Browse free open source Python Generative AI and projects below. Use the toggles on the left to filter open source Python Generative AI by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 1
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images) to B(IHC images). The evaluation of human epidermal growth factor receptor 2 (HER2) expression is essential to formulate a precise treatment for breast cancer. The routine evaluation of HER2 is conducted with immunohistochemical techniques (IHC), which is very expensive. Therefore, for the first time, we propose a breast cancer immunohistochemical (BCI) benchmark attempting to synthesize IHC data directly with the paired hematoxylin and eosin (HE) stained images.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    BERTopic

    BERTopic

    Leveraging BERT and c-TF-IDF to create easily interpretable topics

    BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, supervised, semi-supervised, manual, long-document, hierarchical, class-based, dynamic, and online topic modeling. It even supports visualizations similar to LDAvis! Corresponding medium posts can be found here, here and here. For a more detailed overview, you can read the paper or see a brief overview. After having trained our BERTopic model, we can iteratively go through hundreds of topics to get a good understanding of the topics that were extracted. However, that takes quite some time and lacks a global representation. Instead, we can visualize the topics that were generated in a way very similar to LDAvis. By default, the main steps for topic modeling with BERTopic are sentence-transformers, UMAP, HDBSCAN, and c-TF-IDF run in sequence.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    Basaran is an open-source alternative to the OpenAI text completion API. It provides a compatible streaming API for your Hugging Face Transformers-based text generation models. The open source community will eventually witness the Stable Diffusion moment for large language models (LLMs), and Basaran allows you to replace OpenAI's service with the latest open-source model to power your application without modifying a single line of code. Stream generation using various decoding strategies. Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the excellent Tensor2Tensor visualization tool. The model view shows a bird's-eye view of attention across all layers and heads. The neuron view visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
    Downloads: 0 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    CIPS-3D

    CIPS-3D

    3D-aware GANs based on NeRF (arXiv)

    3D-aware GANs based on NeRF (arXiv). This repository contains the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. The problem of mirror symmetry refers to the sudden change of the direction of the bangs near the yaw angle of pi/2. We propose to use an auxiliary discriminator to solve this problem. Note that in the initial stage of training, the auxiliary discriminator must dominate the generator more than the main discriminator does. Otherwise, if the main discriminator dominates the generator, the mirror symmetry problem will still occur. In practice, progressive training is able to guarantee this. We have trained many times from scratch. Adding an auxiliary discriminator stably solves the mirror symmetry problem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CLIP Guided Diffusion

    CLIP Guided Diffusion

    A CLI tool/python module for generating images from text

    A CLI tool/python module for generating images from text using guided diffusion and CLIP from OpenAI. Text to image generation (multiple prompts with weights). Non-square Generations (experimental) Generate portrait or landscape images by specifying a number to offset the width and/or height. Uses fewer timesteps over the same diffusion schedule. Sacrifices accuracy/alignment for quicker runtime. options: - 25, 50, 150, 250, 500, 1000, ddim25,ddim50,ddim150, ddim250,ddim500,ddim1000 (default: 1000) Prepending a number with ddim will use the ddim scheduler. e.g. ddim25 will use the 25 timstep ddim scheduler. This method may be better at shorter timestep_respacing values. Multiple prompts can be specified with the | character. You may optionally specify a weight for each prompt.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    CPT

    CPT

    CPT: A Pre-Trained Unbalanced Transformer

    A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation. We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. Position Embeddings We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. Aiming to unify both NLU and NLG tasks, We propose a novel Chinese Pre-trained Un-balanced Transformer (CPT).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. Easy to get started: We provide simple yet flexible configuration for new researchers to quickly start in our library. Human-machine interaction interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 10
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery or download it over GitHub and add your OpenAI API key. If you have used ChatGPT or DALL·E 2, you already have an OpenAI account. Otherwise, you can sign up here - You will receive $5 in free credit, no payment data is required. Afterward you can create your API key. To start a conversation with ChatGPT either use the keyword cf, setup the workflow as a fallback search in Alfred or create your custom hotkey to directly send the clipboard content to ChatGPT.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ChatGPT-Reviewer

    ChatGPT-Reviewer

    Automated pull requests reviewing and issues triaging with ChatGPT

    Automated pull requests reviewing and issues triaging with ChatGPT. Create an OpenAI API key here, and then set the key as an action secret in your repository named OPENAI_API_KEY. The ChatGPT reviewer PRs are also getting reviewed by ChatGPT, refer the pull requests for the sample review comments. In order to protect public repositories for malicious users, Github runs all pull request workflows raised from repository forks with a read-only token and no access to secrets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CodiumAI PR-Agent

    CodiumAI PR-Agent

    AI-Powered tool for automated pull request analysis

    CodiumAI PR-Agent is an open-source tool aiming to help developers review pull requests faster and more efficiently. It automatically analyzes the pull request and can provide several types of commands. See the Usage Guide for instructions how to run the different tools from CLI, online usage, Or by automatically triggering them when a new PR is opened. You can try GPT-4 powered PR-Agent, on your public GitHub repository, instantly. Just mention @CodiumAI-Agent and add the desired command in any PR comment. The agent will generate a response based on your command.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DALL-E in Pytorch

    DALL-E in Pytorch

    Implementation / replication of DALL-E, OpenAI's Text to Image

    Implementation / replication of DALL-E (paper), OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations. Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention. You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically. You can also use the pretrained VAE offered by the authors of Taming Transformers! Currently only the VAE with a codebook size of 1024 is offered, with the hope that it may train a little faster than OpenAI's, which has a size of 8192. In contrast to OpenAI's VAE, it also has an extra layer of downsampling, so the image sequence length is 256 instead of 1024 (this will lead to a 16 reduction in training costs, when you do the math).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DCGAN in TensorLayerX

    DCGAN in TensorLayerX

    The Simplest DCGAN Implementation

    This is an implementation of Deep Convolutional Generative Adversarial Networks. First, download the aligned face images from google or baidu to a data folder. Please place dataset 'img_align_celeba.zip' under 'data/celebA/' by default.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical information. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image. This model has three networks in the generator. In addition, the model has two discriminators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. We can also feed in an image as an optimization goal, instead of only priming the generator network. Deepdaze will then render its own interpretation of that image. The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Deep Feature Rotation Multimodal Image

    Deep Feature Rotation Multimodal Image

    Implementation of Deep Feature Rotation for Multimodal Image

    Official implementation of paper Deep Feature Rotation for Multimodal Image Style Transfer [NICS'21] We propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while still achieving effective stylization compared to more complex methods in style transfer. Our approach is a representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. Prepare your content image and style image. I provide some in the data/content and data/style and you can try to use them easily. We provide a visual comparison between other rotation angles that do not appear in the paper. The rotation angles will produce a very diverse number of outputs. This has proven the effectiveness of our method with other methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Edge GPT

    Edge GPT

    Reverse engineered API of Microsoft's Bing Chat

    Reverse engineered API of Microsoft's Bing Chat The reverse engineering the chat feature of the new version of Bing. Requirements: - Python 3.8+ - A Microsoft account with Bing Chat access
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may lead to suboptimal results such as posterization. Moreover, jpg and most pngs assume an sRGB color space, which contains a roughly 1/2.2 Gamma correction, making the data distribution different from training images (which are linear). Exposure is just a prototype (proof-of-concept) of our latest research, and there are definitely a lot of engineering efforts required to make it suitable for a real product.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well as a systray icon to keep track of g-diffuser programs and the server while it is running. Run run.cmd to start the G-Diffuser system. You should see a G-Diffuser icon in your systray/notification area. Click on the icon to open and interact with the G-Diffuser system. If the icon is missing be sure it isn't hidden by clicking the "up" arrow near the notification area.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.