
HDF5 in the Cloud

HDF Data
Services

John Readey
The HDF Group
jreadey@hdfgroup.org

My Background

Sr. Architect at The HDF Group
Started in 2014
Have been exploring remote interfaces to HDF
Previously: Dev Manager at Amazon/AWS

More previously: Used HDF5 while a developer
at Intel

2

What is HDF5?

Depends on your point of view:
• a C-API
• a File Format
• a data model

3

Think of HDF5 as a file system
within a file.
Store arrays with chunking and compression.
Add NumPy style data selection.

• Native support for multidimensional
data

• Data and metadata in one place =>
streamlines data lifecycle & pipelines

• Portable, no vendor lock-in

• Maintains logical view while adapting to
storage context

• In-memory, over-the-wire, on-disk, parallel
FS, object store

• Pluggable filter pipeline for compression,

checksum, encryption, etc.
• High-performance I/O

• Large ecosystem (700+ Github projects)

Why is this concept so different + useful? 4

Introducing Highly Scalable Data Service
(HSDS)

• HDF5 optimized for the cloud
• Storage using AWS S3

• Built in redundancy
• Cost effective
• Scalable throughput

• Runs as a cluster of Docker containers
• Elastically scale compute with usage

• Feature compatible with HDF5 library
• Implemented in Python using asyncio

• Task oriented parallelism

5

HSDS Features

• Clients can interact with service using REST API
• SDKs provide language specific interface (e.g. h5pyd for Python)
• Can read/write just the data they need (as opposed to transferring entire

files)
• No limit to the amount of data that can be stored by the service
• Multiple clients can read/write to same data source
• Scalable performance:

• Can cache recently accessed data in RAM
• Can parallelize requests across multiple nodes
• More nodes -> better performance

6

Client/Server Architecture 7

HSDS S3 Schema
Big Idea: Map individual HDF5
objects (datasets, groups,
chunks) as Object Storage
Objects• Limit maximum storage object size

• Support parallelism for read/write
• Only data that is modified needs to be updated
• (Potentially) Multiple clients can be

reading/updating the same “file”

Legend:
• Dataset is partitioned into

chunks
• Each chunk stored as an S3

object
• Dataset meta data (type,

shape, attributes, etc.) stored in
a separate object (as JSON
text)

How to store HDF5 content in S3?

8

Each chunk (heavy outlines) get
persisted as a separate object

Architecture for HSDS

Legend:
• Client: Any user of the service
• Load balancer – distributes requests to Service nodes
• Service Nodes – processes requests from clients (with help from Data

Nodes)
• Data Nodes – responsible for partition of Object Store
• Object Store: Base storage service (e.g. AWS S3)

9

Implementing HSDS with asyncio

• HSDS relies heavily on Python’s new asyncio module
• Concurrency based on tasks (rather than say multithreading or

multiprocessing)
• Task switching occurs when process would otherwise wait on I/O

async def my_func():
a_regular_function_call()
await a_blocking_call()

• Control will switch to another task when await is
encountered

• Result is the app can do other useful work vs. blocking
• Supporting 1000’s of concurrent tasks within a process

is quite feasible

10

Parallelizing data access with asyncio

• SN node invoking parallel requests on DN nodes
tasks = []
for chunk_id in my_chunk_list:

task = asyncio.ensure_future(read_chunk_query(chunk_id))
tasks.append(task)

await asyncio.gather(*tasks, loop=loop)

• Read_chunk_query makes a http request to a specific DN
node

• Set of DN nodes can be reading from S3, decompression
and selecting requested data in parallel

• Asyncio.gather waits for all tasks to complete before
continuing

• Meanwhile, new requests can be processed by SN node

11

Python and Docker

• Docker makes developing clustered applications sooo much easier
• Can run dozens of containers on a moderate laptop
• Containers communicate with each other just like on a physical network
• Use docker stats to check up cpu, net i/o, disk i/o usage per container
• Can try out different constraints for amount of memory, disk per container
• Same code “just works” on an actual cluster
• ”scale up” by launching more containers on production hardware
• AWS ECS enables running containers in a machine agnostic way

• Using docker does require a reversion to the edit/build/run paradigm
• The build step is now the creation of the docker image
• Run is launching the container(s)

12

Python package MVPs

• numpy – python arrays
• Used heavily in server and client stacks
• Great performance for common array operations
• Simplifies much of the logic needed for hyperslab selection

• aiohttp – async http client/server
• Use of asyncio requires async enabled packages
• Aiohttp is used in HSDS as both web server and client

• Aiobotocore – async aws s3 client
• Enables async read/write to S3

• H5py – template for h5pyd package

13

H5pyd – Python client for HDF Server

• H5py is a popular Python package that provide a Pythonic interface to the
HDF5 library

• H5pyd (for h5py distributed) provides a h5py compatible h5py for accessing
the server

• Pure Python – uses requests package to make http calls to server
• Compatible with h5serv (the reference implementation of the HDF REST API)
• Include several extensions to h5py:

• List content in folders
• Get/Set ACLs (access control list)
• Pytables-like query interface

14

HSDS CLI (Command Line Interface)

• Accessing HDF via a service means can’t utilize usual shell commands:
ls, rm, chmod, etc.

• Command line tools are a set of simple apps to use instead:
• hsinfo: display server version, connect info
• hsls: list content of folder or file
• hstouch: create folder or file
• hsdel: delete a file
• hsload: upload an HDF5 file
• hsget: download content from server to an HDF5 file
• hsacl: create/list/update ACLs (Access Control Lists)

• Implemented in Python & uses h5pyd

15

Demo Time!

NREL (National Renewable Energy Laboratory) is using HSDS
to make 7TB of wind simulation data accessible to the public.

Datasets are three-dimensional covering the continental US:
• Time (one slice/hour)
• Lon (~2k resolution)
• Lat (~2k resolution)

Initial data covers one year (8760 slices), but will be soon be
extended to 5 years (35 TBs).

Rather than downloading TB’s of files, interested users can
now use the HSDS client libraries to explore the datasets.

Future Work 1
7

• Work planned for the next year
• Compression
• Variable length datatypes
• NetCDF support
• Auto Scaling
• Scalability and performance testing

To Find out More:

• H5serv: https://github.com/HDFGroup/h5serv
• Documentation: http://h5serv.readthedocs.io/
• H5pyd: https://github.com/HDFGroup/h5pyd
• RESTful HDF5 White Paper:

https://www.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf
• Blog articles:
• https://hdfgroup.org/wp/2015/04/hdf5-for-the-web-hdf-server/
• https://hdfgroup.org/wp/2015/12/serve-protect-web-security-hdf5/
• https://www.hdfgroup.org/2017/04/the-gfed-analysis-tool-an-hdf-

server-implementation/

18

19HDF5 Community Support

• Documentation - https://support.hdfgroup.org/documentation/
• Tutorials, FAQs, examples

• HDF-Forum – mailing list and archive
• Great for specific questions

• Helpdesk Email – help@hdfgroup.org
• Issues with software and documentation

https://support.hdfgroup.org/services/community_support.html

1
9

Questions? Comments?

Dave Pearah
CEO
David.Pearah@hdfgroup.org

Dax Rodriguez
Director of Commercial Services and
Solutions
Dax.Rodriguez@hdfgroup.org

www.hdfgroup.org

