Open Source Python Federated Learning Frameworks for Linux

Browse free open source Python Federated Learning Frameworks for Linux and projects below. Use the toggles on the left to filter open source Python Federated Learning Frameworks for Linux by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus with 24/7 AI-powered online scam detection Icon
    Get Avast Free Antivirus with 24/7 AI-powered online scam detection

    Get protection for today’s online threats. Free.

    Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems. Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.