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Since, by (8) pertaining to the nearest neighbor decision rule (NN rule). We 
briefly review the NN rule and then describe the CNN rule. 

The NN rule[‘l-[“I assigns an unclassified sample to the same 
class as the nearest of n stored, correctly classified samples. In other 
words, given a collection of n reference points, each classified by 
some external source, a new point is assigned to the same class as 
its nearest neighbor. The most interesting t)heoretical property of 
the NN rule is that under very mild regularity assumptions on the 
underlying statistics, for any metric, and for a variety of loss func- 
tions, the large-sample risk incurred is less than twice the Bayes 
risk. (The Bayes decision rule achieves minimum risk but ,requires 
complete knowledge of the underlying statistics.) From a practical 
point of view, however, the NN rule is not a prime candidate for 
many applications because of the storage requirements it imposes. 
The CNN rule is suggested as a rule which retains the basic approach 
of the NN rule without imposing such stringent storage requirements. 

Before describing the CNN rule we first define the notion of a 
consistent subset of a sample set. This is a subset which, when used 
as a stored reference set for the NN rule, correctly classifies all of the 
remaining points in the sample set. A minimal consistent subset is a 
consistent subset with a minimum number of elements. Every set 
has a consistent subset, since every set is trivially a consistent sub- 
set of itself. Obviously, every finite set has a minimal consistent 
subset, although the minimum size is not, in general, achieved 
uniquely. The CNN rule uses the following algorithm to determine 
a consistent subset of the original sample set. In general, however, 
the algorithm will not find a minimal consistent subset. We assume 
that the original sample set is arranged in some order; then we set 
up bins called STORE and GRABHAG and proceed as follows. 

1) The first sample is placed in STORE. 

2) The second sample is classified by the NN rule, using as a 
reference set the current contents of STORE. (Since STORE has only 
one point, the classification is trivial at this stage.) If the second 
sample is classified correctly it is placed in GRABBAG; otherwise it 
is placed in STORE. 

3) Proceeding inductively, the ith sample is classified by the 
current contents of STORE. If classified correctly it is placed in 
GI~ABBAG; otherwise it is placed in STORE. 

4) After one pass through the original sample set, the procedure 
continues to loop through GRABRAG until termination, which can 
occur in one of two ways: 

a) The GRABBAG is exhausted, with all its members now trans- 
ferred to STORE (in which case, the consistent subset found 
is the entire original set), or 

b) One complete pass is made through GRABBAG with no 
transfers to STORE. (If this happens, all subsequent passes 
through GRABBAG will result in no transfers, since the 
underlying decision surface has not been changed.) 

5) The final contents of STORE are used as reference points for 
the NN rule; the contents of GRABBAG are discarded. 

Qualitatively, the rule behaves as follows: If the Bayes risk is 
small, i.e., if the underlying densities of the various classes have 
small overlap, then the algorithm will tend to pick out points near 
the (perhaps fuzzy) boundary between the classes. Typically, 
points deeply imbedded within a class will not be transferred to 
STORE, since they will be correctly classified. If the Bayes risk is 
high, then STORE will contain essentially all the points in the original 
sample set, and no important reduction in sample size will have 
been achieved. No theoretical properties of the CNN rule have been 
established. 

The CNN rule has been tried on a number of problems, both real 
and artificial. In order to investigate the behavior of the rule when 
the classes are (essentially) disjoint-the case in which the CNN 
rule is of greatest interest-several experiments similar to the 
following were run. The underlying probability structure for a 
two-class problem was assumed to consist of two probability den- 
sit.ies, each a uniform distribution on the supports shown in Fig. 1. 
The set of all vectors with integer components lying within each 

expression (10) is eqrlivalent to the following: 

.p(e, j e,:-,, . . . , eke.,,> de,_, . . . de,-,. (12) 
But 

p(ek I u 1 = J s . . . pm, .- , ek--dr 1 hk-J de,-, - . . dek--dl 
zzz I s . . . pm-,. . . . , ek-,,f / x,-J 
de, j ekeI, . .* , eke,,) de,-, ... de,-,. (13) 

Thus, if (12) and therefore (10) is to hold independent of the shape of 
p(~k\~k-1, .” , tik-,>I), one mUSt have 

which is a pathological situation and not true in general for M > 1. 
Note, however, that if M = 1, (14) is an identity and (12) does hold, 
but in this case, Fralick’s expression (10) reduces to ours (4). Thus, 
the results (3) and (4) provide a correction to Fralick’s expression 
for M > 1, and (5) and (6) give a similar recursive expression for 
?‘(ek 1 hk). 

The question then arises of how actually to implement these 
iterative expressions, i.e., of how to store a function such as 
&Ok, . . . , Bk-M+l 1 Xk-,). For their implementation, some finite 
parameterization of the equations must be found. Perhaps the sim- 
plest parameterization is to restrict ok to take on a finite Set of 
values’ (or be so approximated). The densities for ok, etc. are then 
replaced by probabilities, and the integrals by finite sums. 
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The Condensed Nearest Neighbor Rule 

The purpose of this note is to introduce the condensed nearest 
neighbor decision rule (CNN rule) and to pose some unsolved 
theoretical questions which it raises. The CNN rule, one of a class 
of ad hoc decision rules which have appeared in the literature in 
the past few years, was motivated by statistical considerations 
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Fig. 1. Class boundaries. 

. 

Fig. 2. Samples selected and induced decision surface. 

support wss taken to simulate a random sampling from each 
population. The 482 points thus obtained were ordered by a random 
mechanism and processed using the algorithm described above. 

The algorithm terminated after four interations through GRABBAG, 
at which time STORE contained 40 samples. Fig. 2 shows the final 
40 samples and. the decision surface induced by the NN rule using 
these 40 samples as a stored reference set. 

Since all samples had integer-valued components, ties occurred 
with noneero probability, and these were broken arbitrarily. Thii 
accounts for the fact that occasionally the decision surface lies 
properly within one or the other of the supports rather than between 
them. The points most deeply imbedded within each class were the 
first two points in the random ordering. 

A more realistic experiment was performed using data supplied 
by Nagy of IBM.161 This data consisted of approximately 12 000 
96-dimensional binary vectors drawn from 25 different statistical 
populations. (The data represent upper-case typewritten characters, 
excluding “I,” typed with nine different styles of fonts.) The 
12 000 samples were divided into a training set and a testing set of 
approximately equal size, and the CNN algorithm was used on the 
training set. The algorithm terminated after four iterations through 
GRABBAG, at which time STORE contained 197 of the original 6295 
samples. An error rate of 1.28 percent was obtained on the indepen- 
dent test set. This wss somewhat disappointing in view of the fact 
that a number of simpler classifiers (the ternary reference classi- 
fier,lsl linear machine,161 and piecewise-linear machinel61), using 
considerably less computer time, achieved error rates on the order 

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1968 
of 0.3-0.5 percent.171J81 It was also a little surprising, since (neces- 
sarily) the 197 stored points correctly classified all the 6295 samples 
in the training set. 

These and similar experiments have persuaded us that the CNN 
rule offers interesting possibilities, but that a great deal more work 
of both a theoretical and experimental nature will be needed be- 
fore the rule is thoroughly understood. For example, under suitably 
restrictive assumptions on the underlying statistics: 

1) What is the expected number of iterations before termination? 
2) What is the expected reduction in the size of the stored sample 

set? 
3) What is the expected increase in CNN risk over NN risk for 

a sample set of given size? 

In view of the desirable theoretical properties of the Ic-NN 
rule,lll s12]-the rule that makes a decision on the basis of votes csst 
by each of the k nearest neighbors-we pose a final obvious question 
which should, perhaps, be answered experimentally. How would 
the CNN rule perform if the vote of, say, the three nearest neighbors 3 
was substituted for the decision of the single nearest neighbor 
everywhere in the algorithm? 
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Uncertainty and the Probability of Error 

Let X and Y be discrete random variables which can be thought 
of as the input and output, respectively, of a communication channel. 
-Let X and Y take on the values (zi: i = 1, . . . , m) and (y;: i = 
1, ... ) n], respectively, where n >_ m. A decision rule for X in terms 
of Y can be considered as a partition (Ai: i = 1, . . . , ti) such that 
AinAi‘=~,i#j,andU~=“=,Ai=(yi:j=l,...In]wherethe 
decision is zi if Y L Ai. This also defines a “post-decision” random 
variable 2, where Z is defined by Z = zi if Y E A i, i = 1, * . *, m. 

Two putative measures of the efficiency of this system are un- 
certainty (or equivocation) and probability of error. It is desirable 
to determine the relationship between these two measures. In 
particular, we can compare H(X] Y) with the minimum probability 
of error P,(e) if we want to evaluate the channel independent of 
the decision rule. Otherwise we can compare, given a particular 
decision rule, H(XlZ) with the probability of error P(e). The pur- 
pose of the paper is to demonstrate the exact relationship between 
H(X] Y) and PO(e). 

First, we relate H(X]gk) to Po(eluk) for each Ic. Now PO(el;yk) = 
1 -maxi P(z&)), and letting uk be fixed, we donete Pi = P(Zilvk), 
2 = 1, . ..) m, such that PI 2 Pi, i = 2, e.1 , m. Then Po(elyb) = 
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