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Abstract
Relativistic programming (RP) is a concurrent programming model
in which readers can safely access shared data concurrently with
writers that are modifying it. RP has been used extensively in
operating system kernels, most notably in Linux, and is widely
credited with improving the performance and scalability of Linux
on highly concurrent architectures. However, using RP primitives
safely is tricky, and existing implementations of RP do not identify
most unsafe uses statically. This work introduces Monadic RP, a
GHC Haskell library for RP, and presents an example of its use.
To our knowledge, Monadic RP is the first RP implementation in
Haskell. It provides a novel mechanism to statically rule out a subset
of unsafe relativistic programs by using types to separate read-
side and write-side critical sections, and to restrict the operations
available in each. This work describes the current status of our
implementation, presents a brief experimental evaluation of it, and
discusses directions for ongoing and future work.

Categories and Subject Descriptors D.1.3 [Concurrent Program-
ming]

Keywords relativistic programming, read-copy update, monads,
type safety

1. Introduction
Relativistic Programming (RP) [29] is a concurrent programming
model where a writer thread can modify a linked shared data
structure (such as a linked list or a tree) safely while other threads
(readers) concurrently traverse or query it. Unlike conventional
lock-based models, in which the writer acquires a lock to exclude
concurrent readers (and vice versa), or transactional memory models,
where concurrent reads and writes to the same memory location
conflict and cause aborts and retries [8], RP allows both the writer
and concurrent readers who access the same data to proceed and
complete successfully. So RP offers greater concurrency between
writers and readers, but because of this concurrency, readers may
not observe concurrent writes in the same order writers issue them.
Also, readers may not agree on the order of concurrent writes. That
is, when there is concurrent reading, the order of writes is not
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absolute, but instead depends on the rate, path, and direction of
each reader’s traversal through the data structure relative to the
writer’s updates1. In general, each of these traversals is a read-side
critical section, a sequence of related reads from shared data with
an explicitly defined beginning and end. At the beginning of each
read-side critical section, readers can access a shared data structure
only through some reference all threads share, such as the head of a
list or the root of a tree.

The core of a relativistic programming implementation is a set
of ordering mechanisms, that is, ways for writers to guarantee that
readers agree on the order of writes. One such primitive, unique to
RP [22], we will call synchronizeRP2. A writer can guarantee that
the states two writes create are observed by all readers in order by
invoking synchronizeRP between them. This primitive introduces
a delay that will not terminate until all readers that are active at
the start of the delay have finished their current read-side critical
sections. The RP literature calls this delay a grace period. Note that
synchronizeRP does not prevent readers from starting new queries
or traversals during the delay, or wait for these readers to complete
these new critical sections. Each of these readers began after the first
write was committed, and so cannot observe the value it replaced.
Now the writer can issue the second write, certain that any reader
who observes it had an opportunity to see the first. Another way of
saying this is that, by waiting for a grace period to complete, the
writer obtains a guarantee that the first write happens before [16] the
second. If readers and writers follow a discipline of rules including
those we introduce in Section 2.2, then readers can safely traverse
or query a data structure updated by writers at any time, so they
avoid the overhead of synchronizing (for instance, acquiring a lock)
before reading shared data.

Researchers have developed relativistic implementations of com-
mon data structures — including linked lists [4], hash tables [30],
and red-black trees [11] — bringing concurrency between readers
and writers, and extremely low-cost read-side primitives, to pro-
grams that use these data structures. RP is used widely in the Linux
kernel, and was introduced in the form of the Linux Read-Copy
Update (RCU) API [23], whose read-side critical sections execute
deterministically (without blocking or retrying) and run almost as
fast as unsynchronized sequential code. For highly concurrent, read-
mostly workloads that allow relaxed data structure semantics, such
as software routing tables [23] and SELinux policy rules [25], these
read-side characteristics improve performance, reliability, and scala-
bility. For these reasons, RCU is now used widely in all subsystems
of the Linux kernel [24], often to replace reader-writer locking. De-

1 Triplett et al. [29] chose the name “relativistic programming” to emphasize
this partial ordering of writes, which is akin to relativity of simultaneity in
physics, described by Einstein [6].
2 We color write operations red, and will introduce additional colors for other
kinds of operations.
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spite RP’s benefits and deployment footprint however, there is little
existing language- or tool-based support for it. Instead, program-
mers are responsible for knowing and manually following the RP
discipline. The work presented here takes some first steps towards
addressing this gap.

Specifically, we introduce Monadic RP, which, to our knowledge,
is the first implementation of RP in Haskell. This work is inspired
by the GHC Software Transactional Memory (STM) implementation
of Harris et al. [8], and by the user-level RCU C library (urcu) of
Desnoyers et al. [4]. Like GHC STM, Monadic RP uses features
unique to the Glasgow Haskell Compiler (GHC) and uses a monadic
abstraction to constrain shared data and the concurrent computations
that operate on it. Unlike GHC STM, Monadic RP does not enforce
an atomicity property among sequences of reads and writes, nor does
it enforce a total ordering of writes to the same data. Monadic RP
allows concurrent reading and writing of the same data (something
that is not possible if strongly atomic transactions are used for all
reads and writes), and it provides mechanisms that writers can use
as needed to guarantee that other threads see concurrent writes in
order. Hence, Monadic RP presents a programming model based on
causal ordering. There is good reason (and evidence) to believe that
these two programming models are complementary. For example,
Howard and Walpole [10] modified an STM implementation to
support relativistic reading while retaining transactional concurrency
control among writers.

The main advantage Haskell brings to RP is that its type system
captures the structure of imperative computations in enough detail
to enforce on programmers a unique discipline tailored to each type
of computation. Such a discipline can, for example, reject programs
that call functions inside computations where they don’t belong.
Monadic RP uses types to mark explicitly and separate read-side
and write-side critical sections, and to guarantee that readers do
not block or write to shared memory. In ongoing work, we are
extending Monadic RP to statically check reader traversal order
and writer update order to guarantee that readers observe causally
related updates in order.

This work presents a new implementation of RP, situates it in the
context of existing implementations, and explains and demonstrates
some of its properties:

• Section 2.1 explains the causal ordering guarantees RP relies
on using two examples, and outlines ongoing work to statically
check that relativistic programs obey a discipline that provides
these guarantees. In turn, Section 5 demonstrates that when these
examples are constructed using Monadic RP, they execute cor-
rectly because the implementation provides the causal ordering
guarantees they need.
• Section 2.2 elaborates rules from the discipline for correct RP.
• Section 3:

situates Monadic RP in the context of existing work on RP
correctness (detailed in Section 6),

motivates and describes the abstractions Monadic RP pro-
vides and how they enforce rules from Section 2.2,

presents an implementation of a read-side critical section for
the examples from Section 2.1 that uses these abstractions,

describes a case where another RP implementation allows
violations of rules Monadic RP enforces, and

outlines ongoing work on Monadic RP to enforce more rules.
• Section 4 describes the implementation of Monadic RP, filling

in details about the mechanisms that enforce rules from Section
2.2.
• Section 5:

presents implementations of the write-side critical sections
for the examples from Section 2.1, and

presents a brief experimental evaluation based on these
examples that tests whether the causal ordering mechanisms
Monadic RP provides are necessary and sufficient.

• Section 7 summarizes this work and directions for future work.

This paper describes future work inline, rather than in a separate
section, in an effort to show directly how it connects to the work we
present.

2. Background
2.1 Causal Ordering
2.1.1 Grace periods enforce causal ordering
Most implementations of RP are in systems that rely on the program-
mer to include code that explicitly allocates and reclaims memory,
so the programmer must write that code to use grace periods to
guarantee that writers do not reclaim memory that readers may yet
visit. In this case, a writer begins a grace period after replacing one
or more nodes in a data structure accessible through a shared refer-
ence by updating the references in existing nodes to point to new
copies. At this point, one or more readers may have already loaded
the addresses of old copies, whose fields must remain available for
the readers’ inspection. Once the grace period ends, each reader
has finished its current read-side critical section, and old copies of
updated nodes and unlinked nodes are no longer reachable from
the shared reference, so they can be safely deallocated. That is, the
writer initiates a grace period and waits until the readers announce
they have each finished a read-side critical section, and so cannot
access unlinked nodes. Through this channel of communication, the
writer learns from the readers when it is safe to reclaim memory.

This memory reclamation guarantee is an instance of a more
general property: Unlinking a node and reclaiming its memory are
causally ordered operations. That is, reclaiming is a consequence
of unlinking, so when a writer unlinks the node, readers should
only have an opportunity to observe the data structure in one of
three ordered consistent states: without the node unlinked, with the
node unlinked but not yet reclaimed, and finally without the node
entirely. If a reader can observe a state with the node reclaimed but
not unlinked, then causal ordering is violated. To prevent readers
from observing this inconsistent state, a writer can wait for a grace
period to complete after unlinking the node (and before reclaiming
it). When a writer waits for a grace period to complete, it guarantees
that readers will not observe any states introduced by writes after
the grace period before they observe any states introduced by writes
before the grace period. That is, the pre-grace-period states happen
before [16] the post-grace-period states.

Unlinking a node and then reclaiming its memory is a common
example of a sequence of causally related writes, but it is by no
means the only example. Relativistic red-black trees [11] and hash
tables [30] both rely on grace periods for causal ordering beyond
memory reclamation. One simple example of a sequence of causally
ordered updates is moving a node to a different position in a singly
linked list by inserting a copy at the new position, then unlinking
the node at its old position. If we choose to causally relate these
operations, we buy a guarantee that readers will see the list in one of
three ordered consistent states: with the node at its original position,
with the new copy at the new position and the original node at the
old position, or with the new copy at the new postion and the original
node unlinked. By preventing readers from observing the list with
no new copy at the new position but the original node unlinked, we
gain the guarantee that no reader will observe the node temporarily
disappearing during a move operation. In exchange, we lose the
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guarantee that no reader will observe two copies of the same node
in a traversal, because we allow a state where the node is visible in
both its new and old positions.

Example 1 Consider a singly linked list [A,B,C,D,E] that reader
threads are constantly traversing only from left to right. The readers
hold a shared reference to the first node (head), and must start each
traversal there. We (the writer) can use a grace period to enforce
causal ordering when we move node D from a later position (after
C) to an earlier position (after A). Once the move is complete, the
readers will observe the modified list [A,D,B,C,E].

Figure 1 shows the partial orders on list states readers can observe
during this move operation. If we do nothing to enforce ordering, the
left column applies. If we enforce causal ordering, one of the orders
in the middle column applies (in this example, we choose the order
in the solid box instead of the order in the dashed box, to guarantee
that readers don’t miss D during the move). If we enforce atomic
ordering, for instance using STM, the order on the right applies.

Figure 1. Free through atomic orderings for Example 1 – arrows
are transitions between observable states
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causal ordering

[A,B,C,D,E]
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atomic ordering

[A,B,C,D,E]

[A,D,B,C,E]

The initial list is shown in Figure 2 (State α1).

Figure 2. State α1

Ahead B C D E

First, we create a new copy of D in freshly allocated memory. We
write to memory to do so, but no nodes in the shared list point to it
yet, so we know readers have no way of reaching it.

Figure 3. State α1 cont’d

Ahead

D

B C D E

Next, we link the new D into the list by updating the reference in
A to point to the new D. This reference is reachable from head, so
we have marked its update as W1 since it is the first of two causally
ordered writes that are visible to readers. Now we have put the list in
a new state (State α2) where the new copy of D is linked in at its new
position, and the old copy remains at its original position. Readers
concurrently traversing will either see State α2 ([A,D,B,C,D,E]),

or have already passed the node we changed, and will see State α1
([A,B,C,D,E]).

Figure 4. State α2

Ahead

D

B C D E

W1

Now we’ve arrived at an impasse. We need to remove the
old copy of D by pointing the reference in C to E (to obtain
State α3), but a concurrent reader may have passed A before we
pointed its reference to the new copy of D, and then immediately
been preempted, performed a long-running computation, or been
otherwised delayed in flight. If we update the reference in C to point
to E before the leisurely reader visits C, that reader will also miss the
old copy of D, and see the list in an inconsistent state ([A,B,C,E]).
But we need to unlink the old D to finish our move operation!

We need a guarantee that there are no readers in flight who
missed the new D. Another way of saying that is that we need a
guarantee that there are no readers who have missed the write that
creates State α2, but may see the write that creates State α3. Yet
another way of saying that is that we need to guarantee that State
α2 happens before State α3. So we must wait for a grace period to
complete, and then make a second write W2 to unlink the old D. This
satisfies the guarantee, since every reader that missed the new D has
finished its traversal and seen State α1, every reader that saw the
new D has finished its traversal and seen State α2, and any reader
who starts a new traversal must do so at head, and will see the new
D.

Figure 5. State α3

Ahead D B C

D

E
W1 W2

Now the move operation is complete. Readers may still have seen
the reference in C before we updated it to point to E, so they may still
visit the old D, so we can’t reclaim the memory it occupies yet. But
conveniently, the GHC runtime garbage collector will automatically
reclaim that memory after readers are finished with it.

Figure 6. State α4

Ahead D B C E
W1 W2

At a high level, we made two causally ordered writes (W1 and
W2) going from left to right in the list. Readers are traversing the
list left to right, and because our writes also progressed from left
to right, we had to wait for a grace period to complete between
them to guarantee that no reader could observe W2 (which created
State α3) without observing W1 (which created State α2, and is
also part of State α3). The current version of Monadic RP does not
statically reject programs that omit a grace period in this situation,
as demonstrated in Section 5.3. This paper describes ongoing work
to address this at the end of Section 2.1.2. Although we need a grace
period to guarantee causal ordering when writes are committed in
the same order as reads, when the order of writes is opposite the
order of reads we do not; Section 2.1.2 explains why.
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2.1.2 Reader traversal order can also enforce causal ordering
Grace periods enforce causal ordering because a writer waits for
readers to complete their critical sections before it makes its next
causally ordered write. This slows writers down, reducing concur-
rency between readers and writers, and could create a bottleneck in
write-heavy workloads. So it makes sense to avoid grace periods
when we have an opportunity to do so. When we can create the
states we need using a sequence of writes to nodes in the opposite
order of reads, and have guarantees that writes are committed in
program order and dependent loads are not reordered, we have such
an opportunity.

Example 2 Consider the same singly linked list as before
[A,B,C,D,E], with readers traversing again left to right. This
time, we will move B from an earlier position (after A) to a later
position (after D). After the move operation is complete, readers will
observe the modified list [A,C,D,B,E].

Figure 7. State β1

Ahead B C D E

First, we create a new copy of B to link into the list.

Figure 8. State β1 cont’d

Ahead B C D

B

E

This time, W1 updates the reference in D to link the new B
into the list. Readers concurrently traversing will either observe
W1 and see State β2 ([A,B,C,D,B,E]), or miss W1 and see State β1
([A,B,C,D,E]). The key difference from the previous example is
that the first write is at the later position in reader traversal order,
instead of at the earlier position.

Figure 9. State β2

Ahead B C D

B

E

W1

Last time, we had to wait for a grace period to complete after
W1, because it was possible for a reader to see W2 but miss W1 in a
traversal, since readers visit the site of W2 after visiting the site of W1,
and both writes could occur between those visits. This time, W2 is at
an earlier position than W1, so if a reader sees W2, it will definitely see
W1 (and observe State β3). This is because we committed W1 before
W2, the reader has seen W2, and has yet to visit the site of W1, and so
could not have missed W1 already. If the reader misses W2, it may
see W1 (and observe State β2), or it may miss W1 (and observe State
β1).

Figure 10. State β3

Ahead

B

C D B E
W2 W1

As before, the garbage collector reclaims the old D at some point
after no thread holds a reference to it.

Figure 11. State β4

Ahead C D B E
W2 W1

This time, because our writes progressed in the opposite direction
from reads, we did not have to wait for a grace period to complete
between writes to guarantee that readers saw State β2 happen before
State β3. This guarantee rests on two conditions:

• Most RP implementations (including Monadic RP) guarantee
that writes are committed in program order, so we know that, if
W2 is available to readers, then W1 is as well.
• Readers visit the site of W2 before they visit the site of W1. So

if a reader sees W2, that means that W1 is available, so when the
reader subsequently visits W1’s site, it is guaranteed to see W1.

Note that this does not mean that readers will see the nodes we
changed in the order we changed them. Readers only observe nodes
in traversal order. In this case, that means that they will observe the
nodes we changed in the opposite of the order we changed them.
Not exactly intuitively, this is the property that guarantees our most
recent write happens before our previous ones.

In ongoing work, we are developing a domain-specific embed-
ded language (DSEL) [2] that tracks relativistic reader traversal
direction and causally ordered write sequence direction using type-
level state in parameterised monads [1] implemented using GHC
type families [26], as demonstrated by Kiselyov et al. [14]. This
DSEL prevents construction of type-correct programs that make
sequences of causally ordered writes in traversal order without in-
voking synchronizeRP between each pair. However, it does allow
programs that make sequences of causally ordered writes against
traversal order that do not invoke synchronizeRP between each
pair.

2.2 RP Discipline
Researchers have identified a set of rules for correct relativistic
programming [21, 29], which we have adapted to match the terms
and abstractions this work describes:

1. A writer must only make changes that leave shared data in a
consistent state, and guarantee that readers always observe the
consistent states that causally related changes create in order.

2. A thread can read from shared data only:

(a) inside a write-side critical section, or inside a read-side
critical section that announces its end to the world, so grace
periods track all readers; and

(b) using RP read primitives, to prevent memory access reorder-
ings that may lead to inconsistent observations.

3. A thread can write to shared data only:

(a) in a context where writer concurrency can be controlled if
necessary, such as a write-side critical section; and

Portland State University Technical Report 15-01, March 2016 4 2016/3/28



(b) using RP write primitives, to prevent memory access reorder-
ings that may lead to inconsistent state publications.

4. A thread must not wait for a grace period to complete inside a
read-side critical section. Such a thread would deadlock (waiting
for its own critical section to end) and cause any threads that
subsequently wait for a grace period to complete to also block
forever [19].

5. A thread must not use references obtained during a critical
section outside that critical section.

This is not an exhaustive list of rules in the discipline for correct
RP. This work provides and proposes static checks for Rules 1–4,
but only proposes an incomplete solution for 5.

3. Contribution
Most existing work on RP correctness, discussed in Section 6.1,
focuses on proving that an RP implementation is correct, is a
sound foundation. Checking that relativistic programs obey the
RP discipline is another matter entirely. While researchers have
proposed candidate rules for static checking (see Section 6.3) and
implemented runtime checks (see Section 6.2), this problem remains
unsolved.

There is room in this design space for an implementation that

• can be used to write general-purpose relativistic programs, and
• automatically statically checks that these programs follow the

RP discipline.

With these goals in mind, we introduce Monadic RP, a Haskell
implementation of relativistic programming that uses types to mark
and separate read-side and write-side critical sections and to restrict
the programmer to the minimal set of effectful operations required
in each. Programmers can write new relativistic programs in Haskell
using the abstractions Monadic RP provides, which ensure that these
programs meet the safety guarantees in Section 3.3.

3.1 Explicit Critical Sections
Many existing RP implementations [4, 7, 27] track grace periods
using explicitly marked read-side critical sections, and control writer
concurrency using explicitly marked write-side critical sections.
Monadic RP adopts this approach, and uses these demarcations to
solve three problems:

1. If read-side critical sections write to shared data (a programmer
error), they cannot safely proceed concurrently with writers or
one-another. Rule 3a prohibits this.

2. If a reader waits for a grace period to complete inside a read-side
critical section, it will deadlock. Rule 4 prohibits this.

3. If writers update the same data concurrently, in many cases the
data may end up in an inconsistent state. Monadic RP controls
writer concurrency by preventing it entirely, which certainly
satisfies Rule 3a, but alternative methods (such as STM) would
also satisfy this rule, and could increase writer concurrency.

3.2 Expressing RP computations
Monadic RP represents read-side and write-side critical sections
with distinct monad types (RPR3 and RPW4), and represents shared ref-
erences with type SRef, which can be read only using readSRef and
writeSRef. It also provides the synchronizeRP function, which
writers can use to wait for a grace period to complete. These types
and functions are defined in the RP module.

3 We color operations in the RPR monad blue.
4 We color operations in the RPW monad red.

The RP module exports four monads, each corresponding to
a stage in the life cycle of an RP computation. Computations in
RPR are read-side critical sections, and computations in RPW are
write-side critical sections. The constructor names for the monads
are not exported and labeled “Unsafe”, since they can be used to run
arbitrary effectful IO computations.

The readSRef and writeSRef functions are the only way to
access SRefs. Because RPR and RPW are in the RPRead typeclass,
readSRef can be called in each. Because writeSRef has a return
type in the RPW monad (RPW ()), it can be called only in RPW.

Critical sections must run in a thread. That thread may run
multiple critical sections in some order and perform computations
outside of them using the values they return; the programmer defines
these thread computations in the RPE5 monad, read-side sections are
wrapped in readRP and write-side sections in writeRP. Within a
write-side critical section, a writer may need to guarantee that some
writes are causally ordered with respect to others. The writer invokes
synchronizeRP to wait for readers, which is available only in the
RPW monad.

Finally, a relativistic program must initialize the references its
threads share with newSRef6, spawn those threads with forkRP,
and wait for them to complete and return values using joinRP. The
programmer defines these computations in the RP monad.

These abstractions are sufficient to implement simple RP algo-
rithms with writers that proceed one at a time while readers proceed
concurrently. Other implementations allow concurrency between
writers to disjoint data [10]. This code skeleton illustrates the struc-
ture described above.

do state ← buildInitialState
reader ← forkRP $ do

x ← readRP $ readSideCriticalSection state
return $ pureComputation x

writer ← forkRP $ do
writeRP $ writeSideCriticalSection state

x ← joinRP reader
joinRP writer

The tests in Section 5 are implemented as variants on this
structure that spawn multiple reader threads.

We have not yet attempted to determine whether the various
monads introduced in this work satisfy the standard monad laws.
We leave this as a topic for future work, observing that a formal proof
would likely require a semantics that can account for concurrency
and the inherent nondeterminism of relativistic reads.

Also, we have not yet attempted to add support for a mechanism
relativistic threads could use to communicate with threads comput-
ing in IO, at least outside critical sections. This or some other limited
IO support is necessary to realize many use cases well-suited to RP,
such as implementing a DNS server [33].

Appendix A.1 provides the RP source code in full.

3.3 Rules enforced
Monadic RP exports types and functions that provide the following
guarantees.

• The only way to create or access SRefs is through the RP
module’s interface. Also, SRefs cannot be accessed outside the
relativistic computation that creates them. This is necessary to
enforce Rule 1, since threads that aren’t part of a relativistic
computation could corrupt shared data or observe it in an
inconsistent state otherwise.

5 We color operations in the RPE monad plum.
6 We color operations in the RP monad burnt orange.
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• readSRef can be run only in RPR or RPW, and is the only way
to read from shared data. These properties enforce Rule 2.
• writeSRef can be run only in RPW, and is the only way to write

to shared data. These properties enforce Rule 3.
• synchronizeRP can be run only in RPW. This enforces rule 4.
• Arbitrary effectful computations in IO cannot be run in any of

the monads that the RP module exports. This is necessary to
enforce any of the rules, since a computation in IO can break
them all.

For instance, the snapshot function in the RPR monad imple-
ments a read-side critical section that traverses a relativistic linked
list, returning a snapshot of the current list state. We used this func-
tion to implement the tests in Section 5.

data RPList s a = Nil
| Cons a (SRef s (RPList s a))

snapshot :: RPList s a → RPR s [a]
snapshot Nil = return []
snapshot (Cons x rn) = do

l ← readSRef rn
rest ← snapshot l
return (x : rest)

The snapshot function type-checks, since it only calls effectful
functions in RPR.

If we add a writeSRef call to this read-side critical section, we
cause a type error, since writeSRef is only in RPW, but snapshot is
in RPR.

snapshot :: RPList s a → RPR s [a]
snapshot Nil = return []
snapshot (Cons x rn) = do

l ← readSRef rn
writeSRef rn (Cons undefined rn)
rest ← snapshot l
return (x : rest)

Error:

Couldn’t match expected type RPR s a0
with actual type RPW s ()

The same is true for synchronizeRP, and all other effectful
functions not in RPR.

The prependA function inserts an ‘A’ at the beginning of a
relativistic string.

prependA :: SRef (RPList Char) → RPW ()
prependA head = do head’ ← copySRef head

writeSRef head (Cons ’A’ head’)

Because prependA has a return type in the RPW monad, it can
only be run inside a write-side critical section.

As Figure 12 shows, the operations available in monads besides
RPW are severely restricted.

Figure 12. A summary of the operations allowed in each monad.

RP RPE RPR RPW
newSRef • •
readSRef • •
writeSRef •
copySRef •
synchronizeRP •
forkRP •
joinRP •
readRP •
writeRP •

3.4 Comparisons to other implementations
Monadic RP statically prevents rule violations that other implemen-
tations do not. For instance, the urcu user-level RCU library in C
of Desnoyers et al. [4] allows any function to be called in any block
of code. We illustrate this fact in a urcu program.

The urcu library includes a test suite with a test for the verion of
urcu most similar to Monadic RP, called test qsbr.c. This test
spawns a configurable number of readers and writers who share a
single reference. Each writer repeatedly allocates a new block of
memory, stores a sentinel value in it, swaps the address of the new
block with the shared reference, waits for a grace period to complete
so no reader still holds a reference to the old block, and then stores a
second sentinel value in the old block. Each reader polls the shared
reference, failing if it ever observes a block with the second sentinel.
The test runs for a configurable length of time. If any reader fails,
it is evidence that the grace period mechanism or memory access
primitives do not preserve causal ordering and consistent states. We
have modified this test program to show that urcu does not statically
enforce RP rules Monadic RP does:

• The modified program reads from a shared reference outside
a critical section using rcu dereference(), the analogue of
readSRef. This violates Rule 2a, and Monadic RP prevents this
error because readSRef can run only in RPWor RPR, both of
which represent critical sections.
• The modified program writes to a shared reference inside a

read-side critical section using rcu assign pointer(), the
analogue of writeSRef. This violates Rule 3a, and Monadic
RP prevents this error because writeSRef cannot run in RPR.
• The modified program waits for a grace period to complete

inside a read-side critical section using synchronize rcu(),
the analogue of synchronizeRP. This violates Rule 4, and
Monadic RP prevents this error because synchronizeRP cannot
run in RPR.

This modified program compiles without warnings or errors, and
fails at runtime. C does not include language-level mechanisms to
restrict the statements that appear in blocks of code beyond ensuring
that they are syntactically well-formed and checking that parameter
and return types match argument and result types, respectively, so
this result is unsurprising, and does not represent an oversight on
the part of Desnoyers et al.. Appendix A.3 contains the text of this
modified version of test qsbr.c.

Howard and Walpole [10] used STM to manage concurrent
relativistic writers, so we are investigating using GHC STM [8]
for this purpose. Although GHC STM is strongly atomic, and so in
normal use prevents concurrent reads and writes to the same data,
GHC provides the readTVarIO# primitive, which allows threads to
read transactional variables outside of transactions.

3.5 Tracking traversal and update direction
The reader (a person, not a thread) may realize that the abstractions
Monadic RP provides for reading and updating shared data do
not capture any information about traversal or update direction.
Because of this, there is no way to track whether synchronizeRP or
updates against traversal order are correctly used to guarantee causal
ordering, as illustrated in Section 2.1, and enforce Rule 1. In ongoing
work to address this shortcoming, we are developing a cursor-based
interface for critical sections, where the cursor starts at a shared
reference at the beginning of each critical section, and threads must
explicitly move the cursor to a node to access it. Inside write-side
critical sections, this interface forces the programmer to explicitly
mark causally ordered sequences of writes. This interface, combined
with the type-level representation of traversal and update direction
described at the end of Section 2.1.2, will statically enforce more of
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the rules from the relativistic programming discipline on programs
built using Monadic RP. Specifically, it:

• rules out causally ordered updates in traversal order that aren’t
separated by synchronizeRP,
• allows causally ordered updates against traversal order that aren’t

separated by synchronizeRP,
• prevents synchronizeRP from being invoked outside sequences

of causally related writes, and
• rules out other programmer errors, such as invoking synchronizeRP

twice with no intervening writes or invoking synchronizeRP be-
fore making the first in a sequence of causally ordered writes.

We believe that this approach is applicable to relativistic trees
because we can generalize the notion of traversal direction to
distinguish between expanding the frontier of explored nodes in
keeping with a partial order where parents precede children, and
backtracking to nodes already within this frontier. This distinction
fits naturally with the zipper abstraction.

4. Implementation
The RP module exports functions built on top of IO, but does not
allow arbitrary IO computations inside relativistic computations.
The types we define in the RPmodule, and the choice of which names
to export from it, enforce these controlled abstractions. Additionally,
the primitives we use to implement Monadic RP meet the memory
ordering requirements of Rules 2b and 3b.

4.1 Safe effectful abstractions in Haskell
The IO monad provides all general effectful operations, including
file I/O, direct manipulation of memory, and thread management.
Because relativistic programs directly mutate shared memory and
spawn threads, Monadic RP must be implemented using functions
in IO. However, if all computations in IO are allowed inside RPR or
RPW, programmers could violate the RP discipline. For instance,
readers could write to arbitrary memory and wait for grace periods
to complete.

Terei et al. [28] introduce Safe Haskell, and demonstrate a
flexible technique for defining a restricted abstraction RIO on top
of IO where clients of RIO can access IO operations only through a
fixed set of predefined functions exported by RIO. The RP module is
implemented using this abstraction-building technique.

4.2 Algorithm
Monadic RP implements grace periods using quiescent states [23],
in an approach modeled after the Quiescent-State-Based Reclama-
tion (QSBR) RCU implementation of Desnoyers et al. [4]. Their
work outlines the implementation in detail, so we present a sum-
mary here.

In this formulation of Quiescent-State-Based RP, grace periods
are announced and completed using a set of counters. There is a
global grace period counter, and every thread has its own local
counter. We can think of the local counters as a variant of a logical
clock [16] where there are only global events, represented in shared
memory. The only event that increments any counter is when the
thread currently inside a write-side critical section (the writer)
increments the global counter before waiting for a grace period
to complete. When the writer increments the global counter, it sends
a message to readers that a grace period is begun. In response, each
reader sends a message to the writer that it has finished a critical
section (entering a quiescent state) by updating its local counter to
match the global counter. Once the writer has received this message
from each active reader by blocking on the reader’s local counter
until the reader updates it, the writer moves on with its write-side

critical section. Additionally, a thread can opt out of participation in
the clock by setting its local counter to zero, allowing grace periods
to complete without any message from the thread. Desnoyers et al.
[4] say a thread which has opted out is in an extended quiescent
state, or offline. A thread always opts out at the beginning of a write-
side critical section. This is because it is now the writer, and would
not be able to make progress while deadlocked waiting for itself
to complete a read-side critical section. At the end of a write-side
critical section, the thread (having laid down its writer’s mantle)
returns its local counter to its previous state.

4.3 Primitives
The RP module depends on two memory barrier primitives built
into the GHC runtime and exposed to Haskell programs by the
atomic-primops package. Both act as full compiler-level memory
barriers, preventing both GHC and the C compiler that generates
the GHC runtime code from reordering reads or writes across either
barrier, but these barriers have different semantics at the hardware
level.

One barrier primitive is called writeBarrier, and prevents
hardware reordering of writes. On x86, AMD64, ARM (pre v7), and
SPARC, writes from a particular core are not reordered, so GHC
[17] correctly implements writeBarrier using no instruction at
all on these architectures. On PowerPC, and ARMv7 and later, GHC
implements writeBarrier using the appropriate instructions along
with a C compiler reordering barrier.

The writeSRef function calls writeBarrier before it writes
to memory. This guarantees that writes are committed in program
order, which in turn means that writes against traversal order
guarantee causal ordering, as illustrated in Section 2.1.2. The
synchronizeRP function uses writeBarrier to ensure that a
writer commits the write that increments the global counter before
the writer begins waiting for readers to observe this write.

The other barrier primitive is called storeLoadBarrier, and
prevents hardware reordering of reads and writes. GHC implements
it using appropriate instructions on all supported architectures. On
x86 and AMD64, GHC uses a lock-prefixed add instruction that
adds zero to the word at the top of the thread’s stack (a no-op). On
Intel architectures, the lock prefix prevents hardware reordering of
reads and writes across the instruction it modifies [12]. Although
legacy Intel architectures lock the entire bus when executing any
lock-prefixed instruction, modern Intel architectures do not when the
instruction accesses a memory location cached in exclusive mode
on the core executing the instruction (such as the top of the thread’s
stack), so on modern Intel architectures, this primitive does not incur
the cost of bus locking.

The synchronizeRP function uses storeLoadBarrier to in-
sulate the code that waits for a grace period to complete from write-
side critical sections. The readRP function (which encapsulates a
read-side critical section) uses storeLoadBarrier to insulate a
reader thread’s updates to its local counter from the memory ac-
cesses inside the current or subsequent critical sections.

4.4 Memory Reclamation
Kung and Lehman [15] demonstrate that RP implementations can
rely on a general-purpose garbage collector to guarantee that node
unlinking and node memory reclamation are causally ordered. GHC
has a tracing garbage collector [18] that will not reclaim memory
some thread could still reach, so Monadic RP does not need to use
any additional causal ordering mechanism to prevent premature
reclamation.
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5. Results
We have implemented the examples from Section 2.1 using Monadic
RP, and used these implementations to test our causal ordering
mechanisms. We tested three hypotheses:

1. our implementation of synchronizeRP ensures causal ordering
between writes in traversal order,

2. our implementations of writeSRef and readSRef together
ensure causal ordering when writes are against traversal order,

3. in a program that does not use either causal ordering mechanism,
readers may observe shared data in an inconsistent state.

As in the examples, all tests start with the shared linked list
[A,B,C,D,E]. To test hypothesis 1, we implemented Example 1
from Section 2.1.1. To test hypothesis 2, we implemented Example
2 from Section 2.1.2. To test hypothesis 3, we implemented a variant
of Example 1 that does not invoke synchronizeRP between W1 and
W2.

Each test spawns 29 readers and a writer. Each reader traverses
the list 400,000 times in a tight loop, then returns aggregate counts
of the consistent and inconsistent states it observed during these
traversals. The writer simply moves a list element and returns. We
ran these tests on a 30-way QEMU guest on top of 40-way host
with IntelrXeonr E5-2670 v2 @ 2.50GHz CPUs. We ran each
test 10,000 times.

5.1 Example 1
The first test, moveDback, implements Example 1 from Section
2.1.1, moving D from a later position to an earlier position. It invokes
synchronizeRP in between the writeSRef call that links the new
copy in at the earlier position and the writeSRef call that unlinks
the old copy at the later position, since these writes are in reader
traversal order.

moveDback :: SRef s (RPList s a) → RPW s ()
moveDback head = do

(Cons a ra) ← readSRef head -- [A,B,C,D,E]
-- duplicate reference to B
ra’ ← copySRef ra
(Cons b rb) ← readSRef ra
(Cons c rc) ← readSRef rb
(Cons d rd) ← readSRef rc
ne ← readSRef rd
-- link in a new D after A
writeSRef ra (Cons d ra’) -- [A,D,B,C,D,E]
-- wait for readers
synchronizeRP
-- unlink the old D
writeSRef rc ne -- [A,D,B,C,E]

5.2 Example 2
The second test, moveBforward, implements Example 2 in Section
2.1.2. It moves B from an earlier position to a later position by
inserting a new copy at the later position, then unlinking the old copy
at the original position. Because these writes are against traversal
order, the writer does not need to invoke synchronizeRP to enforce
causal ordering.

moveBforward :: SRef s (RPList s a) → RPW s ()
moveBforward head = do

(Cons a ra) ← readSRef head -- [A,B,C,D,E]
bn@(Cons b rb) ← readSRef ra
(Cons c rc) ← readSRef rb
(Cons d rd) ← readSRef rc
-- duplicate the reference to E
rd’ ← copySRef rd
-- link in a new B after D

writeSRef rd $ Cons b rd’ -- [A,B,C,D,B,E]
-- don’t need to synchronizeRP,
-- write order against traversal order
-- unlink the old B
writeSRef ra bn -- [A,C,D,B,E]

5.3 Example 1, without synchronizeRP
The third test, moveDbackNoSync, is the same as the first, except
that it omits synchronizeRP.

5.4 Test Results

Figure 13. Aggregate results from all test runs, including counts of
inconsistent states readers observed.

Example 1 with
synchronizeRP

Example 1 w/o
synchronizeRP

Example 2

time (hours) 13.93 13.97 13.95
snapshots 116,000,000,000 116,000,000,000 116,000,000,000
consistent 116,000,000,000 115,999,999,547 116,000,000,000
inconsistent 0 453 0

Figure 13 shows that readers observed no inconsistent states dur-
ing test runs for Example 1 with synchronizeRP or Example
2, giving us confidence that both synchronizeRP and writes
against traversal order ensure causal ordering in this implemen-
tation. When we omitted synchronizeRP from Example 1, readers
occasionally observed inconsistent states, confirming that we need
synchronizeRP to guarantee causal ordering in Example 1. To cre-
ate a meaningful corresponding test for Example 2 without causal
ordering, we would need to omit the write barrier in writeSRef and
run tests on a highly concurrent architecture that reorders stores from
a given core.

The first and third tests demonstrate that in Monadic RP,
synchronizeRP and writes against traversal order provide the
causal ordering guarantees we describe in Section 2.1. That is, they
are sufficient to enforce Rule 1 if used correctly. The second test
demonstrates that without using one of these mechanisms, we can-
not guarantee causal ordering in the presence of concurrent reads
and writes. That is, they are necessary to enforce Rule 1.

6. Related work
6.1 Verified implementations
Hart et al. [9] and Desnoyers et al. [4] have written in C and
benchmarked RP implementations with a variety of grace-period-
based causal ordering mechanisms. Two of these implementations
and example algorithms were modeled on a virtual architecture with
a weakly-ordered memory model in Promela. Assertions about the
model, expressed in Linear Temporal Logic, were verified using
the Spin model checker [5]. The Promela model was constructed
manually and the verification took hours to run; in exchange,
Desnoyers et al. were able to detect errors in the implementation
at the level of missing memory barriers and algorithm-level race
conditions. This verification gives users high confidence that these
implementations are correct, but says nothing about new programs
built on top of them.

Gotsman et al. [7] implemented RP in a C-like formal language
and verified this implementation in a sequentially consistent mem-
ory model using an extension of the logic RGSep [32]. This imple-
mentation is not intended to be used to build new general-purpose
programs.

Tassarotti et al. [27] implemented RP in Coq, and verified this
implementation in a release-acquire memory model [13] using the
logic GPS (a logic with ghost state, separation, and per-location
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protocols introduced by Turon et al. [31]). In this case, the imple-
mentation and the proof are in one system, but each function is
an annotated Hoare triple with GPS predicates and permissions. A
programmer can build new general-purpose programs on top of this
implementation, but she would need skill in GPS and interactive the-
orem proving to prove that these programs are correct as Tassarotti
et al. have for the underlying implementation.

6.2 Lockdep
McKenney [20] describes Lockdep-RCU, an extension of the Linux
kernel lock validator [3] that does flexible runtime assertion check-
ing in and around Linux RCU API calls. For instance, it is config-
ured to emit a warning when rcu dereference(), the analogue
of readSRef, is used outside a critical section. A Linux developer
can build the kernel with Lockdep enabled to turn on this runtime
assertion checking, and then run tests to exercise the code paths with
assertions. Lockdep does not provide any guarantee that assertions
will be checked unless they are encountered at runtime, so it gives
less assurance than a static analysis.

6.3 Proposed Coccinelle tests
McKenney [21] proposes using Coccinelle scripts to automatically
detect a series of “RCU abuses” in Linux, which include:

• waiting for readers in a read-side critical section (a violation of
Rule 4);
• accessing an RCU-protected shared data structure through a

private reference obtained during a read-side critical section,
rather than a shared reference (a violation of Rule 5).

7. Conclusion
Monadic RP is a new GHC Haskell library for relativistic program-
ming that uses types and abstractions to guarantee basic safety
properties. We have used it to implement working relativistic pro-
grams that demonstrate that it enforces causal ordering in two ways:
using grace periods, and using writes against reader traversal order.
Existing work on RP focuses on developing performant implementa-
tions that do not model or enforce safety properties, runtime checks,
or on formal models for that verify correctness of the implementa-
tion rather than the correctness of programs that use it. Monadic RP
stakes out a novel middle ground: it provides an implementation suit-
able for general-purpose RP that statically enforces rules from the
RP programming discipline. We accomplish this by exporting types
and functions from the RP module that statically enforce a separation
between read-side and write-side critical sections and restrict the
operations available in each. Minimizing the set of operations avail-
able in each kind of critical section keeps writes and other effects
out of read-side critical sections and keeps effects besides reads,
writes, and waiting for grace periods out of relativistic programs,
making them safer. In ongoing work, we are extending Monadic RP
to expose a cursor-based abstraction for critical sections that uses
parameterised monads to track reader traversal direction and writer
causal update direction, and statically reject relativistic programs
that fail to follow rules that guarantee causal ordering.
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A. Appendix
A.1 RP module
Available at https://github.com/anthezium/MonadicRP/
blob/master/src/RP.hs.

A.2 RPManyListMoveTest
Available at https://github.com/anthezium/MonadicRP/
blob/master/src/RPManyListMoveTest.hs.

A.3 test qsbr.c
Available at https://github.com/anthezium/MonadicRP/
blob/master/comparison/test_qsbr.c.
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