Open Source Python Education Software for Windows

Browse free open source Python Education Software for Windows and projects below. Use the toggles on the left to filter open source Python Education Software for Windows by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus with 24/7 AI-powered online scam detection Icon
    Get Avast Free Antivirus with 24/7 AI-powered online scam detection

    Get protection for today’s online threats. Free.

    Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, ktrain allows you to easily and quickly. ktrain purposely pins to a lower version of transformers to include support for older versions of TensorFlow. If you need a newer version of transformers, it is usually safe for you to upgrade transformers, as long as you do it after installing ktrain. As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 2
    jieba

    jieba

    Stuttering Chinese word segmentation

    "Jaba" Chinese word segmentation, do the best Python Chinese word segmentation component. Four word segmentation modes are supported. Precise mode, which tries to cut the sentence most precisely, suitable for text analysis. Full mode, scans all the words that can be formed into words in the sentence, the speed is very fast, but the ambiguity cannot be resolved. The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. Also supports part-of-speech tagging. To use paddle mode, you need to install paddlepaddle-tiny, pip install paddlepaddle-tiny==1.6.1. Currently paddle mode supports jieba v0.40 and above. For versions below jieba v0.40, please upgrade jieba, pip install jieba --upgrade.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    This project has moved to GitHub.
    Downloads: 94 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 5
    The Player Project: Player is a networked interface to robots and sensors. Stage and Gazebo are Player-friendly multiple-robot simulators. The software aims for POSIX compliance and runs on most UNIX-like OS's. Some parts also work on Windows.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 6
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several state-of-the-art algorithms are included for self-study and customization in your own applications. Please see the setup guide for more details on setting up your machine locally, on a data science virtual machine (DSVM) or on Azure Databricks. Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Picsart Enterprise Background Removal API for Stunning eCommerce Visuals Icon
    Picsart Enterprise Background Removal API for Stunning eCommerce Visuals

    Instantly remove the background from your images in just one click.

    With our Remove Background API tool, you can access the transformative capabilities of automation , which will allow you to turn any photo asset into compelling product imagery. With elevated visuals quality on your digital platforms, you can captivate your audience, and therefore achieve higher engagement and sales.
    Learn More
  • 10
    The General Hidden Markov Model Library (GHMM) is a C library with additional Python bindings implementing a wide range of types of Hidden Markov Models and algorithms: discrete, continous emissions, basic training, HMM clustering, HMM mixtures.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    A collection of software made by Milos Rancic.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    A Machine Learning Course with Python

    A Machine Learning Course with Python

    A course about machine learning with Python

    The purpose of this project is to provide a comprehensive and yet simple course in Machine Learning using Python. Machine Learning, as a tool for Artificial Intelligence, is one of the most widely adopted scientific fields. A considerable amount of literature has been published on Machine Learning. The purpose of this project is to provide the most important aspects of Machine Learning by presenting a series of simple and yet comprehensive tutorials using Python. In this project, we built our tutorials using many different well-known Machine Learning frameworks such as Scikit-learn. In this project you will learn what is the definition of Machine Learning? When it started and what is the trending evolution? What are the Machine Learning categories and subcategories? What are the mostly used Machine Learning algorithms and how to implement them?
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    Auto File Selection

    Detect all the "important" files from your computer.

    The main aim of this project is to design and develop a mechanism that can find all the “important” files inside a computer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    This project is dead and is hear for historical purposes, see http://sf.net/projects/zedbot. Bob is a humanoid robot whos body was created by Newberg High School in Oregon and software written by Ryan Miglavs and Brandon Philips of Sherwood High School.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Convolution arithmetic

    Convolution arithmetic

    A technical report on convolution arithmetic in deep learning

    A technical report on convolution arithmetic in the context of deep learning. The code and the images of this tutorial are free to use as regulated by the licence and subject to proper attribution. The animations will be output to the gif directory. Individual animation steps will be output in PDF format to the pdf directory and in PNG format to the png directory. We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code. Offers sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    Four In Row Arena

    Implement your player strategy and compete with other strategies.

    A generic framework for Four in A Row or Five In A Row or X In A Row game, with the possibility to develop different strategies and compare them in tournaments. To implement more players, create new class inherited from PlayerStrategy, and implement the move() method to chose best move, by utilizing different methods provided with Table object.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    HORUS is a system for knowledge acquisition, hypothesis generation, inference and learning. It is an interactive, internet environment accessible to a diverse community of users (public-access or membership basis) - see also UMKAILASH project for more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Educational game framework supporting board games, strategy games, and other grid-based game boards. Currently uses Python/wxPython as the application language/library. C++ libs included to help create AI for the various games.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging data. Quickly build new solutions to your own image analysis problems. NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. For this part of the content, Jupyter Notebook is used as a teaching tool here, and readers can modify and run with notebooks and repeat experiments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    The PYthon LInguistic Laboratory (pylilac) is a Python library and a set of tools to help in studying, analyzing and engineering languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the development of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.