Open Source Python Natural Language Processing (NLP) Tools

Python Natural Language Processing (NLP) Tools

View 188 business solutions

Browse free open source Python Natural Language Processing (NLP) Tools and projects below. Use the toggles on the left to filter open source Python Natural Language Processing (NLP) Tools by OS, license, language, programming language, and project status.

  • Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar Icon
    Comprehensive Cybersecurity to Safeguard Your Organization | SOCRadar

    See what hackers already know about your organization – and stop them from getting in.

    Protect your organization from cyber threats with SOCRadar’s cutting-edge threat intelligence. Gain 360° visibility into your digital assets, monitor the dark web, and stay ahead of hackers with real-time insights. Start for free and transform your cybersecurity today.
    Free Trial
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Ciphey

    Ciphey

    Decrypt encryptions without knowing the key or cipher

    Fully automated decryption/decoding/cracking tool using natural language processing & artificial intelligence, along with some common sense. You don't know, you just know it's possibly encrypted. Ciphey will figure it out for you. Ciphey can solve most things in 3 seconds or less. Ciphey aims to be a tool to automate a lot of decryptions & decodings such as multiple base encodings, classical ciphers, hashes or more advanced cryptography. If you don't know much about cryptography, or you want to quickly check the ciphertext before working on it yourself, Ciphey is for you. The technical part. Ciphey uses a custom-built artificial intelligence module (AuSearch) with a Cipher Detection Interface to approximate what something is encrypted with. And then a custom-built, customizable natural language processing Language Checker Interface, which can detect when the given text becomes plaintext.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis. It comes with pretrained models for numerous languages including Chinese and English. It offers efficient performance, clear structure and customizable features, with plenty more amazing features to look forward to on the roadmap.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. It's blazing fast, easy to install and comes with a simple and productive API.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual assistants development. It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. DeepPavlov Agent allows building industrial solutions with multi-skill integration via API services.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional allennlp subcommands. There is ecosystem of open source plugins, some of which are maintained by the AllenNLP team here at AI2, and some of which are maintained by the broader community. AllenNLP will automatically find any official AI2-maintained plugins that you have installed, but for AllenNLP to find personal or third-party plugins you've installed, you also have to create either a local plugins file named .allennlp_plugins in the directory where you run the allennlp command.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    TextBlob

    TextBlob

    TextBlob is a Python library for processing textual data

    Simple, Pythonic, text processing, Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both. Supports word inflection (pluralization and singularization) and lemmatization, as well as spelling correction. Add new models or languages through extensions. Also, it comes with a WordNet integration. If you only intend to use TextBlob’s default models (no model overrides), you can pass the lite argument. This downloads only those corpora needed for basic functionality. TextBlob is also available as a conda package.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 10
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Dragonfire

    Dragonfire

    The open-source virtual assistant for Ubuntu based Linux distributions

    Dragonfire is the open-source virtual assistant project for Ubuntu-based Linux distributions. Her main objective is to serve as a command and control interface to the helmet user. So that you will be able to give orders just by using your voice commands and your eye movements. That makes the helmet handsfree. We are planning to ship Dragonfire as a preinstalled software package on DragonOS Linux Distribution. DragonOS will be a Linux distribution specially designed for the helmet. It will contain various software packages for controlling the helmet. It will be the first of its kind. Dragonfire uses Mozilla DeepSpeech to understand your voice commands and Festival Speech Synthesis System to handle text-to-speech tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13

    Arabic Corpus

    Text categorization, arabic language processing, language modeling

    The Arabic Corpus {compiled by Dr. Mourad Abbas ( http://sites.google.com/site/mouradabbas9/corpora ) The corpus Khaleej-2004 contains 5690 documents. It is divided to 4 topics (categories). The corpus Watan-2004 contains 20291 documents organized in 6 topics (categories). Researchers who use these two corpora would mention the two main references: (1) For Watan-2004 corpus ---------------------- M. Abbas, K. Smaili, D. Berkani, (2011) Evaluation of Topic Identification Methods on Arabic Corpora,JOURNAL OF DIGITAL INFORMATION MANAGEMENT,vol. 9, N. 5, pp.185-192. 2) For Khaleej-2004 corpus --------------------------------- M. Abbas, K. Smaili (2005) Comparison of Topic Identification Methods for Arabic Language, RANLP05 : Recent Advances in Natural Language Processing ,pp. 14-17, 21-23 september 2005, Borovets, Bulgary. More useful references to check: ------------------------------------------- https://sites.google.com/site/mouradabbas9/corpora
    Leader badge
    Downloads: 39 This Week
    Last Update:
    See Project
  • 14
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community, we-media, and online earning community, with a QQ group of more than 10,000 people and at least 10,000 subscribers. The number of Github Stars exceeds 60k, and it ranks in the top 100 of all Github organizations. The daily up of all its websites exceeds 4k, and the peak of Alexa ranking is 20k. Our core members are certified as CSDN blog experts and short-book programmers as excellent authors. We have established ApacheCN, a non-profit document, and tutorial translation project.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Wikipedia2Vec

    Wikipedia2Vec

    A tool for learning vector representations of words and entities

    Wikipedia2Vec is an embedding learning tool that creates word and entity vector representations from Wikipedia, enabling NLP models to leverage structured and contextual knowledge.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C++ compiler as the one used to build PyTorch. A simple way is to build PyTorch from source and use the same environment to build torchtext. If you are using the nightly build of PyTorch, check out the environment it was built with conda (here) and pip (here). Text classification: SST2, AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull, IMDB, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20

    BioC

    We describe a simple XML format to share text documents and annotation

    A minimalist approach to share text documents and data annotations. Allows a large number of different annotations to be represented. Project files contain: - simple code to hold/read/write data and perform sample processing. - BioC-formatted corpora - BioC tools that work with BioC corpora BioC goals - simplicity - interoperability - broad use - reuse There should be little investment required to learn to use a format or a software module to process that format. We are interested in reuse, and we focus on common NLP tasks that are broadly useful for textmining.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 21

    CRP - Chemical Reaction Prediction

    Predicting Organic Reactions using Neural Networks.

    The intend is to solve the forward-reaction prediction problem, where the reactants are known and the interest is in generating the reaction products using Deep learning. This Graphical User Interface takes simplified molecular-input line-entry system (SMILES) as an input and generates the product SMILE & molecule. Beam search is used in Version 2, to generate top 5 predictions. Maximum input length for the model is 15 (excluding spaces).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AdalFlow

    AdalFlow

    The library to build & auto-optimize LLM applications

    AdalFlow is a framework for building AI-powered automation workflows, enabling users to design and execute intelligent automation pipelines with minimal coding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters via composition blocks, allowing advanced research in parameter-efficient transfer learning for NLP tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.