Browse free open source Python Generative AI for Linux and projects below. Use the toggles on the left to filter open source Python Generative AI for Linux by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Your top-rated shield against malware and online scams | Avast Free Antivirus Icon
    Your top-rated shield against malware and online scams | Avast Free Antivirus

    Browse and email in peace, supported by clever AI

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • 1
    CodiumAI PR-Agent

    CodiumAI PR-Agent

    AI-Powered tool for automated pull request analysis

    CodiumAI PR-Agent is an open-source tool aiming to help developers review pull requests faster and more efficiently. It automatically analyzes the pull request and can provide several types of commands. See the Usage Guide for instructions how to run the different tools from CLI, online usage, Or by automatically triggering them when a new PR is opened. You can try GPT-4 powered PR-Agent, on your public GitHub repository, instantly. Just mention @CodiumAI-Agent and add the desired command in any PR comment. The agent will generate a response based on your command.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    GPT-Code UI

    GPT-Code UI

    An open source implementation of OpenAI's ChatGPT Code interpreter

    An open source implementation of OpenAI's ChatGPT Code interpreter. Simply ask the OpenAI model to do something and it will generate & execute the code for you. You can put a .env in the working directory to load the OPENAI_API_KEY environment variable. For Azure OpenAI Services, there are also other configurable variables like deployment name. See .env.azure-example for more information. Note that model selection on the UI is currently not supported for Azure OpenAI Services.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 5
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. You can turn on automatic mixed precision with one flag --amp. You should expect it to be 33% faster and save up to 40% memory. Aim is an open-source experiment tracker that logs your training runs, and enables a beautiful UI to compare them.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Langfuse

    Langfuse

    Open-source observability and analytics for LLM apps

    Langfuse is building open-source observability and analytics for LLM apps. Observability: Explore and debug complex logs & traces in a visual UI. Analytics: Improve performance of LLM apps. In particular, get a view on costs, latency and response quality using intuitive dashboards.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with the 2d-distribution.py. Check out random_search.py for possibilities, you'll likely want to modify it. The examples are capable of (sometimes) finding a good trainer, like 2d-distribution. Mixing and matching components seems to work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where TGAN is run. For development, you can use make install-develop instead in order to install all the required dependencies for testing and code listing. In order to be able to sample new synthetic data, TGAN first needs to be fitted to existing data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. Using TorchGAN's modular structure allows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It consists a set of different GANs architectures developed using Tensorflow 2.0. Several example Jupyter Notebooks and Python scripts are included, to show how to use the different architectures. YData synthetic has now a UI interface to guide you through the steps and inputs to generate structure tabular data. The streamlit app is available form v1.0.0 onwards.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.