Open Source Linux Reinforcement Learning Frameworks

Reinforcement Learning Frameworks for Linux

View 1 business solution

Browse free open source Reinforcement Learning Frameworks and projects for Linux below. Use the toggles on the left to filter open source Reinforcement Learning Frameworks by OS, license, language, programming language, and project status.

  • Get Avast Free Antivirus with 24/7 AI-powered online scam detection Icon
    Get Avast Free Antivirus with 24/7 AI-powered online scam detection

    Get protection for today’s online threats. Free.

    Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 65 This Week
    Last Update:
    See Project
  • 2
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 46 This Week
    Last Update:
    See Project
  • 3
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 4
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 25 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 6
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    How can we develop artificial intelligence that learns to make sense of complex environments? That learns from others, including humans, how to interact with the world? That learns transferable skills throughout its existence, and applies them to solve new, challenging problems? Project Malmo sets out to address these core research challenges, addressing them by integrating (deep) reinforcement learning, cognitive science, and many ideas from artificial intelligence. The Malmo platform is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence. The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 7
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning. Additionally, the system's proactive hierarchical planning allows for real-time adaptation, making it an ideal solution for businesses seeking to streamline operations and automate digital workflows. Agent S2 is designed with flexibility, enabling seamless scaling for future applications and tasks.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 8
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 12 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 11
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. Set wandb.config once at the beginning of your script to save your hyperparameters, input settings (like dataset name or model type), and any other independent variables for your experiments. This is useful for analyzing your experiments and reproducing your work in the future. Setting configs also allows you to visualize the relationships between features of your model architecture or data pipeline and model performance.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 12
    gym-pybullet-drones

    gym-pybullet-drones

    PyBullet Gymnasium environments for multi-agent reinforcement

    Gym-PyBullet-Drones is an open-source Gym-compatible environment for training and evaluating reinforcement learning agents on drone control and swarm robotics tasks. It leverages the PyBullet physics engine to simulate quadrotors and provides a platform for studying control, navigation, and coordination of single and multiple drones in 3D space.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 13
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 14
    Google Research Football

    Google Research Football

    Check out the new game server

    Google Research Football is a reinforcement learning environment simulating soccer matches. It focuses on learning complex behaviors such as team collaboration and strategy formation in competitive settings.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 15
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    Habitat-Lab is a modular high-level library for end-to-end development in embodied AI. It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring and instantiating a diverse set of embodied agents, including commercial robots and humanoids, specifying their sensors and capabilities. Providing algorithms for single and multi-agent training (via imitation or reinforcement learning, or no learning at all as in SensePlanAct pipelines), as well as tools to benchmark their performance on the defined tasks using standard metrics.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 17
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    Pwnagotchi is an A2C-based “AI” powered by bettercap and running on a Raspberry Pi Zero W that learns from its surrounding WiFi environment in order to maximize the crackable WPA key material it captures (either through passive sniffing or by performing deauthentication and association attacks). This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario or Atari games like most reinforcement learning based “AI” (yawn), Pwnagotchi tunes its own parameters over time to get better at pwning WiFi things in the real world environments you expose it to. To give hackers an excuse to learn about reinforcement learning and WiFi networking, and have a reason to get out for more walks.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    AndroidEnv

    AndroidEnv

    RL research on Android devices

    android_env is a reinforcement learning (RL) environment developed by Google DeepMind that enables agents to interact with Android applications directly as a learning environment. It provides a standardized API for training agents to perform tasks on Android apps, supporting tasks ranging from games to productivity apps, making it suitable for research in real-world RL settings.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    EnvPool

    EnvPool

    C++-based high-performance parallel environment execution engine

    EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    PaLM + RLHF - Pytorch

    PaLM + RLHF - Pytorch

    Implementation of RLHF (Reinforcement Learning with Human Feedback)

    PaLM-rlhf-pytorch is a PyTorch implementation of Pathways Language Model (PaLM) with Reinforcement Learning from Human Feedback (RLHF). It is designed for fine-tuning large-scale language models with human preference alignment, similar to OpenAI’s approach for training models like ChatGPT.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 22
    PyBoy

    PyBoy

    Game Boy emulator written in Python

    It is highly recommended to read the report to get a light introduction to Game Boy emulation. But do be aware, that the Python implementation has changed a lot. The report is relevant, even though you want to contribute to another emulator or create your own. If you are looking to make a bot or AI, you can find all the external components in the PyBoy Documentation. There is also a short example on our Wiki page Scripts, AI and Bots as well as in the examples directory. If more features are needed, or if you find a bug, don't hesitate to make an issue here on GitHub, or write on our Discord channel. If you need more details, or if you need to compile from source, check out the detailed installation instructions. We support: macOS, Raspberry Pi (Raspbian), Linux (Ubuntu), and Windows 10.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 23
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    VectorizedMultiAgentSimulator (VMAS)

    VectorizedMultiAgentSimulator (VMAS)

    VMAS is a vectorized differentiable simulator

    VectorizedMultiAgentSimulator is a high-performance, vectorized simulator for multi-agent systems, focusing on large-scale agent interactions in shared environments. It is designed for research in multi-agent reinforcement learning, robotics, and autonomous systems where thousands of agents need to be simulated efficiently.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    Vowpal Wabbit

    Vowpal Wabbit

    Machine learning system which pushes the frontier of machine learning

    Vowpal Wabbit is a machine learning system that pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning. There is a specific focus on reinforcement learning with several contextual bandit algorithms implemented and the online nature lending to the problem well. Vowpal Wabbit is a destination for implementing and maturing state-of-the-art algorithms with performance in mind. The input format for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free-form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free-form text in different namespaces. Similar to the few other online algorithm implementations out there. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.