Open Source C++ Raspberry Pi Software for Windows

Browse free open source C++ Raspberry Pi Software for Windows and projects below. Use the toggles on the left to filter open source C++ Raspberry Pi Software for Windows by OS, license, language, programming language, and project status.

  • Your top-rated shield against malware and online scams | Avast Free Antivirus Icon
    Your top-rated shield against malware and online scams | Avast Free Antivirus

    Browse and email in peace, supported by clever AI

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model. Supported platforms: Mac OS (Intel and Arm) iOS Android Linux / FreeBSD WebAssembly Windows (MSVC and MinGW] Raspberry Pi
    Downloads: 346 This Week
    Last Update:
    See Project
  • 2
    DeepSpeech

    DeepSpeech

    Open source embedded speech-to-text engine

    DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers. DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow to make the implementation easier. A pre-trained English model is available for use and can be downloaded following the instructions in the usage docs. If you want to use the pre-trained English model for performing speech-to-text, you can download it (along with other important inference material) from the DeepSpeech releases page.
    Downloads: 70 This Week
    Last Update:
    See Project
  • 3
    sherpa-onnx

    sherpa-onnx

    Speech-to-text, text-to-speech, and speaker recognition

    Speech-to-text, text-to-speech, and speaker recognition using next-gen Kaldi with onnxruntime without an Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift, Dart, JavaScript, Flutter.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 4

    raspicam

    C++ library for controlling Raspberry Pi Camera (with/without OpenCV)

    This library allows to use the Raspberry Pi Camera. Main features: - Provides class RaspiCam for easy and full control of the camera - Provides class RaspiCam_Cv for easy control of the camera with OpenCV. - Easy compilation/installation using cmake. - No need to install development file of userland. Implementation is hidden. - Many examples
    Downloads: 7 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 5
    OnnxStream

    OnnxStream

    Lightweight inference library for ONNX files, written in C++

    The challenge is to run Stable Diffusion 1.5, which includes a large transformer model with almost 1 billion parameters, on a Raspberry Pi Zero 2, which is a microcomputer with 512MB of RAM, without adding more swap space and without offloading intermediate results on disk. The recommended minimum RAM/VRAM for Stable Diffusion 1.5 is typically 8GB. Generally, major machine learning frameworks and libraries are focused on minimizing inference latency and/or maximizing throughput, all of which at the cost of RAM usage. So I decided to write a super small and hackable inference library specifically focused on minimizing memory consumption: OnnxStream. OnnxStream is based on the idea of decoupling the inference engine from the component responsible for providing the model weights, which is a class derived from WeightsProvider. A WeightsProvider specialization can implement any type of loading, caching, and prefetching of the model parameters.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.