Showing 23 open source projects for "framework-arduinoststm32"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Genie.jl

    Genie.jl

    The highly productive Julia web framework

    Genie Framework includes all you need to quickly build production-ready web applications with Julia. Develop Julia backends, create beautiful web UIs, build data applications and dashboards, integrate with databases and set up high-performance web services and APIs. Genie Builder is a free VSCode plugin for quickly building Julia apps without writing frontend code. Drag and drop UI components such as text, sliders, plots, and data tables onto a canvas, and connect them to the variables...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    ReTest.jl

    ReTest.jl

    Testing framework for Julia

    ReTest is a testing framework for Julia allowing defining tests in source files, whose execution is deferred and triggered on demand. This is useful when one likes to have definitions of methods and corresponding tests close to each other. This is also useful for code that is not (yet) organized as a package, and where one doesn't want to maintain a separate set of files for tests. Filtering run testsets with a Regex, which is matched against the descriptions of testsets. This is useful...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6

    The GR module for Julia

    Plotting for Julia based on GR

    This is the GR module for Julia. It places a Julia interface to GR, a universal framework for visualization applications. GR allows users to create high quality, engaging visualizations, everything from 2D graphs to complex 3D scenes. With this module simply type in Julia 'using gr', and you can instantly start calling functions in the GR framework API. GR is based on an implementation of a Graphical Kernel System (GKS) and OpenGL. As a self-contained system, integration into existing...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is a Julia framework for geospatial data science and geostatistical modeling. It’s fully implemented in Julia and designed to provide an extensible, high-performance stack that handles spatial domains, interpolation, simulation, learning, and visualization. The package is modular: it breaks out geometry, spatial domains, transforms, variograms, covariance models, and modeling into subpackages (e.g., GeoStatsBase, GeoStatsModels, GeoStatsTransforms). Users can represent georeferenced...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    AppleAccelerate.jl

    AppleAccelerate.jl

    Julia interface to the macOS Accelerate framework

    Julia interface to the macOS Accelerate framework. This provides a Julia interface to some of the macOS Accelerate frameworks. At the moment, this package provides access to Accelerate BLAS and LAPACK using the libblastrampoline framework, an interface to the array-oriented functions, which provide a vectorized form for many common mathematical functions. The performance is significantly better than using standard libm functions in some cases, though there does appear to be some reduced...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Agents.jl

    Agents.jl

    Agent-based modeling framework in Julia

    Agents.jl is a pure Julia framework for agent-based modeling (ABM): a computational simulation methodology where autonomous agents react to their environment (including other agents) given a predefined set of rules. The simplicity of Agents.jl is due to the intuitive space-agnostic modeling approach we have implemented: agent actions are specified using generically named functions (such as "move agent" or "find nearby agents") that do not depend on the actual space the agents exist in, nor...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    ProbabilisticCircuits.jl

    ProbabilisticCircuits.jl

    Probabilistic Circuits from the Juice library

    This module provides a Julia implementation of Probabilistic Circuits (PCs), tools to learn structure and parameters of PCs from data, and tools to do tractable exact inference with them. Probabilistic Circuits provides a unifying framework for several family of tractable probabilistic models. PCs are represented as computational graphs that define a joint probability distribution as recursive mixtures (sum units) and factorizations (product units) of simpler distributions (input units). Given...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    BenchmarkTools.jl

    BenchmarkTools.jl

    A benchmarking framework for the Julia language

    BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results. This package is used to write and run the benchmarks found in BaseBenchmarks.jl. The CI infrastructure for automated performance testing of the Julia language is not in this package but can be found in Nanosoldier.jl. Our story begins with two packages, "Benchmarks" and "BenchmarkTrackers". The Benchmarks package implemented...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Trixi.jl

    Trixi.jl

    Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs

    Trixi.jl is a numerical simulation framework for hyperbolic conservation laws written in Julia. A key objective for the framework is to be useful to both scientists and students. Therefore, next to having an extensible design with a fast implementation, Trixi.jl is focused on being easy to use for new or inexperienced users, including the installation and postprocessing procedures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. Automatic symbolic transformations, such as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    StructuralEquationModels.jl

    StructuralEquationModels.jl

    A fast and flexible Structural Equation Modelling Framework

    This is a package for Structural Equation Modeling in development. It is written for extensibility, that is, you can easily define your own objective functions and other parts of the model. At the same time, it is (very) fast. We provide fast objective functions, gradients, and for some cases hessians as well as approximations thereof. As a user, you can easily define custom loss functions. For those, you can decide to provide analytical gradients or use finite difference approximation /...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    AbstractFFTs.jl

    AbstractFFTs.jl

    A Julia framework for implementing FFTs

    A general framework for fast Fourier transforms (FFTs) in Julia. This package is mainly not intended to be used directly. Instead, developers of packages that implement FFTs (such as FFTW.jl or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This allows multiple FFT packages to co-exist with the same underlying fft(x) and plan_fft(x) interface.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    ... Agent Host is built specifically for LangChain, a framework dedicated to developing applications powered by language models. LangChain recognizes that the most powerful and distinctive applications go beyond simply utilizing a language model and strive to be data-aware and agentic. Being data-aware involves connecting a language model to other sources of data, enabling a comprehensive understanding and analysis of information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    JuliaFEM.jl

    JuliaFEM.jl

    The JuliaFEM software library is a framework

    The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels directly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.