Browse free open source Machine Learning software and projects for Windows and Linux below. Use the toggles on the left to filter open source Machine Learning software by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus with 24/7 AI-powered online scam detection Icon
    Get Avast Free Antivirus with 24/7 AI-powered online scam detection

    Get protection for today’s online threats. Free.

    Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    HPCC Systems

    HPCC Systems

    End-to-end big data in a massively scalable supercomputing platform.

    HPCC Systems® (www.hpccsystems.com) from LexisNexis® Risk Solutions is a proven, open source solution for Big Data insights that can be implemented by businesses of all sizes. With HPCC Systems, developers can design applications with Big Data at their core, enabling businesses to better analyze and understand data at scale, improving business time to results and decisions. HPCC Systems offers a consistent data-centric programming language, two processing platforms and a single, complete end-to-end architecture for efficient processing. Read our blog (http://hpccsystems.com/blog ), or connect with us on Twitter (@hpccsystems), Facebook (https://www.facebook.com/hpccsystems ) and LinkedIn (http://www.linkedin.com/company/hpcc-systems) HPCC Systems is available on AWS & can be configured through the Instant Cloud Solution.
    Leader badge
    Downloads: 257 This Week
    Last Update:
    See Project
  • 2
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior network is needed after all. And so research continues. For simpler training, you can directly supply text strings instead of precomputing text encodings. (Although for scaling purposes, you will definitely want to precompute the textual embeddings + mask)
    Downloads: 17 This Week
    Last Update:
    See Project
  • 3
    Age and Gender Estimation

    Age and Gender Estimation

    Keras implementation of a CNN network for age and gender estimation

    Keras implementation of a CNN network for age and gender estimation. This is a Keras implementation of a CNN for estimating age and gender from a face image [1, 2]. In training, the IMDB-WIKI dataset is used. Because the face images in the UTKFace dataset is tightly cropped (there is no margin around the face region), faces should also be cropped in demo.py if weights trained by the UTKFace dataset is used. Please set the margin argument to 0 for tight cropping. You can evaluate a trained model on the APPA-REAL (validation) dataset. We pose the age regression problem as a deep classification problem followed by a softmax expected value refinement and show improvements over direct regression training of CNNs. Our proposed method, Deep EXpectation (DEX) of apparent age, first detects the face in the test image and then extracts the CNN predictions from an ensemble of 20 networks on the cropped face.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 4
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). The goal of libgpuarray is (from the documentation) make a common GPU ndarray (n dimensions array) that can be reused by all projects that is as future proof as possible, while keeping it easy to use for simple need/quick test. The easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Build apps or websites quickly on a fully managed platform Icon
    Build apps or websites quickly on a fully managed platform

    Get two million requests free per month.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure.
    Try it for free
  • 5
    Porcupine

    Porcupine

    On-device wake word detection powered by deep learning

    Build always-listening yet private voice applications. Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is using deep neural networks trained in real-world environments. Compact and computationally-efficient. It is perfect for IoT. Cross-platform. Arm Cortex-M, STM32, PSoC, Arduino, and i.MX RT. Raspberry Pi, NVIDIA Jetson Nano, and BeagleBone. Android and iOS. Chrome, Safari, Firefox, and Edge. Linux (x86_64), macOS (x86_64, arm64), and Windows (x86_64). Scalable. It can detect multiple always-listening voice commands with no added runtime footprint. Self-service. Developers can train custom wake word models using Picovoice Console. Porcupine is the right product if you need to detect one or a few static (always-listening) voice commands. If you want to create voice experiences similar to Alexa or Google, see the Picovoice platform.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. A large set of these technologies are being deployed into businesses (the real world) in what we consider a production setting.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Docker Machine

    Docker Machine

    Machine management for a container-centric world

    Docker Machine is a tool that lets you install Docker Engine on virtual hosts, and manage the hosts with docker-machine commands. You can use Machine to create Docker hosts on your local Mac or Windows box, on your company network, in your data center, or on cloud providers like Azure, AWS, or DigitalOcean. Using docker-machine commands, you can start, inspect, stop, and restart a managed host, upgrade the Docker client and daemon, and configure a Docker client to talk to your host. Point the Machine CLI at a running, managed host, and you can run docker commands directly on that host. For example, run docker-machine env default to point to a host called default, follow on-screen instructions to complete env setup, and run docker ps, docker run hello-world, and so forth. Machine was the only way to run Docker on Mac or Windows previous to Docker v1.12.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    OnnxStream

    OnnxStream

    Lightweight inference library for ONNX files, written in C++

    The challenge is to run Stable Diffusion 1.5, which includes a large transformer model with almost 1 billion parameters, on a Raspberry Pi Zero 2, which is a microcomputer with 512MB of RAM, without adding more swap space and without offloading intermediate results on disk. The recommended minimum RAM/VRAM for Stable Diffusion 1.5 is typically 8GB. Generally, major machine learning frameworks and libraries are focused on minimizing inference latency and/or maximizing throughput, all of which at the cost of RAM usage. So I decided to write a super small and hackable inference library specifically focused on minimizing memory consumption: OnnxStream. OnnxStream is based on the idea of decoupling the inference engine from the component responsible for providing the model weights, which is a class derived from WeightsProvider. A WeightsProvider specialization can implement any type of loading, caching, and prefetching of the model parameters.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Weka4OC GUI for Overlapping clustering

    Weka4OC GUI for Overlapping clustering

    Weka4OC: Weka for Overlapping Clustering is a GUI extending WEKA

    This is a GUI application for learning non disjoint groups based on Weka machine learning framework. It offers a variety of learning methods, based on k-means, able to produce overlapping clusters. The application also contains an evaluation framework that calculates several external validation measures. The application offers a visualization tool to discover overlapping groups.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 10
    AWS IoT Arduino Yún SDK

    AWS IoT Arduino Yún SDK

    SDK for connecting to AWS IoT from an Arduino Yún

    The AWS-IoT-Arduino-Yún-SDK allows developers to connect their Arduino Yún compatible Board to AWS IoT. By connecting the device to the AWS IoT, users can securely work with the message broker, rules and the Thing Shadow provided by AWS IoT and with other AWS services like AWS Lambda, Amazon Kinesis, Amazon S3, etc. The AWS-IoT-Arduino-Yún-SDK consists of two parts, which take use of the resources of the two chips on Arduino Yún, one for native Arduino IDE API access and the other for functionality and connections to the AWS IoT built on top of AWS IoT Device SDK for Python. The AWS-IoT-Arduino-Yún-SDK provides APIs to let users publish messages to AWS IoT and subscribe to MQTT topics to receive messages transmitted by other devices or coming from the broker. This allows to interact with the standard MQTT PubSub functionality of AWS IoT.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    This project turns edge devices such as Raspberry Pi into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the edge device itself. Further, multiple edge devices can create a distributed AIoT network. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events shown in the images or videos without connecting to the cloud. One of the applications of this intelligent gateway is to use the camera to monitor the place you care about. For example, Figure 3 shows the analyzed results from the camera hosted in the DT42 office. The frames were captured by the IP camera and they were submitted into the AI engine. The output from the AI engine will be shown in the dashboard.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist design on client and server. Intuitive and consistent API for image and sentence embedding. Async client support. Easily switch between gRPC, HTTP, WebSocket protocols with TLS and compression. Smooth integration with neural search ecosystem including Jina and DocArray. Build cross-modal and multi-modal solutions in no time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. The absence of large datasets of ‘with_mask’ images has made this task cumbersome and challenging. Our face mask detector doesn't use any morphed masked images dataset and the model is accurate. Owing to the use of MobileNetV2 architecture, it is computationally efficient, thus making it easier to deploy the model to embedded systems (Raspberry Pi, Google Coral, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Platform for parallel computation in the Amazon cloud, including machine learning ensembles written in R for computational biology and other areas of scientific research. Home to MR-Tandem, a hadoop-enabled fork of X!Tandem peptide search engine.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP, GraphQL protocols with TLS. Intuitive design pattern for high-performance microservices. Seamless Docker container integration: sharing, exploring, sandboxing, versioning and dependency control via Jina Hub. Fast deployment to Kubernetes, Docker Compose and Jina Cloud. Improved engineering efficiency thanks to the Jina AI ecosystem, so you can focus on innovating with the data applications you build.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Keras TCN

    Keras TCN

    Keras Temporal Convolutional Network

    TCNs exhibit longer memory than recurrent architectures with the same capacity. Performs better than LSTM/GRU on a vast range of tasks (Seq. MNIST, Adding Problem, Copy Memory, Word-level PTB...). Parallelism (convolutional layers), flexible receptive field size (possible to specify how far the model can see), stable gradients (backpropagation through time, vanishing gradients). The usual way is to import the TCN layer and use it inside a Keras model. The receptive field is defined as the maximum number of steps back in time from current sample at time T, that a filter from (block, layer, stack, TCN) can hit (effective history) + 1. The receptive field of the TCN can be calculated. Once keras-tcn is installed as a package, you can take a glimpse of what is possible to do with TCNs. Some tasks examples are available in the repository for this purpose.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    OSXtlearn

    OSXtlearn

    OSXtlearn: tlearn for MacOSX

    tlearn is a backpropagation neural network simulator, written by Jeff Elman. xtlearn is a version of tlearn for the X Window System. OSXtlearn is xtlearn wrapped in a MacOSX application bundle that runs ons MacOSX 10.5 or higher and that requires XQuartz. OSXtlearn is created by Harm Brouwer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    A packet dissector driven by machine learning algorithms. You train it to recognize specific types of packets by showing it examples and counterexamples of some packet type, and it will figure out which bits in the packet define it as the type you seek.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph deep learning. Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. Spektral is compatible with Python 3.6 and above, and is tested on the latest versions of Ubuntu, MacOS, and Windows. Other Linux distros should work as well. The 1.0 release of Spektral is an important milestone for the library and brings many new features and improvements.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorFlow on Raspberry Pi

    TensorFlow on Raspberry Pi

    TensorFlow for Raspberry Pi

    TensorFlow on Raspberry Pi.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    a distributed engine for abstract neural network development via natural-language programming
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.