Best Streaming Analytics Platforms

What are Streaming Analytics Platforms?

Streaming analytics platforms are software solutions that enable real-time processing and analysis of data as it is generated or streamed from various sources such as IoT devices, sensors, social media, and transactional systems. These platforms allow businesses to gain immediate insights from continuous data streams, enabling them to make faster decisions, detect anomalies, and optimize operations in real-time. Key features of streaming analytics platforms include data ingestion, real-time event processing, pattern recognition, and advanced analytics like predictive modeling and machine learning integration. They are commonly used in applications such as fraud detection, customer behavior analysis, network monitoring, and supply chain optimization. Compare and read user reviews of the best Streaming Analytics platforms currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud Pub/Sub
    Google Cloud Pub/Sub. Scalable, in-order message delivery with pull and push modes. Auto-scaling and auto-provisioning with support from zero to hundreds of GB/second. Independent quota and billing for publishers and subscribers. Global message routing to simplify multi-region systems. High availability made simple. Synchronous, cross-zone message replication and per-message receipt tracking ensure reliable delivery at any scale. No planning, auto-everything. Auto-scaling and auto-provisioning with no partitions eliminate planning and ensures workloads are production-ready from day one. Advanced features, built in. Filtering, dead-letter delivery, and exponential backoff without sacrificing scale help simplify your applications. A fast, reliable way to land small records at any volume, an entry point for real-time and batch pipelines feeding BigQuery, data lakes and operational databases. Use it with ETL/ELT pipelines in Dataflow.
  • 2
    GigaSpaces

    GigaSpaces

    GigaSpaces

    Smart DIH is an operational data hub that powers real-time modern applications. It unleashes the power of customers’ data by transforming data silos into assets, turning organizations into data-driven enterprises. Smart DIH consolidates data from multiple heterogeneous systems into a highly performant data layer. Low code tools empower data professionals to deliver data microservices in hours, shortening developing cycles and ensuring data consistency across all digital channels. XAP Skyline is a cloud-native, in memory data grid (IMDG) and developer framework designed for mission critical, cloud-native apps. XAP Skyline delivers maximal throughput, microsecond latency and scale, while maintaining transactional consistency. It provides extreme performance, significantly reducing data access time, which is crucial for real-time decisioning, and transactional applications. XAP Skyline is used in financial services, retail, and other industries where speed and scalability are critical.
  • 3
    Confluent

    Confluent

    Confluent

    Infinite retention for Apache Kafka® with Confluent. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming enables you to innovate and win - by being both real-time and highly-scalable. Ever wonder how your rideshare app analyzes massive amounts of data from multiple sources to calculate real-time ETA? Ever wonder how your credit card company analyzes millions of credit card transactions across the globe and sends fraud notifications in real-time? The answer is event streaming. Move to microservices. Enable your hybrid strategy through a persistent bridge to cloud. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. The list is endless.
  • Previous
  • You're on page 1
  • Next