AI Image Generators for Linux

View 8 business solutions

Browse free open source AI Image Generators and projects for Linux below. Use the toggles on the left to filter open source AI Image Generators by OS, license, language, programming language, and project status.

  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 1
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 2
    Photoshot

    Photoshot

    An open-source AI avatar generator web app

    Photoshot is an AI-powered image generation and editing tool that enables users to create and modify images using advanced machine learning techniques. It allows users to generate realistic portraits, edit existing photos, and apply AI-based enhancements with minimal manual effort.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 3
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what you're looking for. Texture entire models and scenes with depth to image. Inpaint to fix up images and convert existing textures into seamless ones automatically. Outpaint to increase the size of an image by extending it in any direction. Perform style transfer and create novel animations with Stable Diffusion as a post processing step. Dream Textures has been tested with CUDA and Apple Silicon GPUs. Over 4GB of VRAM is recommended.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    Stable Diffusion v 2.1 web UI

    Stable Diffusion v 2.1 web UI

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img, in paint and upscale4x. Gradio app for Stable Diffusion 2 by Stability AI. It uses Hugging Face Diffusers implementation. Currently supported pipelines are text-to-image, image-to-image, inpainting, upscaling and depth-to-image.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Auth for GenAI | Auth0 Icon
    Auth for GenAI | Auth0

    Enable AI agents to securely access tools, workflows, and data with fine-grained control and just a few lines of code.

    Easily implement secure login experiences for AI Agents - from interactive chatbots to background workers with Auth0. Auth for GenAI is now available in Developer Preview
    Try free now
  • 5
    pwa-asset-generator

    pwa-asset-generator

    Automates PWA asset generation and image declaration

    Automates PWA asset generation and image declaration. Automatically generates icon and splash screen images, favicons and mstile images. Updates manifest.json and index.html files with the generated images according to Web App Manifest specs and Apple Human Interface guidelines. When you build a PWA with a goal of providing native-like experiences on multiple platforms and stores, you need to meet with the criteria of those platforms and stores with your PWA assets; icon sizes and splash screens. Google's Android platform respects Web App Manifest API specs, and it expects you to provide at least 2 icon sizes in your manifest file. Apple's iOS currently doesn't support Web App Manifest API specs. You need to introduce custom HTML tags to set icons and splash screens to your PWA. You need to introduce a special html link tag with rel apple-touch-icon to provide icons for your PWA when it's added to home screen.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Intelligent Java

    Intelligent Java

    Integrate with the latest language models, image generation and speech

    Intelligent java (IntelliJava) is the ultimate tool to integrate with the latest language models and deep learning frameworks using java. The library provides an intuitive functions for sending input to models like ChatGPT and DALL·E, and receiving generated text, speech or images. With just a few lines of code, you can easily access the power of cutting-edge AI models to enhance your projects. Access ChatGPT, GPT3 to generate text and DALL·E to generate images. OpenAI is preferred for quality results without tuning. Generate text; Cohere allows you to generate a language model to suit your specific needs. Generate audio from text; Access DeepMind’s speech models. The only dependencies is GSON. Required to add manually when using IntelliJava jar. However, if you imported this repo through Maven, it will handle the dependencies.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    VQGAN-CLIP web app

    VQGAN-CLIP web app

    Local image generation using VQGAN-CLIP or CLIP guided diffusion

    VQGAN-CLIP has been in vogue for generating art using deep learning. Searching the r/deepdream subreddit for VQGAN-CLIP yields quite a number of results. Basically, VQGAN can generate pretty high-fidelity images, while CLIP can produce relevant captions for images. Combined, VQGAN-CLIP can take prompts from human input, and iterate to generate images that fit the prompts. Thanks to the generosity of creators sharing notebooks on Google Colab, the VQGAN-CLIP technique has seen widespread circulation. However, for regular usage across multiple sessions, I prefer a local setup that can be started up rapidly. Thus, this simple Streamlit app for generating VQGAN-CLIP images on a local environment. Be advised that you need a beefy GPU with lots of VRAM to generate images large enough to be interesting. (Hello Quadro owners!).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    DALL·E Mini

    DALL·E Mini

    Generate images from a text prompt

    DALL·E Mini, generate images from a text prompt. OpenAI had the first impressive model for generating images with DALL·E. Craiyon/DALL·E mini is an attempt at reproducing those results with an open-source model. The model is trained by looking at millions of images from the internet with their associated captions. Over time, it learns how to draw an image from a text prompt. Some concepts are learned from memory as they may have seen similar images. However, it can also learn how to create unique images that don't exist, such as "the Eiffel tower is landing on the moon," by combining multiple concepts together. Optimizer updated to Distributed Shampoo, which proved to be more efficient following comparison of different optimizers. New architecture based on NormFormer and GLU variants following comparison of transformer variants, including DeepNet, Swin v2, NormFormer, Sandwich-LN, RMSNorm with GeLU/Swish/SmeLU.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities Taskflow And process-wide text area API: Support for the loading of rich Chinese data sets Dataset API, can flexibly and efficiently complete data pretreatment Data API, Preset 60 + pre-training word vector Embedding API, Providing 100 + pre-training model Transformer API Wait, the efficiency of NLP task modeling can be greatly improved.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    min(DALL·E)

    min(DALL·E)

    min(DALL·E) is a fast, minimal port of DALL·E Mini to PyTorch

    This is a fast, minimal port of Boris Dayma's DALL·E Mini (with mega weights). It has been stripped down for inference and converted to PyTorch. The only third-party dependencies are numpy, requests, pillow and torch. The required models will be downloaded to models_root if they are not already there. Set the dtype to torch.float16 to save GPU memory. If you have an Ampere architecture GPU you can use torch.bfloat16. Set the device to either cuda or "cpu". Once everything has finished initializing, call generate_image with some text as many times as you want. Use a positive seed for reproducible results. Higher values for supercondition_factor result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the top_k most probable tokens. The largest logit is subtracted from the logits to avoid infs. The logits are then divided by the temperature. If is_seamless is true, the image grid will be tiled in token space not pixel space.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Leader badge
    Downloads: 36 This Week
    Last Update:
    See Project
  • 13
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 61 This Week
    Last Update:
    See Project
  • 14
    video-subtitle-remover

    video-subtitle-remover

    AI-based tool for removing hardsubs and text-like watermarks

    Video-subtitle-remover (VSR) is an AI-based software that removes hardcoded subtitles from videos or Pictures.
    Downloads: 50 This Week
    Last Update:
    See Project
  • 15
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    Based on the Disco Diffusion, we have developed a Chinese & English version of the AI art creation software "AI Atelier". We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a service over a network, the complete source code of the modified version must be made available. Create 2D and 3D animations and not only still frames (from Disco Diffusion v5 and VQGAN Animations). Input audio and images for generation instead of just text. Simplify tool setup process on colab, and enable ‘one-click’ sharing of the generated link to other users. Experiment with the possibilities for multi-user access to the same link.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization". End-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation errors. Video frames are colorized in sequence based on the colorization history, and its coherency is further enforced by the temporal consistency loss. All of these components, learned end-to-end, help produce realistic videos with good temporal stability. Experiments show our result is superior to the state-of-the-art methods both quantitatively and qualitatively. In order to colorize your own video, it requires to extract the video frames, and provide a reference image as an example.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Disco Diffusion

    Disco Diffusion

    Notebooks, models and techniques for the generation of AI Art

    A frankensteinian amalgamation of notebooks, models, and techniques for the generation of AI art and animations. This project uses a special conversion tool to convert the Python files into notebooks for easier development. What this means is you do not have to touch the notebook directly to make changes to it. The tool being used is called Colab-Convert. Initial QoL improvements added, including user-friendly UI, settings+prompt saving, and improved google drive folder organization. Now includes sizing options, intermediate saves and fixed image prompts and Perlin inits. the unexposed batch option since it doesn't work.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    flat

    flat

    All-in-one image generation AI

    All-in-one image generation AI. Launch StableDiffusionWebUI with just a few clicks. No Python installation or repository cloning is required. Displays generated images in a list with information such as prompts. The image folder can be set freely.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    pdf-extractor

    pdf-extractor

    Node.js module for rendering pdf pages to images, svgs and HTML files

    Pdf-extractor is a wrapper around pdf.js to generate images, svgs, html files, text files and json files from a pdf on node.js. A DOM Canvas is used to render and export the graphical layer of the pdf. Canvas exports *.png as a default but can be extended to export to other file types like .jpg. Pdf objects are converted to svg using the SVGGraphics parser of pdf.js. Pdf text is converted to HTML. This can be used as a (transparent) layer over the image to enable text selection. Pdf text is extracted to a text file for different usages (e.g. indexing the text). This library is in it's most basic form a node.js wrapper for pdf.js. It has default renderers to generate a default output, but is easily extended to incorporate custom logic or to generate different output. It uses a node.js DOM and the node domstub from pdf.js do make pdf parsing available on node.js without a browser.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    stable-diffusion-webui-colab

    stable-diffusion-webui-colab

    Stable diffusion webui colab

    Stable Diffusion webui colab. lite has a stable WebUI and stable installed extensions. stable has ControlNet, a stable WebUI, and stable installed extensions. Nightly has ControlNet, the latest WebUI, and daily installed extension updates. If you want to use more models, you can download your model into Colab, which has an empty 50GB space. You can also free up more space by deleting the default model in your drive. If you don't plan to use ControlNet models, you can also free up space by deleting them.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Janus-Pro

    Janus-Pro

    Janus-Series: Unified Multimodal Understanding and Generation Models

    Janus is a cutting-edge, unified multimodal model designed to advance both multimodal understanding and generation. It features a decoupled visual encoding approach that allows it to handle visual tasks separately from the generative tasks, resulting in enhanced flexibility and performance. With a singular transformer architecture, Janus outperforms previous models by surpassing specialized task-specific models in its ability to handle diverse multimodal inputs and generate high-quality outputs. Its latest iteration, Janus-Pro, improves on this with a more optimized training strategy, expanded data, and larger model scaling, leading to significant advancements in both multimodal understanding and text-to-image generation.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    A Netflix film cover generator Nuxt.js

    A Netflix film cover generator Nuxt.js

    A tool for generating Netflix show image

    We love Netflix, but we love memes even more. We thought that helping Netflix on their UI/UX testing with a tool that can create show images easily with an export function to png. A tool for generating Netflix shows an image. You can visit the demo website hosted on Netlify. This is an open-source tool and it is available on Github. On this tool you have a full editable canvas where you can edit content, text position, text dimension, gradient position and change the background image. In order to change the element position you can just click and drag anywhere. Meanwhile, if yuo want to change the content inside an element you need to double-click on it. By double clicking on an element it will show a textarea where you can edit and confirm the changes by clicking elsewhere or by clicking Enter. In order to change the background image you can drag-n-drop any image onto the canvas and it will change the background image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images) to B(IHC images). The evaluation of human epidermal growth factor receptor 2 (HER2) expression is essential to formulate a precise treatment for breast cancer. The routine evaluation of HER2 is conducted with immunohistochemical techniques (IHC), which is very expensive. Therefore, for the first time, we propose a breast cancer immunohistochemical (BCI) benchmark attempting to synthesize IHC data directly with the paired hematoxylin and eosin (HE) stained images.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.