Download Latest Version Keras Tutorial @ PyData Florence 2017.zip (31.3 MB)
Email in envelope

Get an email when there's a new version of Deep Learning with Keras and Tensorflow

Home / pydata-london2017
Name Modified Size InfoDownloads / Week
Parent folder
README.md 2017-08-22 2.2 kB
Ten Steps to Keras @ PyData London 2017.tar.gz 2017-08-22 12.8 MB
Ten Steps to Keras @ PyData London 2017.zip 2017-08-22 12.8 MB
Totals: 3 Items   25.6 MB 0

Deep Learning with Keras and Tensorflow

PyData London 2016 Logo
### Valerio Maggio: _PostDoc Data Scientist @ FBK/MPBA_ ### Contacts:
@leriomaggio vmaggio@fbk.eu
### Library Versions :::python import keras print('keras: ', keras.__version__) # optional import theano print('Theano: ', theano.__version__) import tensorflow as tf print('Tensorflow: ', tf.__version__) keras: 2.0.2 Theano: 0.9.0 Tensorflow: 1.0.1 ### Goal - Introduce main features of Keras APIs to build Neural Networks. - Learn how to implement simple and complex Deep Neural Networks Architectures using Keras. - Discover Keras Implementation and Internals. - Note: examples and hands-on exercises will be provided along the way. ### Outline in Ten (\~ish) Notebooks 1. Multi-layer Fully Connected Networks (and the backends) 2. Hidden Layers features and Embeddings 3. Convolutional Networks 4. Hyperparameter Tuning 5. Cutsom Layers 6. Deep CNN and Residual Networks 7. Transfer Learning and Fine Tuning 8. Recursive Neural Networks 9. AutoEncoders 10. Multi-Modal Networks
Source: README.md, updated 2017-08-22