influence whether
one paper cites the other.6

If each paper in the database came with its citations, we could model this
database with the ER model shown in figure 7.14(a). Here, the single (copied) entity
class Paper has the self relationship Cites, where Cites(pcg, pea) holds when pe, is the
citing paper and p.q is the cited paper. In our example, however, we are uncertain
about the citations of papers whose citations have not been recorded. That is, we
are uncertain about the relationships in the relationship class Cites. To model this

6. We assume that citation lists for papers are missing at random.

7.4 Probabilistic Entity-Relationship Models 223

3 pm Fam(ﬁc’ pm’ ﬁf)v
El pf Fam(ﬁc!ﬁm! pf)

Family(p, P, Py)

(a)

Person
(Father)

Person
(Mother)

Person |_
(Child)

Figure 7.13 (a) The DAPER model for gene transmission through inheritance.
(b) The same model in which Person is copied.

uncertainty, we use a DAPER model in which Cites is a Full relationship class
with attribute class Cites.Exists, where Cites(pcg, pea).-Exists is true when paper
Deg Cites paper p.q. In addition, to model how the topics of two papers influence
this existence, we add the attribute class Paper.Topic and the arc classes as shown
in figure 7.14(b).

In general, if we have a relationship class R that is uncertain, we model it in a
DAPER model by making that relationship class Full and adding the attribute
class R.Exists. Getoor et al. [8] discuss this type of uncertainty under the name
existence uncertainty and use a similar mechanism to represent it in PRMs.

In many situations, relationship classes can be both probabilistic and restricted.
In the remainder of this section, we consider two examples.

Example 7.13

Modifying example 7.12, we now know that the database was constructed such that
it contains at most ten citations from the bibliography of any paper.7

7. We assume that citations above ten in number were censored at random.

224 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Paper Paper --- @
(Citing) (Citing)

: : PIT]= Py [E]

A

Paper
(Cited) (Cited)

(@) (b)

Figure 7.14 (a) An ER model for a citation database. (b) A DAPER model for
the situation where citations are uncertain.

paper |- Topic)
(Citing) AN

| PIT]= pylEl \
' \
Py [E]= p[<=10]
A
. PIT]= Pw[El

(Cited)

Figure 7.15 A DAPER model for the situation where citations are uncertain and
limited to ten per paper.

The DAPER model in figure 7.15 shows the DAPER model for this example,
where the Cites relationship class is both uncertain and restricted. As discussed in
section 7.2, we encode the restrictions using instantiated deterministic nodes. With
respect to figure 7.14(b), we have added a binary, attribute class Paper. <= 10.
The double oval associated with this attribute class indicates that this attribute
expands to deterministic attributes in a ground graph. In particular, a ground
graph attribute p. <= 10 will have parents Cites(pcg, pea).Exists, for all p.q, and
will be true exactly when ten or fewer of these parents are true. To encode the
restriction, we set p. <= 10 to true for every p when performing inference in the
ground graph.

7.4 Probabilistic Entity-Relationship Models 225

]
(Citing)

(£}
1

1 N
\

‘@ il Gx‘i'stDc[Ekc[M] .-w

! prm1= plE]
Paper

Cited) | @

Figure 7.16 A DAPER model for the situation where only the cited papers are
uncertain.

Exzample 7.14 Partial Relationship Existence

Modifying example 7.12 once again, the citation database now has a complete set
of citations, but some of citations are so garbled that the identities of some of the
cited papers are uncertain.

One way to think about this uncertainty is that the relationships Cites(pcg, Ded)
are uncertain only in their second argument. Getoor et al. [8] refer to this uncer-
tainty as reference uncertainty and present a special mechanism for representing it
in PRMs. We take an alternative approach that uses only concepts that we have
already discussed.

A DAPER model for this example is shown in figure 7.16. With respect to the
DAPER model in figure 7.14(b), we have added the entity class Cites, and the
relationship classes Ry and Rg between Paper and Cites. An entity pair in Cites
corresponds to a citation—a citing and a cited paper. Ri(pcg, ¢) holds when paper
Peg 1s the citing paper in ¢, and Ra(ped,c) holds when p4 is the cited paper in
c. The relationship class Ry is a restricted (many-to-one) relationship class. In
contrast, the relationship class Ry is a probabilistic relationship class, restricted to
be Full. The uncertainty in this relationship class is encoded with the attribute
class Ro.Exists, where Ra(pcq, ¢).Exists is true precisely when citation ¢ cites paper
Ped- To model the restriction that the possible cited papers of ¢ are mutually
exclusive, we first introduce the deterministic, attribute class Cites. MutEx. In any
ground graph obtained from this DAPER model, c. MutEz will be true exactly
when one of its parents Ra(pcq, ¢).Exists is true. For any inference we perform with
the ground graph, we set c. MutEx to true for every citation c.

226 Probabilistic Entity-Relationship Models, PRMs, and Plate Models
Slice (+1)
Slice
Next(s,s,)
G (D
sH]=9X]
Next(s,s,1)
Order
Figure 7.17 A plate model for an HMM corresponding to the DAPER model in
figure7.12(b).
7.5 Plate Models

In this section, we revisit our definition of the plate model, give examples, and
describe how our definition differs from previously published examples.

As discussed in section 7.3, we define the plate model by giving an invertible
mapping from DAPER to plate model. Thus, the two model types are equivalent in
the sense that they can represent the same conditional independence relationships
for any given skeleton.

Summarizing the mapping from DAPER to plate model given in section 7.3,
entity classes are drawn as large named rectangles called plates; a relationship class
for a set of entity classes is drawn at the named intersection of the corresponding
plates; attribute classes are drawn inside the rectangle corresponding to its entity
or relationship class; and arc classes and constraints are drawn just as they are
in DAPER models. For example, as we have discussed, the DAPER model in
figure 7.3(a) has the corresponding plate model in figure 7.4(a). As another example,
the DAPER model for the HMM shown in figure 7.12(b) has the corresponding plate
model in figure 7.17. Note that, because plate models represent relationship classes
as the intersection of plates, plates (corresponding to entity classes) must be copied
when the model contains self-relationship classes.

The plate model corresponding to the DAPER model for the patient-hospital
example in figure 7.3(a) is shown in figure 7.18(a). In this plate model, there are
no attributes in the Patient plate outside the intersection. Thus, one can move the
Patient plate fully inside the Hospital plate, yielding the diagram in figure 7.18(b).
We allow this nesting in our framework. Furthermore, plates may be nested to an
arbitrary depth. This convention corresponds to one found in published examples
of plate models.

There are three differences between plate models as we have defined them
and traditional plate models—plates models as they have been described in the
literature. In all three cases, our definition provides a more expressive language.

7.5 Plate Models 227

Ono
Ono
Ono

Hospital Hospital Hospital
h[6]=h[O] h[6]=h[O]
In Patient/In Patient/In
Patient
(a) (b) (c)

Figure 7.18 (a) A plate model corresponding to the DAPER model in
figure7.12(a). (b) An equivalent plate model illustrating the graphical convention
of nesting. (c) A traditional plate model, equivalent to the one in (b), in which the
constraint h[f] = h[O] is implicit.

One, in traditional plate models, an arc class emanating from an attribute class in
a plate cannot leave that plate. Given this constraint, any arc class from attribute
class E.X must point either to attribute class E.Y or to attribute class R.Y, where
R is nested inside FE.

Two, when a traditional plate model is expanded to a ground graph, arcs are
drawn only between attributes corresponding to the same entity. To be more precise,
consider a plate model containing the arc class from E.X to E.Y. In a traditional
plate model, the arc class implicitly has the constraint e[X] = e[Y]. Similarly,
consider a plate model containing the arc class from E.X to R.Y where R is
nested inside F, possibly many levels deep. Because R in nested inside F, for
any relationship » € R, the entities associated with r must uniquely determine
an e € E. Let r(e) be the set of the relationships r that uniquely determine e.
Now, when this traditional plate model is expanded to a ground graph, arcs are
drawn from e.X to r.Y only when r € r(e). As an example, consider figure 7.18(c),
which shows the traditional plate model for the patient—hospital example. Here,
E=Hospital, R=In, and r(h) = Uy{(h,p)} for all hospitals h. Thus, the arc class
from Hospital.f to In(h,p).O has the constraint h[f] = h[O]. This constraint is
implicit (see figure 7.18(c)).

Three, traditional plate models contain no arc-class constraints other than the
implicit ones just described.

The DAPER and plate model (as we have defined them) are equivalent. Nonethe-
less, in some situations, a DAPER model may be easier to understand than an
equivalent plate model, and vice versa. When there are many entity and relationship
classes (plates and intersections), DAPER models are often easier to understand.

228 Probabilistic Entity-Relationship Models, PRMs, and Plate Models
In particular, drawing intersections when there are many plates can be difficult
(although not impossible; see [10]). In contrast, when there are few entities and the
nesting convention can be used, plates are often easier to understand.

7.6 Probabilistic Relational Models

In this section, we examine directed PRMs.

Recall that, as in the case of the plate model, we have specified an invertible
mapping from a DAPER model to a directed PRM. Thus, DAPER models, plate
models, and directed PRMs are equivalent. As described earlier, the mapping from
a DAPER to directed PRM takes place in two stages: the ER model component
of the DAPER model is mapped to a relational model, and then the probabilistic
component of the DAPER model is mapped to the directed PRM. In the first stage,
entity classes are mapped to tables; relationship classes are mapped to tables with
foreign keys making the connections to entities; and attribute classes are mapped
to attributes (columns) in relational tables. In the second stage, arc classes and
constraints are drawn just as they are in the DAPER model.

There is one important difference between the directed PRM by our definition and
the traditional PRMs as defined by Friedman et al.[5]. The difference is not in the
relational-model component. The components for a PRM and traditional PRM are
identical. Rather, the difference lies in how the probabilistic component is specified.
In our PRM, the probabilistic component is a graphical augmentation of the
relational model. In a traditional PRM, the probabilistic component takes the form
of a list of arc classes. To illustrate this difference, compare the PRM in figure 7.4(b)
with the corresponding traditional PRM in figure 7.19. In the latter figure, the
arc classes pointing to Takes.Grade are specified in a separate list consisting of
Takes.Course.Diff — Takes.Grade and Takes.Student.IQ — Takes.Grade.

The terms Takes.Course.Diff and Takes.Student.IQ are examples of what Fried-
man et al.[5] call slot chains. In general, a slot chain is a sequence of foreign key
(or inverse foreign key) references. The linear nature of slot chains makes them less
expressive than the first-order constraints in (our) PRMs. For example, in exam-
ple 7.9 where a student’s grade in a course depends on whether the course’s teacher
likes the student’s advisor (example 7.9), there are two “relationship paths” from
F.Friend to Student.Grade: one through Advises and one through Takes. This dou-
ble path cannot be represented by a slot chain.

Getoor et al. [8] extend PRMs, allowing slot chains to mention probabilistic
relationships. DAPER models are not so expressive. In the following section, we
introduce contingent DAPER models that remove this limitation.

In practice, we find both DAPER models and PRMs easy to understand.
Database designers who prefer ER models over relational models may prefer
DAPER models over PRMs, and vice versa. We note, however, that the purpose
of DAPER models and PRMs is not the implementation of mechanisms for data
storage, but rather the modeling of probabilistic dependencies. Consequently, even

7.7 Technical Details 229
- P~ Course
. | piff
i | Takes
' Takes.Course.Diff = Takes.Grade
«-§- Course
;-F- Student Takes.Student.1Q - Takes.Grade
. Grade
= -3 Student
1Q
Figure 7.19 A traditional PRM corresponding to the model in figure7.4(b).
those who prefer to design databases with relational models may prefer the DAPER
model for probabilistic modeling, as DAPER models make explicit the distinction
between entities and relationships.
7.7 Technical Details

In this section, we formalize many of the concepts we have described. In addition,
we state and prove a few relevant facts.

We use £ and R to denote the set of entity and relationship classes, respectively.
We use F and R (sometimes with subscripts) to denote an entity and relationship
class, respectively, and X to denote an arbitrary class in £ UR. We use o(FE) and
o(R) to denote an entity and relationship set, respectively, and o(X) to denote
an arbitrary o(E) or o(R). We use e and r to denote a particular entity and
relationship, respectively, and x to denote an arbitrary entity or relationship. We
use X.A to denote the attribute class A associated with class X, and A(X) to
denote the set of attribute classes associated with class X. We use z.A to denote
an attribute associated with entity or relationship z, and A(z) to denote the set of
attributes associated with x. Each attribute class and attribute is associated with
a domain—a set of possible values. The domain of x.A is the same as the domain
of X.A for every z € X.

First, we define the ER model in the following series of definitions.

Definition 7.1

An entity-relationship diagram for entity classes &, relationship classes R, and at-
tribute classes A is a graph in which rectangular nodes correspond to entity classes,
diamond nodes correspond to relationship classes, and oval nodes correspond to

230 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

attribute classes of entity or relationship classes. The node corresponding to a
relationship class among entities F1, ..., E, € £ is connected to the nodes corre-
sponding to these entities with a dashed edge. Attribute classes corresponding to
an entity or relationship class are connected to this class with dashed edges.

Definition 7.2

A skeleton for entity classes £ and relationship classes R—denoted ogr—consists
of (1) an entity set o(FE) for every E € £ and (2) a relationship set o(R) for every
R € R that is consistent with any constraints imposed by the relationship classes.

Definition 7.3

An entity-relationship model for entity classes &, relationship classes R, and at-
tribute classes A is an ER diagram for £, R, and A that defines a set of (ordinary)
attributes A(ogr) for any skeleton ogr. In particular, attribute z.A4 is in A(ogr)
if and only if there is an X in EUR and an z € o(X) such that A is in A(X).

Definition 7.4
An entity-relationship instance for an ER model for £, R, and A—denoted Zegra4—
consists of (1) a skeleton ogr and (2) a value for every attribute in A(ogr).

Now we consider domains wherein attributes may be probabilistic and define the
DAPER model through the following series of definitions.

Definition 7.5

Given an entity or relationship class X with entity or relationship x, the ordered
set of entities e(x) associated with x is as follows. If X is an entity class, then
e(z) = (z). If X is a relationship class containing relationships R(eq,...,e,), then

e(:c) - (617 < 'aen)'

Note that the set e(z) is ordered to preserve roles associated with self-relationship
classes.

Definition 7.6

Given an ER model with attribute classes X.A and Y. B, the constraint Cap(e(x), e(y))
for the ordered pair (X.A,Y.B) is a first-order expression that is bound when the
elements of e(z) and e(y) are taken as constants. The atoms of this expression have
the form R(eq,...,e,) where R is a relationship class connected to entity classes
Fiq, ..., E, or a predefined relationship class such as equality, less than, greater
than, and first.

Definition 7.7

A directed probabilistic entity-relationship (DPER) diagram for entity classes &,
relationship classes R, and attribute classes A consists of (1) an ER model for &,
R, and A, and (2) a set of arc classes drawn as solid directed arcs corresponding to
probabilistic dependencies. There can be at most one arc class from attribute class
X_.A to attribute class Y. B; and any arc class may have a constraint C4 g (e(x), e(y)).
The set of arc classes pointing to X.A is the parent class of X.A, denoted P.A(X.A).

7.7 Technical Details 231

Definition 7.8

A ground graph for a DPER diagram and skeleton gz for £, R, and A is a directed
graph constructed as follows. For every attribute in A(ogr), there is a corresponding
node in the graph. For any attribute z.A € A(ogr), its parent set pa(x.A) are
those attributes y.B € A(y) such that there is an arc class from Y.B to X.A and
the expression Cap(e(z), e(y)) is true.

Definition 7.9

Given Y¢g, a set of skeletons for £, R, and A, a DPER diagram for £, R, and A
is acyclic with respect to Y e if, for every oer € Yer, the ground graph for the
DPER diagram and ogr is acyclic.

Theorem 7.10
If the probabilistic arcs of a DPER diagram for £, R, and A form an acyclic graph,
then the DPER diagram is ayclic with respect to Y¢r for any Yex.

Proof Suppose the theorem is false. Consider a cyclic ground graph for some
skeleton. Denote the attributes in the cycle by (x1.4; — z2.42 — ... — x,.4,)
where z1.41 = z,.4,,. For each attribute x;.A4; there is an associated attribute
class X;.A;. From definition 7.8, we know that there must be an edge from
X;.A; — X;41.4;41. Because X7.4; = X ;. A, there must be a cycle in the DPER
diagram, which is a contradiction. Q.E.D.

Friedman et al.[5] prove something equivalent.

Definition 7.11

A directed acyclic probabilistic entity-relationship (DAPER) model for entity classes
&, relationship classes R, attribute classes A, and skeletons Y¢x consists of (1) an
DPER diagram for £, R, and A that is acyclic with respect to every ogr € Y¢er,
and (2) a local distribution class—denoted P(X.A|PA(X.A))—for each attribute
class X.A. Each local distribution class is a collection of information sufficient to
determine a local distribution p(z.A|pa(z.4)) for any z.A € A(ogr). For every
osr € Yer, the DAPER model specifies a DAG model for A(ogr). The structure
of this DAG model is the ground graph of the DPER diagram for ogg. The local
distributions of this DAG model are the local distributions p(z.A|pa(z.A4)).

An immediate consequence of definition 7.11 is that, given D, a DAPER model for
E, R, A, and ¢ and a skeleton oer € Yegr, we can write the joint distribution
for A(ogr) as follows:

pZeraloer, D)= [[[I Il pl-Alpa(e.A)). (7.3)

X€EUR zeo(X) ACA(X)

In the remainder of this section, we describe a condition weaker than the one in
theorem 7.10 that guarantees the creation of acyclic ground graphs from a DPER
model. In this discussion, we use R(eq,...,e,) to denote a particular relationship
in a relationship set o(R).

232 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Definition 7.12
A relationship class R is a self-relationship class with respect to entity class F if a
relationship in R contains two or more references to entities in the entity class E.

Definition 7.13

A projected pairwise self-relationship class is obtained from a self-relationship class
by projecting two of the entities in the relationships that are from the same entity
class.

For example, the Family relationship class is a self-relationship class that can be
projected into the Father-Child relationship class and the Mother-Child relationship
class; and both are projected pairwise self-relationship classes.

Definition 7.14

Given skeleton g for £ and R, a relationship set o(R) for a self-relationship class
R is cyclic if there exists a projected pairwise self-relationship class R’ for some
entity set E containing entities ey, ..., e, such that R'(e1, ez),..., R (en_1,€,) and
R'(en,e1). If a relationship set is not cyclic, it is acyclic.

Definition 7.15

An arc class in a DPER model is called a self arc if both the head and tail of the
arc are the same attribute class. A self-arc class is simple if there is exactly one
entity class associated with the attribute class associated with the self arc.

Theorem 7.16

If (1) the arc classes excluding the self arcs of the DPER diagram for £, R, and A
form an acyclic graph, (2) every self arc class is simple and has a constraint with
no disjunctions, no negations, and contains a self-relationship class for the entity
class associated with the self arc, and (3) for every self-relationship class R, o(R)
is acyclic for every ogr € Xer, then the DPER diagram is acyclic with respect to
YeR-

Proof Suppose the theorem is false. Consider a ground graph G for some skeleton
ogr containing a shortest cycle (z1.41,...,z,.A,) where x1.4; = x,,.A,,. Suppose
that the cycle contains at least two distinct attribute classes, that is, X;.A; #
Xi41.A;41. This implies that there must be a cycle in the DAPER, diagram with
the self-arc classes removed; however, from condition 1 and theorem 7.10 this cannot
be the case. Therefore, all of the attribute classes in the cycle must be the same
and must be included due to a single self-arc class. Due to condition (2), the cycle
in the self-arc class must imply a cyclic self-relationship class but this contradicts
condition (3). Q.E.D.

7.8 Extensions and Future Work 2383

Figure 7.20 A contingent DAG model (structure) showing the context-specific
independence X and Z are independent given Y = 0, but dependent given Y = 1.

7.8

Extensions and Future Work

In this chapter, we have concentrated on the DAPER model, a model that expands
into a DAG model given a skeleton. In this section, we examine classes of PER
models that expand into graphical models other than traditional DAG models.
Many of the ideas here are preliminary and provide opportunities for future work.

An important limitation of traditional graphical models is their inability to
represent context-specific independence. An example of such independence is the
pair of independencies: (1) X and Z are independent given Y = 0, and (2) X and
Z are dependent given Y = 1. Many extensions to graphical models have been
developed that can represent particular classes of context-specific independence
including decision-tree-DAG model hybrids (e.g., see [2]); contingent DAG models
[6]; and similarity networks [12].

Let us consider a variation on contingent DAG models that uses notation slightly
different from that in Fung and Shachter [6]. To understand this model class,
consider the context-specific independence described in the previous paragraph:
X and Z are independent given Y = 0, but dependent given Y = 1. Figure 7.20
shows a contingent DAG model (structure) for this independence. This contingent
DAG model has a state constraint on the arc from Y to Z that reads X = 1.
This constraint means that there is a dependence of Y on Z only when X = 1.
In general, state constraints in contingent DAG models function much the way
constraints do in DAPER models. In DAPER models, constraints are first-order
expressions over entities that control the expansion to a DAG model. In contingent
DAG models, state constraints are Boolean expressions over attribute—states that
control the expression of conditional independence.

Now consider the contingent DAPER model—a model that expands to a con-
tingent DAG model. The model is identical to an ordinary DAPER model except
that arc classes are now annotated with an order pair. The first component of the
ordered pair is a constraint just as is found in the ordinary DAPER model. The
second component is a state constraint class that specifies the state constraints to
be written during the expansion to a contingent DAG model. The state constraint

234 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

class is a Boolean expression over attribute-states that may take head and tail
entities as arguments.

Example 7.15 Identity Uncertainty

We have video images of multiple cars of different colors. We know how many
cars there are and have zero or more observations of each car’s color, but we are
uncertain about what observations go with what cars.

Pasula and Russell[18] describe this example as having identity uncertainty. We
can represent this example using the contingent DAPER model in figure 7.21(a).
The two entity classes, Car and Observation, are related by the relationship class
Of, where Of(o, ¢) holds when observation o corresponds to car ¢. The probabilistic
relationship Of has the many-to-one restriction: an observation is associated with
exactly one car. As in previous examples, the many-to-one restriction is represented
by the Full relationship class Of, together with the attribute class Of.Exists and
the deterministic node MutEx (which is set to true). The arc class from Car.Color
to Observation.Color is annotated with the ordered pair (Of(o, ¢), Of (o, ¢).Exists =
true). The first component says that we draw an arc from c.Color to 0.Observation
only when Of(o,c¢) is true. (In this case, this constraint is vacuous because the
relationship class F is Full.) The second component says that, when we draw such
an arc, we add to it the state constraint Of(o, ¢).Exists = true. Figure 7.21(b) shows
the expansion of this contigent DAPER model to a contingent DAG model for a
skeleton containing one car and two observations. Note that, because there is only
one car, the MutEx nodes are redudant and can be omitted.

In this example, we know how many cars there are. If we do not, we can place
a probability distribution on the number of cars and stipulate that the DAPER
model in figure 7.21(a) should be applied to each possible number of cars.

Let us now discuss possibilities for relational modeling with undirected models. A
commonly used (nonrelational) undirected model is the undirected graphical (UG)
model. This model class has more than one definition—definitions that coincide
only for positive distributions [17]. Here, we define a UG for attributes X with
joint distribution p(x) as a model having two components: (1) an undirected graph
(the model structure) whose nodes are in one-to-one correspondence with X, and
(2) a collection of non-negative clique functions ¢, (xm), m = 1,..., M, where m
indexes the maximal cliques of the graph and X,,, are the attributes in X in the
mth maximal clique, such that

M
px) =c [] ém(xm). (7.4)

The term c is a normalization constant. As is the case for the DAG model, the UG
model for X defines the joint distribution for X. The clique functions are sometimes
called potentials.

A UG model for (X,Y,Z) is shown in figure 7.22(a). The graph has a single
maximal clique consisting of all three attributes, and hence represents an arbitrary
distribution for these attributes.

7.8 Extensions and Future Work 235

I o(M) =o(E) apun (Of(0,c), Of (0, c).Exists = true)

(@) R iRt Observation |~~~

D)
Gy —Gieor&isd

(b)

Of (0,,c).Exists = true

Figure 7.21 (a) A contingent DAPER model for example 7.15, an example of
identity uncertainty. (b) A contigent DAG model resulting from the expansion of
the model in (a) given a skeleton containing one car and two observations.

Of (0, ¢).Exists = true

A related but more general undirected model is the hierarchical log-linear graph-
ical (HLLG) model. An HLLG model is a model having two components: (1) an
undirected hypergraph (the model structure) whose nodes are in one-to-one corre-
spondence with X, and (2) a collection of potentials ¢p(xp), h = 1,..., H, where
h indexes the hyperarcs of the graph and x; are the attributes in X of the hth
hyperarc, such that

H
p(x) =c] én(xn). (7.5)
h=1

Again, an HLLG model for X defines the joint distribution for X. In this chapter,
we represent a hyperarc as a triangle connecting multiple nodes with undirected
edges. For example, figure 7.22(b) shows an HLLG model with a single hyperedge.

By virtue of (7.4) and (7.5), both UG and HLLG model structures define
factorization constraints on distributions. In this sense, HLLG models are more
general than UG models. That is, given any UG model structure, there exists an
HLLG model structure that can encode the same factorization constraints, but not
vice versa. For example, the UG structure in figure 7.22(a) has the equivalent HLLG
model structure shown in figure 7.22(b). In contrast, the HLLG model structure
shown in figure 7.22(c) encodes the factorization constraint

p(x,y,Z) =c ¢1(Iay) ¢)2(yaz) ¢3(x72)7

236 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

(@) (b) (©

Figure 7.22 (a) A UG model structure. (b) An equivalent HLLG model structure.
(¢) An HLLG model that encodes pairwise interactions.

which cannot be represented by a UG model structure. Also, we note that the
factorization constraints of any HLLG model can be encoded with a factor-graph
model [16] in which all potentials are non-negative.

Turning to relational modeling, let us consider the hierarchical log-linear prob-
abilistic entity-relationship (HELPER) model. A model in this class expands into
an HLLG model. Like the DAPER model, a HELPER model is an extension of
an ER model. In contrast to the DAPER model, the probabilistic component of a
HELPER model is expressed as hyperedge classes and potential classes on those
hyperedges. Hyperedge classes are expanded to an hyperedges according to con-
straints. These constraints, in turn, may be any first-order expression that is bound
given the entities associated with the endpoints of the hyperedge.

Example 7.16
An arbitrary hierarchical log-linear graphical model with at most two-way interac-
tions.

The HELPER diagram for this example is shown in figure 7.23(a). There is
a single entity class Variable corresponding to the attributes in the hierarchical
log-linear model, a single attribute class X, and a single self-relationship class
Neigh, where Neigh(vy,vs) if v1.X and v2.X have a pairwise interaction. The only
hyperedge class in the model is a self edge that connects Variable. X with itself. The
constraint on this hyperedge class is such that v;.X and vs.X will be neighbors in
the ground graph only when Neigh(vq, v2) holds. Note that the Neigh relationship
class is restricted to be upper triangular so that the expanded graph has no self
arcs and has at most one arc between any two attributes.

A sample skeleton for three attributes and the resulting hierarchical log-linear
model is shown in figure 7.23(a) and b, respectively.

Whereas HLLG models have a natural relational counterpart, UG models do not.
To understand this point, imagine a PER model that expands to a UG model. Such
a model would need a mechanism for specifying potentials in the ground graph. Such
potentials, however, are not defined until the maximal cliques of the ground graph
are determined, and these cliques will depend on the skeleton used to expand the
PER model.

References 237

Variable

UpperT Neigh(v,,V,) . @
@ Neigh .

1 vy v,
1
a b
Variable -
a C
b c

(a) (b) (©)

Figure 7.23 (a) A HELPER model for an arbitrary hierarchical log-linear model
with at most two-way interactions. (b) An example skeleton. (¢) The hierarchical
log-linear model resulting from the model in (a) applied to the skeleton in (b).

Finally, there are numerous classes of graphical models that we have not yet
explored, including mixed directed and undirected models (e.g., see [17]); directed
factor-graph models [4]; influence diagrams [14]; and dependency networks [13]. The
development of PER models that expand to models in these classes also provides
opportunities for research.

Acknowledgments

We thank David Blei, Tom Dietterich, Brian Milch, and Ben Taskar for useful
comments.

References

[1] J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, 36:192—236, 1974.

[2] C. Boutlier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in Bayesian networks. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 1996.

[3] W. Buntine. Operations for learning with graphical models. Journal of
Artificial Intelligence Research, 2(159-225), 1994.

[4] B. Frey. Extending factor graphs so as to unify directed and undirected
graphical models. In Proceedings of the Conference on Uncertainty in Artificial

238 Probabilistic Entity-Relationship Models, PRMs, and Plate Models

Intelligence, 2003.

[5] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic
relational models. In Proceedings of the International Joint Conference on
Artificial Intelligence, 1999.

[6] R. Fung and R. Shachter. Contingent belief networks. 1990.
[7] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
Chapman and Hall, London, 1995.

[8] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic
models of link structure. Journal of Machine Learning Research, 3:679-707,
2002.

[9] W. Gilks, A. Thomas, and D. Spiegelhalter. A language and program for
complex Bayesian modeling. The Statistician, 43:169-177, 1994.

[10] J. Gill, J. Howse, S. Kent, and J. Taylor. Projections in Venn-Euler diagrams.
In Proceedings of the IEEE Symposium on Visual Languages, 2000.

[11] I. Good. The Estimation of Probabilities. MIT Press, Cambridge, MA, 1965.
[12] D. Heckerman. Probabilistic Similarity Networks. MIT Press, Cambridge,
MA, 1991.

[13] D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. De-
pendency networks for inference, collaborative filtering, and data visualization.
Journal of Machine Learning Research, 1:49-75, 2000.

[14] R. Howard and J. Matheson. Influence diagrams. In Readings on the
Principles and Applications of Decision Analysis, volume 2, pages 721—762.
Strategic Decisions Group, Menlo Park, CA, 1981.

[15] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence, 1997.

[16] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product
algorithm. IEEFE Transactions on Information Theory, 47:498—519, 2001.

[17] S. Lauritzen. Graphical Models. Claredon Press, Oxford, UK, 1996.

[18] H. Pasula and S. Russell. Approximate inference in first-order probabilistic
languages. In Proceedings of the International Joint Conference on Artificial
Intelligence, 2001.

[19] J. Ullman and J. Widom. A First Course in Database Systems. Prentice Hall,
Upper Saddle River, NJ, 2002.

