Showing 225 open source projects for "algorithm"

View related business solutions
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Qdrant

    Qdrant

    Vector Database for the next generation of AI applications

    ... functionality. Implement a unique custom modification of the HNSW algorithm for the Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values. Unlike Elasticsearch post-filtering, Qdrant guarantees all relevant vectors are retrieved.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 2
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 3
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 4
    gse

    gse

    Go efficient multilingual NLP and text segmentation

    ... Viterbi algorithm. Support NLP by TensorFlow (in work). Named Entity Recognition (in work). Supports with elastic search and bleve. run JSON RPC service.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    OSQP uses a specialized ADMM-based first-order method with custom sparse linear algebra routines that exploit structure in problem data. The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    natural

    natural

    General natural language facilities for node

    "Natural" is a general natural language facility for nodejs. It offers a broad range of functionalities for natural language processing. Tokenizing, stemming, classification, phonetics, tf-idf, WordNet, string similarity, and some inflections are currently supported. It’s still in the early stages, so we’re very interested in bug reports, contributions and the like. Note that many algorithms from Rob Ellis’s node-nltools are being merged into this project and will be maintained from here...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial. It supports model training, evaluation, and deployment in real-time environments...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Vald

    Vald

    Vald. A Highly Scalable Distributed Vector Search Engine

    Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine. Vald is designed and implemented based on the Cloud-Native architecture. It uses the fastest ANN Algorithm NGT to search for neighbors. Vald has automatic vector indexing and index backup, and horizontal scaling which is made for searching from billions of feature vector data. Vald is easy to use, feature-rich and highly customizable as you needed. Usually, the graph requires locking during...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FSRS4Anki

    FSRS4Anki

    A modern Anki custom scheduling based on Free Spaced Repetition

    A modern spaced-repetition scheduler for Anki based on the Free Spaced Repetition Scheduler algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    R1-V

    R1-V

    Witness the aha moment of VLM with less than $3

    R1-V is an initiative aimed at enhancing the generalization capabilities of Vision-Language Models (VLMs) through Reinforcement Learning in Visual Reasoning (RLVR). The project focuses on building a comprehensive framework that emphasizes algorithm enhancement, efficiency optimization, and task diversity to achieve general vision-language intelligence and visual/GUI agents. The team's long-term goal is to contribute impactful open-source research in this domain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Vowpal Wabbit

    Vowpal Wabbit

    Machine learning system which pushes the frontier of machine learning

    ... for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free-form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free-form text in different namespaces. Similar to the few other online algorithm implementations out there. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    ... of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.