boost/iterator/iterator_facade.hpp
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_FACADE_23022003THW_HPP
#define BOOST_ITERATOR_FACADE_23022003THW_HPP
#include <cstddef>
#include <memory>
#include <type_traits>
#include <boost/config.hpp>
#include <boost/mp11/utility.hpp>
#include <boost/iterator/interoperable.hpp>
#include <boost/iterator/iterator_traits.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/detail/facade_iterator_category.hpp>
#include <boost/iterator/detail/type_traits/conjunction.hpp>
#include <boost/iterator/detail/type_traits/negation.hpp>
namespace boost {
namespace iterators {
// This forward declaration is required for the friend declaration
// in iterator_core_access
template<
typename Derived,
typename Value,
typename CategoryOrTraversal,
typename Reference = Value&,
typename Difference = std::ptrdiff_t
>
class iterator_facade;
namespace detail {
// The type trait checks if the category or traversal is at least as advanced as the specified required traversal
template< typename CategoryOrTraversal, typename Required >
struct is_traversal_at_least :
public std::is_convertible< typename iterator_category_to_traversal< CategoryOrTraversal >::type, Required >
{};
//
// enable if for use in operator implementation.
//
template<
typename Facade1,
typename Facade2,
typename Return
>
struct enable_if_interoperable :
public std::enable_if<
is_interoperable< Facade1, Facade2 >::value,
Return
>
{};
//
// enable if for use in implementation of operators specific for random access traversal.
//
template<
typename Facade1,
typename Facade2,
typename Return
>
struct enable_if_interoperable_and_random_access_traversal :
public std::enable_if<
detail::conjunction<
is_interoperable< Facade1, Facade2 >,
is_traversal_at_least< typename iterator_category< Facade1 >::type, random_access_traversal_tag >,
is_traversal_at_least< typename iterator_category< Facade2 >::type, random_access_traversal_tag >
>::value,
Return
>
{};
//
// Generates associated types for an iterator_facade with the
// given parameters.
//
template<
typename ValueParam,
typename CategoryOrTraversal,
typename Reference,
typename Difference
>
struct iterator_facade_types
{
using iterator_category = typename facade_iterator_category<
CategoryOrTraversal, ValueParam, Reference
>::type;
using value_type = typename std::remove_const< ValueParam >::type;
// Not the real associated pointer type
using pointer = typename std::add_pointer<
typename std::conditional<
boost::iterators::detail::iterator_writability_disabled< ValueParam, Reference >::value,
const value_type,
value_type
>::type
>::type;
};
// iterators whose dereference operators reference the same value
// for all iterators into the same sequence (like many input
// iterators) need help with their postfix ++: the referenced
// value must be read and stored away before the increment occurs
// so that *a++ yields the originally referenced element and not
// the next one.
template< typename Iterator >
class postfix_increment_proxy
{
using value_type = typename iterator_value< Iterator >::type;
public:
explicit postfix_increment_proxy(Iterator const& x) :
stored_iterator(x),
stored_value(*x)
{}
// Returning a mutable reference allows nonsense like
// (*r++).mutate(), but it imposes fewer assumptions about the
// behavior of the value_type. In particular, recall that
// (*r).mutate() is legal if operator* returns by value.
// Provides readability of *r++
value_type& operator*() const
{
return stored_value;
}
// Provides X(r++)
operator Iterator const&() const
{
return stored_iterator;
}
// Provides (r++)->foo()
value_type* operator->() const
{
return std::addressof(stored_value);
}
private:
Iterator stored_iterator;
mutable value_type stored_value;
};
template< typename Iterator >
class writable_postfix_increment_dereference_proxy;
template< typename T >
struct is_not_writable_postfix_increment_dereference_proxy :
public std::true_type
{};
template< typename Iterator >
struct is_not_writable_postfix_increment_dereference_proxy<
writable_postfix_increment_dereference_proxy< Iterator >
> :
public std::false_type
{};
template< typename Iterator >
class writable_postfix_increment_proxy;
//
// In general, we can't determine that such an iterator isn't
// writable -- we also need to store a copy of the old iterator so
// that it can be written into.
template< typename Iterator >
class writable_postfix_increment_dereference_proxy
{
friend class writable_postfix_increment_proxy< Iterator >;
using value_type = typename iterator_value< Iterator >::type;
public:
explicit writable_postfix_increment_dereference_proxy(Iterator const& x) :
stored_iterator(x),
stored_value(*x)
{}
// Provides readability of *r++
operator value_type&() const
{
return this->stored_value;
}
template< typename OtherIterator >
writable_postfix_increment_dereference_proxy const&
operator=(writable_postfix_increment_dereference_proxy< OtherIterator > const& x) const
{
typedef typename iterator_value< OtherIterator >::type other_value_type;
*this->stored_iterator = static_cast< other_value_type& >(x);
return *this;
}
// Provides writability of *r++
template< typename T >
typename std::enable_if<
is_not_writable_postfix_increment_dereference_proxy< T >::value,
writable_postfix_increment_dereference_proxy const&
>::type operator=(T&& x) const
{
*this->stored_iterator = static_cast< T&& >(x);
return *this;
}
private:
Iterator stored_iterator;
mutable value_type stored_value;
};
template< typename Iterator >
class writable_postfix_increment_proxy
{
using value_type = typename iterator_value< Iterator >::type;
public:
explicit writable_postfix_increment_proxy(Iterator const& x) :
dereference_proxy(x)
{}
writable_postfix_increment_dereference_proxy< Iterator > const&
operator*() const
{
return dereference_proxy;
}
// Provides X(r++)
operator Iterator const&() const
{
return dereference_proxy.stored_iterator;
}
// Provides (r++)->foo()
value_type* operator->() const
{
return std::addressof(dereference_proxy.stored_value);
}
private:
writable_postfix_increment_dereference_proxy< Iterator > dereference_proxy;
};
template< typename Reference, typename Value >
struct is_non_proxy_reference :
public std::is_convertible<
typename std::remove_reference< Reference >::type const volatile*,
Value const volatile*
>
{};
// A metafunction to choose the result type of postfix ++
//
// Because the C++98 input iterator requirements say that *r++ has
// type T (value_type), implementations of some standard
// algorithms like lexicographical_compare may use constructions
// like:
//
// *r++ < *s++
//
// If *r++ returns a proxy (as required if r is writable but not
// multipass), this sort of expression will fail unless the proxy
// supports the operator<. Since there are any number of such
// operations, we're not going to try to support them. Therefore,
// even if r++ returns a proxy, *r++ will only return a proxy if
// *r also returns a proxy.
template< typename Iterator, typename Value, typename Reference, typename CategoryOrTraversal >
struct postfix_increment_result
{
using type = mp11::mp_eval_if_not<
detail::conjunction<
// A proxy is only needed for readable iterators
std::is_convertible<
Reference,
// Use add_lvalue_reference to form `reference to Value` due to
// some (strict) C++03 compilers (e.g. `gcc -std=c++03`) reject
// 'reference-to-reference' in the template which described in CWG
// DR106.
// http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_defects.html#106
typename std::add_lvalue_reference< Value const >::type
>,
// No multipass iterator can have values that disappear
// before positions can be re-visited
detail::negation<
detail::is_traversal_at_least< CategoryOrTraversal, forward_traversal_tag >
>
>,
Iterator,
mp11::mp_if,
is_non_proxy_reference< Reference, Value >,
postfix_increment_proxy< Iterator >,
writable_postfix_increment_proxy< Iterator >
>;
};
// operator->() needs special support for input iterators to strictly meet the
// standard's requirements. If *i is not a reference type, we must still
// produce an lvalue to which a pointer can be formed. We do that by
// returning a proxy object containing an instance of the reference object.
template< typename Reference, typename Pointer >
struct operator_arrow_dispatch // proxy references
{
struct proxy
{
explicit proxy(Reference const& x) : m_ref(x) {}
Reference* operator->() { return std::addressof(m_ref); }
// This function is needed for MWCW and BCC, which won't call
// operator-> again automatically per 13.3.1.2 para 8
operator Reference*() { return std::addressof(m_ref); }
Reference m_ref;
};
using result_type = proxy;
static result_type apply(Reference const& x)
{
return result_type(x);
}
};
template< typename T, typename Pointer >
struct operator_arrow_dispatch< T&, Pointer > // "real" references
{
using result_type = Pointer;
static result_type apply(T& x)
{
return std::addressof(x);
}
};
// A proxy return type for operator[], needed to deal with
// iterators that may invalidate referents upon destruction.
// Consider the temporary iterator in *(a + n)
template< typename Iterator >
class operator_brackets_proxy
{
// Iterator is actually an iterator_facade, so we do not have to
// go through iterator_traits to access the traits.
using reference = typename Iterator::reference;
using value_type = typename Iterator::value_type;
public:
operator_brackets_proxy(Iterator const& iter) :
m_iter(iter)
{}
operator reference() const
{
return *m_iter;
}
operator_brackets_proxy& operator=(value_type const& val)
{
*m_iter = val;
return *this;
}
private:
Iterator m_iter;
};
// A metafunction that determines whether operator[] must return a
// proxy, or whether it can simply return a copy of the value_type.
template< typename ValueType, typename Reference >
struct use_operator_brackets_proxy :
public detail::negation<
detail::conjunction<
std::is_copy_constructible< ValueType >,
std::is_trivial< ValueType >,
iterator_writability_disabled< ValueType, Reference >
>
>
{};
template< typename Iterator, typename Value, typename Reference >
struct operator_brackets_result
{
using type = typename std::conditional<
use_operator_brackets_proxy<Value, Reference>::value,
operator_brackets_proxy<Iterator>,
Value
>::type;
};
template< typename Iterator >
inline operator_brackets_proxy<Iterator> make_operator_brackets_result(Iterator const& iter, std::true_type)
{
return operator_brackets_proxy< Iterator >(iter);
}
template< typename Iterator >
inline typename Iterator::value_type make_operator_brackets_result(Iterator const& iter, std::false_type)
{
return *iter;
}
// A binary metafunction class that always returns bool.
template< typename Iterator1, typename Iterator2 >
using always_bool_t = bool;
template< typename Iterator1, typename Iterator2 >
using choose_difference_type_t = typename std::conditional<
std::is_convertible< Iterator2, Iterator1 >::value,
iterator_difference< Iterator1 >,
iterator_difference< Iterator2 >
>::type::type;
template<
typename Derived,
typename Value,
typename CategoryOrTraversal,
typename Reference,
typename Difference,
bool IsBidirectionalTraversal,
bool IsRandomAccessTraversal
>
class iterator_facade_base;
} // namespace detail
// Macros which describe the declarations of binary operators
#define BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, enabler) \
template< \
typename Derived1, typename V1, typename TC1, typename Reference1, typename Difference1, \
typename Derived2, typename V2, typename TC2, typename Reference2, typename Difference2 \
> \
prefix typename enabler< \
Derived1, Derived2, \
result_type< Derived1, Derived2 > \
>::type \
operator op( \
iterator_facade< Derived1, V1, TC1, Reference1, Difference1 > const& lhs, \
iterator_facade< Derived2, V2, TC2, Reference2, Difference2 > const& rhs)
#define BOOST_ITERATOR_FACADE_INTEROP_HEAD(prefix, op, result_type) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, boost::iterators::detail::enable_if_interoperable)
#define BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(prefix, op, result_type) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, boost::iterators::detail::enable_if_interoperable_and_random_access_traversal)
#define BOOST_ITERATOR_FACADE_PLUS_HEAD(prefix,args) \
template< typename Derived, typename V, typename TC, typename R, typename D > \
prefix typename std::enable_if< \
boost::iterators::detail::is_traversal_at_least< \
TC, \
boost::iterators::random_access_traversal_tag \
>::value, \
Derived \
>::type operator+ args
//
// Helper class for granting access to the iterator core interface.
//
// The simple core interface is used by iterator_facade. The core
// interface of a user/library defined iterator type should not be made public
// so that it does not clutter the public interface. Instead iterator_core_access
// should be made friend so that iterator_facade can access the core
// interface through iterator_core_access.
//
class iterator_core_access
{
template< typename I, typename V, typename TC, typename R, typename D >
friend class iterator_facade;
template< typename I, typename V, typename TC, typename R, typename D, bool IsBidirectionalTraversal, bool IsRandomAccessTraversal >
friend class detail::iterator_facade_base;
#define BOOST_ITERATOR_FACADE_RELATION(op) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD(friend, op, boost::iterators::detail::always_bool_t);
BOOST_ITERATOR_FACADE_RELATION(==)
BOOST_ITERATOR_FACADE_RELATION(!=)
#undef BOOST_ITERATOR_FACADE_RELATION
#define BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(friend, op, boost::iterators::detail::always_bool_t);
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<=)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>=)
#undef BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(friend, -, boost::iterators::detail::choose_difference_type_t);
BOOST_ITERATOR_FACADE_PLUS_HEAD(
friend inline,
(iterator_facade< Derived, V, TC, R, D > const&, typename Derived::difference_type)
);
BOOST_ITERATOR_FACADE_PLUS_HEAD(
friend inline,
(typename Derived::difference_type, iterator_facade< Derived, V, TC, R, D > const&)
);
template< typename Facade >
static typename Facade::reference dereference(Facade const& f)
{
return f.dereference();
}
template< typename Facade >
static void increment(Facade& f)
{
f.increment();
}
template< typename Facade >
static void decrement(Facade& f)
{
f.decrement();
}
template< typename Facade1, typename Facade2 >
static bool equal(Facade1 const& f1, Facade2 const& f2, std::true_type)
{
return f1.equal(f2);
}
template< typename Facade1, typename Facade2 >
static bool equal(Facade1 const& f1, Facade2 const& f2, std::false_type)
{
return f2.equal(f1);
}
template< typename Facade >
static void advance(Facade& f, typename Facade::difference_type n)
{
f.advance(n);
}
template< typename Facade1, typename Facade2 >
static typename Facade1::difference_type distance_from(Facade1 const& f1, Facade2 const& f2, std::true_type)
{
return -f1.distance_to(f2);
}
template< typename Facade1, typename Facade2 >
static typename Facade2::difference_type distance_from(Facade1 const& f1, Facade2 const& f2, std::false_type)
{
return f2.distance_to(f1);
}
//
// Curiously Recurring Template interface.
//
template< typename I, typename V, typename TC, typename R, typename D >
static I& derived(iterator_facade< I, V, TC, R, D >& facade)
{
return *static_cast< I* >(&facade);
}
template< typename I, typename V, typename TC, typename R, typename D >
static I const& derived(iterator_facade< I, V, TC, R, D > const& facade)
{
return *static_cast< I const* >(&facade);
}
// objects of this class are useless
iterator_core_access() = delete;
};
namespace detail {
// Implementation for forward traversal iterators
template<
typename Derived,
typename Value,
typename CategoryOrTraversal,
typename Reference,
typename Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, false, false >
{
private:
using associated_types = boost::iterators::detail::iterator_facade_types<
Value, CategoryOrTraversal, Reference, Difference
>;
using operator_arrow_dispatch_ = boost::iterators::detail::operator_arrow_dispatch<
Reference,
typename associated_types::pointer
>;
public:
using value_type = typename associated_types::value_type;
using reference = Reference;
using difference_type = Difference;
using pointer = typename operator_arrow_dispatch_::result_type;
using iterator_category = typename associated_types::iterator_category;
public:
reference operator*() const
{
return iterator_core_access::dereference(this->derived());
}
pointer operator->() const
{
return operator_arrow_dispatch_::apply(*this->derived());
}
Derived& operator++()
{
iterator_core_access::increment(this->derived());
return this->derived();
}
protected:
//
// Curiously Recurring Template interface.
//
Derived& derived()
{
return *static_cast< Derived* >(this);
}
Derived const& derived() const
{
return *static_cast< Derived const* >(this);
}
};
// Implementation for bidirectional traversal iterators
template<
typename Derived,
typename Value,
typename CategoryOrTraversal,
typename Reference,
typename Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false > :
public iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, false, false >
{
public:
Derived& operator--()
{
iterator_core_access::decrement(this->derived());
return this->derived();
}
Derived operator--(int)
{
Derived tmp(this->derived());
--*this;
return tmp;
}
};
// Implementation for random access traversal iterators
template<
typename Derived,
typename Value,
typename CategoryOrTraversal,
typename Reference,
typename Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, true > :
public iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false >
{
private:
using base_type = iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false >;
public:
using reference = typename base_type::reference;
using difference_type = typename base_type::difference_type;
public:
typename boost::iterators::detail::operator_brackets_result< Derived, Value, reference >::type
operator[](difference_type n) const
{
return boost::iterators::detail::make_operator_brackets_result< Derived >(
this->derived() + n,
std::integral_constant< bool, boost::iterators::detail::use_operator_brackets_proxy< Value, Reference >::value >{}
);
}
Derived& operator+=(difference_type n)
{
iterator_core_access::advance(this->derived(), n);
return this->derived();
}
Derived& operator-=(difference_type n)
{
iterator_core_access::advance(this->derived(), -n);
return this->derived();
}
Derived operator-(difference_type x) const
{
Derived result(this->derived());
return result -= x;
}
};
} // namespace detail
//
// iterator_facade - use as a public base class for defining new
// standard-conforming iterators.
//
template<
typename Derived, // The derived iterator type being constructed
typename Value,
typename CategoryOrTraversal,
typename Reference,
typename Difference
>
class iterator_facade :
public detail::iterator_facade_base<
Derived,
Value,
CategoryOrTraversal,
Reference,
Difference,
detail::is_traversal_at_least< CategoryOrTraversal, bidirectional_traversal_tag >::value,
detail::is_traversal_at_least< CategoryOrTraversal, random_access_traversal_tag >::value
>
{
protected:
// For use by derived classes
using iterator_facade_ = iterator_facade< Derived, Value, CategoryOrTraversal, Reference, Difference >;
};
template< typename I, typename V, typename TC, typename R, typename D >
inline typename boost::iterators::detail::postfix_increment_result< I, V, R, TC >::type
operator++(iterator_facade< I, V, TC, R, D >& i, int)
{
typename boost::iterators::detail::postfix_increment_result< I, V, R, TC >::type
tmp(*static_cast< I* >(&i));
++i;
return tmp;
}
//
// Comparison operator implementation. The library supplied operators
// enables the user to provide fully interoperable constant/mutable
// iterator types. I.e. the library provides all operators
// for all mutable/constant iterator combinations.
//
// Note though that this kind of interoperability for constant/mutable
// iterators is not required by the standard for container iterators.
// All the standard asks for is a conversion mutable -> constant.
// Most standard library implementations nowadays provide fully interoperable
// iterator implementations, but there are still heavily used implementations
// that do not provide them. (Actually it's even worse, they do not provide
// them for only a few iterators.)
//
// ?? Maybe a BOOST_ITERATOR_NO_FULL_INTEROPERABILITY macro should
// enable the user to turn off mixed type operators
//
// The library takes care to provide only the right operator overloads.
// I.e.
//
// bool operator==(Iterator, Iterator);
// bool operator==(ConstIterator, Iterator);
// bool operator==(Iterator, ConstIterator);
// bool operator==(ConstIterator, ConstIterator);
//
// ...
//
// In order to do so it uses c++ idioms that are not yet widely supported
// by current compiler releases. The library is designed to degrade gracefully
// in the face of compiler deficiencies. In general compiler
// deficiencies result in less strict error checking and more obscure
// error messages, functionality is not affected.
//
// For full operation compiler support for "Substitution Failure Is Not An Error"
// (aka. enable_if) and boost::is_convertible is required.
//
// The following problems occur if support is lacking.
//
// Pseudo code
//
// ---------------
// AdaptorA<Iterator1> a1;
// AdaptorA<Iterator2> a2;
//
// // This will result in a no such overload error in full operation
// // If enable_if or is_convertible is not supported
// // The instantiation will fail with an error hopefully indicating that
// // there is no operator== for Iterator1, Iterator2
// // The same will happen if no enable_if is used to remove
// // false overloads from the templated conversion constructor
// // of AdaptorA.
//
// a1 == a2;
// ----------------
//
// AdaptorA<Iterator> a;
// AdaptorB<Iterator> b;
//
// // This will result in a no such overload error in full operation
// // If enable_if is not supported the static assert used
// // in the operator implementation will fail.
// // This will accidently work if is_convertible is not supported.
//
// a == b;
// ----------------
//
#define BOOST_ITERATOR_FACADE_INTEROP(op, result_type, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD(inline, op, result_type) \
{ \
return_prefix iterator_core_access::base_op( \
*static_cast< Derived1 const* >(&lhs), \
*static_cast< Derived2 const* >(&rhs), \
std::integral_constant< bool, std::is_convertible< Derived2, Derived1 >::value >() \
); \
}
#define BOOST_ITERATOR_FACADE_RELATION(op, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP( \
op, \
boost::iterators::detail::always_bool_t, \
return_prefix, \
base_op \
)
BOOST_ITERATOR_FACADE_RELATION(==, return, equal)
BOOST_ITERATOR_FACADE_RELATION(!=, return !, equal)
#undef BOOST_ITERATOR_FACADE_RELATION
#define BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS(op, result_type, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(inline, op, result_type) \
{ \
return_prefix iterator_core_access::base_op( \
*static_cast< Derived1 const* >(&lhs), \
*static_cast< Derived2 const* >(&rhs), \
std::integral_constant< bool, std::is_convertible< Derived2, Derived1 >::value >() \
); \
}
#define BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(op, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS( \
op, \
boost::iterators::detail::always_bool_t, \
return_prefix, \
base_op \
)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<, return 0 >, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>, return 0 <, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<=, return 0 >=, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>=, return 0 <=, distance_from)
#undef BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION
// operator- requires an additional part in the static assertion
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS(
-,
boost::iterators::detail::choose_difference_type_t,
return,
distance_from
)
#undef BOOST_ITERATOR_FACADE_INTEROP
#undef BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS
#define BOOST_ITERATOR_FACADE_PLUS(args) \
BOOST_ITERATOR_FACADE_PLUS_HEAD(inline, args) \
{ \
Derived tmp(static_cast< Derived const& >(i)); \
return tmp += n; \
}
BOOST_ITERATOR_FACADE_PLUS((iterator_facade< Derived, V, TC, R, D > const& i, typename Derived::difference_type n))
BOOST_ITERATOR_FACADE_PLUS((typename Derived::difference_type n, iterator_facade< Derived, V, TC, R, D > const& i))
#undef BOOST_ITERATOR_FACADE_PLUS
#undef BOOST_ITERATOR_FACADE_PLUS_HEAD
#undef BOOST_ITERATOR_FACADE_INTEROP_HEAD
#undef BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD
#undef BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL
} // namespace iterators
using iterators::iterator_core_access;
using iterators::iterator_facade;
} // namespace boost
#endif // BOOST_ITERATOR_FACADE_23022003THW_HPP