
FirmFuzz: Automated IoT Firmware Introspection and Analysis

Prashast Srivastava†, Hui Peng†, Jiahao Li⋆, Hamed Okhraviξ , Howard Shrobe⋆, Mathias Payer‡
†Purdue University, ⋆MIT CSAIL, ξMIT Lincoln Laboratory, ‡EPFL

ABSTRACT
While the number of IoT devices grows at an exhilarating pace
their security remains stagnant. Imposing secure coding standards
across all vendors is infeasible. Testing individual devices allows an
analyst to evaluate their security post deployment. Any discovered
vulnerabilities can then be disclosed to the vendors in order to
assist them in securing their products. The search for vulnerabili-
ties should ideally be automated for efficiency and furthermore be
device-independent for scalability.

We present FirmFuzz, an automated device-independent emula-
tion and dynamic analysis framework for Linux-based firmware
images. It employs a greybox-based generational fuzzing approach
coupled with static analysis and system introspection to provide
targeted and deterministic bug discovery within a firmware image.

We evaluate FirmFuzz by emulating and dynamically analyz-
ing 32 images (from 27 unique devices) with a network accessible
from the host performing the emulation. During testing, FirmFuzz
discovered seven previously undisclosed vulnerabilities across six
different devices: two IP cameras and four routers. So far, 4 CVE’s
have been assigned.
ACM Reference Format:
Prashast Srivastava†, Hui Peng†, Jiahao Li⋆, Hamed Okhraviξ , Howard
Shrobe⋆, Mathias Payer‡. 2019. FirmFuzz: Automated IoT Firmware Intro-
spection and Analysis. In 2nd Workshop on the Internet of Things Security
and Privacy (IoT S&P’19), November 15, 2019, London, United Kingdom. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3338507.3358616

1 INTRODUCTION
With 30 billion expected embedded devices by 2020 [7], the Internet
of Things (IoT) has already proliferated across all aspects of our
lives. The rise of IoT devices has been accompanied by increasing
attacks on or through them. These attacks range from forming a
botnet of embedded devices like the Mirai botnet [1] to a myriad of
exploitable vulnerabilities that are reported in the corresponding
firmwares [2, 3, 6, 8, 13].

In this work, we focus on analyzing Linux-based firmwares due
to its widespread adoption. A Linux-based embedded firmware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DISTRIBUTION STATEMENTA. Approved for public release. Distribution is unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary
of Defense for Research and Engineering.
IoT S&P’19, November 15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6838-4/19/11. . . $15.00
https://doi.org/10.1145/3338507.3358616

has three major parts that can be exploited by an adversary: (i)
a variant of the Linux kernel, (ii) a set of open-source software
packages, and (iii) a set of custom vendor-developed applications.
The first two components are used in widely different contexts
and can be vetted independently from embedded systems. The
third component, custom vendor-developed applications, may be
more prone to vulnerabilities because these proprietary applications
are neither open-source nor openly vetted. We therefore focus on
vendor-developed applications.

Evaluating vendor-developed applications in embedded firmware
presents three challenges. First, these applications only accept syn-
tactically legal inputs, therefore in order to perform deep analysis
one has to infer and respect this syntax. Inferring the input syntax
from a blackbox binary is a non-trivial problem [4, 15]. Second, to
ensure triggered vulnerabilities do not escape the analysis, fine-
grained monitoring of the runtime environment is required. Third,
these applications rely on the runtime environment of the firmware
for their functionality. Therefore, fuzzing these applications as stan-
dalone binaries is not sufficient.

In this paper, we describe an analysis framework, FirmFuzz, that
finds deep vulnerabilities in vendor-developed applications of em-
bedded firmwares. We overcome the above-mentioned challenges
in FirmFuzz by: (i) utilizing the web application interface of these
embedded devices as entry points to generate syntactically legal in-
puts, (ii) injecting runtime monitors into the runtime environment
of the embedded firmware to allow for context-aware monitoring,
and (iii) emulating the firmware image to keep our approach device-
independent. To further enhance our greybox-based generational
fuzz testing capability, we leverage information collected from static
analysis to guide our fuzzer.

Previous efforts have studied emulation on a large-scale for
closed-source firmware [2, 3]. These efforts focused on scaling an
analysis to many images, but the undertaken analysis was generic,
searching for specific vulnerabilities. An off-the-shelf analysis may
miss vulnerabilities because it is not tailored to embedded systems
and does not inspect the actions on the system.

Although we use web applications as an end-point for dynamic
analysis, using web application scanners is insufficient. These scan-
ners treat the analysis target as a blackbox while performing the
vulnerability assessment. Emulating the firmware allows us to tune
the runtime environment and to introspect the running system
during execution, observing the vulnerability scanner interactions
with the system. This, in turn, allows us to find deep vulnerabilities.

We provide a framework that, after some light-weight config-
uration, adapts to the emulated firmware and performs context-
sensitive analysis. The focus of our work is not the breadth (number
of images analyzed) but the depth (testing deep code paths for a
variety of vulnerabilities) of the analysis undertaken.

Unlike conventional web application scanners, FirmFuzz lever-
ages the degrees of freedom offered by an emulated firmware to

https://doi.org/10.1145/3338507.3358616
https://doi.org/10.1145/3338507.3358616

enhance the vulnerability detection process. It integrates runtime
monitors into the firmware filesystem, modifying the firmware
itself to improve the bug finding process. Using our syntactically-
legal input generation strategy and runtime monitors, we tailor our
analysis on a per-firmware basis allowing us to trigger deep bugs
in the firmware.

We analyzed 6,427 firmware images scraped from three ven-
dors (Netgear, D-Link, and TRENDNet). Out of those, in 32, we
found seven previously unknown vulnerabilities across six differ-
ent devices comprising of two IP cameras and four routers. The
vulnerabilities discovered include one post-authentication Com-
mand Injection (CI), three pre and one post-authentication Buffer
Overflow (BO), one pre-authentication reflected XSS vulnerability
and one pre-authentication Null Pointer Dereference (NPD). For the
sake of responsible disclosure, we informed the vendors of these
vulnerabilities.

In summary, we make the following contributions:
• We develop FirmFuzz (with open source code available at
https://github.com/HexHive/FirmFuzz), an automated em-
ulation and dynamic analysis framework for finding deep
vulnerabilities in embedded firmware.
• We develop a generational fuzzer for syntactically legal input
generation that leverages static analysis to aid fuzzing of the
emulated firmware images while monitoring the firmware
runtime (helper binaries and kernel monitors to enable de-
terministic bug discovery).
• We automatically test firmware images scraped from vendor
websites and find seven previously unknown vulnerabilities.

2 FIRMWARE PREPROCESSING
FirmFuzz is a framework for the automatic analysis and fuzz testing
of Linux-based IoT firmware through a QEMU-based emulation
layer. It analyzes firmwares in three phases: information gathering,
preparation, and fuzzing as depicted in Figure 1. Our framework
currently supports analyzing MIPS-architecture and little endian
ARM-architecture based firmware images.

2.1 Information Gathering Phase
This phase serves two goals. First, discovering the username-password
pair required for authentication with the web application in order
to increase the coverage of the fuzzer. Second, static analysis of the
attack surface to find inputs for vulnerable code paths in PHP.

FirmFuzz brute-forces authentication credentials for a firmware
through a crowdsourced credential corpus [11].

CI vulnerabilities in PHP-based applications arise from unsani-
tized user input being passed to unsafe PHP functions e.g., system,
or shell_exec. FirmFuzz performs intraprocedural static taint anal-
ysis of the PHP scripts. It taints user-controlled variables, $_GET,
$_POST and logs the code paths where the taint flows to unsafe
functions. For each of these code paths, a constraint set is built.
This set is used by FirmFuzz to generate inputs that can trigger
vulnerable code paths.

2.2 Firmware Preparation
This phase creates a firmware image ready for emulation with
a corresponding emulator configuration. A close approximate of

the runtime environment as expected by the firmware is created
using the peripheral mapping strategy. FirmFuzz leverages full-
system emulation and injects helper binaries into the filesystem
and augments the kernel to discover vulnerabilities with a low false
positive/negative rate. The network of the emulator backend is
configured to allow interaction between the firmware programs
and the bug finding tools.

2.2.1 Peripheral Mapping. An embedded firmware often expects
the presence of certain hardware peripherals during boot-time,
runtime or both.

In the absence of these peripherals, a firmware may silently log
an error or go into a busy loop trying to query the peripheral. In
the former case, it is hard to infer what side-effect the absence of a
peripheral may have on the functionality of the emulated firmware.
In the latter case, the firmware may not reach a stable state.

If the firmware requests an unknown peripheral, FirmFuzz pro-
vides a mapping of that peripheral to a fake peripheral driver that
always returns True on being queried. We acknowledge that this
approach may not result in a stable state for all firmwares due to
the diverse set of available IoT peripherals.

The firmware image is run under an emulator with our custom
kernel. The kernel is configured to panic if unsupported devices
are accessed. FirmFuzz uses this panic log to create a mapping of
the device to the fake device driver. FirmFuzz iteratively performs
this process until all the unsupported devices are mapped to a fake
device.

2.2.2 Helper Injection. Helper binaries allow FirmFuzz to inspect
the firmware during emulation. The helpers operate within the
runtime environment of the firmware and in the current implemen-
tation allow us to detect CI vulnerabilities. During fuzzing, if this
helper binary is executed, FirmFuzz flags a CI vulnerability. This
approach is completely automated and firmware agnostic; i.e., we
are not reliant on the utilities present on the firmware to detect
the vulnerability. The closest previous work to ours, Firmadyne [2],
does not have support for the detection of CI vulnerabilities. The
ones reported in its paper were discovered through manual analysis
of the webpages.

To detect BO vulnerabilities, we utilize the exception handling
mechanism of the Linux kernel similar to Firmadyne. FirmFuzz
leverages the mechanism further to detect NPD vulnerabilities. The
major difference between FirmFuzz and Firmadyne in detecting
BO is that the Firmadyne authors manually discovered a BO vul-
nerability in a webpage served by a specific Netgear router which
they validated by crafting a curl request to that specific webpage
to trigger that vulnerability. However, FirmFuzz requires no man-
ual analysis to detect BO vulnerabilities. Using the custom fuzzing
driver, it automatically triggers BO vulnerabilities in the emulated
firmware and packages a PoC exploit to recreate the vulnerability.
For the XSS vulnerability targeted by FirmFuzz, we observed that
host-side monitoring is sufficient for detection.

2.2.3 Network Configuration. Firmware images differ in how they
name and assign addresses to their LAN/WAN interfaces. We follow
the same approach as Firmadyne to infer these network configu-
rations. We first run the emulation in a ‘network inference’ mode
in which FirmFuzz logs all the interaction of the firmware with

https://github.com/HexHive/FirmFuzz

Devices NIC

Preparation PhaseInformation Gathering Phase Fuzzing Phase

Network
Configuration

Devices NIC

Peripheral
Mapping

Host
OS

Helper
Injection

Hardware

Cross-Site Scripting
Buffer Overflow
Command Injection
Null Pointer Dereference

Runtime
Monitoring

Hardware

FirmFuzz

Static
Analysis

****** Authentication
Credentials

Attack
Surface

Mapping

Input

Input

Firmware List of
VulnerabilitiesHost OS

Firmware

Figure 1: FirmFuzz Workflow

the networking interface of the kernel. Using these logs, FirmFuzz
infers the network configuration and creates the appropriate virtual
network interfaces to allow interaction with the emulated firmware.

3 FIRMWARE FUZZING
FirmFuzz detects vulnerabilities using a custom-developed auto-
mated generational fuzzer. Existing vulnerability scanning approaches
for embedded firmware [2, 3, 16] require human guidance.

Augmented
Filesystem

FirmFuzz
Kernel

Web
Application

Headless
Browser

Seed
Input

Payload
Generator

Proxy
Server

Context

Feedback

Payload

Guest

Host

Figure 2: Fuzzing Workflow

FirmFuzz changes the paradigm of vulnerability detection in
emulated firmware by augmenting the emulation environment of
the fuzzed target to aid in vulnerability discovery, see Figure 2.
Our approach removes the reliance on server feedback and allows
a direct observation of the triggered vulnerability in situ. Three
main features of the FirmFuzz fuzzer are: (i) Context-driven input
generation — It incorporates contextual information provided by
the firmware while interacting with different parts of the attack
surface, (ii) Deterministic vulnerability detection— The vulnerability
monitors operating both in the guest (i.e., the emulated firmware)
and the host allow deterministic vulnerability detection, and (iii)
“Fuzzing side-effects” elimination — FirmFuzz with the help of its

emulation framework, automatically reverts the firmware back to
a stable state if the firmware reaches an inconsistent state while
being fuzzed. This allows continuous fuzzing of the emulated target
without requiring manual intervention to reset the firmware state.

The web application setup by the firmware provides its function-
ality by employing a combination of client-side JavaScript code and
server-side code. FirmFuzz uses a headless browser controlled by
our fuzzer to interact with the firmware through the web applica-
tion to execute the client-side JavaScript code. Using the contextual
information from these interactions, it generates fuzzing inputs.
All network traffic between the fuzzer and the emulated firmware
passes through a proxy server. This allows the proxy server to
capture candidate inputs that will be mutated by FirmFuzz.

The four vulnerability types targeted by FirmFuzz during the
fuzzing phase are: CI, BO, NPD, and XSS. To detect these vulnerabil-
ities, FirmFuzz first interacts with the web application to generate
a legal HTTP request as seed input to fuzz a part of the attack
surface, see Section 3.1. It then mutates the legal request with pay-
loads based on the vulnerability being targeted, and sends it to the
firmware. Upon sending a mutated request, FirmFuzz monitors the
firmware to detect vulnerabilities. If a vulnerability is detected, the
mutated request is logged as a Proof-of-Concept (PoC) input along
with the recipient URL to allow reproducibility.

3.1 Syntactically Legal Input Generation
Since FirmFuzz uses a headless browser for firmware interaction,
the burden of creating a well-formed HTTP request that effectively
tests the vendor-written software is offloaded to theweb application.
Additionally, the browser handles executing client-side code to give
itself access to the full functionality of the application.

However, using a web application interface as an oracle to gen-
erate syntactically-legal input opens a challenge. FirmFuzz must
be aware of the web interface setup of the emulated firmware in
order to interact with it successfully. During our experiments, we
observed that the web interface setup highly varies across vendors

and devices. During evaluation of FirmFuzz, based on the images we
fuzzed, we created templates for interacting with the encountered
web interfaces. Note, however, that this interface support requires
some manual validation by the analyst. This minimal manual vali-
dation is the limiting factor for scaling the analysis to additional
devices. This highlights one of the primary differences between
FirmFuzz and the previous work in this area: we strive to perform
deeper analysis, but at a slight cost to scale.

3.2 Deterministic Bug Discovery
Current automated approaches for detecting vulnerabilities (CI, BO
and NPD) employed by scanners like ZAP [16] are reliant on the
server-side response for detecting them. This approach is imprecise
as it may either fail to localize a vulnerability, e.g., BO, NPD, or miss
a vulnerability altogether, e.g., CI if a particular Linux utility does
not exist. Even if a vulnerability is detected, there is no guarantee
that it exists since the server-side response may be inaccurate.

To deterministically detect the above mentioned vulnerabilities,
FirmFuzz modifies the emulation environment of the firmware and
the firmware itself.

FirmFuzz detects CI, BO and NPD vulnerabilities by monitoring
the logs generated by the augmented firmware when a test input
is executed. For CI, it monitors the execve system call to log exe-
cution of the poison binaries (see Section 2.2.2). For BO and NPD,
it monitors the kernel logs to see if any firmware process tried to
access unmapped memory.

Detecting an XSS vulnerability does not require any guest-side
assistance; host-side monitoring by FirmFuzz is sufficient to detect
it, similar to existing vulnerability scanners. This monitoring is in
the form of detecting if the snippet of JavaScript code that was sent
as a payload in the request is executed in the machine.

3.3 Elimination of Fuzzing Side-Effects
Since FirmFuzz actively interacts with the emulated firmware dur-
ing fuzzing, it may become unresponsive. The inconsistent states
include the firmware trying to reboot itself to apply certain changes
or an infinite cycle due to the triggered functionality being emulated
incorrectly. In such a state, the firmware becomes non-responsive
to fuzzing and requires a roll back to a stable state.

The above problem often requires manual intervention to per-
form the rollback. However, to keep the fuzzing process fully au-
tomated, FirmFuzz employs a “snapshot and rollback” strategy.
During the dynamic analysis, if the firmware is pushed into an
inconsistent state, FirmFuzz reverts the emulated firmware back
to a stable state (right after the completion of initialization) to be
ready for the next request. This allows for continuous fuzzing of
the target without manual intervention.

3.4 Payload Delivery
The web application performs client-side validation checks on the
input values, such as checking if the input values are formatted
according to the syntax expected by the application. Therefore, to
effectively fuzz the firmware, a legal request from the web appli-
cation is required, which can be mutated and sent to the firmware
directly bypassing the client-side validation checks.

Our fuzzer requires a set of seed inputs and valid URLs that are
accepted by the web application. As web applications often consist
of a JavaScript host component and a server component, we need
to trigger the generation of all possible host paths by driving their
host component. FirmFuzz leverages the headless browser to load
webpages from the firmware and then walks through the DOM to
trigger all possible state changes by iterating through all button
elements on the web page (often firing JavaScript events along
the way). In addition, our host components fill input fields with
syntactically legal values that are inferred through the names of
fields and a set of possible data ranges.

If FirmFuzz infers legal input values, then a seed request is gen-
erated by interacting with a button element. This seed request is
mutated for fuzzing. The mutation strategy followed by FirmFuzz
is a substitution strategy in which the relevant parameters of a re-
quest are modified to contain malicious payloads. This substitution
strategy is used across all the vulnerability detection modules of
FirmFuzz. The substituted payload is adjusted based on the vul-
nerability being tested. Note that a finite number of payloads are
tested for each vulnerability. Therefore, a fixed number of mutants
are created for each seed request. A more detailed overview of this
process is provided in Appendix A

4 EVALUATION
We evaluate FirmFuzz by testing it on a set of 6,427 firmware images.
We first give a breakdown of the dataset on which FirmFuzz was
able to be evaluated as well as the number of unique web interfaces
encountered. We discuss one of our discovered bugs as a case study
and how the discovered vulnerabilities are not detected by existing
state-of-the-art tools. We also evaluate our runtime performance
and discuss our vulnerability detection accuracy.

FirmFuzz is evaluated on a machine with an Intel i7 processor
and 16GB RAM and running Ubuntu 16.04. To emulate firmwares,
FirmFuzz uses QEMU [9] version 2.5.0 as the emulation backend.
For fuzzing, FirmFuzz uses a headless browser as one of its fuzzing
drivers. The headless browser used is the Selenium WebDriver [12]
version 3.4.0. In addition, FirmFuzz uses a proxy server, mitmproxy
version 0.18.2 [5], to monitor the network traffic sent between the
fuzzer and the emulated firmware.

4.1 Firmware Images Tested
6,427 images were scraped from three vendor websites to create
our image dataset. From the dataset, 1,013 images had a Linux-
based File System (FS). Out of these, 203 images had their network
configuration inferred and 32 images from this set had accessible
web interfaces which were used by FirmFuzz as entry points for
fuzzing the image. The breakdown is presented in Table 1.

There is a sharp drop-off between the images for which the net-
work configuration was inferred and those which were successfully
fuzzed. This drop-off occurs due to missing emulation for specific
required devices (e.g., a system waits for a camera to be accessible
before starting the web server). Without an accessible web interface
as an entry point, FirmFuzz cannot fuzz the firmware image.

Out of the fuzzed images,there is high reusability of web inter-
faces between different devices from the same vendor — 6 unique

Table 1: Firmware images tested

Vendor Scraped Images Linux FS found Network Inferred Fuzzed (Unique Devices) Unique Web UI
TRENDnet 359 129 26 6 (5) 2
Netgear 2646 675 162 20 (17) 3
D-Link 3422 209 15 6 (5) 1
Total 6,427 1,013 203 32 (27) 6

web interfaces in 27 unique device images across 3 different ven-
dors. Therefore, with minimal manual effort we can cover a large
number of emulated devices.

4.2 Case Study
FirmFuzz, using its analysis detects vulnerabilities hidden deep in
the firmware which are not immediately apparent. A case study of
such a vulnerability is presented below.

4.2.1 TRENDnet TEW-673GRU Router. This is a MIPS-based Wire-
less Gigbabit router. A CI vulnerability was found in this wireless
router. It can be remotely exploited if a user is logged in to the
device’s configuration webserver with administrative credentials.

The vulnerability exists in the vendor-written program timer
on the firmware. This program runs by default as a daemon on the
router with root privileges. The timer uses another vendor-written
software arpping to periodically check if the router is reachable
every three minutes.

The vulnerability lies in the passing of the parameters from
timer to arpping. Five parameters are retrieved from device mem-
ory and passed to arpping without any validation or sanitation.
Out of the five parameters, three of them are under user-control
through a web application setup by the router which performs
client-side validation on these parameters.

FirmFuzz using its syntactically legal input generation, inferred
the input request and the CGI binary responsible for updating those
user-controlled parameters. FirmFuzz then sent a POST request
targeted at discovering a CI vulnerability directly to the CGI binary
which updates the device memory with the sent values respectively
without validating them. Using the firmware runtime monitoring,
FirmFuzz detected the vulnerability because it was triggered every
three minutes by the timer program.

4.3 Comparison with Existing Analysis
Frameworks

To show the effectiveness of FirmFuzz, we compare against other
state-of-the-art open-source web vulnerability scanners. We chose
two of the most popular ones, Zed Attack Proxy (ZAP) [16] and
w3af [14], for our evaluation. We also evaluated the automated
vulnerability detection of Firmadyne on our sample set of firmware
images as well. The evaluation was performed on the basis of the
number of vulnerabilities found by the tools.

4.3.1 Firmadyne. Firmadyne runs a set of Metasploit modules of
known exploits for embedded devices during its automated dy-
namic analysis. Additionally, it tests the emulated image for a set of
vulnerabilities that the authors of the framework found manually
in some embedded devices.

As evident from Table 2, this approach, even though completely
automated and applicable at large-scale, fails to find any of the
vulnerabilities in our sample set of firmware images. The Firmadyne
tests were originally built for specific embedded devices and the
probability of the same exploit working across the different devices
and different vendors is low.

4.3.2 w3af. As w3af cannot infer the credentials to the administra-
tive interface by itself, we provide it as a head start for a fairer com-
parison. However, even after providing the necessary credentials
to the authentication plugin and configuring several parameters
including the HTML tags for the input fields manually, w3af was
still unable to authenticate with the firmware. This is the reason
why w3af failed to detect any of the vulnerabilities detected by
FirmFuzz.

4.3.3 Zed Attack Proxy. To ensure that ZAP had access to the
same attack surface as FirmFuzz, the credentials to the firmware
for administrative access were provided to ZAP as it does not have
the authentication discovery capability of FirmFuzz. With the cre-
dentials provided, we ran the Active Scan feature of ZAP on the
emulated image which is an automated scan feature that tries to
find vulnerabilities by deploying known attacks including the ones
FirmFuzz targets.

As can be observed in Table 2, ZAP only discovered the XSS
vulnerability but failed to discover any other vulnerability. This is
because ZAP treats the firmware as a black box during its automated
scan and does not actively interact with the firmware to gain context
about the application like FirmFuzz does. Additionally, ZAP does
not have the capability to monitor the runtime environment of
the firmware to detect any erroneous conditions while performing
the scan. This limits its capability to detect those vulnerabilities
which, when triggered, do not provide any feedback to the scanner
through the web application entry point.

Even if the PoC for the discovered vulnerabilities in the image
are provided to ZAP, it still cannot infer their existence. This is
because ZAP relies on overtly observable signals for vulnerability
detection. For example, for CI vulnerabilities, ZAP relies on server-
side replies. The vulnerabilities we discovered do not send such a
response from the server when triggered because they exist in an
auxiliary program that does not interact with the web application
directly.

4.4 Runtime Performance
We further evaluate the runtime performance of FirmFuzz during
the fuzzing phase. The average runtime for the fuzzing phase is 16m
42s. The comparatively low runtime overhead is primarily because
our fuzzer is a generational fuzzer rather than a mutational one.

Table 2: Vulnerability Detection Comparison of FirmFuzz against Zed Attack Proxy(ZAP), Firmadyne and w3af

Number Vulnerability Vendor Device CVE-ID FirmFuzz ZAP Firmadyne w3af

1 Command Injection TRENDnet TEW-673GRU CVE-2018-19239 ✓ ✗ ✗ ✗

2 Reflected XSS TRENDnet TEW-634GRU, 673GRU, 632BRP, – ✓ ✓ ✗ ✗

3 Buffer Overflow TRENDnet TEW-673GRU, 632BRP CVE-2018-19242 ✓ ✗ ✗ ✗

4 Buffer Overflow TRENDnet TV-IP110WN, IP121WN – ✓ ✗ ✗ ✗

5 Buffer Overflow TRENDnet TV-IP110WN, IP121WN CVE-2018-19240 ✓ ✗ ✗ ✗

6 Buffer Overflow TRENDnet TV-IP110WN,IP121WN CVE-2018-19241 ✓ ✗ ✗ ✗

7 Null Pointer Dereference Netgear DG834 – ✓ ✗ ✗ ✗

With our generational fuzzer, we constrain the state space of inputs
drastically, thus achieving better overhead.

4.5 Vulnerability Detection Accuracy
As shown in Table 2, existing automated scanners incur a high false
negative (FN) rate when testing web applications. Their automated
scans employ a brute-force approach to detect vulnerabilities. The
brute-force approach includes strategies such as mutating the URL
under test with payloads and performing blind directory traversals.
The brute-force approach, reliance on server feedback for detecting
such vulnerabilities, and the the automated scans being blind, i.e.,
they do not actively interact with the application to gain context
about the web application leads to the high FN rate.

FirmFuzz using its runtimemonitoring of the firmware under test
along with the contextual input generation lowers the number of
FN bugs while detecting BO, NPD, and CI compared to the existing
automated scanners. We do not completely remove all instances
of FN bugs since FirmFuzz relies on template request generation
for fuzzing. Therefore, if a request is not generated for a particular
page using our heuristics then a bug may be missed. However,
such instances are clearly logged by FirmFuzz and an analyst can
provide feedback to FirmFuzz in terms of acceptable input for the
page which can be used to lower the chances of a FN bug.

As discussed in Section 2.2.2, FirmFuzz monitors the execution
of a poison binary and memory access violation handler in the
kernel for detecting CI and BO, NPD respectively. These detection
methods not only ensured that none of the bugs caught by FirmFuzz
that belonged to the class of CI, BO, and NPD were false positives
(FP) but also gave information which firmware resource was buggy.
This is a drastic improvement over the existing scanners which, due
to their lack of system introspection, are neither able to localize a
bug if it exists or give guarantees that the bug detected by these
scanners is not a FP warranting further manual analysis.

5 RELATEDWORK
A large body ofwork has contributed to security analysis of firmware
images for embedded devices. However, the closest efforts to our
work in terms of the targeted device domain (i.e., embedded Linux-
based devices) are the framework by Costin et al. [3] and Firmadyne,
the framework by Chen et al. [2].

5.1 Firmadyne
Chen et al. [2] presented Firmadyne, a full-system emulation based
framework for dynamic analysis of embedded firmwares. They
carried out the most extensive analysis in terms of the number

of firmware images analyzed to date. However, dynamic analysis
done by Firmadyne was simple. Their only automated vulnerability
discovery pass consisted of running known exploits as Metasploit
modules and their own PoC for manually discovered vulnerabilities.

Running a pre-defined set of exploits, while helpful in finding
known vulnerabilities, is not effective in discovering new ones (as
evident from Table 2) since the probability of the same exploit
invoking different vulnerabilities across different classes of devices
and vendors is low. On the contrary, FirmFuzz tailors the payloads
to the target emulated firmware allowing it to test deep code paths
and finds new vulnerabilities.

5.2 Firmware Analysis by Costin et al.
Costin et al. [3] built an emulation framework targeted specifically
at emulating the web interface of the firmware and performed static
and dynamic analysis on it.

Their approach was dependent on existing tools, RIPS [10] for
their static analysis of PHP scripts, vulnerability scanners like [16]
for the dynamic analysis. These tools, however, have high chances
of false positive and false negative rates respectively.

FirmFuzz, on the other hand, incorporates its own custom tools
into the framework to lower the false positive/negative rates. The
static discovery module is constrained to look only for potential CI
vulnerabilities and is designed to output constraints for each vul-
nerable code path present. The dynamic analysis module (i.e., the
fuzzer) is aware of the other modules in FirmFuzz and leverages all
information available from them, e.g., output from the runtimemon-
itors on the emulated image and the information acquired during
the static analysis phase. This provides enhanced bug discovery.

6 CONCLUSION
The increasing range of IoT devices have access to our personal
data and impact our everyday life, calling for additional scrutiny
when evaluating their security. We present FirmFuzz, an automated
framework for whole-system emulation and fuzz testing of embed-
ded firmware images. We used FirmFuzz to test for four types of
vulnerabilities in the firmware images that we studied: CI, BO, NPD
and XSS. We found and reported seven previously undiscovered
vulnerabilities using FirmFuzz.

ACKNOWLEDGMENTS
This research was supported by ONR award N00014-17-1-2513 and
by NSF CNS-1801601. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of our sponsors.

REFERENCES
[1] Manos Antonakakis, Tim April, Michael Bailey, Elie Bursztein, Jaime Cochran,

Zakir Durumeric, J Alex Halderman, Damian Menscher, Chad Seaman, Nick
Sullivan, Kurt Thomas, Yi Zhou, Manos Antonakakis Tim April Michael Bailey
Matthew Bernhard Elie Bursztein, Bullet J Jaime Cochran Zakir Durumeric Alex
Halderman Luca Invernizzi, Bullet Michalis Kallitsis Deepak Kumar Chaz Lever
Zane Ma, Joshua Mason Damian Menscher, Bullet Chad Seaman Nick Sullivan
Kurt Thomas, and Bullet Yi Zhou. 2017. Understanding the Mirai Botnet. In Pro-
ceedings of the 26th USENIX Security Symposium. 1093–1110. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

[2] Daming Dominic Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016.
Towards Fully Automated Dynamic Analysis for Embedded Firmware. Network
and Distributed System Security Symposium February (2016), 21–24. https://doi.
org/10.14722/ndss.2016.23415

[3] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces.
Proceedings of the 2016 ACM Asia Conference on Computer and Communications
Security (AsiaCCS’16) (2016), 437–448. https://doi.org/10.1145/2897845.2897900
arXiv:1511.03609

[4] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
learning for input fuzzing. In ASE 2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. 50–59. https://doi.
org/10.1109/ASE.2017.8115618 arXiv:1701.07232

[5] Mitmproxy. 2018. mitmproxy. https://mitmproxy.org/.
[6] Antoine Nervaux. 2018. Vulnerability disclosure TP-Linkmultiples CVEs - pentest

- try harder. https://chmod750.com/2017/04/23/vulnerability-disclosure-tp-link/.
[7] Amy Nordrum. 2018. Popular Internet of Things Forecast of 50 Billion

Devices by 2020 Is Outdated - IEEE Spectrum. https://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-
devices-by-2020-is-outdated.

[8] Kim Pierre. 2018. Pwning the Dlink 850L routers and abusing the MyDlink Cloud
protocol - IT Security Research by Pierre. https://pierrekim.github.io/blog/2017-
09-08-dlink-850l-mydlink-cloud-0days-vulnerabilities.html.

[9] QEMU. 2018-01-08. QEMU. https://www.qemu.org/.
[10] RIPS. 2018. RIPS - PHP Static Analyser. https://www.ripstech.com/.
[11] Router. 2018. Default Router Passwords - The internets most comprehensive

router password database. http://routerpasswords.com/.
[12] Selenium. 2018. Selenium - Web Browser Automation. http://www.seleniumhq.

org/.
[13] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and

Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. Proceedings 2015 Network and Distributed
System Security Symposium February (2015), 8–11. https://doi.org/10.14722/ndss.
2015.23294

[14] w3af. 2018. w3af: web application attack and audit framework. http://w3af.org/.
[15] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven

Seed Generation for Fuzzing. In Proceedings - IEEE Symposium on Security and
Privacy. 579–594. https://doi.org/10.1109/SP.2017.23

[16] ZAP. 2018. OWASP Zed Attack Proxy Project - OWASP. https://www.owasp.
org/index.php/OWASP_Zed_Attack_Proxy_Project.

A PAYLOAD DELIVERY
In this section, we provide an extended description of how FirmFuzz
generates inputs to fuzz test the emulated firmware. FirmFuzz uses
Algorithm 1. First, on receiving a webpage served by the web appli-
cation, FirmFuzz finds all the button elements in it. These elements
are used to interact with the firmware and are added to a list using
the find_buttons subroutine.

Second, FirmFuzz needs to infer legal values for the input fields
presented by the interface performed by the infer_input subrou-
tine. FirmFuzz employs two strategies based on whether an input
field is empty or non-empty: (i) Non-empty field—Field is populated
with a default value filled in by the firmware. In this case, FirmFuzz
leaves the value unchanged. (ii) Empty field—FirmFuzz does a pat-
tern match on the HTML ID attribute of the corresponding input
element. Based on whether the ID attribute contains familiar strings
such as “mac” or “IP”, a dummy MAC address or an IP address is
filled into the input field respectively. If none of these strings match
then FirmFuzz fills the input field with dummy text.

Algorithm 1 Payload delivery
Require:

WebPage: The current webpage being evaluated
Firmware: The emulated firmware
procedure Deliver_Payload(WebPage)

buttons[]←WebPaдe . f ind_buttons ()
input[]←WebPaдe .in f er_input ()
while len(buttons)>0 do

send_mutate(input, buttons[0])
if Firmware.isInconsistent() then

Emulation.restore()
end if
buttons.pop()

end while
end procedure

The names and types of these ID elements (parameters) are not
based on a standard but chosen by vendors who developed the web
application. Therefore, it is possible that the heuristic employed by
FirmFuzz unable to infer the legal value requested.

In the event that FirmFuzz incorrectly infers values for the input
fields and cannot make the web application generate a request,
the “ID” attribute is logged for manual classification later as either
an input “ID” for a MAC or an IP address. FirmFuzz maintains a
database for the incorrectly inferred input elements so that future
runs of FirmFuzz can better infer legal values.

Mutate

POST /bin/apply.cgi HTTP/1.1

<HTTP headers>

name1=value1&name2=value2

POST /bin/apply.cgi HTTP/1.1

<HTTP headers>

name1=payload&name2=payload

Figure 3: FirmFuzz Mutation Strategy

If FirmFuzzmanages to infer legal input values, then send_mutate
subroutine will generate a seed request by interacting with a button.
This seed request will then be mutated for fuzzing. The mutation
strategy followed by FirmFuzz is a simple substitution strategy in
which the relevant parameters of a request are modified to contain
malicious payloads as depicted in Figure 3. A similar strategy is fol-
lowed for GET requests to mutate its parameters. This substitution
strategy is used across all the vulnerability detection modules of
FirmFuzz. The substituted payload is adjusted based on the vulner-
ability that is being tested by FirmFuzz.

At any point during the seed request generation or the mutated
requests delivery, the firmware reaches an inconsistent state, the
emulation is rolled back automatically to a stable state by FirmFuzz
and the fuzzing is carried forward.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.14722/ndss.2016.23415
https://doi.org/10.14722/ndss.2016.23415
https://doi.org/10.1145/2897845.2897900
http://arxiv.org/abs/1511.03609
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
http://arxiv.org/abs/1701.07232
https://mitmproxy.org/
https://chmod750.com/2017/04/23/vulnerability-disclosure-tp-link/
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://pierrekim.github.io/blog/2017-09-08-dlink-850l-mydlink-cloud-0days-vulnerabilities.html
https://pierrekim.github.io/blog/2017-09-08-dlink-850l-mydlink-cloud-0days-vulnerabilities.html
https://www.qemu.org/
https://www.ripstech.com/
http://routerpasswords.com/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
https://doi.org/10.14722/ndss.2015.23294
https://doi.org/10.14722/ndss.2015.23294
http://w3af.org/
https://doi.org/10.1109/SP.2017.23
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

	Abstract
	1 Introduction
	2 Firmware Preprocessing
	2.1 Information Gathering Phase
	2.2 Firmware Preparation

	3 Firmware Fuzzing
	3.1 Syntactically Legal Input Generation
	3.2 Deterministic Bug Discovery
	3.3 Elimination of Fuzzing Side-Effects
	3.4 Payload Delivery

	4 Evaluation
	4.1 Firmware Images Tested
	4.2 Case Study
	4.3 Comparison with Existing Analysis Frameworks
	4.4 Runtime Performance
	4.5 Vulnerability Detection Accuracy

	5 Related Work
	5.1 Firmadyne
	5.2 Firmware Analysis by Costin et al.

	6 Conclusion
	Acknowledgments
	References
	A Payload Delivery

