Wiliom Barden,Jr.

ﬂssemblu Ldngque
Subroutines

Acollectionof
easy-to-use subroutines

for your TH>-80 =
—a et O

| WILLIAM BARDEN, JR.

' TRS-80
" ASSEMBLY

' LANGUAGE
' SUBROUTINES

I A SPECTRUM BOOK

Library of Congress Cataloging in Publication Data

Barden, William T.
TRS-80 assembly language subroutines.

{A Spectrum Book)
1. TRS-80 (Computer)—Programming. 2. Assembler

language (Computer program language) | Title.
QA76.8.T18B373 001.64'2 82-383
ISBN 0-13-931188-2 (pbk.) AACR2

This Spectrum Book is available to businesses and organizations
at a special discount when ordered in large quantities. For
information, contact Prentice-Hall, Inc., General Publishing
Division, Special Sales, Englewood Cliffs, N. J. 07632.

0-13-931188-2

© 1982 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632
A SPECTRUM BOOK

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2
Printed in the United States of America

Editorial production supervision by Frank Moorman
Cover design by Ira Shapiro
Manufacturing buyers: Cathie Lenard and Barbara A. Frick

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Contents

Preface, v

I TRS-80 ASSEMBLY-LANGUAGE PROGRAMMING
TECHNIQUES

1 A Brief Look at TRS-80 Assembly-Language Programming, 3

2 Using Assembly Language on the TRS-80, 13

I I TRS-80 ASSEMBLY LANGUAGE SUBROUTINES
ABXBIN: ASCII BINARY TO BINARY CONVERSION, 31 -
ADEBCD: ASCIl DECIMAL TO BCD CONVERSION, 34
ADXBIN: ASCIl DECIMAL TO BINARY CONVERSION, 37
AHXBIN: ASCII HEXADECIMAL TO BINARY CONVERSION, 40
AOXBIN: ASCIl OCTAL TO BINARY CONVERSION, 43
BCADDN: MULTIPLE-PRECISION BCD ADD, 45

BCDXAD: BCD TO ASClH DECIMAL CONVERSION, 49
BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT, 52
BXBINY: BINARY TO ASCII BINARY CONVERSION, 55
BXDECL: BINARY TO ASCII DECIMAL CONVERSION, 59
BXHEXD: BINARY TO ASCHl HEXADECIMAL CONVERSION, 62
BXOCTL: BINARY TO ASCIl OCTAL CONVERSION, 65
CHKSUM: CHECKSUM MEMORY, 68

CLEARS: CLEAR SCREEN, 71

CSCLNE: CLEAR SCREEN LINES, 72

CSTRNG: STRING COMPARE, 74

DELBLK: DELETE BLOCK, 78

DRBOXS: DRAW BOX, 81

DRHLNE: DRAW HORIZONTAL LINE, 85

DRVLNE: DRAW VERTICAL LINE, 87

DSEGHT: DIVIDE 16 BY 8, 89

DSSIXT: DIVIDE 16 BY 16, 92

EXCLOR: EXCLUSIVE OR, 95

FILLME: FILL MEMORY, 96

FKBTST: FAST KEYBOARD TEST, 99

FSETGR: FAST GRAPHICS SET/RESET, 100

INBLCK: INSERT BLOCK, 104

METEST: MEMORY TEST, 108

vos
111

MLEBYE: FAST 8 BY 8 MULTIPLY, 112

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY, 114

MOVEBL: MOVE BLOCK, 117

MPADDN: MULTIPLE-PRECISION ADD, 120

MPSUBT: MULTIPLE-PRECISION SUBTRACT, 124

MSLEFT: MULTIPLE SHIFT LEFT, 127

MSRGHT: MULTIPLE SHIFT RIGHT, 129

MUNOTE: MUSICAL NOTE, 131

MVDIAG: MOVING DOT DIAGONAL, 136

MVHORZ: MOVING DOT HORIZONTAL, 139

MVVERT: MOVING DOT VERTICAL, 142

NECDRV: NEC SPINWRITER DRIVER, 145

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR, 147
RANDOM: RANDOM NUMBER GENERATOR, 149
RCRECD: READ CASSETTE RECORD, 151

RDCOMS: READ RS-232-C SWITCHES, 155

READDS: READ DISK SECTOR, 158

RESTDS: RESTORE DISK, 162

RKNOWT: READ KEYBOARD WITH NO WAIT, 164
RKWAIT: READ KEYBOARD AND WAIT, 168

SCDOWN: SCROLL SCREEN DOWN, 171

SCUSCR: SCROLL SCREEN UP, 173

SDASCI: SCREEN DUMP TO PRINTER IN ASCII, 175
SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS, 177
SETCOM: SET RS-232-C INTERFACE, 181

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY, 184
SPCAST: SERIAL PRINTER FROM CASSETTE, 188

SQROOT: SQUARE ROOT, 191

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY, 193
SSNCHR: SEARCH STRING FOR N CHARACTERS, 196
SSOCHR: SEARCH STRING FOR ONE CHARACTER, 200
SSTCHR: SEARCH STRING FOR TWO CHARACTERS, 203
SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE, 206
TIMEDL: TIME DELAY, 208

TONOUT: TONE ROUTINE, 210

WCRECD: WRITE RECORD TO CASSETTE, 213

WRDSEC: WRITE DISK SECTOR, 216

l l I APPENDICES
Appendix 1:
Z-80 Instruction Set, 223

Appendix 2:
Decimal/Hexadecimal Conversion, 231

iv

aaS @SS S SR N O GEaEE AN BN AaEER M SRS 0 SAEaE ASRGEE 0 DS 0 SEEa 0 S 090 SDEMGE 020 GeueanR 00 ASINEER

Preface

Radio Shack TRS-80 Model 1, 11, and 1Il assembly language is a powerful way
to program. Assembly-language programs may run as much as 300 times faster
than their BASIC counterparts, turning a boring BASIC game into a high-
speed video chase or a day-long sort into minutes. Unfortunately, assembly lan-
guage is also difficult to learn and, once learned, a tedious language in which
to program.

What is the solution in using assembly language on the Radio Shack com-
puters? This book offers one solution—precanned, debugged, and documented
assembly-language subroutines for the TRS-80 computers. In it, you'll find sub-
routines that will speed up your graphics by a factor of 300, subroutines that
enable you to perform high-speed sorts, general-purpose subroutines that will
allow you to do number base conversions and square roots, and special utility
subroutines, such as subroutines to ““dump” the video screen to cassette or to
read a disk sector.

There are 65 of these assembly-language subroutines. The subroutines may be
easily interfaced to BASIC programs—they are specifically geared to BASIC
interfacing, as a matter of fact. Each subroutine is relocatable; the assembly-
language code is such that the subroutine may be placed anywhere in memory
without reassembling the subroutine. To make this task very easy, we've in-
cluded the equivalent decimal code after the listing of each subroutine. It's
simply a matter of taking the dozen, or two dozen, or three dozen decimal
values and embedding them in BASIC programs as DATA statement values or
strings. From that point on, the subroutine exists as part of the BASIC program.

Of course, you may not want to always use the subroutines in BASIC programs,
You may want to CALL them in your own assembly-language code. We've also
made it easy for you to do this. Each set of code can be called as a separate
assembly-language module. You may want to reassemble and modify the code,
but, if not, the code is usable as it stands, and it is completely relocatable.

Although the subroutines are slanted toward the TRS-80 Model I and 1lI, many
of them can also be used on the TRS-80 Model |I; all three computers, of course,
use the Z-80 microprocessor.

The first chapter of this book, “A Brief Look at TRS-80 Assembly-Language
Programming,”” contains introductory material on Z-80 assembly-language pro-
gramming, to make you familiar with some of the techniques. It's not abso-
Jutely necessary that you read this chapter. The next chapter, “'Using Assembly
Language on the TRS-80," shows you how assembly language may be used in
either a BASIC or stand-alone environment. This chapter is not an absolute
requirement, either, but you may want to study it further when you start using
the subroutines and embedding them in BASIC programs or running them as
separate entities.

The bulk of the book consists of 65 separate assembly-language subroutines.
Each subroutine consists of a description, the subroutine listing, and equivalent
decimal values for the “machine code’”” of the subroutine.

The description gives a brief idea of what the subroutine accomplishes and
shows the input and output parameters that are used to pass information back
and forth between the subroutine and the calling program.

The description also includes a complete explanation of the algorithm used in
the subroutine—how the subroutine accomplishes the function in Z-80 code.

Another element in the description is a sample call to the subroutine using
actual input and output values. The sample calls use a “TRS-80 Assembly-
Language Subroutines Exerciser’” program, TALSEX for short. TALSEX is a
Model /11l Disk BASIC program that was used to exercise the subroutines; it is
fully described in Chapter 2 and is used in the descriptions to conveniently
show the action of each subroutine.

Notes pertaining to the use of the subroutine are also included in the descrip-
tion along with a ““checksum’’ value that can be used to verify that you have
entered the program data correctly.

The assembly-language listing is the actual listing from the Z-80 assembler. It
shows every instruction used in the subroutine and also is heavily ““com-

mented.”” Because of this, the listing may be used in self-study on assembly-
language programming and techniques.

The last portion of each subroutine is a complete set of decimal values to be
used for inclusion in a BASIC program in DATA statements or the like. We've
done the conversion from hexadecimal to BASIC for you, to minimize operator
error. These values, when added together by the CHKSUM subroutine, should
correspond to the Checksum value in the description, giving you a way to
check the validity of the data in your program.

An appendix on Z-80 instructions and a second on decimal/hexadecimal con-
version complete the book.

We hope that you'll find these subroutines useful in BASIC, in assembly-
language programs, and in self-study of Z-80 assembly language on the
TRS-80s.

To John Foster and ASHEE”

TRS-80 ASSEMBLY-
LANGUAGE
PROGRAMMING
TECHNIQUES

A Brief Look at TRS-80
Assembly-Language
Programming

The Z-80 Microprocessor

In this chapter we'll discuss some rudimentary assembly-language concepts. It
isn’t necessary that you understand everything in this chapter, or even that you
read the chapter to use the subroutines in this book. If you choose to do so,
however, you'll get a better idea of how assembly language is done.

The Z-80 microprocessor is used in the TRS-80 Model 1, 1i, and il microcom-
puters. It is a third-generation microprocessor that is truly a ““computer on a
chip.”” When we speak about TRS-80 assembly-language programming we're
really discussing the built-in instruction set of the Z-80 microprocessor.

Unlike BASIC statement execution, the Z-80 performs instructions at the most
rudimentary level. Typical instructions would add two 8-bit numbers, subtract
two 8-bit numbers, load a CPU register with the contents of a memory location,
or store a CPU register into a memory location.

Z-80 Registers

All assembly-language programs are built up of a set of Z-80 instructions in
sequence, which are executed by the Z-80. These instructions are held in mem-
ory in binary and may be one to four bytes long. The binary values for the
instructions are called machine language, because this is the form that the Z-80
computing machine recognizes.

Before we look at some of the Z-80 instructions, let's take a further look at the
Z-80 architecture. Figure 1-1 shows the internal registers available to the ma-
chine-language or assembly-language programmer. We won’t show some of
the other registers involved in internal microprocessor operations, such as
memory access or timing.

8 BITS

. s
F 4/
B ™
c 4
D .
E
oY

GENERAL L4 LY ONE SET,
REGISTERS | A CAN BE ACTIVE
s
B % P—*_J
c 4
D™
£ 4
H ™
L <
X INDEX REGISTER
Y INDEX REGISTER
PC PROGRAM COUNTER
SP STACK POINTER
| R INTERRUPT, REFRESH
REGISTERS
16 BITS

) DENOTES REGISTER PAIRS

FIGURE 1-1 Z-80 registers for use in assembly language.

The Z-80 registers are fast-access memory locations located in the Z-80. The A,
B, C, D, E, H, and L registers are general-purpose 8-bit registers in the Z-80.
They are used to hold temporary results and for processing.

The A register is the main accumulator register. It holds one operand for adds,
subtracts, and other arithmetic operations while the other operand may come

from memory or another register. The other registers are used as auxiliary regis-
ters, with the exception of H and L.

H and L, along with B and C and D and E, can be grouped together as register
pairs of 16 bits. When this is done, the registers act as three 16-bit wide registers
called HL, BC, and DE. The HL register pair (often called the HL register) is a
kind of 16-bit accumulator similar to the A register. It can be used for 16-bit
adds, subtracts, and other operations.

The IX and 1Y registers are 16-bit registers that can be used as index registers, or
pointers to memory locations. We'll discuss these a little later on, when we talk
about Z-80 addressing modes.

The PC, or program counter, register is the main control register not only in the
Z-80 microprocessor, but in the whole TRS-80 system. It controls execution of
all programs, assembly-language or BASIC. After all, BASIC is simply an assem-
bly-language program that operates on a series of higher-level statements. The
PC is 16 bits wide and points to the first byte of the next instruction in memory to
be executed. As an assembly-language program executes, the PC is constantly
being updated by one to point to the next byte of the instruction or is loaded
with a jump address to enable a jump to a new location in memory.

The SP, or stack pointer, register, is a 16-bit register that points to the stack area.
The stack area is a special section of RAM memory that is set aside to hold
return addresses from CALL instructions, temporary results, or interrupt loca-
tions. This stack area, typically only one hundred bytes long, builds downward
as the stack is used. Every time an assembly-language CALL instruction (similar
to a BASIC GOSUB) is executed, the return address from the PC register is
pushed onto the stack. A subsequent RET(urn) instruction pops the stack and
reloads the PC with the return address.

The R and | registers can be largely ignored by the programmer. (The R register
is used in one subroutine in this book.) The I register is used for a special
interrupt mode in other Z-80 systems, and R is used for refresh of the dynamic
memories in the TRS-80 systems.

We've given a thumbnail sketch of all of the Z-80 registers except one, the F
register. The F register is a collection of the eight flags shown in figure 1-2.
These flags are set by the action of assembly-language instructions. The Z flag,
for example, stands for Z(ero) flag. The Zero flag is set whenever the result of
certain adds, subtracts, or other types of arithmetic operations is zero. The
other flags are set for similar conditions. The flags are used in conditional jump
instructions to alter the flow of an assembly-language program. The program
could jump to a new set of codes if the result of an add was a negative number,
for example. The A and F registers are treated together as one 16-bit register
pair for storage in the stack and other operations.

The seven general-purpose registers and the flags register are duplicated in the
7-80. The second set, called the prime set, is available as additional register
storage. One or the other set may be selected by two instructions.

Z-80 Instructions

FIGURE 1-2 F registers. ~— PARITY (P}/OVERFLOW (V] FLAG.
RECORDS “ODD/EVENESS™ OR
OVERFLOW CONDITIONS

SIGN FLAG. SET IF ADD SUBTRACT FLAG. RECORD
RESULT IS NEGATIVE, ADD/SUBTRACT MODE.* s
RESET IF RESULT

IS ZERO OR POSITIVE.

METIC AND OTHER
OPERATIONS

CARRY FLAG. HOLDS
I “CARRY” FROM ARITH-

S z X H X PV N C

X=NOT USED

* =NOT GENERALLY ACCESSIBLE
TO PROGRAMMER

ZERO FLAG. SET
IF RESULT OF
OPERATION IS ZERO.

HALF CARRY FLAG. —
HOLDS CARRY FROM
BIT 3.°

The instruction repertoire of the Z-80 contains well over 700 unique instruc-
tions. Fortunately, many of these instructions can be grouped together, and the
actual number of similar groups is much easier to manage.

Loads generally load the contents of an 8-bit memory location, CPU register, or
immediate value in the instruction itself into a CPU register. A second class of
loads store the contents of an 8-bit CPU register into memory. Loads may also
be done on 16-bits of data in a register pair, loading or storing two bytes of data.
There are a great number of load-type instructions in the Z-80. A load instruc-
tion in the Z-80 is denoted by an *LD,”” and you will see many, many loads in
every program. A load is really just a way of transferring data.

Arithmetic instructions add or subtract 8 bits of data with the A register, or 16
bits of data with the HL, IX, or IY registers. These are simply adds and subtracts
of binary numbers, sometimes with the state of the Carry flag (a one or a zero)
being added into the result. Adds and subtracts are denoted by ADD, ADC,
SUB, or SBC. A special type of subtract, the compare (CP), compares two 8-bit
values.

A number of instructions related to arithmetic instructions allow adding (INCre-
menting) or subtracting (DECrementing) one count from the contents of a CPU
register or memory location.

Logical instructions perform ANDs, ORs, or exclusive ORs on operands in the
A register. The ANDs and ORs are identical to BASIC ANDs and ORs, except
that they operate with 8 bits of data, while the XOR is similar to an OR except
that two one bits produce a zero bit in the result.

Shift instructions shift data in any of the 8-bit CPU registers one bit position
right or left. There are several different types of shifts, including the rotate,
which rotates the data out of the register and into the other end, the logical

Z-80 Addressing Modes

shift, which shifts data out with zeroes filling vacated bit positions, and the
arithmetic shift, which sign extends the value in the register. Mnemonics for
shifts are RLCA, RLA, RRCA, RRA, RLC, RL, RRC, RR, SLA, SRA, SRL, RLD, and
RRD.

Jumps, CALLs, and return instructions handle alterations of the program path
similar to BASIC GOTOs, IF . . . THEN, GOSUBs, and RETURNSs. There are
two types of jumps, conditional and unconditional. Unconditional jumps al-
ways jump to a new location, while a conditional jump jumps if the condition,
such as Zero Flag=1, is present. CALLs are identical to BASIC GOSUBs. They
call an assembly-language subroutine and save the return point in the program
stack. A RET(urn) retrieves the return address from the stack and returns to the
instruction after the CALL. CALLs and RETurns may also be conditional or
unconditional. Jumps are denoted by JP or JR, CALLs by CALL, and RETurns by
RET.

A special type of jump is used in conjunction with a loop count in the B
register. The DJNZ instruction (Decrement and Jump if Not Zero) decrements
the count in B by one and then jumps back to the beginning of a loop if the
count is not zero.

Bit manipulation instructions allow operations on a bit level. Data in a CPU
register or in memory can be referenced by the bit address, 7 through 0, and the
applicable bit can be set, reset, or tested. Bit manipulation instructions are
denoted by SET, RES, or BIT.

“Block’” instructions allow operations on many bytes of data in a block. Blocks
of data may be searched (CPl, CPD, CPIR, CPDR) or moved (LD1, LDD, LDIR,
LDDR) using these instructions.

Input/output instructions handle operations between CPU registers and an ex-
ternal input/output device, such as cassette tape. The TRS-80s allow both
“‘memory-mapped’’ and “I/O mapped’’ input/output. This means that an
input/output device may look either like another memory location (memory
mapped) or as a special device addressed through an input/output port. When
the system 1/O ports are used, input is normally done with an IN instruction and
output with an OUT instruction.

Stack instructions allow data in CPU register pairs; including the AF register
pair, to be temporarily stored in the system stack. PUSH pushes a single register
pair to the stack and POP retrieves the data into the original register pair or
another.

We haven't mentioned all of the Z-80 instructions, but the above list would
encompass most of the instructions used in common Z-80 assembly-language
code. Special instructions are sometimes described in the documentation on
the subroutines, and there’s always reference material in Zilog or Radio Shack
publications that describe the Z-80 instructions in great detail.

There are a number of different ways to access data with the Z-80 instruction
set. These are called addressing modes.

One type of addressing mode allows operations between CPU registers. You
can see that it's convenient to add two numbers located in two CPU registers,
for example. A complete instruction using this type of addressing mode might
be “ADD A,B,”” which adds the contents of the B register to the contents of the
Alccumulator) register and puts the result into the A register. Another sample of
this type of instruction is “INC DE,” which adds one to the contents of the DE
register pair and puts the result back into the DE register pair.

Register addressing is normally used for arithmetic and logical instructions,
shifts, and load instructions.

Load and store instructions must transfer data between CPU registers and mem-
ory. One addressing mode that implements this in load-type instructions is the
direct addressing mode. This mode allows a CPU register to be loaded or stored
directly to a RAM memory address specified in the instruction. A “LD
A,(3CO0H),” for example, would load the contents of the first video display
memory location into the A register. Similarly, a /LD (3FFFH),A”" would store
the contents of A into the last location of the video display memory. Not only 8
bits of data can be transferred. Sixteen-bit operations are possible with instruc-
tions such as LD (3CO0H), HL,”” which stores the contents of the HL register
pair into video memory locations 3CO0H (L) and 3COTH (H).

Direct addressing is also used in some types of jump and CALL instructions. In
this case the address specified in the instruction is the address to which the
instruction will jump or which the instruction will call. The instruction “CALL
212H,"" for example, CALLs the ROM subroutine located at memory location
212H. The 212H is a part of the instruction as a direct address.

The immediate addressing mode is used to load a data value into either an 8-bit
CPU register or into a 16-bit register pair. The data value is usually a constant
value when loaded into the 8-bit register, but is often an address value when
loaded into a 16-bit register pair. The term “immediate” means that the data is
present as part of the instruction itself. The advantage to this mode is that of
speed and convenience. The immediate mode is faster than accessing a data
value from a memory location and one does not have to keep track of a large
number of constants in memory. The following code loads the value of 41H
(ASCII “A”) into the A register, and the address 3COOH into the HL register pair:

LD AATH Jload “A into A
LD HL,3C0o0H ;load start video memory to HL

Notice that when immediate addressing is used, the data is not surrounded by
parentheses, as it is in direct addressing, where the data represents a memory
address. The exception to this is in the jump or CALL instructions where the
memory address for the jump or CALL does not have parentheses.

Another type of memory reference addressing mode uses a register pair as a
pointer to a location in memory. The most commonly used pointer is the HL
register pair. In this type of addressing, the HL, BC, or DE register is preloaded
(by another instruction) with the address of the memory location to be used in
the “register indirect’” instruction. An example of this would be the two instruc-
tions

LD HL,3C00H ;load video memory start
LD (HL),A ;store into video start

The first instruction loads the memory address of 3COOH (the first byte of the
video memory) into the HL register pair. The next instruction stores the con-
tents of the A register by a “‘register indirect” store, using the memory address
in the HL register pair.

Another type of addressing mode that is similar in concept to that of using the
register pairs as pointers is the indexed addressing mode. In this mode, the IX or
IY index register is used as a pointer to a memory location. The index register
by itself, however, does not represent the complete address of the memory
location. The effective address, the one used in the instruction, is formed by
adding the contents of the 1Y or IX index register together with a displacement
address in the indexed instruction. The displacement is a “’signed”’ binary value
of 8 bits that may be a positive or negative quantity. The effective address,
therefore, is larger or smaller than the address in the index register. The indexed
addressing mode is commonly used where the index register points to the
beginning or end of a table or list of data; the displacement in the instruction
can then be used to reference memory locations close to the address in the
index register.

Suppose, for example, we had a table of data at memory location 8000H. The
following code would load 8000H + 5 into the A register, and 8000H + 10
into the B register:

LD 1Y,8000H ; load index register with 8000H
LD A(Y+5) : load 8005H contents into A
LD B,(Y+ 10) ; load 800AH contents into B

One important addressing mode for our purposes is the relative addressing
mode. In this mode, the memory address is not present in the instruction, as it
was for the jump or CALL, but is relative to the location of the instruction itself.
A displacement value in the instruction is used by the CPU, along with the
contents of the program counter, to figure out the effective address for the
jump. For example, if we looked in the machine-language code for a “DJNZ"
instruction, we would not see a two-byte memory address, but a one-byte
displacement value. If the jump in the DJNZ was to be made back to location
8000H, and the DJNZ was at location 800AH, the displacement value would be
OF4H, a negative OCH or twelve (the program counter points to two more than
the start of the DJNZ instruction).

Relative addressing is important for our purposes because it makes relocatable
code possible—assembly-language code that can be moved around anywhere
in memory and still execute properly. The key to relocatability is to avoid direct
addresses within instructions, and relative jumps such as DINZ and JRs are
used to advantage.

Bit addressing is another type of addressing mode. This mode is used only for
the bit-processing instructions. The bit position within a byte is referenced in
this mode, along with one of the other addressing modes we’ve mentioned

above. To set bit 6 in the memory location pointed to by the HL register pair, for
example, we’'d have

BIT 6,(HL) ; set bit 6 in memory location

Bit positions in 8-bit bytes are numbered from left to right, bit 7 through bit 0.
Bit positions in 16-bit ““‘words’’ are numbered from left to right also, bit 15
through bit 0. The bit position number represents the power of two associated
with the bit.

There are no hard and fast rules about which addressing type to use. Many
times the choice is dictated by the instruction—not all addressing types are
permitted with every instruction.

Machine Code and Assembly Language

We talked briefly about machine code, but haven't really made a distinction
between machine and assembly code. The difference can be seen quite easily
by reference to a typical listing in this book.

Figure 1-3 shows a short listing for CHKSUM. The listing is divided into several
parts. Starting from the left, we have the memory locations, in hexadecimal, for
which the subroutine was assembled. The value for each line shows where the
instruction on the line will reside: The code always starts at location 7FOOH. In
the case of subroutines in this book, these locations are meaningless, as the
code can be used not only at locations 7FOOH, but 8000H, 888FH, 9013H, or
any place in memory the user cares to put them. (More on that in Chapter 2.)

The next column is the actual machine code for the instruction in hexadecimal.
Two hexadecimal digits (0 through 9, A through F) make up one byte, so you
can see that the machine code is from two to six hexadecimal characters or one
to three bytes long. The maximum length of an instruction is four bytes, or eight
hexadecimal digits. Note that the memory location for the instruction in the
first column reflects the size of the previous instruction. If an instruction is three
bytes long and is located at 7FOBH, for example, the next memory location
will be three bytes greater, or 7FOEH.

The third column shows the editing line number for the instruction. The editing
line numbers are used only during the editing process and are never used
during program loading or execution.

The fourth, fifth, sixth, and seventh columns represent the assembly-language
code for the instructions. Sometimes this portion is called the ‘‘source image,”
because this is the portion that appears in the source file that is assembled.

The fifth column is the mnemonic for the instruction operation code, or op-
code. We've been using mnemonics all along. They are just a shorthand way of
writing down the instruction in convenient and recognizable form. The opera-
tion code describes the primary function of the instruction, as, for example, an
“ADD.”

10

FIGURE 1-3 Partial CHKSUM listing. SOURCE IMAGE

7F 2@ gai1a0 ORG 7EAOH b7 e e
BRI E LTS E ST EEE LS E T T ST E ST TSI T L TP LSS L L LY e e T)
Q@1 2@! 5% CHECKSUM MEMORY. CHECREUMS A& BLOCK OF MEMORY. *
D@130) 5% INPUT: HL=>PARAMETER BLOCK *
QR14@1 5% FARAM+@: +1=8TARTING ADDRESS OF BLOCK *
BR15G] 3% PARAM+Zs +3=# OF BYTES IN BLOCK #*
PB16G| 5% QUTPUT tHL=ADDITIVE CHECKSUM ¥*
LA AR S E S E S XS TS L EL ETETTLTITLEEEL TS EISTEISISELSLEL LTSS EEE ST LS T3
0180 3

7FRRIFS QR19@1CHRSUM | IPUSH AF 3SAVE REGISTERS

TF@1CS [l rahedraiv} PUSH B¢

7FRz DS QRz13 FUSH DE

7F@3{DDES [ralry i v} PUSH IX

7FO5 ICD7F@A D@=30 CALL @BA7FH 3 ¥GET PR LOCT N#®#®

7FA8HES BOz40 PUSH HL. s TRANSFER HL TO IX

7F@9||1DDE1 Raz50 FOP IX

7FOR||DD6EBZ DRZ260 LD s (IX+2) SGQET # OF BYTES

7FQE ||DD&6BS QP78 LD Hs (IX+3)

7F1i1{|DD3EGD [ra]vapmdein] L.D Es (IX+0) sGET STARTING ADDRESS

7F14IDD56B1 aRz9@ L.D De (IX+1)

7F1711D5 22300 PUSH DE s TRANSFER TO IX

7Fi8|IDDE1 2R310 POP X

7F1AL01021066 A3z L.D BCs 1 sDECREMENT vALUE

7F1D||AF 20330 XOR A s CLEAR CHECKSUM

7F1EIDDBLEG PBRR4QCHRK@ 19 | |ADD Ay (IX+8) ;s CHECKSUM

7F21|IDDZ3 B350 INC IX sBUMF ADDRESS PNTR

TEZ3HB7 BR360 OR A sCLLEAR CARRY

TFz4||[ED4Z aB37e SEC HLsBC sDECREMENT COUNT

TFz6||20F 6 nR380 JR NZys CHKO1@ 5GO IF NOT DONE

7Fz8|6F 2R378 LD L.s A SMOVE CHECKSUM TO ML

7F29 12600 Q8420 L.D Hs @

7FZBDDEL BR41D POP IX SRESTORE REGISTERS

7FZD||ID1 DR420 POPR DE

TFzE | C1 PR438 POP BC

TFZF||F1 PB4 40 POP HF

7F30 || C39ABA R450 JP AAFAH 5 ¥ #RETURN STATUS® %%

7F331C9 DR46E RET SNON-BASIC RETURN

2000 DR470 END

20026, TOT ERRORS \

OP CODE OPERANDS COMMENTS
MEMORY MACHINE EDITING INSTRUCTION
LOCATIONS CODE LINE # LABEL

The sixth column is the operands column. The column is used to show which
operands will take part in the instruction. The instruction at CHKO010, for exam-
ple, ADDs the location pointed to by the 1X index register plus a displacement
of 0 to the contents of the A register. The formats for the operands are relatively
fixed and can be found in other reference materials for Z-80 assembly lan-
guage.

The fourth column is the label of the instruction. This is an optional column,
but really delineates the difference between machine language and symbolic
assembly language. The label is used by the assembler program in lieu of a
memory address. The instruction at 7F26H in figure 1-3, for example, refers not
to a jump address at 7F1EH, but to a label of “/CHK010.” The assembler trans-
lated the label reference to the proper address in the instruction, in this case, a
relative displacement.

11

The last column on the listing is the comments column. This column contains
descriptive text about the use of the instruction. Note that we’ve indented the
comments column to show loops. Each level of loops is indented two spaces,
and there may be as many as three levels of loops. Also in the comments
column, we've marked certain instructions with asterisks. These represent in-
structions which may be ignored under “stand-alone’” conditions when the
subroutine is not used with BASIC. This is explained fully in Chapter 2.

Additional Z-80 Assembly-Language Materials

As the title of this chapter indicated, we've briefly discussed Z-80 assembly
language. If you would like a more in-depth discussion of instruction formats,
addressing modes, and assembly-language techniques, we suggest you obtain
the reference manual for the Zilog Z-80 microprocessor, or refer to the instruc-
tion manual for the Radio Shack Editor/Assembler, which reproduces much of
the same material. The author's Radio Shack book, ‘“TRS-80 Assembly-
Language Programming,” is also a good place to start.

In the next chapter we’ll discuss some of the general techniques of using as-

sembly language, and specific details about the use of the subroutines in this
book.

12

Using Assembly
Language on the TRS-80s

In this chapter we'll look at some of the techniques involved in using assembly

language on the TRS-80 Models I, Il, and Hl, especially in regard to interfacing
the machine-language representation of assembly-language code with BASIC
programs.

Using the Model I and 11l Assemblers

There are a number of editor/assemblers for the Model I and Hll computers, and
they are very similar. All are modifications of the basic Radio Shack casseite-
based Editor/Assembler. The following description of the assembly process will
use the Radio Shack Editor/Assembler as a point of reference; material on disk
files will refer to the various modifications available for the Radio Shack Editor/
Assembler to enable it to read and write source and object files on disk.

This material is offered in case you wish to assemble some of the subroutines in

13

the book and modify them for your own use; let’s stress once again that you
can use the subroutines in the book without ever touching an assembler.

Editing the Source File

The first step in assembly is to edit the source file. Let's use another short
subroutine as an example. The SQROOT subroutine is shown in figure 2-1. To
start the edit, the assembler is loaded from cassette or disk. The SYSTEM com-
mand is used to load from cassette. Loading from disk simply involves entering
“EDTASM" followed by ENTER.

ORG 7F@aH $@522
FHERHRERREREREEE R R LR EE R R R REE R R RRRREERERRRRE

3% SQUARE ROOT. CALCULATES INTEGER PORTION OF SGQUARE #*

s$# ROOT OF A GIVEN NUMBER. #*
$ INPUT: HL=NUMBER #*
s OUTPUTsHL=INTEGER PORTION OF SGQUARE RT OF NUMBER *
SHHFHFRHA RN RR AR RA AR RHRRRREE R AR R XL R AR R TR AR
SQROOCT PUSH BC $8AVE REGISTERS

PUSH DE

CaALL BATFH s ###GET NUMBER®#%

LD Bs BFFH sINITIALIZE RESULT

LD DEs ~1 $FIRST ODD SUBTRAHEND
SGRALIG INC B $ INCREMENT RESULT COUNT

ADD Hi.s DE $SUBTRACT ODD NUMBER

DEC DE sFIND NEXT ODD NUMBER

DEC DE

JR CsGOGRO1G sCONTINUE IF NOT MINUS

LD LsE $GET RESULT

LD Hs @ SNOW IN HL

POP DE $RESTORE REGISTERS

POP BC

JP BaaH s ###RETURN ARGUMENT *##

RET : sNON-BASIC RETURN

FIGURE 2-1 Sample Source file for edit.

//'//

The I’ command is used to enter a new file. The command is the insert
command, and is normally used to insert lines between existing lines in an edit
file. In this case, however, there are no existing lines and the /I’ command
starts a new set of lines with the starting number 100 and line increment of 10.

The “‘source image’’ text of the subroutine can now be entered. Each line is
typed in its entirety and an ENTER is used to terminate a line. The first several
lines look like this:

#]

00100 ORG 7FO0OH ;0522

00110 Sk stk skskok stk sk stk okl stttk kel sk llslolokotolololoRsoR R ok R R iR sk skokok

00120 ;% SQUARE ROOT. CALCULATES

The left arrow key can be used to backspace to correct errors in entry. Other
editing features are very similar to the BASIC line editor—such things as “/L"" for
line, “S”" for search, and so forth. After the entire text has been entered, the
BREAK is pressed. This terminates the insert mode and displays the greater than
prompt.

14

The source text is now in memory. The source text can be written out to cas-
sette by the command “W SQROOT.” This command produces a source file
with the name SQROOT. A subsequent “L SQROOT" enables the source file
to be read in from cassette as a text file.

The source text can be written out to disk as a source file by the command
“WD SQROOT/SRC” (“W D=SQROOT/SRC” in some versions). If this is
done, the text will be transferred to disk as a source file and can be read in for
further editing at any time by a “LD SQROOT/SRC" (LD=SQROOT/SRC).

After the source file has been created on disk or cassette, it can be reloaded as
a check on its validity, or you can simply work with the text in memory.

Assembling the Source File

To assemble the SQROOT subroutine, type “A/NO/WE/NS” followed by
ENTER. The source file will now assemble and the listing will be displayed on
the screen. If there are any errors in the text, the Editor/Assembler will stop and
any key may be pressed to restart the assembly. At the end of the listing you'll
see a message that looks like this:

00000 TOTAL ERRORS,

indicating that there were no assembly errors. The “/X"" entries were “‘switch
options’’ calling for “No Object,”” “Wait on Error,”” and ““No Symbol Table
Listing.”’

What has been produced up to this point? The machine code was generated,
but it was simply part of the listing that was rapidly displayed on the screen. All
we’ve done to this point was to assemble and display the listing on the screen
to check for errors. If everything is all right, we can proceed. Otherwise, the
errors in the source file can be corrected, another assembly done, and the
process repeated until we get a “/clean”” assembly. Many errors will relate to
instruction format, and these can be corrected by reference to the Radio Shack
Editor/Assembler manual. There are also slight quirks in some of the assembler
versions—such things as “/(IY+0)" not assembling and "“(IY)"” assembling prop-
erly. We cant detail all of these here. It's a shame they exist; try to work around
them!

When we have a clean assembly, we can create an object file and save it on
disk. The object file is really a machine-language version of the program, with a
““header’” for the disk file and other data pertinent to the load. Most of the
content on the disk file will be the actual machine-language code that you see
on the listing. To create the object file, assemble without the “No Object”
switch, which is the default mode of the assembly. You may also assemble to
fine printer, while you're at it:

#*A/LP/NS

The Editor/Assembler version may ask for a “‘destination’ (disk or tape) and for
a file name before the assembly. As we've used SQROOT/SRC for the source

15

Using the Model Il Assembler

file, we might use SQROOT/OBJ for object. The assembly will proceed as
before, except that the object file will be written to cassette or disk.

Loading the Object File

At this point we have both the source file and object file on cassette or disk. The
source file is saved for possible modification. The object file can now be
loaded and executed. To load the object file from cassette, the SYSTEM mode is
used once again to load the file named at assembly time.

To load the object file from disk, we must first get back to the Disk Operating
System, and then use the LOAD command:

*B

DOS READY

LOAD SQROOT/OB]J
DOS READY

The object file is located by the LOAD command but it is not executed. It is just
as well, as we were not set up properly to execute the SQROOT program.
Where is SQROOT loaded? The ORG command establishes the starting point
for the program, which in all cases in this book is 7FOOH. The ORG command
can be modified to make the load point compatible with your system; just put
in a new argument in place of 7FOOH. If you want a square root subroutine at
OFO00H in a 48K Model I, for example, reassemble with “ORG OFO00H.” It may
also be necessary to protect the memory area in which the object program was
loaded by responding with one less than the ORG point when BASIC asks the
question “MEMORY SIZE? ",

Now that we have the program loaded, what do we do with it? We’ll answer
that question in the last part of the chapter in which we’ll show you an easier
way to work with the subroutines in this book when they are interfaced to
BASIC.

The edit, assembly, and load process is similar for the Model 1. The Model I,
however, uses the Radio Shack Disk Assembler, which is a more sophisticated
editor/assembler. There is also a version of the Radio Shack Disk Assembler
available for the Model I and [li. Use of this assembler is beyond the scope of
this book. The author’s Radio Shack book ““More TRS-80 Assembly-Language
Programming,”” goes into some detail on the Disk Assembler.

Keying In the Object Code Directly

The assembly process can be bypassed completely by working with the object
code alone and T-BUG (Radio Shack’s Debug package for cassette-based sys-
tems) or DEBUG (Radio Shack’s Disk Debug Package). A DEBUG utility is also
present on the Model Il system. The result can be saved on cassette or as a disk
"“core image”’ file. Let’s see how this can be done by using the DEBUG program
on a disk-based system.

16

The modify memory command “M" in DEBUG can be used to enter the data
one byte at a time. The format of the M command is “MHHHH space,”” where
HHHH is the hexadecimal address for the start of the memory area. Choose
any memory area that is nonconflicting with TRSDOS or BASIC and in which
you'd like the subroutine to reside. Now go to the listing and key in each byte
in hexadecimal, following each byte with a space, and the last byte with an
ENTER. The process is shown in figure 2-2, where a portion of SQROOT has
been keyed into the memory area starting at 9000H.

FIGURE 2-2 Kevying in object code using DEBUG.

BE = BEOBE e L
BCo= AR OS2 =x BT CMAOSS B9 21 5 2% ES CD S5 89 1B LA 4F o8 21
LE = @1 64 1A 40 4% 4D 4F 52 59 28 53 4% SR 45 80 52 41 44
ML = B0 B4 =3 @1 21 5B 1R BA 1A 88 18 8% 1% 29 2B 8B Te Bl &8
AF Y= FREOFF SZIH1IPHC
Broe mi SR =3 oS4 OF 5116 DE Ol O ER OSE E8 48 17 ES AF EDR 52
k. Sl vy

HE LI 7 M STO2B D2 a1 TV 43

1% IR gy S5 a4 31 2E zZe

5t FaOAF CEORD 48 Bl OES O

F HE A FF FF 18 43 3F 2

a8 GE TH BE EROEC 37 B0 FE

5i) om e S5 OTH OBES &1 T4 &5
HEGE- L TE GE MM OET 65 T4 29 61
SE-FFE Ec A TEOTE OEE D 62 &0

\]) TR OEF TR T T
SIX BYTES KEYED IN
NEXT BYTE FOR 9006H AT 9000H-90B5H

The machine code values shown on the listings do not have to be modified
unless the subroutine will not be used in conjunction with BASIC. In this case,
substitute the 00H code (a “NOP” instruction) for each byte of the starred
instructions. The hexadecimal machine code is relocatable and can be used
anywhere in memory.

After the data has been keyed in, perform a “"G66'' to reboot TRSDOS and
dump the memory area by a “DUMP’* command as follows:

DUMP (START = X'S555 END=X"EEEL")

where SSSS is the starting address in hexadecimal and EEEE is the ending ad-
dress in hexadecimal.

The memory image will now be written out as a “‘core image module” with
the file extension “/CIM.”" It can be loaded by the TRSDOS LOAD command in
the same fashion as the assembly object file.

Using Assembly Language with Model I and Il BASIC

There are two general approaches to using assembly-language code with
BASIC. The first of these uses two modules, an object code module and a
BASIC program module loaded at separate times. The second method embeds
the machine-language code in BASIC statements which then become part of
the BASIC program.

17

The “"Two-Module” Approach

Let's look at the “two module’” approach first. In this approach, the object
program from assembly or debug dump is loaded first with TRSDOS. Then the
BASIC interpreter is loaded and the memory area in which the object program
was loaded is protected with the “MEMORY SIZE? " response. Now the BASIC
program can call the assembly-language subroutine at will.

How the BASIC program calls the machine code is slightly different between
Level li BASIC and Disk BASIC. Level Ii requires that the address of the machine
code be put into locations 16526 and 16527. All addresses in the Z-80 are
stored, least significant byte followed by most significant byte; so a typical
sequence fo establish the call address for Level Il BASIC might be as follows for
a machine-language program at 7FOOH:

100 POKE 16526,0 "least significant byte
110 POKE 16527,127 ‘most significant byte

In Disk BASIC on the Model I or Iii, the call address is established in simpler
fashion. The address of the machine-language subroutine is assigned a number
from 0 to 9. A DEFUSR statement is then used to establish the address:

100 DEFUSRO= &H7FO0

where &H is the prefix for hexadecimal.

Once the address is established, the machine-language subroutine can be
called by a BASIC USR statement of the form A= USR(M) for Level II or
A= USRn(M) for Disk BASIC. The n in the Disk BASIC version stands for the id
number from O through 9. The M is an integer argument that can be automati-
cally passed to the machine-language subroutine. The A is an integer argument
that is passed back from the machine-language subroutine. Either or both of
these arguments can be “dummies” if no arguments need to be passed.

To see how the complete sequence works, let’s call the SQROOT subroutine.
Assume that it has been loaded at 7FOOH and BASIC has protected memory by
a “MEMORY SIZE? 32511.” We see from the listing that the SQROOT subrou-
tine takes a 16-bit number and computes the integer square root, passing the
argument back in HL. The following code would set up the call address in Level
Il BASIC, make the call, and return the result for printing:

100 POKE 16526,0 "least significant byte

110 POKE 16527,127 ‘most significant byte

120 INPUT X% ‘input square

130 Y= USR(X%) ‘call machine lang SQROOT
140 PRINT X%,Y 'print square, root

The sequence for Disk BASIC would be similar:

100 DEFUSRO= &H7F00 ‘address
110 INPUT W% "input square

18

120 Z=USRO(W %) 'call machine lang SQROOT
130 PRINT W%,Z "print square, root

In both cases, the argument passed to the SQROOT subroutine was the integer
variable in the USR call. The argument passed back was the variable equated to
the USR call.

In some subroutines, no arguments are required, or only one argument is
needed. In these cases either a dummy argument, such as 0, may be used, or a
variable that is not used elsewhere may be used. The SCDOWN subroutine, for
example, scrolls the screen down one line and requires no input or output
arguments. The call (assuming that the address has been set up) would be:

200 A= USRO©) scroll screen down

and the A variable would be ignored.

Embedding Machine Language in BASIC

The second method for interfacing BASIC and assembly language is to embed
the machine-language code in BASIC. There are a number of methods for
doing this.

Taking the example of the SQROOT subroutine, let’s look at one method that
uses DATA values. The decimal values for the machine-language code of
SQROOT is placed into a DATA statement:

100 DATA 197,213,205,127,10,6,255,17,255,2554,25,27
110 DATA 27,56,250,104,38,0,209,193,195,154,10,201

The DATA values are then moved to a known area of memory on the first pass
through the BASIC code. Let's use 7FO0H again:

120 FOR 1=0 TO 24 loop

130 READ A ‘read DATA value
140 POKE 15212+ A ‘store value

150 NEXT | "loop 25 times

After the loop is done, the DATA values have been moved to the 7FO0H area,
and the machine-language code can be called in the usual fashion after setting
up the address in 16526,16527 or with a DEFUSRn statement. This procedure
will work with all of the subroutines in this book.

Is there a way to avoid using a predefined area, a way to make the procedure
more automatic? Yes, with qualifications. Machine-language code can be em-
bedded in strings, arrays, and even BASIC statements, but there may be some
problems with this method. Again taking the SQROOT subroutine as an exam-
ple, let’s construct a string of machine-language values and then call the string.
We can set up the string by:

100 A$=CHR$(197)+ CHR$213)+ CHR$(205). . . . +CHR$(201)

19

One statement can be used if the number of characters in the line does not ex-
ceed the maximum line length of 255 characters. If there is not enough room in
one line, two strings can be established and the two can then be concatenated
into a third.

Where is the machine-language code in this case? It's somewhere in the string
variable region at the top of memory. We can find out where it is by using the
VARPTR function. The VARPTR function will return the location of the string
parameter block. The string parameter block holds the length of the string and
the string address as shown in figure 2-3. We can then put the string address
into locations 16526, 16527 or use it in a DEFUSRn statement. A sample call of
SQROQOT using this technique is shown here:

100 A$=CHR$(197)+ CHR$(213)+ CHR$(205)+ . . . + CHR$(201)
110 B=VARPTR(AS$) ‘get string parameter block location

120 POKE 16526,PEEK(B+ 1)

130 POKE 16527,PEEK(B+2)

140 A= USR(M)

where M is the square and A is the square root returned.

For Disk BASIC, the sequence would be similar:

100 A$=CHR$(197)+ CHR$(213)+ CHR$(205)+ . . . +CHR$(201)
110 B=VARPTR(AS)

120 C=PEEK(B+ 1)+ PEEK(B+ 2)%256

130 IF C>32767 THEN C=C-—65536

140 DEFUSRO=C

150 A= USRO(M)

B=VARPTR (A$)

B POINTS TO . . .
+ LENGTH OF STRING
+1 STRING ADDRESS
+2 LSB, MSB FORMAT

STRING ADDRESS
POINTS TO . ..

“STRING EXAMPLE"
FIGURE 2-3 String parameter block format,

The IF . . . THEN statement is necessary because of a quirk of BASIC. It does
not handle addresses well as integer arguments, and the subterfuge above is
necessary to ‘‘fool’ the interpreter into thinking that the 16-bit memory address
is a signed integer value.

20

Passing Multiple Arguments

Now, there’s one strong bit of advice that we must give. If you use the above
method, be aware that everything in BASIC moves! Any time that BASIC en-
counters a new variable, a new array, or computes a new string, variables are
readjusted. Periodically, string variables are “cleaned up,” and this is done at
unpredictable times. Therefore, when using the VARPTR to find the address of
a string, do so only directly before the USR call, and make certain that no new
variables are introduced in the call.

There are other methods similar to the above for embedding machine language
in BASIC code. They all rely on using VARPTR to find the location of a string or
array. The string could be a dummy string in a program statement, for example.
The string

100 A$="THIS IS A DUMMY STRING!!!"”

has 25 characters and can accommodate the 25 bytes of the SQROOT subrou-
tine. Another advantage of this approach is that in this case the string is at a
fixed location in memory—as long as the program statements do not change
(no edits allowed). The machine-language values can be picked up from DATA
statements and stored in the dummy string, and a VARPTR could then be used
to find the dummy string location.

Another method is to establish a large array by a statement similar to DIM
AA(100). DATA values can now be stored in the array and a VARPTR done with
the first element of the array to find the start of the contiguous area for the array.
(Don’t try this on string arrays!)

100 B= VARPTR(AA{0))

Here again, do not introduce any new variables after finding the VARPTR ad-
dress or the address will be incorrect. (New variables are placed before the
array areas and the array areas are moved down!)

In the subroutines that follow we will assume that they are located in 7FOOH. If
you wish to use one of the methods described above to embed the machine-
language code in your programs, that is perfectly feasible as long as you follow
the rules. However, be careful of variables that move and things that go bump in
the RAM!

In many of the subroutines in this book, it's necessary to pass more than one
argument to the subroutine and back from the subroutine. Take the MOVEBL,
or Move Block, subroutine. MOVEBL moves a block of memory from one area
of memory to another area of memory. Three parameters are involved—the
address of the existing block (the ““source’” address), the address of the “desti-
nation,”” and the number of bytes to move. All are 16-bit values.

The USR calling sequence allows only one 16-bit value to be passed. How do
we pass three 16-bit addresses? The way we have established as a standard for
the subroutines in this book is to pass the address of a ““parameter block.” The

21

parameter block holds the necessary parameters in a predefined order. The
parameter block may be anywhere in memory, either at a fixed location or in a
string or array. As an example, assume that the MOVEBL subroutine is located
at FFO6H. The parameter block could be six bytes before, starting at OFO0O0H,
and we’d have this Disk BASIC calling sequence:

100 DEFUSRO= &HF0O06 'address of subroutine

110 POKE 61440—65536,0 ’source address= 8000H

120 POKE 61441 —65536,128

130 POKE 61442 ~65536,0 ‘destination address=9000H
140 POKE 61443 —65536,144

150 POKE 61444~ 65536,0 256 bytes

160 POKE 61445~ 65536,1

170 A= USRO(61440— 65536) ‘move block

In this BASIC code, we first defined the address of the subroutine as OFO06H by
the DEFUSRO. Next we POKEed the source address into OFO00OH and OFO0TH,
least significant byte followed by most significant byte (0,128 becomes
128%256+ 0==8000H). Then we POKEed the destination address into 0F002H
and OFO03H (0,144 becomes 144%256+ 0=9000H). Next, we POKEed the num-
ber of bytes into 0F004H and OF005H (0,1 becomes 1256+ 0=256). Finally, we
called the subroutine by the USRO call with the input argument equal to the
start of the parameter block at 61440 (OFOOOH). Note that we had to use the trick
of subtracting 65,536 from the addresses in order to use the POKE and USR
statement with BASIC integer values.

Alternatively, you could put the arguments in a dummy CHR$ string or dummy
string and use VARPTR to find the string address, or you could put the argu-
ments in an array and use VARPTR to find the first element of the array. (Just
follow the rules, and make certain that no new variables are introduced after
the VARPTR finds the address!)

Using Assembly Language on the Model Ii

The general approach for the Model Il is virtually identical to that used on the
Models I and 1ll. The calling sequence uses the DEFUSRn and USRn formats of
Model I/l Disk BASIC. The major difference is in the Model II's approach to
passing arguments to the machine-language subroutine and back to the BASIC
program,

Two system subroutines, FRCINT and MAKINT, are used in place of the ma-
chine-language code in place of ROM subroutines at 0A7FH and 0A9AH. If you
are using these subroutines on a Model 1i together with a BASIC program, you
may reassemble with the calling sequence given in the Model Il BASIC refer-
ence manual. The two calling sequences would be substituted in place of the
“starred”” “CALL OA7FH"" or “JP OA9AH.” If you are not using a BASIC pro-
gram, then many of the subroutines in this book may be used “‘stand alone’” by
replacing the starred instruction bytes with zeroes (NOPs).

22

How to Use the Subroutines in This Book

Now we come to the most important part of these two chapters—how do we
use the subroutines in this book?

To use any of the 65 subroutines, follow this procedure:

1. Read the description of the subroutine. See if it can be used on your system.
Note what parameters are involved and how large (8 or 16 bits) each one is.

2. If the subroutine is to be used without BASIC and called from your own
assembly-language code (including Model 1l code), reassemble the subroutine
to create your own source file, or create a machine-language core image mod-
ule using T-BUG or BASIC. Put a 00H byte in every instruction byte that is
marked with asterisks. This NOPs the calls to BASIC ROM routines that pass
parameters. (On reassemblies, leave out these instructions.)

3. If the subroutine is to be embedded in BASIC, put the decimal values into
DATA statements, and write the BASIC code to move the subroutine to a fixed
area or variable area as outlined above.

4. Call the subroutine from BASIC or your own assembly-language code with
the proper number of arguments. The subroutine may require no arguments, in
which case dummy arguments would be used in BASIC. The subroutine may
require one input argument, in which case the USRn call would specify a single
integer argument. The subroutine may require one output argument, in which
case the USRn call would specify a dummy input argument with a valid output
argument. The subroutine may require multiple arguments, in which case the
USRn call would specify the address of the parameter block containing the argu-
ments. In assembly-language calls, the arguments are also held in a parameter
block pointed to by the HL register pair.

Here are some additional rules:

1. For assembly-language calls only: HL contains the single argument on
input, the single output argument, or the address of the parameter block.

2. For assembly-language calls only: Most subroutines save all registers. The
ones that do not are clearly denoted.

3. For assembly-language calls only: The stack pointer is assumed initialized
before the call.

4. All subroutines have relocatable code.

5. All listings have been assembled at 7FOOH. The ORG point must be
changed if you are reassembling at a specific area for a ““two module” load. If
you are using only the machine code, it is correct as it stands.

6. Certain assermblers have minor bugs in instruction formats; instructions
may not assemble properly. The assembler used in these subroutines corrects
some of the assembly errors. If your assembler does not assemble the source
code as listed, your assembler may be flawed!

7. Error checking in these subroutines is minimal. In other words, it may be
easy to blow up the system with improper arguments. This was done to keep
the subroutines short. Checks should be made for proper arguments before
calling the subroutine.

23

TALSEX: TRS-80 Assembly-Language
Subroutines Exerciser Program

8. Every effort was made to keep the subroutines relocatable. Some of the
resulting code may not be good programming practice in nonrelocatable code.
So be it.

9. We have purposely stayed away from ROM subroutine calls because of the
possibility of ROM changes. Those ROM calls that are used are clearly marked.
10. Tables have generally been avoided because of relocatability problems
resulting in linear code. Here again, this may not be code to emulate in non-
relocatable environments.

11. Nested subroutines within the subroutines have been avoided because
of relocatability problems resulting in linear code. Again, this was done for
relocatabil ity.

12. Names of subroutines and labels are nonconflicting. You may assemble
all subroutines together en masse without fear of duplicate labels on assembly.

13. All loops are indented in the comments column. Each level of loop is
indented two spaces. Block moves and compares are essentially loops and are
indented.

Figure 2-4 shows the complete listing of TALSEX. It is a Model Vit Disk BASIC
program that we have used to exercise (and hopefully exorcise) all of the sub-
routines in this book. You will probably not want to use TALSEX, but we'll
describe how it works in case some of the code is helpful in your BASIC inter-
facing. All of the sample calls for the subroutines are the output of one test
case of TALSEX.

TALSEX first asks for the name of the subroutine. The name is then displayed on
the screen and printed on the system printer. Next, TALSEX asks for the value to
be put into HL. If no argument is required, ENTER may be pressed, otherwise
the argument value is entered.

Next, the parameter block location is entered. This may be any area in free
memory. If multiple arguments are being used in the subroutine, the HL value
corresponds to the parameter block location. The values to be put into the pa-
rameter block are then input in the form N,V. (N is 0, 1, or 2.) If N is 1, the
following value V will be 8 bits long. If N is 2, the following value V will be 16
bits long. An input of 0,0 terminates the input.

Next, TALSEX asks for a memory block location. If the subroutine uses a mem-
ory block, this value is input, otherwise ENTER is pressed. Values are then
entered into the memory block as required. The memory block may be any-
where in free memory. A 0,0 input terminates the operation. A second memory
block location may then be input, and values stored in this block.

Now, TALSEX asks for a location at which the assembly-language subroutine
should be located. TALSEX assumes that the subroutine is currently in memory
at 7FOOH (from a LOAD operation in DOS). When this value is input, TALSEX
moves the subroutine from the 7FOOH area to the specified memory area to test
relocatability.

24

1006
1885
in1e
1815
@17
102@
1238
1040
1250
1833
1368
187@
1380
1285
1090
1128
1200
1zze
1236
1235
1240
1250
1260
1270
1280
1285
1290
1308
1310
1320
1330
1348
1350
1368
1370
1386
1398
1395
1420
1410
141z
1415
1417
1418
1428
1430
1440
14468
1480
1485
1498
1500
1585
1510
1520

12200
10285

The subroutine is then called with HL containing the specified value, and the
parameter block and two memory blocks containing the specified data.

On return, the inpput and output values for HL, the parameter block, and the
memory blocks are displayed and printed.

FIGURE 2-4 TALSEX tisting.

CLE: PRINT "TRS—8D ASSEMELY LANGUAGE SUBROUTINES EXERCISBER®

DIM I0(49)

PRINT:PRINT:LP R INT:LPRINT

HL=70@00@: PB=7AA0A: Mi=72000: Mz=70000: ZI1=0

FOR I=01 TO 49: IO0(I)=—~13 NEXT I

A%="NAME OF BUBRROUTINE": PRINT a%3: LPRINT A $3"7 "3

INPUT A%: LPRI®T A%

Ad="HL VALUE" = PRINT A$s3: LPRINT A%3"7?7 "3

A%="": INPUT A%t LPRINT A%

IF Ag="" QOTO 14870

HL=VAL(A%)Y: IF HL>32767 THEN HL=HL-&65536

AS="PARAMETER BELOCK LOCATION®: PRINT A%s: LPRINT A&3"7 "3

A%="": INPUT A% LPRINT A%

IF A$="" GOTO 12Z@

PR=VAL (A%): IFF PR

AS="PARAMETER EBEL.OC

Za=HL: GOSUBR 1 20600

A$="MEMORY BLOGCK 1 LOCATIONY: PRINT A%s: LPRINT A%3*7 "3

Af="" INPUT &% s LPRINT A%

IF a$="" GOTO 13:2

Mi=VAL(A%): IF MI1x32767 THEN MI=M1-63536&

AF="MEMORY BLOCK 1 VALUES?": PRINT A%: LFPRINT A$

ZA=Mis GOSUE 1 3006

A%="MEMORY BLOGOK 2 LOCATIONY: PRINT A$s3: LPRINT a$3"7 "3

Ag=""1 INPUT &% LPRINT A%

IF Ag="" GOTO 1320

MI=Val.(a$y: IF M2x32767 THEN M2=MZ-65336

AS="MEMORY BLCOCK 2 VALUES?": PRINT A$: LPRINT A%

ZA=Mz: GOSUR 1 3800

AS="MOVE SURRC:LITINE TO": PRINT a%: LPRINT as3"7 "3

INPUT A%t LPRINT A%

GL=ValL (A%): IF SL>32747 THEN SL=GL-6353646

FOR I=328512 T 327467

PORE(SL+TI-3251 =) PEEK(D)

NEXT 1

DEFUSRE=5L.

H1=USRB(HL)

IF SL<@ THEN Si.=8L+65536

AS="SURROUTINE. EXECUTED AT ": PRINT A$:i8SL.: LPRINT A$356L

Ad=" INPUT 2 OUTPUT: "2 PRINT Ag: LPRINT A%

Z1=@

IF HL=70008 GCTOo 1528

IF HL<® THEN ML =HL+&5536

IF Hi<@® THEN HI1=H1+65536

Ab="HL=": PRIMT A$iHLsA%3HI: LPRINT AsiHLsASHIL

IF PE=7R0002 GO TO 1486

Ad="PARAM" : Z&=PR

GOSUBR 12000

IF Mi=70000 G370 1520

As="MEMB1" ¢ Z =Ml

GOKUR 12000

IF Mz=70000 GCOTO 1528

Ab="MEMBZ" 1 Z&a==ME

GOSUR 12000

GOTO 1@01@
THQUBROUTINE T INPUTs LIST: PRINTs AND STORE VALUER
PENTER WITH & &=MEMORY BLOCK START

32767 THEN PE=PB-&53336
K OVALUEST?": PRINT A$: LPRINT A$

25

12068
101
12020
12238
16640
10858
108335
12060
10878
12000
12018
12020
12838
12040
12045
12856
12868
12078
12090

What to Do if You Have Trouble

Source Programs on Disk

IN=ZA

PRINT"+" 3 ZN-ZA3 tLPRINT "+" 3ZN-ZA35 : INPUT ZLsZV: LPRINT ZL3ZV
IF 7= GOTO 10040

PORKE ZINs ZV-INT{ZV/256)%2561 10(Z21)=2V-INT(ZIV/256)%256
IF ZL=2 THEN PORE ZN+1:INT(ZV/25&4): IO(ZI+1)=INT(ZIV/25&)
IN=ZN+ZL s ZI=ZI+ZL

GOTO 10016

TOo(ZI =12 ZI=ZI+1

RETURN

TOGUBROUTINE TO OUTPUT VALUES FROM PARAMETER BLOCK

TOR MEMORY BLOCK

TENTER WITH A$=TITLEs ZA=BLOCK SBTARTs ZI=I0() INDEX

IN=@

ZB=I10(Z1Y: IF ZB=—1 GOTO 12090

IF ZIN<1@ THEN ZN$=8TR$(ZIN)+" " ELSE ZN$=S5TR$(ZN)

PRINT A% "+"iZIN®3ZBs A% "+" 5 INSIPEEK(ZA+ZN)

LPRINT A$:"+" ZN5ZBs A% "+" 5 ZNS S PEERK (ZA+ZN)

IN=ZN+1: ZI=Z1+1: GOTO 12040

ZI=7ZI+1: RETURN

Every effort has been made to thoroughly check out and debug the subroutines
in this book. If you find errors, follow this procedure:

1. If you are not using the subroutines exactly as listed, please thoroughly
check out your modifications. We simply can’t be responsible for your changes—
there’s too much chance for error. We will be responsible, however, for use of the
subroutine exactly as listed in the book.

2. Verify that the subroutine checksums to the proper value as shown in the
description. To do this, use the CHKSUM subroutine in the book, and check-
sum the subroutine in question from start to end address. The checksum must
compare to that given in the book. If it does not, you have entered the data
incorrectly.

3. Verify that the calling sequence and parameter values are proper. List the
parameters directly before the call and see that they are within the limits im-
posed by the subroutine. If they are not, the subroutine may indeed not work
properly or may cause the system to crash. We can’t be responsible for these
cases.

4. If you have done all of the above and feel there is still an error in the sub-
routine, then fill out the following reporting form and send it to the author at:

P.O. Box 3568
Mission Viejo, CA 92692

Your time and trouble are appreciated and the problem will be corrected for the
next edition of this book.

A set of diskettes containing all source programs is available from the author.
For information, please send a self-addressed, stamped envelope to the above
address.

26

TRS-80 Assembly-Language Subroutines
Error Reporting Form

1. Subroutine mame:

2. | am using the identical code as shown in the book: Yes No

3. | have checlkcsummed the data: Yes No

4. Location of subroutine in memory:

5. 1 am using the subroutine embedded in BASIC: Yes No

6. | am using the subroutine as a stand-alone program (not embedded in
BASIC): Yes No

7. System: Mocdel | Model If Model Il

8. Operating sy stem:

9. Assembler (if applicable):

10. Input parameters:

11. Output parameters:

27

12. Complete description of error (please attach BASIC listing, assembly list-
ing, or any other data you find pertinent):

13. Name:

14. Address:

Thanks for your time and trouble!

Mail to: William Barden Jr., P.O. Box 3568, Mission Viejo, CA 92692

28

TRS-80 ASSEMBLY-
LANGUAGE
SUBROUTINES

ABXBIN: ASCIl BINARY TO BINARY CONVERSION

System Configuration

Model |, Model I, Model 1l Stand Alone.

Description

ABXBIN converts a string of ASCI characters representing ones and zeroes to a
16-bit binary number. Each character in the string is assumed to be either an
ASCli one BOH) or an ASCH zero (31H). The string may be from zero to 16 bytes
long, but is terminated with a byte of all zeroes.

Input/Output Parameters
On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of O through 65,535.

31

INPUT OQUTPUT

Ho oL HooL
T
POINTER TO MEM1+0 [_ L RESULT, §-65535
1 t
MEM1+0 MEM 1+8
+1 +1
+ ASCII + + +
+2 STRING +2
€1 OF "Q” b 1 e
+3 AND “1” j +3
4 4 4 UNCHANGED
+4 +4
+5 +5
+6 +6
LAST @ LAST UNCHANGED

Algorithm
A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over.

If the character is not a null, it is assumed to be either an ASCII zero (30H) or
one (31H). A value of 30H is subtracted from the character to yield a binary
value of 00000000 or 00000001. This value is then added to the result in IX.
Effectively, this merges the current 0 or 1 bit into the least significant bit posi-
tion of the IX register. As the IX register is added to itself to cause a “’shift left”
one bit position at the start of each iteration of the loop, successive 0 and 1 bits
move toward the left of the result. The value in IX at the end of the string
represents the converted binary value.

Note that the shift is done after the test for null; this ensures that the last binary
0 or 1 remains in the least significant bit of 1X.

If the ASCII string was 30H, 31H, 31H, 30H, 31H, 00H, the result in IX would be
0000000000001101.

Sample Calling Sequence

MAME OF SURROUTINE? ABXBIN

HL VALUE? 42000

PARAMETER BLOCK LOCATION?
MEMORY BRLOCK 1 LOCATION? 42008
MEMORY BLOCK 1 VALUES?

+ 1 49

49

47

48

% 111811 IN ASCIi
1 49

1

1

L

49
@ TERMINATOR

A I I e

o

32

7FoQ

7o
7F@1
Faz
7FR4
7Fa7
7Fae
TFOD
7FBE
FaF
7F11
FF13

7F15 !

7F16

7F18 =

7F19
TF1R
7F1D

PoaBe TOTAL

100
PR1L1G
pR1:0
P0130
PB140
pa156
aR160
aB17a@
@180
0170
F5 alrenl
D5 aRz1a
DDES DRz
CD7F@a AB=30
DD210GEe 0Bz40
1603 BREs0
7E Boz6E
B7 RBz7a
2804 QRZae
DDZ9 RHZI0
D&3A raly e 3n %}
5F @318
DDi19 PR3EB
=3 BP33@
18Fz Hua34e
DDES DB3I5EH
El @azsa
DDE1L BAZI7H
Di aniasn
Fi DA3PD
CAPHRA QRA4Oe
ce QA4 1D
QR4 20
ERRORS

+ 7 @ @

MEMORY BLOCK = LOCATION?

MOVE SURROUTINE TO7 380082
SURRCOUTINE EXE CUTED AT 38000

INPUT: QUTPUT:

HL.= 40000 HL= 59 RESULT

MEMBLI+ @ 49 MEMBL+ @ 49

MEMBI+ 1 49 MEMBR1+ 1 49

MEMBE1+ 2 49 MEMB1+ 2 49

MEMBI+ 3 48 MEMB I+ 3 48 UNCHANGED
MEMB1+ 4 49 MEMB1+ 4 49

MEMB1+ 5 4% MEMB1+ 5 49

MEMBI+ & @ MEMBi1+ & B

NAME OF SUBROUTINE?Y

Notes

1. If the string of ASCII characters is longer than 16 bytes, ABXBIN will return
a result that represents the last 16 characters of the string.

2. If any character in the string is not a 30H or 31H, ABXBIN will return an
invalid result; no check is made of the validity of the ASCII characters.

Program Listing

ORG 7FaBH @522
96300936 36 9060 T DE NI I KR RS R R RN AR RRH
% ASCII RINARY TO BINARY CONVERSION. CONVERTS A STRING ¥

5% OF ASCII CHARACTERS REPRESENTING ZEROES AND ONES TO *
;% BINARY. *
ER INPUT: HL=» STRING OF CHARACTERS: TERMINATED BY *
5% NULL CHARACTER. *

#*

5% QUTPUT = HLL=BINARY NUMBER FROM @ - 63333
PHHEEHEEEEEEN I X RERRUEFFFEAREREEREREXRREEXRRERFRFHE AR R R

ABXBIN PUSH AF $SAVE REGISTERE
PUGH DE
PUSH IX
CAaLL BATFH 5% %GET STRING LOCTN#xx®
LD IX:0 : CLEAR REBULT REGISTER
LD D@ $FOR LOOP

ABXQ12 LD As (HL) $GET NEXT ABCII CHAR
OR A $TEST FOR NULL (END)
JR 75 ABRXDZ0 GO IF END
ADD IXs1IX $GHIFT LEFT ONE
SUE 3aH s CONVERT ASCII TO @ OR |
LD Esh SNOW IN E
ADD I1XsDE sMERGE WITH PREVIOUS
INGC HL $POINT TO NEXT CHARACTER
JR ABXD1G sLOOP *TIL END

ABX@ZD PUSH IX $ TRANSFER RESULT
POP HL. SRESULT NOW IN HL
POP Ix $RESTORE REGISTERS
POF DE
POP AF
JP BAYAH s ¥ ¥ RETURN ARGUMENT %%
RET INON-BABIC RETURN
END

33

ABXBIN DECIMAL VALUES

243y 213s 221s 2295 205 127s 1@s 221y 335 Qs
Bs 225 @1 126y 183s 40y 10y 2215 413 T1l4,
48s 98 2219 255 355 24y D4Zs 221 2295 225,
221 228y 209y 2415 195y 154s 10y 201

CHRBUM= &2

ADEBCD: ASCIi DECIMAL TO BCD CONVERSION

System Configuration

Model I, Model 1ll, Model Il Stand Alone.

Description

ADEBCD converts a string of ASCII characters representing ones and zeroes to
a string of bed digits. Each character in the ASCII string is assumed to be either
a valid ASCII character in the range of 0 (30H) through 9 (39H). The ASCIl string
may be from zero to any number of bytes long, but is terminated with a byte of
all zeroes. The result string of bed digits consists of two bed digits per byte, with
a terminator of a “‘nibble’”” of ones.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the ASCII string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
result string in the same format.

On output, the parameter block and ASCII string are unchanged. The result
string contains a bed digit in one nibble (4 bits) for each byte in the ASCI string
and a final nibble of ones.

INPUT OUTPUT
H . L H L
T T
POINTER TOl PARAM-+@] Z:? [UNCH,IANGED
T f
PARAM-+@ POINTER TO PARAM+0
-+ ASCIH STRING + + UNCHANGED -+
+1 {(MEM 1+0) +1
+2 POINTER TO +2
<+ RESULT STRING -+ -+ UNCHANGED -+
+3 (MEM2-+-0) > +3

34

MEM1+0 MEM 1-+0

+1 +1

+ ASCHI + + +
+2 STRING +2

-+ + + UNCHANGED -
+3 —>
+4 +4
+5 +5
+6 +6

¥ = = e
LasT |) LAST)

MEM2+0 MEM2+0

+1 +1

+ RESERVED < + BCD +
+2 FOR +2 RESULT

+ RESULT + + STRING T
+3 STRING ::? +3
+4 +4
+5 +5
+6 +6

LAST l 1111 l o000 lT(orxxxxnn)

Algorithm

The ADEBCD subroutine performs one conversion for each ASCII digit. The
ASCII string address and result string addresses are first picked up from the
parameter block and put into DE and HL, respectively.

The next ASCIl character is then picked up from the ASCII string. A test is made
for all zeroes. If the character is all zeroes a jump is made to ADE020.

A value of 30H is subtracted from the ASCII character to convert it to a bcd
value of 0 through 9. An RLD is then done to rotate the least significant four bits
of A into the result nibble. The ASCIl address in DE is then incremented by one,
and the next ASCII character is picked up, converted, and stored. The ASCII
string pointer is again incremented to point to the next byte. The result pointer
in HL is then incremented to point to the next bed byte. A loop is then made
back to ADEO10.

The final action is to store all ones at the next bcd nibble position by either an
RRD or RLD, depending upon the current bed digit position.

The RRD instruction shifts the least significant four bits of the A register and the
memory location pointed to by HL in a four-bit bed shift to the right. The RLD
shifts left four bits in similar fashion.

If the ASCII string was 34H, 35H, 36H, 37H, 35H, O0H, the result in the bed
string would be 45H, 67H, 5FH.

35

7Foe

Sample Calling Sequence

NAME OF SUBROUTINE? ADERCD

HL. VALUE? 40000

PARAMETER BLOCK LOCATION? 4Q000
PARAMETER BLOCK VALUES?

+

+-

o

B & 47777 POINTS TO ASCH STRING
2 2 48808 POINTS TO RESULT STRING
4 @ @

MEMORY BLOCK 1 LOCATION? 47777
MEMORY BLOCK 1 VALUES?

+

T = i 0 T,

i m

g 1 497

1 1 57

= 1 5@ 192 1IN ASCH

3 1 2 |

) @ @ TERMINATOR

MORY PLOCK 2 LOCATION? 48888
MORY BLOCK 2 VALUES?

g 1 @2 7

1 i @ - CLEAR RESULT FOR EXAMPLE
JER I

MOVE SUBROO%INE TO?7 43555
SUBROUTINE EXECUTEDR AT 45555

INPUT: OUTPUT &
HL= 40000 HL= 40000

PARAM+ @ 141 PARAM+ @ 1617

PARAM+ 1 186 PARAM+ 1 186

PARAM+ T 248 PARAM+ 2 048

PARAM+ 3 150 PARAM+ 3 150

MEMEL+ @ 49 MEMEL+ @ 4% [UNCHANGED
MEME I+ 1 57 MEMEI+ 1 57

MEMBI+ 2 5@ MEMB1+ = 5@

MEME1+ 3 O MEMEL+ 3 @

MEMEZ+ @ @ MEMBI+ @ 25 _
MEMBEZ+ 1 @ MEMBZ+ 1 47 }'wzFH BCD 192

NAME OF SUBROUTINE?Y

Notes

1.

2.

An invalid result will occur if the ASCII string contains invalid ASCII deci-
mal digits.

The terminator of all ones in the result string will be in the left-hand nibble
of the result string byte (with garbage in the right-hand byte) for an even num-
ber of bed digits, and in the right-hand nibble of the result string byte (preceded
by the last bcd digit) for an odd number of bed digits.

Program Listing

2106 ORG 7F@BH @522
DOTLA 38R HRAEA RN TINH I 3336 4006 I 50020
BB12@ 3% ASCII DECIMAL TO BCD CONVERSION. CONVERTS 4 STRING #*
B@13@ % OF ASCII CHARACTERS REPRESENTING DECIMAL DIGITS TG *
20140@ 3% TO BINARY-CODED-DECIMAL. i *
2@15a 5= INPUT: HL=> PARAMETER BLOCK \ *
paied 3 PARAM+D» +1=LOCATION OF STRING OF CHARSs *
BB170 3% TERMINATED BY NULL CHARACTER #*
BaiBe 3= PARAM+Z5 +3=LOCATION OF RESULT STRING *
170 ;5% OUTPUTsRESULT STRING HOLDS STRING OF BCD DIGITSs *
auzoe s TERMINATED BY A NIBBLE OF ONES. ‘ *
i IR R ;*********%x***x***
QD20 3

36

7F D0
7F 01
7F Oz
7F 03
7FD5
7F 8
7FD9
7F @R
7FQE
7F11
7F 14
7F17
7F18
7F19
7F1B
7F1C
7F1E
7Fz0
TFEE
7F34
7FE5
TF26
7FE7
7F29
7FZA
7FZC
7FZE
7F30
7F3z

7F33 2

TF34
7F36
7F38
7F39
TF3A
7F3R
Baas

F3

D3

ES
DDE3
CD7FBA
ES
DDE1
DDBEBD
DDE&B1
DD&EBZ
DD&6B3
iA

B7
2085
3D
ED&7
1816
D&33
ED&F
13

B@z3a
Baz4l
Y
Baz60
aB=7a
gl
Qo298
Be3ee
Bo318
BB3:8
el
B340
av358
BB3468
Ba37e
ho380
aa396
alularnin]
AB410
BB420
BB438
BB440
PB4asa
28460
o478
Ba480
aa49a
paseae
pR518
P50
pRs530
aB549
285358
na560
o570
rajra =1
B@as7e

o0RBe TOTAL ERRORS

ADERCD PUSH
PUSH
PUSH
PUGBH
CaLL
PUSH
POF

LD
LD
LD
ADE@1G LD
R
JR
DEC
RRD

ADEGZ® 8BUB
RLD
INC
LD
OR

DEC
RLD

ADEB3@ S5UB
RLD
INGC
INC

ADEQ4@ POP
POP
POP
POP
RET
END

AF

DE

Hi

IX
BATFH
HL.

ix

Es {IX+8}
D2 {IX+1)
L (IX+2)
Hs (IX+3)
A8 (DED

A
NZsADEBZD
A

ADEQ4LE
30H

DE
As (DED

)
NZs ADEB3D
A

ADE@4S
30H

DE
HL
ADEB1Q
IX
HL
DE
AF

ADERCD DECIMAL. VALUES

CHRBUM= @&

Fir s
)
s 2y Zl4s
5y his 237
19y 35 4

TR ZELs ZE9s

1546VE REGISTERS

;%% GET STRING LOCT N#x#®
s TRANSFER TO IX

$PUT SOURCE PNTR IN DE
$PUT DEST PNTR IN HL

5GET NEXT CHARACTER
sTEST FOR NULL (END)
GO IF NOT END
$ZERO TO ~1
$STORE TERMINATOR
;GO TO RETURN
$ CONVERT TO @-9
$STORE IN BUFFER
$POINT TO NEXT CHARACTER
$GET NEXT CHARACTER
sTEST FOR NULL (END?
GO IF NOT END
$ZERO TO —1
$STORE TERMINATOR
$GO TO RETURN
s CONVERT TO @-9
$STORE IN BUFFER
SPOINT TO NEXT CHARACTER
sLOC'N FOR NXT 2 BCD DGTS
sLOOP *TIL END
JRESTORE REGISTERS

sRETURN TO CALLING PROG

@B 127+ 1B ZETs 221

Ds 221 8b&s 1s ZZ1s 118y Zs
Thy 183s 33 B bls 237 103
L8y 237 111y 19y 26y 183: 33

11i1s Z4s B

H14s 48y 2372 111

2R, FES. IRy 241y 201

EEBe 221 22

ADXBIN: ASCll DECIMAL TO BINARY CONVERSIOMN

System Configuration

Mode! I, Model 111, Model 1i Stand Alone.

Description

ADXBIN converts a string of ASCII characters representing decimal digits to a
16-bit binary number. Each character in the string is assumed to be ASCII O

37

through ASCIl 9 (30H through 39H). The string may be from zero to 5 bytes
long, but is terminated with a byte of all zeroes. The value represented by the
string may be as large as 65,535. This conversion is an ““unsigned’’ conversion
producing a result of O through 65,535.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of 0 through 65,535.

INPUT QUTPUT
HooL HoL
POINTERTO MEM1+0 | =—> | RESULT, 0-65535
T H
MEM 140 1 STilgg”OF 1 MEM 1+0 1 1
+] %%XA‘\RDAECCT'%"&L 1 +1 | UNCHANGED |

1l
3 a4

(¢

- { - E
LAST g ;—; LAST UNCHANGED

Algorithm
A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over,

If the character is not a null, it is assumed to be a valid ASCll decimal digit of
30H through 39H. A value of 30H is subtracted from the character to yield a
binary value of 00000000 through 00001001. This value is then added to the
result in IX.

Prior to the add, the partial result in the IX register is multiplied by ten. This
moved the partial result over one decimal digit position to the left. The value in
IX at the end of the string represents the converted binary value.

Note that the multiplication is done after the test for null; this ensures that the
last value of O through 9 remains in the least significant decimal digit position
of IX.

The multiply is done by a “shift and add’” technique of three adds to shift three
bits (multiply by eight) plus one add of the ““times two’’ shift for a “times ten”’
result.

If the ASCII string is 34H, 35H, 30H, 31H, 31H, 00H, the result in 1X would be
1010111111010011.

38

7FB8

7F00
7Fa1
7Faz
7Fa4
7F@az
7F@ae
7Fac
7F@aD
7FBF
7F11

F5

D3

DDES
CD7F&@A
DDZ1 G200
7E

B7

2815

pD=z9

DDES

Sample Calling Sequence

NAME OF
HL VaLU

MEMORY
MEMORY
+ @ 1
+ 1 1
+ 2 1
+ 3 1
+ 4 1
+ 5 1
+ 6 B
MEMORY

SURROUT INE? ADXBIN
E? 40B00&

FARAMETER RLOCIK LOCATION?
BLOCK 1 LOCATION? 40000

BLOCK 1
49
5@

VALUES?

51 112345 IN ASCH

52

53

@ TERMINATOR

@
BLOCK =

LOCATION?

MOVE SUBROUTINE TO?7 37000
SUBROUTINE EXECUTED AT 37008

INPUT:

HL= 40006
MEMBi+ B 49
MEMBR1+ 1 5@
MEMB1+ 2 351
MEMB1+ 3 B3I
MEMBi+ 4 53
MEMBI+ 5 ©

QUTPUT:
HL= 12345
MEMB1+
MEME 1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+

(RN AR e

NAME OF SUBROUTINE?

Notes

RESULT
49
50
51
52
53
2

UNCHANGED

1. Ifthe string of ASCII characters is longer than 5 bytes, or if the value repre-
sented is greater than 65,535, ADXBIN will return an invalid result.

2. If one or more characters in the string are not valid ASCII decimal digits of
30H through 39H, ADXBIN will return an invalid result; no check is made of
the validity of the ASCII characters.

Program Listing

poi10e

ORG

7FR0H

$0522

8110 ;***********ﬁ&**
@@iz@ 3% ASCII DECIMAL TO BINARY CONVERSION. CONVERTS A STRING#*

PB13B 3% OF ABCII

PP14B 3+ BINARY.

BR1I50 %
pR16l %
PR170 3%
Boi7e s
pezoB ADXBIN
Bozi0

L Yeed)

AB230

PRz40

ARz58 ADXD1D
aazoen
aez7a
pBze0
BBz98

39

INPUT =

PUSH
PUSH
PUSH
Cal.i-
LD

LD

OR

JR
ADD
PUSH

HL=> STRING

CHARACTERS REPRESENTING DECIMAL DIGITS TO

OF CHARACTERS. TERMINATED BY

NULL CHARACTER.
OUTRUT £ HL=RINARY NUMBER FROM @ — 43333
poi1se S EHHEHIEEHH I I HEREHERREHRERRE R AR REE AR RRRREERFHHRARRHREALR

AF

DE

X

DATFH
IX:s8

Ay (HLD

A

2 ADXBZE
IXs1IX

X

sSAVE REGISTERS

$#%#GET STRING LOCT N#x*

sCLEAR RESULT REGISTER
$GET NEXT CHARACTER
sTEST FOR NULL (END)
G0 IF END
sRESULT TIMES TWO
$5AVE RESULT

*
*
*
¥*
*

TF13
7F15
7F17
7F18
7F1A
7F1C

7F1D
7F1F

7F21
7Fz2
7F24
7F26
7FE7
7F29
7FZA
7F 2B
7FZE
o000

DDz9
pbz%
Di

DD19
D636
5F

1600
DD17

23
18E7
DDES
El
DDE1
D1

Fi
C39ABA
ce

Ba308
00310
pa3ze
PB338
28340
pB352

BR3sd
aB37e

ae380
aa3v8
22400
BB410
28420
82430
ra R
Bo45a
aB46@
2a476

06BBB TOTAL. ERRORS

ADD IXsIX $RESULT TIMES FOUR
ADD IXsIX $RESULT TIMES EIGHT
POP DE sGET RESULT TIMES TWO
ADD IXsDE sRESULT TIMES TEN
sup 3@H sCONVERT TO @ —~ 9
LD EsA sNOW IN E
LD Ds@ $NOW IN DE
ADD IXsDE $MERGE WITH PREVIOUS
INC HL. $POINT TO NEXT CHARACTER
JR ADXB10 sLOOP "TIL END

ADX@z@ PUSBH IX s TRANSFER RESULT
POP HL SRESULT NOW IN HL
POp IX $RESTORE REGISTERS
POP DE
POP AF
JP BATAH s###RETURN ARGUMENT®#%
RET $NON-BASIC RETURN
END

ADXEIN DECIMAL VALUES

245s 213s 221 2E9s 205 127 18 ZZis 33s B
@y 126 183y 4@. 21s 221y 41+ 221y 239 221
41s Z21s 41 209 221 28s Zl4s 489 955 22
@By 221y 255 35y 24y 231y Z21s 2295 225 221
225s 209 Z41s 195 154s 18 201

CHRBUM= 211

AHXBIN: ASCH HEXADECIMAL TO BINARY CONVERSION

System Configuration

Model |, Model Hi, Mode! Il Stand Alone.

Description

AHXBIN converts a string of ASCli characters representing hexadecimal digits
to a 16-bit binary number. Each character in the string is assumed to be either in
the range of ASCII 0 through 7 (30H through 37H) or ASCII A through F @41H
through 46H). The string may be from zero to 4 bytes long, but is terminated
with a byte of all zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

INPUT ouUTPUT
Ho L Ho L
1 H
POINTER TO MEM 1+0 1 ::} i RESULT, §-65535
H H
MEM 140 STRING MEM1+2
4 OF 4 4 _+
+1 ASCH +1
1 pECIMAL 1 1 UNCHANGED |
+2 CHARACTERS +2
LAST o} LAST UNCHANGED

40

On output, HL contains the binary number of 0 through 65,535.

Algorithm
A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over.

If the character is not a null, it is assumed to be in the proper range for hexadec-
imal digits. A value of 30H is subtracted from the character to yield a value of
0 through 9 or 17 through 22. This value is then tested for the second set of
values of 17 through 22 by subtracting 10. If the original value was 0 through 9,
the result of this subtract will be negative, and the original value of 0 through 9
is used. If the result was positive, the value is now 7 through 12, and is changed
to the proper hex value by adding 3, to produce 10 through 15. This value is
then added to the result in IX. Effectively, this merges the four bits of the current
value into the four least significant bit positions of the IX register.

As the IX register is added to itself four times to cause a “shift left”” four bit
positions at the start of each iteration of the loop, successive hex digits move
toward the left of the result. The value in IX at the end of the string represents
the converted binary value.

Note that the shifts are done after the test for null; this ensures that the last octal
digit remains in the least significant four bits of IX.

if the ASCIl string was 41H, 45H, 31H, and 00H, the result in IX would be
0000101011100001, or hex OAET.

Sample Calling Sequence

NAME OF SURROUTINE? AHXBIN

HL VALUE? 50006

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 50008
MEMORY BLOCK 1 VALUES?

+ 8 1 7@

+ 1 1 49 | gya0 1N ASCH
+ 2 1 65

+ 3 1 57

+ 4 1 @ TERMINATOR
+ 5 @ 0

MEMORY BLOCK = LOCATION?
MOVE SUBROUTINE TO7? 40000
SUBROUTINE EXECUTED AT 40008

INPUT: OUTPUT:

HL= 50000 HL= &1865 RESULT = FIAGH
MEMBI+ @ 70 MEMBi+ @ 7@

MEMBI+ 1 49 MEMB1+ 1 49

MEMB1+ 2 65 MEMBE1+ = &5 | UNCHANGED
MEMBi+ 3 57 MEMBi+ 3 57

MEMB1+ 4 @ MEMBi+ 4 O

NAME OF SUBROUTINE?

41

7F oo

7FRB
7F@1
TRz
7Fa4
Fa7
7Fae
7FaD
TFBE

7FaF &

7Fi1
TF13
7F15
7F17
7Fi9
7F1R
7FiC
7FiE
7Fz6
TF22
7F24
7FZS
IF&g
TFZA
20
7FZD
7FZF
TF368
7F31
TE34
Lafnlnin}

F5

D5

DDES
CD7F@aA
DDz10Boa
1600

poion
B3110
eBize
aai136
o140
BB150
aai16@
ae17a
o180
20170
D200
oBz10
Bazz

2Dz30
Boz40
Bazs58
20260
BBz70
20280
BazI0
20300
Ba3La
2B3z0
Ba330
344
BB350
PA36LD
aa37a
208380
Ba370
aa400

88418
Be436
20440
28450
QR4 68
Ba470
20480
DB490
aa506

B2OBB TOTAL ERRORS

Notes

1. Ifthe string of ASCII characters is longer than 4 bytes, AHXBIN will return a
result that represents the last 4 characters of the string.

2. Ifany character in the string is not in the proper range, AHXBIN will return
an invalid result; no check is made of the validity of the ASCll characters.

Program Listing

ORG 7F@@H s@52e
SHRELAUEAREREEREERREERERERRREEER RS R R R R R LR R EE R R RS
3# ASCIT HEXADECIMAL TO BINARY CONVERSION. CONVERTS A *
i¥ STRING OF ASCII CHARACTERS REPRESENTING HEXADECIMAL %
¥ DIGITS TO BINARY. *
TERMINATED BY *

#*
*
*

3% INPUT: HL=> STRING OF CHARACTERS:
§ ¥ NULL CHARACTER.
s * QUTPUT tHL=RINARY NUMBER FROM @ - &5535
FHEHEHERER R AR ER AR R LR R R AR R R RSB LR R R LR LU R R ERRRERF S
AHXBIN PUSH AF $8AVE REGISTERS
PUSH DE
PUSH IX
CALL BATFH §#%2GET STRING LOC™ N###%
LD IX:8 $CLEAR RESULT REGISTER
LD Ds@ sFOR LOOP
AHXB1D LD As (HL) $GET NEXT CHARACTER
OR A STEST FOR NULL (END)
JR 21 AHXBZ0 360 IF END
ADD IXsIX sSHIFT LEFT 4 BITS
ADD IXsIX
ADD IXa1IX
ADD IXs1X
suUR 3@+ sCONVERT TO B8-9 OR 11-16
LD E:4 sNOW IN E
s5UR BAaH sSUBTRACT FOR A - F
BIT 73 A $TEST RESULT
JR NZ: AHXB15 360 IF B - 9
ADD As 3 sCONVERT TO A - F
LD EsA SNOW IN E
AHXB13 ADD IXsDE $MERGE WITH PREVIOUS
INC HL SPOINT TO NEXT CHARACTER
JR AHXQ10 sLOOP *TIL END
AHX@Z20 PUSH IX s TRANSFER RESULT
POP HL
POP IX sRESTORE REGISTERS
POP DE
POP AF
JP BAFAH ¥ #RETURN ARGUMENT %%
RET SNON-BASIC RETURN
END

AHXBIN DECIMAL VALUES

245y 2135 221s 3295 205 1By 221s 335 D

@s 22s @y 1265 183y 485 75, 41s 2215

41s 221y bis Z21s 41y D14, G5 Zl4s 10

203y 1279 32y 3y 198y Js 221y 255 39,

245 2279 ZEls 2E9. TG, 221 2355 ZD9s 241 195,
154 18, zZ@1
CHKBUM= 197

42

AOXBIN: ASCIl OCTAL TO BINARY CONVERSION

Systemn Configuration

Model I, Mode! 11, Model Il Stand Alone.

Description

AOXBIN converts a string of ASCHl characters representing octal digits to a
16-bit binary number. Each character in the string is assumed to be in the range
of ASCII O through 7 (30H through 37H). The string may be from zero to 6 bytes
long, but is terminated with a byte of all zeroes.

Input/Output Parameters
On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of 0 through 65,535.

INPUT QUTPUT
Ho L HooL
T
POINTER Tc:> MEM1+0] e { RESULT, 0-65535
! H
MEM 140 MEM1+0
+1 | STRING 1
4 of 1 1 4
2 S&FAL | +2 | UNCHANGED |
13 CHARACTERS ﬁ 43
+a | +4
LAST] LAST | UNCHANGED

Algorithm
A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is
first tested for a null, which marks the end of the string. If a null is found, the
conversion is over.

If the character is not a null, it is assumed to be in the proper range for octal
digits. A value of 30H is subtracted from the character to yield a value of 0
through 7. This value is then added to the result in IX. Effectively, this merges
the three bits of the current value into the three least significant bit positions of
the IX register.

As the 1X register is added to itself three times to cause a “shift left”" three bit
positions at the start of each iteration of the loop, successive octal digits move
toward the left of the result. The value in IX at the end of the string represents
the converted binary value.

43

FaB

7F@8 F5
7F@1 D5
7F@Z DDES
7F@4 CD7FDA

Note that the shifts are done after the test for null; this ensures that the last octal
digit remains in the least significant three bits of IX.

If the ASCHI string was 33H, 37H, 35H, and OOH, the result in IX would be

0

S

N

000000011111101, or octal 375.

ample Calling Sequence

AME OF SUBROUTINE? AOXBIN

HL VALUE? 40000

P

ARAMETER BLOCK LOCATIONY

MEMORY BLOCK 1 LOCATION? 40808
MEMORY BLOCK 1 VALUEB?

+

bbb b+

49
5@
51
352
53
55
TERMINATOR
@

123457 IN ASCHI

SN G Rl &
[R T

MEMORY BLOCK 2 LOCATION?

MOVE SUBROUTINE TO?7 370008
SUBROUTINE EXECUTED AT 37008
INPUT: QUTPUT:

HL= 400008 Hi= 42799 RESULT
MEMBRI+ @ 49 MEMB1+ @ 49
MEMBI+ 1 5@ MEMB1+ 1 5@
MEMBI+ 2 51 MEMB1+ 2 51
MEMB1+ 3 352 MEMB I+ 3 52 - UNCHANGED
MEMBL+ 4 53 MEMBI+ 4 53
MEMBI+ 5 55 MEMEI+ 5 535
MEMBL+ & @ MEMBI+ & @

NAME OF SUBROUTINE?

Notes

1.

If the string of ASCII characters is longer than 6 bytes, or if the octal value

represented is greater than 177777, AOXBIN will return an invalid result.

2.

If any character in the string is not in the proper range, AOXBIN will return

an invalid result; no check is made of the validity of the ASCII characters.

Program Listing

20100 ORG 7FOBH ¥ rlabeir

POLID (I REEHEEREREREREEREEEEREEEEREEREREEE LB EEREREEERRERR R R R AH

A01z@ 3% ASCII OCTAL TO BINARY CONVERSION. CONVERTS A STRING #

PO130 :* OF ASBCII CHARACTERS REPRESENTING OCTAL DIGITS TO BI- »

PO14@ 5% NARY. *

PB150 5% INPUT: HL=> STRING OF CHARACTERSs TERMINATED BY »

0160 ;% NULL CHARACTER. *

POL70 5% OUTPUT sHL=RINARY NUMBER FROM @ - 45535 *

PRIBR HEXERREEREEREFBEERRER DB ERREFEE R AR REFRIREREB R RS R LB RELRESE

0198

POZBR AOXBIN PUSH AF $SAVE REGISTERS

P0z10 PUSH DE

00z PUSH X

POz30 CALL BATFH s#%%GET STRING LOC’ Ne##
44

7F@7 DD21ZO@D 00240 LD IX. @
7FDE 1600 POZS0 LD Ds@
7E@D 7E POTeD AGXDIZ LD As (HLD)
7FQE B7 20270 OR A

7F@F Z80E PB280 JR 75 AOXDZ0
7F11 DD2% 20290 ADD IXs IX
7F13 DDZ9 20300 ADD 1Xs IX
7F15 DD29 P0310 ADD IXs IX
7F17 D630 PO3Z0 SUR 30H
7F19 S5F PO330 LD ExA
7F1A DDI19 PR34@ AOXDIS ADD 1Xs DE
7F1C 23 20350 INC HL
7F1D 1BEE PB36D JR ADXD 10
7F1F DDES PO370 AOXBEZD PUSH IX
7F21 E1 Re380 POP HL.
7F22 DDE1 PO3I90 poP IX
7Fz4 DI D400 POP DE
7E25 F1 00410 POP AF
K36 CATADA BR4Z0 Jp DAFAH
7F29 €9 DB430 RET

2000 PO44D END

peoPd TOTAL ERRORS

AOXBIN DECIMAL VALUES

245y 213, ZZ1s ZEFs 05

@By 27 B: 126s 183. 40,

41s 221ls 41y Z14s 48s 95

238, SRl ZEFs EE3. 221y

1@, 281

CHKEUM= 74

BCADDN: MULTIPLE-PRECISION BCD ADD

System Configuration

Model 1, Model 111, Model 1l Stand Alone.

Description

:CLEAR RESULT REGISTER
sFOR LOOP
$GET NEXT CHARACTER
$TEST FOR NULL (END)
36O IF END
sGHIFT LEFT 3 BITS

s CONVERT TO 8-7
sNOW IN E
IMERGE WITH PREVIOQUS

$POINT TO NEXT CHARACTER
sL.OOP PTIL END

t TRANSFER RESULT
sRESTORE REGISTERS

s # % #RETURN ARGUMENT##%
INON-BASIC RETURN

1@s 221s 33: @
el 41s 2219

259 35s 245

2PFs 241y 1959 154

BCADDN adds a ““source’” string of bed digits to a ““destination’ string of bed
digits and puts the result of the add into the destination string. Each of the two
strings is assumed to be the same length. The length must be an even number of
bed digits, but may be any number from 2 through 254.

Input/Output Pararmeters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains
the number of bed digits in the two operands. This must be an even number (an

integral number of bytes).

45

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the bed add.

INPUT OUTPUT
HooL HoL
T 1
POINTER TO PARAM+0] —_ L UNCHANGED
L
T 1
PARAM~+0 4. POINTERTO | PARAM+0 -+ UNCHANGED -
1+@
1 MEM +1
+2 +2
4 P(I\)Alg&gigo 4 4+ UNCHANGED +
3 —> 3
+4 ELEN# OF +4 UNCHANGED
MEM 1+@ MEM 1-+8
+1 +1
+ BCD + -+ RESULT T
+2 OPE!?AND +2 {op1+op2)
13 —> =
4 +4
+5 +5
+6 +6
j L L
MEM2+@ MEM2-+g
+1 +1
+ BCD + T T
+2 OPERAND +2
4 2 4 - ot
+3 @ +3 UNCHANGED
+4 +4
+5 +5
+6 +6
A d A A

Algorithm

The BCADDN subroutine performs one add for each two bed digits. The desti-
nation string address and source string address are first picked up from the
parameter block and put into DE and HL, respectively. The number of bytes in
the add is then picked up and put into the BC register pair. This number is
divided by two to obtain the total number of bytes involved. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next two bed destination digits are then picked up from the destination
string (DE register pointer). An ADC is made of the two source string digits (HL
register pointer). The result is adjusted for a bed add by a DAA instruction, and
the result stored in the destination string.

46

The source and destination string pointers are then decremented by one to
point to the next most significant two bed digits of each operand. The B register
count is then decrermented by a DJNZ, and a loop back to BCA010 is made for
the next add.

The carry is cleared before the first bcd add, but successive adds add in the
carry from the preceding bcd add.

if the destination operand was 00H, 45H, 67H, 11H and the source operand
was 00H, 75H, 77H, 33H, then the number of bed digits must be 8. The result in
the destination operand would be 01H, 21H, 44H, 44H. Note that the result
may be one bed digit longer than the original number of bed digits.

Sample Calling Sequence

NAME OF SUBROUT INE? RCADDN

HL VALUE? 40008

PARAMETER BLOCK LOCATION? 42000
PARAMETER BLOCHK VALUES?

+ @ 2z 45000

+ 2 2 50000

+ 4 1 & 6BCD DIGITS

+ 5 @ 2

MEMORY BLOCK 1 L OCATION? 450008
MEMORY BLOCK 1 WVALUES?

+@ 1 18
+ 1 1 52 | 123466INBCD
+ 2 1 86 |

+3 0 @

MEMORY BLOCK = L OCATION? 50000
MEMORY BLOCK = VALUES?

+ 2 1 119
+ 1 1 5 - 77@3547 IN BCD

+2 1 71]
+3 0 O

MOVE SUBROUTIME T07 37000
SUBROUTINE EXECUTED AT 37000

INPUT: OUTPUT:

HL= 42000 HL= 40000 _

PARAM+ O 200 PARAM+ @ 200

PARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 B0 PARAM+ Z BB | UNCHANGED
PARAM+ 3 195 PARAM+ 3 195

PARAM+ 4 6 PARAM* 4 &

MEMB1+ @ 18 MEMBI+ @ 137

MEMB1+ 1 52 MEMB1+ 1 &4 |- 894003 RESULT IN BCD
MEMBI+ = B& MEMBI+ 2 3

MEMBZ+ B 119 MEMB2+ @ 119

MEMBZ+ 1 5 MEMBZ+ 1 5 - UNCHANGED
MEMBZ+ Z 71 MEMBZ+ 2 71 |

NAME OF SUBROUTINE?

Notes

1. Aninvalid result will occur if the source or destination strings do not con-
tain valid bed digits.

2. The destination string is a fixed length. Leading zero bcd digits must pre-
cede the operands to handle the result, which may be one bcd digit larger than
either of the operands.

47

7F00

7F 00
7F@1
7F @z
7F@3
7F @4
7F @6
7F@9
7F@A
7F@C
7F@F
7F1z
7F15
7F18
7F1B
7F1D
7FIF
7FZ0
7F21
7F 22
7FZ3
7Fz

7F25
7F26
7F27
7Fz8
7F29
7F2A
7FZB
7F2C
7F2D
7F2F
7F31
7F3z2
7F33
7F34
7F35
oo

F5

€3

D5

ES
DDES
CD7FBaA
ES
DDE1
DD5EBG®
DD56@1
DD&EBZ
DD&623

DD4E®4
CE39

Bo06B
ae
av
EB
a2
ER
41
&4
B7
ia
8E
27
iz
2B
iB
10F8
DDE{
El
D1
51
Fi
ce

02106
20110
o120
aB136
20140
2156
o166
@a176
20186
20196
a7
gpzie
Bazzo
20236
Boz40
paz5e
BBz60
28270
Bozen
22276
20300
20316
BR326G
28336
BE340

20350
20360
20370
20380
20350
00400
o041
00420
00430
0440
0450
0460
0470
20480
PB49D
20500
20510
20520
20530
00540
PR550
20560
22570

pOBBB TOTAL ERRORS

3. This is an “unsigned”’ bed add. Both operands are assumed to be positive

bcd numbers.

Program Listing

ORG

7FBaH

;@522

ER R R SR R R R T T e T T ST N
$# MULTIPLE-PRECISION BCD ADD.

5% CISION BCD OPERANDSS
INPUT: HL=

3 ¥
3%
HE
;¥
3 ¥#*

ANY LENGTH

» PARAMETER BLOCK
PARAM+@s +1=ADDRESS OF OPERAND 1
PARAM+Zs +3=ADDRESS OF OPERAND Z
PARAM+4=EVEN # OF BCD DIGITS: B-254

QUTPUT:OPERAND 1 LOCATION HOLDS RESULT

ADDS TWO MULTIPLE-PRE-

* ok %k ok ok %k %k

SEAERARRUERRREFRRE RS RERRURERRRAREER R R E SRR RR SRR R R EEH

a

BCADDN PUSH

BCABLIO

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
SRL
LD
DEC
ADD
EX
ADD
EX
LD
INC
OR
LD
ADC
DAA
LD
DEC
DEC
DJINZ
POP
POP
POP
POP
POP
RET
END

IX
BATFH
HL

IX

Es (IX+8)
Ds (IX+1)
Ls (IX+2)
Hs (IX+3)
Cs (IX+4)
C

Bsd
BC
HLsBC
DE s HLL
HLsBC
DEs HL.
BsC

B

A

As (DE)
As (HL)

(DE)sA
HL
DE
BCAD1O
IX
HL
DE
BC
AF

BCADDN DECIMAL VALUES

245,
ZE1
2 22
@s 11
142,
209

1975 2135
223 EZ1s
1s 1B2s 34
s By 235,

193 241,

CHRBUM= 115

48

TEGs 221
P45 s
2215 78s

201

229

221 Bé6»

i5AVE REGISTERS

s###GET PB LOC? N###
$TRANSFER TO IX

$GET OP 1 LOC’N
$GET OP 2 LOC'N

sGET # OF BYTES

sN/Z

SNOW IN BC

sH-1

sPOINT TO LAST OP2

$SWAP DE AND HL

$POINT TO LAST OR1

s SWAP BACK

s#—~1 BACK TO B

SORIGINAL NUMBER

sCLEAR CARRY FOR FIRST ADD
$GET OPERAND 1 BYTE
$ADD OPERAND Z
sDECIMAL ADJUST
$STORE RESULT
sPOINT TO NEXT OP2
sPOINT TO NEXT OP1
sLOOP FOR N BYTES

$RESTORE REGISTERS

sRETURN TO CALLING PROG

2055 1275 105 229
sy 281y 110

45 2035 575 bs
Gy Z35% 659 4,
3%9s 18s 435 2735 16w

248

183 26

221l ZEDs 2254

BCDXAD: BCD TO ASCII

DECIMAL CONVERSION

System Configuration

Model I, Model IlI, Model 1l Stand Alone.

Description

BCDXAD converts a string of bed digits to a string of ASCH characters. Each
“nibble” of four bits in the bed string is assumed to be a valid bed character of
binary value 0 through 9. The bcd string may be from zero to any number of
bytes long, but is terminated with a nibble of all ones. The result string of ASCII
digits will represent ASCII decimal digits of 30H through 39H, with a terminator
of a byte of zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the bcd string in stand-
ard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
result string in the same format.

On output, the parameter block is unchanged. The bed string is destroyed. The
result string contains an ASCII decimal digit for each bcd digit in the bed string
and a final byte of zeroes.

INPUT - OUTPUT
H L H oL
1
POINTER T(é PARAM+@] :_——:> l UNCHANGED
)3
H ¥
PARAM+0 POINTER TO PARAM-+@
-+ BCD STRING -+ UNCHANGED -+
+1 {(MEM 1-+0) +1
+2 POINTER TO +2
4 RESULT STRING + -4 UNCHANGED -+
+3 (MEM 2-+0) > +3

MEM 140 MEM1-+0
+1 +1

+ BCD + + +
+2 STRING +2

+3 j +3 DESTROYED

+4 +4
+5 +5
+6 +86

LAST { 1111 [G000 | (or xox1111) LAST I]

49

MEM2-+0 MEM2-+§
+1 +1
+ RESERVED 4 4+ RESULT <
+2 FOR +2 STRING
4+ mesur 4 4 4
+3 STRING :> +3
+4 +4
+5 +5
+6 +6
LAST 4
Algorithm

The BCDXAD subroutine performs one conversion for each bed digit. The bed
string address and result string address are first picked up from the parameter
block and put into HL and DE, respectively.

The next bed digit is then picked up from the bcd string by an RLD instruction.
A test is made for all ones. If the digit is all ones, a jump is made to BCDO020.

A value of 30H is added to the bcd digit to convert it to an ASCII digit of 30H
through 39H. This digit is then stored in the result string. The ASCII result string
address in DE is then incremented by one, and the next bed digit is picked up,
tested, converted, and stored. The ASCII string pointer is again incremented to
point to the next byte. The bed pointer in HL is then incremented to point to the
next two bed digits. A loop is then made back to BCD010.

The final action at BCDO020 is to store a null (zeroes) at the next ASCH character
position.

The RLD instruction shifts the least significant four bits of the A register and the
memory location pointed to by HL in a four-bit bed shift to the left.

If the bed string was 45H, 67H, 5FH, the result in the ASCII string would be
34H, 35H, 36H, 37H, 35H, OOH.

Sample Calling Sequence

NAME OF SUBROUTINE? BECDXAD

HL VALUE? 41000

PARAMETER BLOCK LOCATION? 41000
PARAMETER BLOCK VALUES?

+ @ & 44000 POINTS TO BCD STRING

+ 2 2 45000 POINTS TO RESULT STRING
+4 B @

MEMORY BLOCK 1 LOCATION? 44000
MEMORY BLOCK 1 VALUES?

e o1 145}* 912 IN BCD PLUS TERMINATOR OF ALL ONES
+ 1 1 47

+ 2 0 B

MEMORY BLOCK 2 LOCATION? 45000

MEMORY BLOCK 2 VALUES?

+ @ 1 255

+ 1 1 255

+ 3 1 oms [INITIALIZE RESULT FOR EXAMPLE
+ 3 1 255

+ 4 @ 0

50

MOVE SUBROUTINE TO7 470020
SUBROUTINE EXECUTED AT 47000

INPUT: OQUTPUT:

HL= 41008 HL= 41300

PARAM+ B 224 PARAM+ @ 224

PARAM+ 1 171 FPARAM+ 1 171

PARAM+ = Z20@ PARAM+ = 200

PARAM+ 3 175 PARAMA 3 175

MEMB1+ @ 145 MEMBi+ B @

MEMBR1+ 1 47 MEMEL+ 1 @

MEMBRZ+ B 255 MEMPZ+ @ 57

MEMPZ+ 1 255 MEMBZ+ 1 49 912 IN ASCH
MEMBZ+ 2 255 MEMBZ+ 2 58

MEMBZ+ 3 255 MEMBZ+ 3 @ TERMINATOR

NAME OF SUBROUTINE?

Notes

1. An invalid result will occur if the bed string contains invalid bed digits.
2. The bed string will be destroyed in the processing.

Program Listing

7Faa 22100 ORG 7F@oH ;@522
BBL LD 535536 35365 5 36 30 36 363333 05003036 3 3363030 306 3 03 M I B3 6 M

PRI 3% BCD TO ABCII DECIMAL CONVERSION. CONVERTS A STRING #*
PO13@ 3% OF BCD DIGITS TO A STRING OF ABCII CHARACTERS. *
DB140D 3% INPUT: HL.=> PARAMETER BLOCK *
BP150 3+ PARAM+@: +1=LOCATION OF STRING OF BCD DGTE-. *
DB168 5% TERMINATED BY A NIBBLE OF AlLL ONES. *
paL7e s PARAM+Zs +3=LOCATION OF RESULT STRING *
Bo18B % OUTPUT: RESULT STRING HOLDS BTRING OF ASCII CHARDS»s #
pRiI9G s TERMINATED BY A NULL. *
DOZDD S HHAEHFHERFHE R HRFRFARFEREREREERRERRH AR ERFRARERRRE R R R R R
pBz18

7FRB F5 DBzzb BCDXAD PUSGH AF $iBAVE REGISTERS

7FB1 D5 PB230 PUSH DE

7FBZ ES pR24B PUSH HL

7FB3 DDES fR:50 PUSH IX

7FB5 CD7FBA D263 CaLL BATFH s###GET STRING LOC N=#®%

7F@8 ES BBz78 PUSH HL s TRANSFER TG IX

7F@39 DDE1 D@zBa POP IX

7F@E DD3EGZ Baz9a LD Es (IX+2) $PUT DEST PNTR IN DE

7FBE DD5683 PB380 LD Ds (IX+3)

7F11 DD4EG@ Bo3ie LD Ls (IX+@) $PUT SOURCE PNTR IN HL

7F14 DD66BL Bazzo LD Hs (IX+1)

7F17 AF DA330 BCDBIAB® XOR A sCLEAR A

7F18 ED&F BB340 RLD $GET BCD DIGIT

7F1A FEOF 0R350 CP @FH sTEST FOR ONES (END?

7F1C 281z BB360 JR Z.BCDBZE 3GO IF END

7FIE C638 aa378 ADD Hs 3@H sCONVERT TO 8-9 AGCII

7F28 1z 82386 LD (DE)s A $STORE ABCII CHAR

7Fz21 13 Ba3Fa INC DE sPOINT TO NEXT CHARACTER

TFz2 AF 23409 XOR A sCLEAR A

TF23 ED6F Ba410 RLD $GET 8CD DIGIT

7F25 FEBF Da42a cP BFH sTEST FOR ONES (END)

TF27 2807 BB430 JR ZsRCDBZG G0 IF END

7F29 C638 BR44D ADD A 30H s CONVERT TO 8-9

7FzZB 12 pR452 LD (DEJI» A ' $STORE ABCII CHAR

7FzC 13 BR46B INC DE $POINT TO NEXT CHARACTER

7F2D 23 bB470 INC HL $LOCYN FOR NXT 2 BCD DGTS

7F2E 1BE7 D248 JR BCDR1D sLOGOP *TIL END

51

7F3a AF 20493 BCDBZB XOR A

7F31 12 Base0 LD (DE)s &
7F32 DDE1 2a51@ POP IX
7F34 EX 20528 POP HL.
7F35 D1 20536 POP DE
7F36 F1 22548 POP AF
7F37 C9 ags56 RET

2000 BB560 END

2080@ TOTAL ERRORS

ECDXAD DECIMAL VALUES

245¢ 213 ZETe EFZls Z29s

225 221y P4y s
221s 182s 1s 175 2375

s NULL
$STORE NULL AS TERMINATOR
$RESTORE REGISTERS

sRETURN TO CALLING PROG

205 1279 1@ 229s 221

#1e Bdy Fv 221y 1185 @y
11l 2845 15 4By 18s

198s 48y 18s 19y 173« 237+ 11ls 254y 15y 40

7s 198s 48 18¢ 19 35,
E21s Z225. 225 2B9s Z41

CHRSUM= 72

BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT

24y 2315 175s 18

@1

System Configuration

Model |, Model 1, Model 1l Stand Alone.

Description

BCSUBT subtracts a ““source’”” string of bed digits from a ““destination’” string of
bed digits and puts the result of the subtract into the destination string. Each of
the two strings is assumed to be the same length. The length must be an even
number of bed digits, but may be any number from 2 through 254.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains
the number of bed digits in the two operands. This must be an even number (an
integral number of bytes).

INPUT OUTPUT
H ot HooL
' H
POINTER TO PARAM+# [> [UNCHANGED
i
' T
PARAM-+0 PARAM-+¢
POINTER TO
T T + UNCHANGED -
» MEM 1+ .
+2 2
T P%E&Ezigo T -+ UNCHANGED -+
+3 —>
EVEN % OF
+4 BCD DIGITS +4 UNCHANGED
52

MEM 1+8 MEM 1-+8
1] T w 1
2 | optmanD | 21 eprosn 1
3 1 é +3
+a | T v | 1
s | T w5 | 1
w6 | ‘: +6 —: 1
MEM2+0 MEM2-+@
w1 | T w1] 1
+2 :_ OPERAND : +2 : :
+3 2 : +3 | UNCHANGED
s | 1 4 | 1
w5 | T s | 1
+6 :- i: 6 | :—

On output, the parareter block and source string are unchanged. The destina-
tion string contains the result of the bed subtract.

Algorithm

The BCSUBT subroutine performs one subtract for each two bed digits. The
destination string address and source string address are first picked up from
the parameter block and put into DE and HL, respectively. The number of bytes
in the subtract is then picked up and put into the BC register pair. This number
is divided by two to obtain the total number of bytes involved. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next two bed destination digits are then picked up from the destination
string (DE register pointer). An ADC is made of the two source string digits (HL
register pointer). The result is adjusted for a bcd subtract by a DAA instruction,
and the result stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bed digits of each operand. The B register
count is then decrermented by a DJNZ, and a loop back to BCS010 is made for

the next subtract.

The carry is cleared before the first bed subtract, but successive subtracts sub-
tract in the carry from the preceding becd subtract.

If the destination operand was 00H, 45H, 67H, 11H and the source operand
was 00H, 75H, 77H, 33H, then the number of bed digits must be 8. The result in
the destination operand would be 99H, 69H, 89H, 78H.

53

Sample Calling Sequence

NAME OF SUBROUTINE? BCSUBT

HL VALUE? SD200

PARAMETER PLOCK LOCATION? SGD28
PARAMETER BLOCK VALUES?

+ D 52000

+ 2 54200

+ 4 4 4 BCD DIGITS
+ 5 2

MEMORY BLOCK 1 LOCATION? S2000
MEMORY BLOCK 1 VALUES?

v ? i i‘;‘g}gsmm BCD

+ 2 @ @

MEMORY BLOCK 2 LOCATION? 54000
MEMORY BLOCK 2 VALUES?

+ B 1 14i}
9383 IN BCD

& = R R

+ 1 1 131
- 2

MOVE SUBROUTINE TO? 45000
SUBROUTINE EXECUTED AT 45000

INPUT: OUTPUT ¢
HL= 50000 HL= 50000 ~

PARAM+ B 32 PARAM+ @ 32

FARAM+ 1 @3 PARAM+ 1 283

ARAM+ = 2403 PARAM+ 2 2 ~UNCHANGED
FARAMT 5 298 EARAM: s 18

PARAM+ 4 & PARAM+ 4 4 |

MEMEI+ @ 149 MEMBI+ & 1)

MEMB1+ 1 11Z MEMB1+ 1 135] '8/ RESULTINEBCD
MEMBZ+ @ 147 MEMBZ+ @ 147

MEMBZ+ 1 131 MEMBz+ 1 131 | UNCHANGED

NAME OF SUBROUTINE?

Notes

1. Aninvalid result will occur if the source or destination strings do not con-
tain valid bed digits.

2. This is an “unsigned’’ subtract. Both operands are assumed to be positive
bed numbers.

Program Listing

7FBe 200100 ORG 7FOOH @5z
QBALLOD 58RI A6 I I IR IS J I RN

@120 5% MULTIPLE-PRECISION BCD SUBTRACT. SUBTRACTS TWO MUL- *
@013 3% PLE-PRECISION BCD OPERANDSs ANY LENGTH. *
20148 3% INPUT: HL=> PARAMETER BLOCK *
Bois6G s+ PARAM+Ds +1=ADDRESS OF OPERAND 1 *
AR16D s PARAM+Zs +3=ADDRESS OF OPERAND 2 *
20178 5= PARAM+4=EVEN # OF BCD DIGITSs @8-254 *

*

BRIBO s+ OUTPUT:OPERAND 1 LOCATION HOLDE RESULT
[RS T TS XTI IIITILLTILE S SIIIISSIEL SIS SIS ST LT LTS

p2zEd 3
7F@@ F5 22212 BCSUBT PUSH AF sB5AVE REGISTERS
7F@1 C5 BRz20 PUSH BC
7FB2Z D5 20z30 PUSH DE
7FB3 ES 2024@ PUSH HL
7F@4 DDES 22250 PUBH IX

54

7F@86
7F@9
7FBA
7F@C
7FOF
7F1z
7F15
7F18
7F1B
7F1D
7F1F
7F 20
7F21
7F22
7F23
7Fz4
7F25
7F26
7F27
7F28
7F29
7FZA
7FZB
7FzC
7F2D
7F2F
7F31
7F3z
7F33
7F34
7F35
0000

CD7F@A
E5
DDE1
DDSEG®
DD56B1
DD6ERZ
DD&6LB3
DD4E@4
CR39
as00
2B

a9

ER

El
Di
Ci
Fi
ce

et
BBz78
BOz80
PRZI2
28300
PR310
PR320
R332
aB340
2358
PO3468
BO378
BO380
aa398
ralra B]
0410
pa420
Bo432
BB44B
@450
BB46B
BB478
BB48a
DB490
radramrallij
pas510
pas2a
p@As53e
pas 48
PO5508
BRA560
peas572

P68 TOTAL ERRORS

BCs@1IB LD

BCSUBRT DECIMAL. V

BXBINY: BINARY TO ASCIEI BINARY CONVERSION

BATFH
HL.

IX

Es (IX+8)
Ds (IX+1)
Ly (IX+2)
Hs (IX+3)
s (IX+4)
C

BB

BC
HLsBC
DE s HL
HL.s BC
DEs HL
BsC

g8

A

As (DED
As (HL)

ALUES

sau#GET PB LOCT Ne#x

$ TRANSFER TO

X

SGET OP 1 LOC’N

sGET OP

Z LOC’N

sGET # OF BYTES
IN/Z
$NOW IN EC
sH-1

sPOINT TO LABT OP2

$8WAF DE AND HL

sPOINT TO

sSWAP BACK
s#-1 BACK TO B
sORIGINAL NUMBER

s CLEAR CARRY FOR FIRST
sGET OPERAND 1 BYTE

LABT OP1

;SUB OPERAND 2

sDECIMAL ADJUST

$STORE RESULT

sPOINT TO NEXT OP2
sPOINT TO
sLOOP FOR N BYTES
$RESTORE REGISTERS

$RETURN

245, 197s 213 s 229 221 Z29s 2B5s 1275
221y 2E5, 221 s G4y @y ZZ1s Bbe 1. ZZ1s
2y FZ1s 102y 3B 22ls T78Bs 49 28035 579 b
Bs 11s 99 2335 s Fs 235 655 45 183y 26
158, 39s 18s 43s 27s 165 248s 2281 225
209 193 241+ 281

CHKEUM= 131

System Configuration

Model, 1, Model 111, Model I Stand Alone.

Description

TO CALLING PROG

1@y
116,

225,

NEXT OP1

239

ADD

BXBINY converts a 16-bit binary number to a string of ASCII binary digits. Each
character in the string will be either an ASClI one (30H) or an ASClI zero (3TH).
The result string will be 16 bytes long, and is terminated with a byte of all
zeroes. The user must specify a buffer area of 17 bytes to hold the result string.

55

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXBINY. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 17-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCll ones and
zeroes, terminated by a null. The parameter block contents remain unchanged.

INPUT QUTPUT
HooL HooL
1 T
L POINTER T? PARAM-+0] — { UNCHANGED W
T
PARAM-+@ 16-BIT VALUE PARAM-+@
+ TO BE + + UNCHANGED
+1 CONVERTED +1
+2 BUFFER +2
+ ADDRESS + + UNCHANGED -+
+3 (MEM 1-+8) - jj; +3
MEM 1+@ MEM 1-+g
+1 w1 | T
+2 +2 | T
4 P —— 16 ——
+3 :} +3 ASCII
+ + -+ CHARAC- -+
+4 +4 TERS
+5 RESERVED w5 | T
+ FOR 4 4 €
+6 RESULT 6
+7 +7
+8 +8 |
+9 +9
+10 +1¢
+11 +11
+12 +12 |
+13 :> +13
+14 +14
+15 +15 | T
+16 +16 g

Algorithm

BXBINY goes through 16 iterations to convert each of the bits in the input value
to an ASClHl 30H or 3TH (zero or one). The value to be converted is put into
register pair HL from the parameter block. For each iteration, HL is shifted left

56

one bit position. The carry is set if the bit shifted out is a one, or reset if the bit
shifted out is a zero.

The carry is tested and either a 30H (0) or 31H (1) is stored in the next buffer
position. A pointer to the buffer is picked up from the parameter block and
maintained in the IDE register pair; it is incremented by one as each result byte
is stored. The buffer is filled from low-order memory address to high-order
memory address, corresponding to the processing of the bits from HL.

if the binary value to be converted was 0000000000001101, the buffer would
contain 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 3TH,
31H, 30H, 31H, 0OH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXBINY

HL VALUE? 400008

PARAMETER BLOCK LOCATION? 428000

PARAMETER BLOCK VALUESB?

+ B 2 43688 VALUE TO BE CONVERTED = 101010101¢100000
+ 2 2 50000

+ 4 @ @

MEMORY BLOCK 1 LOCATION? 508000

MEMORY BLOCK 1 VALUES?

+ @B 2z @

+ Z 2 @

+ 4 2 0

+ 6 7 B

+ 8 2 B L INITIALIZE BUFFER FOR EXAMPLE
+ 18 2 @

+ 12 2 B

+ 14 Z @

+ 16 1 255 |

+ 17 @ B

MEMORY BLOCK =& LOCATION?
MOVE SUBROUTINE T0?7 37000
SURROUTINE EXECUTED AT 37000

INPUT: QUTPUT:

HL= 40000 Al= 40000

PARAM+ @ 160 PARAM+ @ 160

PARAM+ 1 178 PARAM+ 1 170

PARAM+ = 80 PARAM+ 2 8@ | UNCHANGED
PARAM+ 3 195 PARAM+ 3 195

MEMEL+ © O MEMBL+ B 49

MEMB1+ 1 @ MEMB1+ 1 48

MEMB1+ 2 @ MEMB1+ 2 49

MEMB1+ 3 @ MEMB1+ 3 48

MEMB1+ 4 O MEMB1+ 4 49

MEMBI+ 5 O MEMBi+ 5 48

MEMB1+ &6 @ MEMB1+ & 49

n‘éggi: ;’3' g g‘éﬂgi: ; 2‘3 L RESULT OF 1810101010100000 IN ASCII
MEMBI+ 9 @ MEMB1+ 9 48

MEMB1+ 10 @ MEMB1+ 10 49

MEMB1+ 11 MEMBI+ 11 4B

MEMB1+ 12 @ MEME1+ 12 48

MEMB1+ 13 @ MEMB1+ 13 48

MEMB1+ 14 B MEMBi+ 14 48

MEMBI+ 15 @ MEMB1+ 15 48 |

MEMB1+ 16 255 MEMB1+ 1& B TERMINATOR

NAME OF SUBROUTINE?

57

7Fea

7F 00
7F@1
702
7F@3
7F04
7FB6
7H09
7F DA
7FBC
7F@F
7F1Z
7F15
7F18
7F1A
7F1C
7F1D
7F1F
7F20
7FZ21

IE%%
7F25
7F26
7FZ8
7F29
TF2A
7FzB
7F2C
aoea

F5

C3

D3

ES
DDES
CD7F @A
ES
DDE1
DD&EBB
DD&6A1
DDSERZ

DD5&03
BsH10
3E3B
29
3081
3C

12

13

APF&

1z
DDE 1
El
D1
Ci
Fi
ce

Notes

1.
2.

Program Listing

BR16o
ao11a
2a1z20
0136
621408
BB150
PB160
Ba176
20180
ea196
ralrapedralvi]
poz10
pozza
BB230
Baz40
0250
o260
Goz78
ralrprg=lv]
ralrorded]
o302
Bo31@
20320
o336
28340
Be350
BPa3&60
2372
20380

20390
22400

88418
2430
22440
BB4506
o460
Bo470
20480
o496
Basea

2888 TOTAL ERRORS

ORG

No invalid result may occur.

7FaeH

Leading ASClI zeroes may be present in the result.

;@522

PR R R TEIE LTI ELITILITIITTITILTI LTI LS RT LT LT X BT L Y

% BINARY TO ASCII BINARY CONVERSION.
3% BINARY VALUE TO A BTRING OF ASCII ONES AND ZEROES

5% TERMINATED BY A NULL.
ER INPUT: HL=> PARAMETER BLOCK
PARAM+@: +1=16-BIT VALUE
PARAM+Z2» +3=RUFFER ADDRESS

3%
L

OUTPUT:RUFFER FILLED WITH 16 ASCII ONES AND ZER-
TERMINATED BY NULL

3

QES,

CONVERTS A 16-BIT #

* Kk k % ok %k %k

FHURKAEEREAU R EREREE R R USSR REERRR R R E R LR R SRR HERERR R AR R FRRREE

a

BXRBINY PUSH
PUSH
PUSH
PUGSH
PUSH
CALL
PUSH
POP
LD
LD
LD

LD
LD
BXB@1G® LD
ADD
JR
INC

BXBB28 LD
INC

XIR?
LD
POP
POP
POP
POP
POP
RET
END

IX

Ly (IX+@)
Hy (IX+1)
Es (IX+2)
Dy (IX+3)
Bsléb

As 30H
HL s HL.

NC+BXB0B20

A

(DE)sA
DE

BEXBB1@
A

(DE)s A
X
HL.
DE
BC
AF

EXBINY DECIMAL VALUES

245,
221
2y 221
is &8s
225

<

197
225

18,
209

CHKSUM= 34

58

213,
2215
Bbs 35

19
193,

229 221
by 1bs &2
1b6s 246
241s 201

11@s @y 221>

E29s

s 48y
175,

2085
102y

41
18,

$8AVE REGISTERS

s ¥#GET PR LOC? N###%

$TRANSFER TO IX
sPUT

316 ITERATIONS
$ABCIT ZERO

VALUE INTO HL
$PUT BUFFER ADD IN DE

sSHIFT VALUE LEFT 1 BIT

360 IF ZERO
$ASCII

s ZERO
sSTORE NULL

$RESTORE REGISTERS

sRETURN TO CALLING PROG

127
s 221
484

221

1@s
Dy

225

BIT

ONE NOW IN A
iGTORE ONE OR ZERO
sPOINT TO NEXT SLOT
sLOOP *TIL END

229

BXDECL: BINARY TO ASLCIH DECIMAL CONVERSION

System Configuration

Model I, Model 1ll, Model It Stand Alone.

Description

BXDECL converts a 16-bit binary number to a string of ASCII decimal digits.
Each character in the string will be in the range of ASCIl 0 through 9 (30H
through 39H). The result string will be 5 bytes long, and is terminated with a
byte of all zeroes. The user must specify a buffer area of 6 bytes to hold the
result string. The conversion is an "unsigned’’ conversion of the 16-bit value.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXDECL. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 6-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASClHl charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT QUTPUT
Ho L H oL
1
POINTER Tc:) PARAM-+0] —— l UNCHANGED
T T
PARAM-+@ 16-BIT VALUE PARAM-+#
+ TO BE + + UNCHANGED +
+1 CONVERTED +1
+2 BUFFER +2
+ ADDRESS + T UNCHANGED =
+3 (MEM 1-+9) > +3
MEM 1+ MEM 1+8
—p B = = 5 i
1 +1 ASCll
4 RESERVED -+ CHARACTERS -
+2 FOR +2
4+ RESULT 4 + +
+3 —> =
+4 +4
+5 +5 @
Algorithm

BXDECL goes through 5 iterations to convert the input values. The value to be
converted is put into register pair HL from the parameter block. For each itera-

59

tion, a power of ten is subtracted from the contents of HL, starting with the
largest power of ten that can be held in the 16-bit input value, 10000. Subse-
quent powers subtracted are 1000, 100, 10, and 1.

The first operation subtracts 10,000 as many times as possible from the original
value. For each subtract, a count is incremented. If the original value were
34,567, for example, the first operation would subtract 10,000 from 34,567 four
times. On the fourth time, the result would "‘go negative’ indicating that no
additional subtracts of the power could be done.

The count minus one is then added to 30H to yield the proper ASClI digit of 30H
through 39H. This ASCII digit is then stored in the buffer. This operation is
repeated for the five powers of ten involved.

BXDECL uses a subroutine called SUBPWR. SUBPWR is called to perform the
subtracts. SUBPWR is entered with BC containing the negated power of ten to
be subtracted and the current “‘residue’” of the value to be converted in HL. A
count of — 1 is initially put into A. This count is incremented for each subtract.
As each subtract is done, a test is made of the result. If it is negative, an add is
done to restore the last resultin HL. A value of 30H is then added to the value of
A and the result is stored in the buffer. The pointer to the buffer is then incre-
mented by one.

SUBPWR returns to the code in BXDECL by testing the current power of ten. It
returns to one of five points at BXDO10 through BXDO050. This structure is nec-
essary to avoid use of CALL instructions, which are not relocatable.

The buffer is filled from low-order memory address to high-order memory ad-
dress, corresponding to the processing of the powers of ten,

If the binary value to be converted was 1010111111010011, the buffer would
contain 34H, 35H, 30H, 31H, 3TH, OOH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXDECL

HL. VALUE? 40002

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 12345 VALUE TO BE CONVERTED
+ I 2 50800

+ 4 8 8

MEMORY BLOCK 1 LOCATION? S0006
MEMORY BLOCK 1 VALUES?

+ 8 2 @
+2 2 @
INITIALIZE BUFFER FOR EXAMPLE
+ 4 1 B
+ 5 1 255
+ 6 O B

MEMORY BLOCK 2 LOCATION?
MOVE BUBROUTINE TO7 45000
SUBROUTINE EXECUTED AT 45000

INPUT ¢ OUTRUT :
HL= 4DBGBG HL= 40000

PARAM+ @ 57 PARAM+ B 57

PARAM+ 1 48 PARAM+ 1 48

PARAM+ 2 8@ PARAM+ 2 @@ | RESULTOF 12345 IN ASCHI
PARAM+ 3 195 PARAM+ 3 195

60

7Fon

7F o0
7F01
7F@z
7F@3
7F B4
7F06
7F D9
7F0A
7FBC
7FOF
7F12
7F15
7F18
7F1B
7F1D
7F20
7Fz2
7F25
7F27
7F2A
7FZC
7F2F
7F31
7F32
7F33
7F35
7F36
7F37
7F38
7F39
7F3A
7F3C
7F3D
7F3E
7F 40

F3

C5

D5

E3S
DDES
CD7F @A
E5
DDE1L
DD&EG@
DD&6B L
DD3ERZ
DD56B3
BIF@DE
181D
@118FC
1818
B19CFF
1813
BIF&FF
188E
BiFFFF
1889
aF

MEMBI1+
MEMB 1+
MEMBI+
MEME I+
MEMB1+
MEMB1+

Wbl - &

MEMBi+ @ 49
MEMB1+ 1 58
MEMB1+ 2 51
MEMBi1+ 3 52
MEMB1+ 4 53
MEMB LI+ 5 @

NAME OF SUBROUT INE?

N

1.
2.

oles

Program Listing

20100
0110
20120
B0130
20140
20150
20160
20170
20180
20190
POZ00
20210
PO2Z0
20230
00240
20250
PO260
20270
0280
20290
Q0300
20310
2030
20330
O340
20350
20350
00370
20380
20390
20400
20410
20420
20430
20440
PO450
PO46D
20470
20480
00490
20500
20510
20520
20530
P0540
20550
205460

61

ORG

7TF@aH

UNCHANGED

Leading ASCIl zeroes may be present in the result.

No invalid result may occur.

052

56 N JE I M M R R R E RN RN R RN R R
% BINARY TO

3% BINARY VALUE TO

ASCIT DECIMAL CONVERSION.
A STRING OF ABCII DECIMAL DIGITE TER-#

1% MINATED BY A NULL.
Hi=> PARAMETER BLOCK

PARAM+@:+1=16 BIT VALUE

PARAM+2,: +3=BUFFER ADDRESS

§# QUTPUT : BBUFFER FILLED WITH 5 ABCII DIGITSs TERM-

33
3 %
3#

7%

INPUT:

INATED BY NULL

CONVERTS A _16-BIT#

% ok ok K k%

SHBRF BB EFERNH ARRAERRERRREREREARRERXERRRERREREAR R RRRERRRR

BXDECL.

BEXppia
BXDOzO
BXDB3@
BXDB4G

BXDBS @

SUBPWR
SUBB1L 8

PUSH
PUSH
PUSH
PUSBH
PUSH
caLL
PUSH
POP
LD
LD
LD
LD
LD
JR
LD
JR
LD
JR
LD
JR
L.D
JR
XOR
LD
POP
POP
POP
POP
POP
RET
LD
INC
ADD
JR
OR

AF

BC

DE

Hi.

IX
BATFH
HL.

IX

Ls { IX+@)
Hs (IX+1)
Es { IX+2)
Ds (ITX+3)
BCs — 10006
SUBPWR
BC.: ~1000
SUBPWR
BCs —106
SUBPWR
RCs—10
SUBPWR
BCs —1
SUBPUWR

A
(DE)sA
IX

HL.

DE

BC

AF

As @FFH
A

HLs BC
C:8UBB10
A

s8AVE REGISBTERS

s###GET PR LOC N#x#
s TRANSFER TO IX

$PUT VALUE INTO HL
;PUT BUFFER ADD IN DE

31@ TO THE FOURTH
sFIND FIRBT DIGIT
$18 TO THE THIRD
5FIND SECOND DIGIT
318 TO THE SECOND
sFIND THIRD DIGIT
1@ TO THE FIRST
$FIND FOURTH DIGIT
510 TO THE ZEROTH
sFIND LAST DIGIT

s ZERO

$STORE NULL
iRESTORE REGISTERS

SRETURN TO CALLING PROG

s-1 TO A

sBUMP DIGIT COUNT
sSUBTRACT PWR OF TEN
5G0 IF NOT NEGATIVE
s CLEAR CARRY

7F41 ED4Z @a57a SBC HL+BC SRESTORE LAST RESULT
7F43 C630 2@580 ADD As J0H $ CONVERT T0O ABCII
7F45 12 B9590 LD (DE)s A $STORE IN BUFFER
7F46 13 205600 INC DE sPOINT TO NEXT SLOT
TF47 79 22610 LD AsC $GET LSR OF PUWR
7F48 FEF@ pasze cpP BFBH s TEST FOR ~10008
7F4A 28D1 08630 JR ZsBXDD18 $GO IF 10006

7F4C FEIB PAL4R cpP 18H $TEST FOR ~10020
7F4E 28BDZ 20650 JR Z:BXDB20 G0 IF —1600

7F5@ FE9C QB&sD CcP GCH sTEST FOR —10@
7F32 28D3 PA&73 JR ZsBXDA3D 3GO IF ~100

7F34 FEFS ralaray=tng CP @F &H $TEST FOR ~1@

7F56 28D4 Ll lyed] JR 74 BXDB4D GO IF —1@

7F58 18D7 Qo720 JR pXDese sMUST BE ~1

rapritt] oa716 END

o0OBE TOTAL ERRORS

BXDECL DECIMAL VALUES

P4%5s 197« 2135 229 221 229 2855 1275 10s 229
F2ls 225y ZZ1s 110y @s ZZ1e 180 1o 221y 944

Ze Z21ls 8Bbs 3y 1y 4B Zlbs 24 295 1

24y 2BZ2e 249 24 1s 156y Z8B5¢ 249 199 1o

246 255y 24y 14: 15 255« 255 249 Fs 175

18y 221y 225, 223y 209 1935 241y 2@1s b62s 255
6@y P9 SbHs 252 183y 237s bbs 198y 48s 18,

195 121» 254+ 240y 40 289 254y 249 40y 210,
2545 156s 40s 211: 2549 244 4Bs Z1Zs 245 215

CHK8UM= 190

BXHEXD: BINARY TO ASCII HEXADECIMAL CONVERSION

System Configuration

Model 1, Model 1lI, Model Il Stand Alone.

Description

BXHEXD converts a 16-bit binary number to a string of ASCH hexadecimal
digits. Each character in the string will be in the range of ASCI1 0 through 9 (30H
through 37H) or ASCII A through F (41H through 46H). The result string will be
4 bytes long, and is terminated with a byte of all zeroes. The user must specify a
buffer area of 5 bytes to hold the result string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXHEXD. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 5-byte buffer that will hold the result.

62

On output, the buffer has been filled with the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT OUTPUT
H L H oL
1 T
POINTER TO PARAM-+g I _ [UNCHANGED
i
T H
PARAM-+@ 16-BIT VALUE PARAM-+@
-+ TO BE T+ <+ UNCHANGED -+
+1 CONVERTED +1
+2 BUFFER +2
4 ADDRESS + -+ UNCHANGED -+
+3 (MEM 1+0) > +3
MEM 148 MEM 1+0 4
1 T T “al ASCIl T
*1' 1 Reservenr | 1 CHARACTERS
FOR
+2 1 RESULT 4 +2 1 1 4
+3 —> =
+4 +4 ")
Algorithm

BXHEXD goes through 4 iterations to convert each of the bits in the input value
to an ASCI1 30H through 39H (zero through nine) or 41 H through 46H (A through
F). The value to be converted is put into register pair HL from the parameter
block. For each iteration, HL is shifted four bit positions with the four bits from
the shift going into the four least significant bits of the A register.

A test is then made of the value in A, If it is in the range O through 9, a “‘bias”
value of 30H is set aside. If it is in the range of 10 through 15, a bias value of
37H is saved. The bias value is then added to the contents of A, converting the
three bits to an ASC I octal digit of 30H through 39H or 41H through 46H. The
ASCIl character is then stored in the user buffer. A pointer to the buffer is picked
up from the parameter block and maintained in the DE register pair; it is incre-
mented by one as each result byte is stored. The buffer is filled from low-order
memory address to high-order memory address, corresponding to the process-
ing of the bits frorm HL.

If the binary value to be converted was 1111000000111101, the buffer would
contain 45H, 30H, 33H, 44H, 00H on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXHEXD
HL VALUE? 40004
PARAMETER BLOCK LOCATION? 40000

PARAMETER BLOCK VALUES?
+ B 2 46460 VWV ALUE TO BE CONVERTED

63

7Fa0

7F BB
7FO1
ERz
7FO3
7F 04
7F06
7K B9
7F@BA
7EBC
7FOF
7F1z
7F15
7R
7F1A
TH IR
7F1C
7H1D
7F1E
7F1F

F5

C3

D5

ES
DDES
CD7F@A
ES
DDE1L

DDLEQG
DD&6EBL

DD3E@Z
DD5 4683
Babs
AF

29

17

=G

17

=29

+ 2 2 500880
+ 4 @ B
MEMORY BL
MEMORY BL

+ 8 2z B

+ 2 2

+ 4 1 255
+5 @ B

O
OCK 1 VALUES?

MEMORY BLOCK 2 LOCATION?

MOVE SUBROUTINE 107 37777

CK 1 LOCATION? 50000

SUBROUTINE EXECUTED AT 37777

INPUT: QUTPUT ¢
HL= 400008 HL= 42006
PARAM+ B 52 FPARAM+ B
PARAM+ 1 ig PARAM+ 1
PARAM+ 2 80 PARAM+ 2
PARAM+ 3 195 PARAM+ 3
MEMBI+ @ @ MEMBiI+ @
MEMB1+ 1 7} MEMBI+ I
MEMBI+ 2 @ MEMBi+ 2
MEMB1I+ 3 @ MEMBI+ 3
MEMBI+ 4 255 MEMBI+ 4
NAME OF SUBROUTINE?

Notes

4] }INITIALIZE BUFFER FOR EXAMPLE

r UNCHANGED

— RESULT OF 1234 IN ASCHt

P TERMINATOR

1. Leading ASCII zerces may be present in the result.

2. No invalid result may occur.

Program Listing

azi1a0

ORG

7FaaH

30527

BDLIG 5 R E IR TSR K IS H RIS AT KT N T H IR IR
BA1=@ 5% BINARY TO ASCII HEXADECIMAL CONVERSION. CONVERTS A

@B13@ s+ 16-BIT BINARY VALUE TO A STRING OF ASCII HEX DIGITS

@142 % TERMINATED BY A NULL.
HL=> PARAMETER BLOCK
PARAM+@s +1=16-RIT VALUE
PARAM+2+ +3=RUFFER ADDRESS

BBISB s
eR166 3=
BBL78 3+
asiga s»
Ul e R

INPUT:

OQUTPUT:BUFFER FILLED WITH FOUR ASCII HEX DIGITS
TERMINATED BY NULL

R EEEEREE

ralaidulyl FERERAURE LR R SRR L LR L L ERE R LR HFE R R IR F AR R R R AU ER B AR AR R BRH LR

28210 3
PRZ2B BXHEXD
o230

aRsal

onz5a

ralrdedi 3o]

aa27e

aroegale]

BOZ0

nazee

20310

aa3ze

330

po34n

AAa358 BXHA1G
aa3sea

Ba37a

anzen

B30

0a400

64

PUEH
PUSH
PUSH
PUSH
FUSH
CALL
PUSH
POP
LD
LD
I.D
LD
LD
XOR
ADD
RLA

ADD
Ri.A
ADD

AF

BC

DE

Hi.

X
BATFH
HL.

X

Ls {IX+3)
Hs (IX+1)
Es (IX+2)
Ds (IX+3)
Bs 4

A

HL s ML,

HLs HL

HL s HL.

s8AVE REGISTERS

s¥#¥GET PR LOC*N###

sPUT VALUE INTO HL
sPUT BUFFER ADD IN DE

SITERATION COUNT
$ZERG A
sGHIFT OUT BPIT LEFT
$GHIFT INTO A

7FZ0
7Fz1
7F22
7F 23
7F24
TF 26
7FZ8
7FZA
7FZC
7FZE
7F2F
7F 30
7F31
7F 3z
7F34
7F35
7F36
7F38
7F39
7F3A
7F3R

7F3C
rabribralr

17
29
17
F%
BE3E
DADA
CR7F
el ly pey
BE3T
Fi
81
12
13
1PES
AF
1z
DDE1
El
D1
C1
F1
ce

Pa41B
nas2a
20430
QB4 4@
Da450
11 S YN
28474
o480
22490
lrwtilrg
8510
BoOSz6A
20530
540
PB550
pasLB
nas7@
auns8G
Q@570
0RnL00
610
D620
BO630

BXHAZG

RLA
ADD
RLA
PUSH
LD
SUR
BIT
JR
LD
FOF
ADD
LD
INC
DJINZ
XOR
LD
PGP
POP
PoP
POP
popP

RET
END

HL. s HL

AF

C+ 36H
i@

rEY:
NZs: BXHAZS
s B7H
aOF

As C
{(DEJsA
DE
BXHAID
A
(DEJsA
IX

HL.

DE

BC

AF

PR TOTAL. ERRORS

BXHEXD DECIMAL WVALUES

$SAVE 4 BITS
$ASCII ZERO
sTEST FOR B —~ @
sTEST SIGN
$ 60O IF 8-9
sADJUSTMENT FOR & — F
sRESTORE ORIGINAL BITS
1ADD IN ABCII BIAS
$8TORE CHARACTER
sPOINT TO NEXT SLOT
sLOOP *TIL 4

3 ZERO

sSTORE NULL

sRESTORE REGISTERS

SRETURN TO CALLING PROG

2455 197s 213s 229 281 229 Z205s 1275 10 239
1s 225, 221s 110s @s 221s 1035 15 2213 T4
221 Bhs 39 bs 4y 175s 41y 239 41,

235 419 23

419 23 2455 149 48, Zl4s 10,
203y 127« 32s s 14s 3555 241 129 18s 19
&y 230, 175 18y 221s 235 225 209 1935 241
z2@e1

CHRKBUM= 231

BXOCTL: BINARY TO ASCIEI OCTAL CONVERSION

System Configuration

Model |, Model 11l, Model 1l Stand Alone.

Description

BXOCTL converts a 16-bit binary number to a string of ASCII octal digits. Each
character in the string will be in the range of ASCII O through 7 30H through
37H). The result string will be 6 bytes long, and is terminated with a byte of all
zeroes. The user must specify a buffer area of 7 bytes to hold the resuit string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for
BXOCTL. The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant
byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 7-byte buffer that will hold the result.

65

On output, the buffer has been filled with the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT OUTPUT
Ho L HooL
T
POINTER TO PARAM+ | == [UNCHANGED
i
T H
PARAM-+8 (6BIT PARAM-+3
+ + 1 uncuangep
" VALUE "
+2 POINTER +2
+ TOBUFFER -+ 4+ uUNncHaANGED
+3 (MEM1-+6) > +3
MEM 1+ MEM1+8
+1 +1 RESULT
+ RESERVED + + IN +
+2 FOR +2 AsCll
+ Resut 4+ + +
+3 :? +3
+4 +a | T
+5 +5 1
+6 +6 T
+7 +7 4]
Algorithm

BXOCTL goes through 6 iterations to convert each of the bits in the input value
to an ASCII 30H through 37H (zero through seven). The value to be converted is
put into register pair HL from the parameter block. For each iteration except the
first, HL is shifted three bit positions with the three bits from the shift going into
the three least significant bits of the A register. (The first iteration performs only
one shift to handle the leading octal digit of 0 or 1.)

A value of 30H is then added to the contents of A. This converts the three bits to
an ASCH octal digit of 30H through 37H. The ASCII character is then stored in
the user buffer. A pointer to the buffer is picked up from the parameter block
and maintained in the DE register pair; it is incremented by one as each result
byte is stored. The buffer is filled from low-order memory address to high-order
memory address, corresponding to the processing of the bits from HL.

If the binary value to be converted was 1000000000001101, the buffer would
contain 31H, 30H, 30H, 30H, 31H, 35H, O0H on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXOCTL
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000

66

PARAMETER BLOCK VALUES?

+ B 2 12345 VALUE TO BE CONVERTED = 030071 OCTAL
+ 2 2 45000

+ 4 0 @

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+ 1 255

255

255

255 INITIALIZE BUFFER FOR EXAMPLE
255

253

255

+)

MEMORY BLOCK = LOCATION?

MOVE SUBROUTINE TO7?7 37777
SUBROUTINE EXECUTED AT 37777

+ 4+ o+ 4+ 4
NOeR bR S
o R R e

INPUT: QUTPUT:

HiL.= 42000 HL= 42008

PARAM+ @ 57 PARAM+ @ 57

PARAM+ 1 48 PARAM+ 1 48

PARAM+ 2 Z0@ PARAM+ 2 200

PARAM+ 3 179 PARAM+ 3 175

MEMBI+ @ 755 MEMBL+ @ 48

MEMBi+ 1 255 MEMBI+ 1 51

Sgﬁgi: g Egg mg:gii 5 22 ~RESULT = @3@371 IN ASCH
MEMB1+ 4 255 MEMBL+ 4 535

MEMBI+ 5 255 MEMB1I+ 5 49

MEMBL+ & 255 MEMB1+ & @ TERMINATOR

NAME OF SUBROUTINE?

Notes

1. Leading ASCIl zeroes may be present in the result.

2. No invalid result may occur.
3. The most significant ASCII character will always be either a zero 30H) or
a one (31H) since 16 bits is not an integer multiple of 3 bits.

Program Listing

7reb Ba100 ORG 7F2eH @522
BBLLD 5 %5599 389596 36 366988 K HH W00 50 HH R H R T RIS H R AR E RN RRR RS

PR12@ 3% BINARY TO ASCII OCTAL CONVERSION. CONVERTS A 16-BIT #
PO138 3# BRINARY VAL UE TO A STRING OF ASCII OCTAL DIGITS TERM- =
PB142 3% INATED BY A NULL. #*
Ba150 s* INPUT 2 HL=> PARAMETER BLOCK #*
BBL16D 3% PARAM+Ds +1=16~BIT VALUE *
BB176 % PARAM+2s +3=RUFFER ADDRESS *
BB1i80 5= OUTPUT 2 RUFFER FILLED WITH 8IX ASCII 0OCTAL DIG- %
DBL9a ITS TERMINATED BY NULL *
PPOZ0D 1 #REBREREREE R EEEEEREERERFRFRRRERREERRRRERRRRERERRERRREER
BB210 3

7FBB F5 aozze BXOCTL PUSH AF 3SAVE REGISTERS

7F@B1 €5 DB230 PUSH BC

7FBZ D5 BR24LB PUSH DE

TFB3 ES QB25a PUSH HL

7F@4 DDES BRz260 PUSH IX

7F@&6 CD7FBA Q278 caLl. BATFH s%¥#GET PB LOC? N#*3#

TF@9 ES [T l7 451" PUSH HL

7F@A DDEL 1747 e] POP IX

67

7Fac
7F@F
TF12
7F13
7Fi8
TF1A
7FiB
7F1D
7FiE
7F1F
7Fz0
7F21

7F22
7F23
TFz4
7F26
7F27
7F28
7F29
7FzB
7F2C
7FZD
TFZF
7F38
7F31

7F32
7F33
lrnl]

DD&EGB
DD&6B1
DD5E®Z
DD36@B3
8686

e300
00310
28328
Go330
aB340
22350
o368
20378 BXOB16
20386
20370
224006
20410
BB420 BXOBZH
BB430
BB44B
20456
20460
aB470
20480
02490
20500
20510
Ba5ze
22538
ae540
Bas5a
BB560
ees70

20888 TOTAL ERRORS

DJINZ
XOR
LD
POP
POP
POP
POP
POP
RET
END

Ls (IX+@)
He (IX+1)
Es (IX+2)
Ds (IX+3)
Bi:b

A
BX0OBZ20
I

HL s HL.

HL s HL.
HL s HL

Cs 30H
AsC
(DE)s A
DE
BXOB1@

BXOCTL DECIMAL VALUES

2458 197,

2L Z2E9s

2s E21s Bbs 3y

41y 23y 415
19s 1bs 242

2415 201

CHKSUM= 1@

CHKSUM: CHECKSUM MEMORY

System Configuration

23
175,

E13s 2E29s 221

239

285

118 @ 221y 102

&

bs 1754 24

Sy

41s 235 145 48
18s 201y 225,

Model I, Model Ili, Model Il Stand Alone.

Description

$PUT VALUE INTO HL
sPUT BUFFER ADD IN DE

sITERATION COUNT

$ZERC A

sFOR FIRST DIGIT
5ZERC A
SSHIFT OUT BIT LEFT
$SHIFT INTO A

$ABCII ZERO
sADD IN ASCII BIAS
$STORE CHARACTER
sPOINT TO NEXT SLOT
$LOOP *TIL &

$ZERQ

$S5TORE NULL

sRESTORE REGISTERS

$RETURN TO CALLING PROG

1275 10 2329
1y 221y 94,
1754

129 165
225 209 193

CHKSUM checksums a block of memory for verification of data. The checksum
performed is a simple additive 8-bit checksum.

Input/Cutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block define the starting address for the block of
memory to be checksummed in standard Z-80 address format, least significant

68

byte followed by most significant byte. The next two bytes of the parameter
block contain the number of bytes in the block to be checksummed.

On output, HL contains the checksum of the block of memory.

INPUT OUTPUT
WO L HooL
1
POINTERTO PARAM:D | ——— |) CHECKSUM
|
PARAM-+0 POINTER TO PARAM-+0
1 'staRT oF 4+ UNCHANGED -+
+1 | BLOCK (MEM1+9) T
+2 +2
+ HOF B RS T + UNCHANGED -+
3 —>

MEM1+8 MEM1+0
+ B BYTES 4+ 1 4 4
+2 BE +2

TO
| CHECKSUMMED

+3 > +3 UNCHANGED

+4 +4

+5 +5

+6 1 +6 |
Algorithm

The CHKSUM subroutine first picks up the number of bytes in the block and
puts it into the HL register pair. Next, the starting address is put into the IX
register. The A register is cleared for the checksum.

The loop at CHKO10 adds in each byte from the memoy block. The countin HL
is decremented by a subtract of one in BC, and the pointer in IX is adjusted to
point to the next memory byte.

Sample Calling Sequence

NAME OF SUBROUTINE? CHRSUM

HL VALUET? 430080

FARAMETER BLOCK LOCATION? 43000
PARAMETER BLOCK VALUES?

+ B 2 450G START OF BLOCK

+ 2 =8 8 BYTES IN BLOCK

+ 4 B @

MEMORY BLOCK 1 LOCATION? 435000

MEMORY BLOCK 1 VALUES?

+ @ i 1

+ 1 1 &

+ 2 1 &4

+ 3 1 8

+ 4 1 16 | SAMPLEDATA
+ 5 1 32

+ &6 1 b4

+ 7 1 128

+ 858 B B

=N
¥}

7Fo@

7F06
7F@1
7F@z
7F@3
7F@5
7F@8
7FB%
7F@e
7F@E
7F11
7F14
7F17
7F1i8
7F1A
7F1iD
7F1E
7Fz1
7F23
TF24
7F26
7Fz8
7F29
7F2B
7FzD
7FZE
7FZF

F5

C5

D5
DDES
CD7FQA
ES
DDE1
DD&EBZ
DD6&B3
DD3EQ®
DD56@1
D3
DDE1
210100
AF
DDBsBG
DDZ3
B7
ED4Z2
Z20F 6
&F
2600
DDE1
D1

Ci

F1

o100
na11o
oe1z@
20138
2@140
2150
2166
ap17@
o180
2o19@
Bazo0
ezid
2azz0
Bo230
o240
20250
Doz260
oRz7e
Bazoo
o290
22300
2a3ie
oa3z0
Ba33e
20340
B350
22360
aa37e
20380
B398
20400
2410
20420
20430
22440

MEMORY BLOCK 2 LOCATION?
MOVE BUBROUTINE TO7?7 446000
SUBROUTINE EXECUTED AT 446000

INPUT: OUTPUT =

HL= 43000 HL= 255 CHECKSUM=1+2+4...+128
PARAM+ @ 200 PARAM+ @ 200

PARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 8 PARAM+ 2 B8

PARAM+ 3 8 PARAM+ 3 B

MEMBI1+ @ 1 MEMB1+ @ 1

MEMB1+ | 2 MEME1+ 1 2 - UNCHANGED
MEMBl+ 2 4 MEMB1+ 2 4

MEMBR1+ 3 B MEMELI+ 3 B

MEMBI+ 4 16 MEMBL1+ 4 16

MEMBI+ 5 32 MEMB1+ 5 32

MEMBI+ & &4 MEMB1+ &6 644

MEMBI+ 7 1ZB MEMBIi+ 7 128 _|

NAME OF SUBROUTINE?

Notes

1. The CHKSUM subroutine is used to compute the checksum for all subrou-
tines in this book.

Program Listing

ORG 7F@RH ;@522
R R RN KT W I T KA T I I KT I T 363696 6 3 2

s# CHECKSUM MEMORY. CHECKSUMS A PLOCK OF MEMORY. *
3% INPUT: HL=>PARAMETER BLOCK *
3% PARAM+Ds +1=GTARTING ADDRESS OF BLOCK *
3 PARAM+Z5 +3=# OF BYTES IN BLOCK *

*

3 OUTPUT :HL=ADDITIVE CHECKSUM
5 HHK RIS K KW ATFHTITIHAE I I I T2 2

CHKBUM PUSH AF $SAVE REGISTERS

PUSH BC

PUSH DE

PUSH IX

CALL BA7FH s%%¥GET PB LOC? N#%x

PUSH HL. STRANGSFER HL TO IX

POP IX

LD Lo (IX+2) SGET # OF BYTES

LD Hs (IX+3)

I.D Es (IX+@) $GET STARTING ADDRESS

LD Dy (IX+1)

PUSH DE s TRANSFER TO IX

POP IX

LD BCs1 sDECREMENT VALUE

XOR A s CLEAR CHECKSUM
CHK@1@ ADD As (IX+0) 5 CHECKSUM

INC IX $BUMP ADDRESS PNTR

OR & ;s CLEAR CARRY

SBC HLsBC sDECREMENT COUNT

JR NZs CHRO1@ 5G0O IF NOT DONE

LD LsA SMOVE CHECKSUM TO HL

LD H:@

POP IX $RESTORE REGISTERS

POP DE

POP BC

PoP AF

70

7F38 C3EFADA
7F33 C%

lnlialvs

DR450 JP BATAH 1 ##*RETURN STATUS ®**
BR46D RET $NON~BASIC RETURMN
22478 END

P0BBE@ TOTAL ERRORS

CLEARS: CLEAR SCREEN

CHKS8UM DECIMAL VALUES

245, 197y 213s ZF1s 229 205 127 10s 2295 221
2e%, 221y 11@8s 25 221 10Zs 35 2Z21s 42 B>

F2ly Bés 1s 213y 221s 225s 1s 1s: @5 1755

221y 134s By 221s 35+ 183+ 237y bbs 3Ly 2465
111s 38s B 221s 229 2B9s 193 2415 1955 154

18, 281

CHKSBUM= 245

System Configuration

Model |, Model il

Description

CLEARS clears the video screen or outputs a given character to fill the screen.
For a clear screen, the character is normally a blank (20H), or a graphics “‘all
off” character (080H).

Input/Output Parameters

On input, the HL register pair contains the character to be used in the fill. (The
L register contains the 8-bit character while the H register contains zerc.) On
output, the screen has been cleared or filled.

INPUT QUTPUT

H L HooL
¥

g FILL CHAR] _ [UNCHANGED
I
1

Algorithm

The CLEARS subroutine is similar to a ““fill memory’’ subroutine except that the
memory to fill is defined as 3CO0H through 3FFFH.

The start of video display memory, 3CO0H, is put into HL and the character for
the fill is transferred to B. The loop at CLEO10 fills a byte at a time. For each fill,
the video display memory pointer is incremented by one and the contents of
the H register are tested. If H holds 40H, the last screen location has been filled.

71

7FBe

7FaB
7F@1
7Faz
7F@3
7F@é6
7Fa7
7F@aA
7Foe
7F@aC
7F@D
7FOF
7F1t
7F1z
7F13
7F14
vaalnlh]

F5

€5

ES
CD7FBA
45
21883¢C
70

23

7C
FE4®
Z2OF9
E1l

Ci

Fi

ce

Sample Calling Sequence

NAME OF SUBROUTINE? CLEARS

HL. VALUE? &3 CLEAR CHARACTER OF “A”
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUPROUTINE TO? 37002

SURBROUTINE EXECUTED AT 37008
INPUT: OUTPUT ¢
Hi.= &5 HL= &5 UNCHANGED

NAME OF SUBROUTINE?

Notes

1.

The CLEARS subroutine clears the screen in approximately 21 millisec-

onds.

Program Listing

28160
BE116
201z
@B130
2140
03156
20160
Pa17a
D186
Ba179
BozB0
aBz1o
2ozza
PRz30
20240
28250
260
Boz70
Bozad
Bo270
26360
283108
203:0
Ba330

220G TOTAL ERRORS

ORG 7FaaH @520
R R R R LR R R T T sy Ty L R e T Y T X R IR Ry
s¥ CLEAR SCREEN. CLEARS THE SCREEN OR FILLS THE SCREEN
5% WITH ANY GIVEN CHARACTER. *
§ % INPUT: HL=CHARACTER FOR CLEAR:NORMALLY 2BH OR BBH *
$ % OUTPUT : NONE *
FHEREREEEREER IR R AL AR RERRARRRE AR R ERRRRE R AL AR EEESE
CLEARS PUSH AF $5AVE REGISTERS

PUSH BC

PUSH HL

CaLL BATFH s#¥%xGET CLEAR CHAR¥##%

LD Bl $TRANSFER TO B

LD HL.s 3C00H $8TART OF SCREEN ADDRESS
CLE®IZ LD (HL)Ys B sFILL SCREEN BRYTE

INC HL sBUMP SCREEN POINTER

L.D AsH 5GET MS BYTE OF PQINTER

cpP 40H sTEST FOR END+1

JR NZsCLER1® sCONTINUE IF NOT END

POp HL $RESTORE REGISTERS

POP BC

POP AF

RET sRETURN TO CALLING PROGRAM

END

CLEARS DECIMAL VALUES

245. 197 229 205 127 185 6% 335 Bs &8s
112s 359 1249 294s b4 332s 2495 225 193 241,
@1

CHKSUM= g9

CSCINE: CLEAR SCREEN LINES

System Configuration

Model [, Model il

72

Description

CSCLNE clears from one to 16 screen lines with blank (20H) characters. The
lines cleared may be any set of contiguous lines on the screen, starting with any
given line.

Input/Output Parameters

On input, the H register contains the start line number, from 0 through 15, and
the L register contains the end line number, from O through 15. On output, the
designated screen lines have been cleared and HL is unchanged.

INPUT OUTPUT
HooL oL
START LINE | END LINE '
AT DLUNE | — | UNCHANGED

Algorithm

The CSCLNE subroutine first finds the total number of lines involved in the
clear. The start line number is subtracted from the end line number, and this
value is incremented by one. Next, this line count is multiplied by 64 to find the
total number of video display memory bytes to be cleared (CSC010).

The starting video memory location is then found by multiplying the starting
line number by 64 (CSC020) and adding this value to the screen start location of

3CO0H.

The loop at CSC030 stores a blank character in the screen locations involved.
HL contains the pointer to screen memory, which is incremented each time
through the loop, and DE contains the number of screen bytes to be filled. The
count in DE is tested for zero by the “load and OR’’ operation.

Sample Calling Sequence

NAME OF SURROUTINE? CSCLNE
HL VALUE? 18@@ START LINE=7,ENDLINE=8

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SURROUTINE TO07 55000
SUBROUTINE EXECUTED AT 55000
INPUT: OUTPUT:

HL= 1800 ML= 18@8 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. Use the CLEARS subroutine to clear the entire screen.

2. No check is made on the validity of the line numbers in HL. If the wrong
values are used, the system may crash.

3. The end line number must be greater or equal to the start line number.

4. Use an 80H in location 7F23H for a “‘graphics’ clear.

73

7Fea

7FBe
7FB1
TFaz
7F@3
7FB4
7F@a7
7FBB
7F@9
7FBA
7F@e

7F@c 2

7FBE

7Fi@ 2

7F11
7F13
7F14
7F15
7Fib
7F17
7F19

7FiB 2

7F1C
7F1E
7F21
7F22
7F24
7FZ5
7F26
7Fz27
7F28
7F2A
7F2B
7Fz2C
7F2D
7FZE
2006

F5
C5
D3
E5
CD7F @A
ES
7D
74

Program Listing

aa100
20110
oa1:0

2@130
Bo146

B0150
22160
@170
eoige
ae190
20z00
20210
2Bzze
20230
Baz4p
Ba250
202468
au270
26280
Boz70
aa36a
2a318
28320
BO336
20340
Ba35a
20360
aa37a
22380
20370
ae400
20410
20420
20430
28440
20450
22460
BR470
22480
28490
20500
oa510
20520
22530

D2OBO TOTAL ERRORS

CSTRNG: STRING COMPARE

ORG
H ***********%**

i* CLEAR SCREEN LINE.

5% START L
3 IN
5%
5%

?

CSCLNE PU

7FBoH

s@5er

INE THROUGH A GIVEN END LI

5H

PUSH

PU
PU

SH
SH

CaLL

PU
LD

SH

SuB

IN
LD
LD
LD
CaCo1a

c

ADD

DJINZ
PUSH

PO
PO
LD
LD
LD

cscazo

P
P

ADD

DJINZ

LD

ADD

C8CP38 LD

IN

C

DEC

LD
OR
JR

POP
POP
POP
POP
RET
END

AF

BC

DE

HL.
BA7FH
HL.
Al

H

A

LsdA
Hs @
Bsb
HL s HL.
CsCa1o
HiL

HL s HL
CECo2a
BC: 3C00OH
HL-BC
(HL)s® 7

NZ s C5C@a30
HL
DE
BC
AF

CECLNE DECIMAL VALUES

2455 197s 2135 2295 205,

6@y 111s 38y By &s &y 41
2095 225 108s 38y Bs b3 b
1s @s 60s 99 545 32y 35, 27,
32 Z4Bs 225 209y 193 41y

CHRSUM= 138

System Configuration

127
1és

CLEARS THE SCREEN FROM A GIVEN

NE,
PUT: HL=START LINE(H)Ys END LINE(L) @-15
OUTPUT:8CREEN LINES CLEARED WITH BLANKS
HHEEEREREEE RN F IR F KRR T T IR 730 2399638

sSAVE REGISTERS

s#¥%GET LINE NOS®*®

3 5AVE

SEND LINE NUMBER

$END-START

$TOTAL NUMBER OF LINES

sTOTAL TO L

$NOW IN HL
sITERATION

s# LINES # &4=%# CHARS
*TIL DONE

sLOOP

COUNT

s TRANSFER # CHARACTERS

SNOW IN DE

SORIGINAL LINE #5
sSTART LINE #

SNOW IN HL
sITERATION

COUNT

$FIND DISPLACEMENT
$LOOP "TIL DONE
$8TART OF SCREEN

sFIND START MEMORY LOC’N

$8TORE BLANK

SBUMP SCREEN POINTER
$DECREMENT COUNT
$TEST COUNT

560 IF DE NE ZERO
$REGTORE REGISTERS

SRETURN TO
1@y 229 125,
253,
41s 165 253,
122y 179,
Z@l

Model 1, Model 11I, Model 1l Stand Alone.

74

CALLING PROG

1485

#*

*
#*

*

Description

CSTRNG compares two strings and tests for equality, string 1 < string 2 and
string 1 > string 2. By ‘‘string,”” we mean two blocks of memory that may or
may not be of equal length containing byte-oriented data. This includes not
only the BASIC definition of character strings, but other types of data as well,
such as two strings of binary data. The comparison is an “‘unsigned”” compari-
son where bytes in the range 080H through OFFH are considered larger than
zero.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block holds the number of bytes in string 1. The next two
bytes contain the address of string 1 in standard Z-80 address format, least
significant byte followed by most significant byte. The next byte in the parame-
ter block holds the number of bytes in string 2. The next two bytes are the
address of string 2 in Z-80 address format. The next byte of the parameter block
(PARAM++6) is reserved for the result of the comparison.

On output, PARAM+ 6 holds a zero if the strings are equal, a minus number if
string 1 < string 2, or a positive number if string 1 > string 2. For two strings of
unequal length where the longer string holds the shorter string as a “’substring,”
the result in PARAM+ 6 is negative if string 1 is shorter, or positive if string 2 is
shorter.

INPUT OUTPUT
HoL HoL
T
{ POINTER TO PARAM+#] — [UNCHANGED J
T H
PARAM+8 |# BYTES STRING 1, PARAM+® | UNCHANGED

+1 ADDRESS +1

+ OFSTRNG1 + 1 UNCHANGED -+
+2 (MEM 1-+0) +2
+3 |4 BYTES STRING 2 :> +3 | UNCHANGED
+4 ADDRESS +4

4 oFsTRING 2 + 1 UNCHANGED -+
+5 (MEM2+0) +5
s RESERVED + |RESULT §=SAME,

FOR RESULT 1=1>2, —1=1<2
MEM1+8 MEM 1+

+1 +1
+2 STRING +2

1 ; 1 1 1
+3 é +3 | UNCHANGED
+4 +4
+5] +5
+6 +6

75

MEM2-+@ MEM2+@

+1 +1

+2 STFéING +2

+3 > +3 UNCHANGED

+4 +4

+5 +5

6] 1 6 | 1
Algorithm

The CSTRNG subroutine first compares the lengths of string 1 and string 2. It
puts the smallest length value into the B register (CST010) and the comparison
result of string 1 length—string 2 length in the C register.

Next, the address of string 2 is put into the 1Y register and the address of string 1
into the HL register.

The code at CST020 is the comparison loop. A subtract of each consecutive
byte of the strings is done. Two conditions result from the subtract. If the sub-
tracts are zero for the total number of bytes of the shorter string, the size com-
parison in C is put into the result. If this size comparison was zero, the strings
are of equal length and are identical. If the size comparison was not zero, the
comparison value reflects the ““substring’” condition detailed above.

If any subtract is not zero, the strings are unequal, and a jump to CST040 puts
the sense of the comparison in the result.

Sample Calling Sequence

NAME OF SUBROUTINE? CSTRNG

HL. VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ B 1 3 3BYTES IN STRING 1
+ 1 2 45000 STRING 1 ADDRESS
+3 1 5 5 BYTES IN STRING 2
+ 4 2 46B@B@ STRING 2 ADDRESS
+4 1 B

+7 @0 @

MEMORY BPLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+ @ 1 1

+ 1 1 255 -STRING1

+ 2 1 3

+ 3 B 0

MEMORY BLOCK 2 LOCATION? 46000
MEMORY PLOCK 2 VALUES?

+ @ 1 1 7]

+ 1 1 254

+ 2 103 -STRING 2

+ 3 1 4

+ 4 105 |

+ 5 B @

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

INPUT: GUTPUT :
HL= 400008 HL.= 40000
76

7Fea

7Fan
TFB1
7Faz
7FB3
7F@5
TF@a7
7FBA
7F@B
7FaD
7F18
7F1z
7F15
7F18
7F1A
7F1C
7F1F
TFz1
7F23
TF23
7F28
7FzB
7F2C
7FZE

DD&EBL

FPARAM+
PARAM+
PARAM+
FARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMBE I+
MEME]+
MEMBZ+
MEMBZ+
MEMBZ+
MEMBZ+
MEMBZ+

el ISR s U S A

Ol B

B
-+

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
FARAM+
MEMB 1+
MEMB 1+
MEMB1+
MEMB. 2+
MEMBZ+
MEMBZ+
MEMBZ+
MEMBZ+

[UL o I ORI o~ i s SRS (R 3 7 I VI]

=

NAME OF SUBROUTINE?Y

Notes

3
=0
175
3
176
179
-
PR

i

255
3
1
254

X

[S

- UNCHANGED

ESULT: STRING 1 >STRING 2

~UNCHANGED

1. The maximum number of bytes in either string may be 256, represented by
0 in the # of bytes parameter.
2. Output is a signed number at PARAM-+6.

Program Listing

20106

CRG

7FROH

;@526

DPBL1@ 339833636 39 33 53 5 36 36 369 36 7 36 396 36 36 3 3 I 3 N0 346 3 336 336 36 3 36 30 30 36 3 96 30 3 38 3% 36 9 W6

P@12B 3% STRING COMPARE.

DB138 3%
BR140 s#
po15@ 5%
BBLLD 5%
fB178 3%
20186 3=
PBLIFG 5%
BRZ0B 3%

INPUT:

COMPARES TWO BTRINGS.

HL=> PARAMETER BLOCK

PARAM+@=% BYTES OF STRING 1
PARAM+1++2=ADDREGS OF STRING 1
PARAM+3=# BYTES OF STRING Z

PARAM+45 +5=ADDRESE OF 8TRING 2
PARAM+6=RESERVED FOR REBULT
OUTPUT s PARAM+6=0B IF SBTRINGS EQUALs ~ IF
STRINGI<ETRINGZs + IF STRINGI:>STRINGZ

B o ok ook %k ok % %k ok

BAZID SHUFEERFRERERERBRFRR R RS RRREREERIFERRERRF RSB LR ERREEERRRRE

Bazze s
20238 CS5TRNG
Baz40

28258

22260

ap27e

Bazee

Bozoa

00300

BR310

Ba326

28338

22348

2358

o368

Ba378

o038

pR398

20408 CETOBS
o418 C5TO18
D0420

80432

0440

28450

77

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH

1y

BATFH

HL

X

Bs (I1X+8)
Cs@

A (IX+2)
{IX+3)
2sC8TO1B
Cs CB5T@AAS
Bs (I1X+3)
Csl
CETR10
Cs—1

L (IX+4)
Hs {IX+5)
HL.

1y

Le {IX+1)

sSAVE REGISTERS

;#%#GET PB ADDREGS##%%
$TRANSFER TO IX

s# OF 1

38TRING1=8TRING 2 FLAG
SGET # BYTES OF STRING 1
3 OF 1-% OF 2

560 IF STRINGS EQUAL LEN
GO IF § BF 1<#$ OF 2
$GET SMALLER #

$BTRING 1:8TRING 2

$ETRING 1<ETRING 2 CABE
$GET ADDRESES OF STRING 2

s TRANSFER TO 1Y

$GET ADDRESE OF STRING 1

7F31 DD&6BZ
7F34 7E
TF353 FD?4668
7F38 2088
7F3A 23
7F3B FD23
7F3D 1@F5
TF3F 79
TF48 1886
7F4z 3EB1
7F44 3002
7F4& 3EFF
7F48 DD7786
7F4B FDE1
7F4D DDE1L
7F4F E1L
7F38 C1
7F51 F1
7F32 C9
alnliln]

DELBLK: DELETE BLOCK

BB4s0
o478
20486
BB45G
22580
ao512
as52e
Bo530
Ba540
Ba558
Be546@
Bas70
8586
Ba5%6
Bo620
gosid
BaL20
Bo630
Bas4B
BoL5H

LD Hs (IX+2)
CE8Tez8 LD Ay (HL)

suUB (IY+@)

JR NZs:C5TB40

INC HL

INC Iy

DJINZ CSTBz2G

LD AsC

JR C8TO50
CSTO48 LD As

JR NCs C5TO50

LD Ae -1
ceTAs8 LD (IX+6) A

POP 1y

POP IX

POP HL

POP BC

POP AF

RET

END

CSTRNG DECIMAL VALUES

2218 229

245 1974

229s EZ1s

35: 1bs 2455 121+ Z4s bs

by 255 Z21ls 119 & 253

193s 2Z41s 201

CHKSUM= 55

System Configuration

Maodel I, Model 1, Model 1l Stand Alone.

Description

< 221 78+ 85
@s 221y 198: 3¢ 40s 11s 54,
3s 14y 1s 24s 29 145 205,
221y 1BZ2y 5s 2295 Z253s 225

1@Es 2 126 253s 15@9 @+

SGET STRING 1 BYTE
;s COMPARE
G0 IF NOT EQUAL
sBUMP STRING 1 POINTER
sBUMP STRING 2 POINTER
sLOOP IF EqUAL

5GET SIZE COMPARISON

$8TRING 1>8TRING
560 IF OK

ISTRING 1<8TRING
$STORE IN RESULT
sREGTORE REGIBTERS

pa

[\x]

SRETURN TO CALLING PROGRAM

229y 2@5s 127+ 10
@
221 78
118y 45

EEls 126,

118 15 2215
352 253,
488 s

21y 225, 2359

DELBLK deletes a block in the middle of a larger block of memory. The block is
deleted by moving up all bytes after the deletion block as shown below. This
subroutine could be used for deleting a block of text, for example, and moving
the remaining text into the deleted block. Both the “larger block’” and ‘“‘dele-
tion block’” may be any size up to the limits of memory.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the larger block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the deletion block in Z-80 address

78

format. The next two bytes of the parameter block (PARAM+4,+5) contain the
number of bytes in the larger block; the next two bytes contain the number of
bytes in the deletion block. Both are in standard Z-80 format.

On output, the contents of the parameter block remain unchanged. The dele-
tion block has been deleted by a move of the remaining bytes of the larger
block into the deletion area.

INPUT OUTPUT
Ho L Ho L
L
POINTER TO PARAM+#] pe— { UNCHANGED
i
H LH
PARAM+& | START ADDRESS PARAM-+@
+ 7 OF LARGER + + uUNcHanNGeD
+1 | BLOCK (MEM1+8) +1
+2 | START ADDRESS +2
+ " OF DELETE 4+ 4 UNCHANGED -+
+3 BLOCK i +3
+4 # OF BYTES +4
4+ TINLARGER -+ 4 UNCHANGED -+
+5 BLOCK 45
+6 # OF BYTES +6
4+ TINDELETE 4 + UNCHANGED -+
+7 BLOCK +7
MEM1+8 MEM 1-+8
+1 +1 T
+2 LARGER | 42 | T
1 BLOCK L 4 4
+3 TS 43 LARGER
+ + -+ BLOCK +
& WITH =
+ + 4 DELETE -
ot -~ BLOCK
I I 1 pElETED 4
START -+ -+
e s S
ADDRESS —.|” DELETE L
OF T slock.” T + +
DELETE K
BLOCK £ + A4
= A LAST-1
i LAST
LAST-1
LAST
Algorithm

The DELBLK subroutine performs the deletion by doing a block move of the
remaining bytes of the larger block into the deletion area. At the LDIR, HL
contains the address of the location directly after the deletion block, DE con-
tains the address of the deletion block, and BC contains the number of bytes
remaining in the larger block after the deletion block.

79

The destination location (DE) is simply the deletion block address. This is saved
for the LDIR in the stack. The source location (HL) is found by adding the
deletion block address and the size of the deletion block. This is then pushed
into the stack for LDIR use. The number to move is found by subtracting the
source location (HL) from the last location of the larger block plus one.

Sample Calling Sequence

NAME OF SUBROUTINE? DELRLK

HL. VALUE? 40000

PARAMETER BLOCK LOCATION? 42000
FARAMETER BLOCK VALUES?

+ @ 2 4500B START OF LARGER BLOCK

+ 22 45003 START OF DELETION BLOCK

+ 4 2 1@ 1@ BYTES IN LARGER BLOCK

s E 3 3 BYTES IN DELETION BLOCK
+ 8 @ @

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?
+ 1

}DELETION BLOCK +LARGER BLOCK

B U T A T
Eals LS s SR R IR N I
N B RNE T I S R

+ 186 B @

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO7? 37777
SUBROUTINE EXECUTED AT 37777

INPUT 2 OUTPUT
HL= 40000 HL= 40000

PARAM+ @ 200 PARAM+ 0 200

PARAM+ 1 175 PARAM+ 1 175

PARAM+ T 03 PARAM+ 2 203

PARAM+ 3 175 PARAM+ 3 175

PARAM+ 4 10 PARAM+ 4 10

PARAM+ 5 @ PARAM+ 5 D

PARAM+ & 3 PARAM+ &6 3

PARAM+ 7 D PARAM+ 7 @

MEMBI+ @ @ MEMB1+ @ O

MEMBI+ 1 1 MEMB1+ 1 1

MEMB1+ 2 2 MEMB1+ = 2

MEMBi+ 3 3 MEMB1+ 3 & [NEWBLOCK
MEMB1+ 4 4 MEMB1+ 4 7

MEMBI+ 5 5 MEMBI+ 5 8

MEMB1+ &6 & MEMBi+ & 9 |

MEMB1+ 7 7 MEMBi+ 7 7 1

MEMB1+ 8 B MEMB1+ 8 B L-GARBAGE BYTES
MEMB1+ 9 9 MEMBi+ 9 9

NAME OF SUBROUTINE?

Notes

1. The maximum number of bytes in either block may be 65,535.

2. There will be a number of ““garbage’” bytes at the end of the larger block
after the move.

80

7FBB

7F 00
7FB1
7F oz
7FO3
7F@5
7F@8
7FB9
7F @B
7FQE
7F11
7Fiz
7F15
7F18
7F19
7F 1A
7F1D
7F20
7F23
7F26
7F27
7Fz8
7F29
7FzB
7F2C
7F2D
7F2ZE
7F2F
7F31
7F33
7F34
7F35
7F36
2000

c5

D5

ES
DDES
CD7F @A
ES
DDE 1
DD&EBZ
DD&66B3
ES
DD4ED6
DD46B7
@9

ES
DD&EQ®
DD&6@1
DD4E®4
DD446B5
14

Bo106
aB110
oB120
22130
22140
23150
2B160
ea17a
2180
20190
bRzoB
ooz10
RRZ2D
20230
28240
BR:z50
2Bz6l
o278
22zB0G
rradeaed)
o320
28310
20320
@a330
22340
22350
PA360
o378
o382
o390
pR402
pa410
28422
pa430
PB44D
pB450
PR4LB
0470
22480
20470
pasae
Ba510
pes:e
28530
@540

PE2BB TOTAL ERRORS

DRBOXS: DRAW BOX

Program Listing

5# DELETE BLOCK.

ORG

7FaaH

@522
X R s S e e s s e LT
DELETES BLOCK IN MIDDLE OF LARGER BLOCK#

3% INPUT: HL=> PARAMETER BLOCK #*
3 PARAM+@s +1=8TART ADDRESS OF LARGER BLOCK #*
3 PARAM+Z5s +3=8TART ADDRESE OF DELETE BLOCK #*
§% PARAM+ 4. +5=# OF BYTES IN LARGER BLOCK *
5 ¥ PARAM+&s+7=# OF BYTES IN DELETE BLOCK #*
3% OUTPUT:DELETE BLOCK DELETED BY MOVING UP REMAIN- #
% DER OF LARGER BLOCK *
SHMEARRERHEREFFFEREEREREHRRRRRREEERE RS R R EEERE RS EEERREHEE
DELRLK PUSH BC $SAVE REGISTERS

PUSH DE

PUGH HL.

PUSH IX

CaLL BA7FH s#¥%GET PB ADDRESS*#%

PUSH HL s TRANSFER T0 IX

POFP IX

LD Ls (IX+2) sPUT DELETE BLK ADD IN HL

LD Hs (IX+3)

PUSH HL sDESTINATION FOR LDIR

LD Cs (IX+5) $PUT SI1ZE OF DEL BLK IN BC

LD Bs (IX+7)

ADD HLsBC sFIND SOURCE LOC’N

PUSH HL $8AVE FOR LDIR

LD Ls {IX+@) $PUT START INTO HL

LD Hs (IX+1)

LD Cy(IX+4) 5GET SIZE OF LARGE BLOCK

LD Bs {(IX+3)

ADD HLSBC sLAST LOC’N + ONE

POP DE sGET SOURCE LOCATION

OR A sCLEAR CARRY

SBC HLsDE sFIND # TO MOVE

PUSH HL. $ TRANGFER TO BC

PoP BC

POP HL. $GET DESTINATION

EX DEsHL ;8WAP DE AND HL

LDIR SMOVE "EM

POP IX SRESTORE REGISTERS

POP HL

POP DE

RPOP BC

RET sRETURN TO CALLING PROCG

END

DELBLK DECIMAL VALUES

197s 213s 229
228 2219 11@.
by 221s 7@s T
182y 1s 221s 78s 45 221
183 237 B3

285s 225 209

CHKGUM=

18é&

F21s ZE9s 20D 127
Fe ZEle 1@Ze 3y 259
P 29 221s 1185 By
T@s 59 G

229 1935 225y 2354

193 2081

System Configuration
Model 1, Model 111

81

237

17&s

EEle

Description

DRBOXS draws a rectangle on the video display. The rectangle may start at any
screen position and may be any size as long as it does not overrun the screen
boundaries. The rectangle is drawn on a character position basis.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the upper left-hand corner character posi-
tion (x) from O to 63. The next byte of the parameter block contains the upper
left-hand corner line position (y) from 0 to 15. The next byte of the parameter
block contains the width of the rectangle in character positions, 2 to 63. The
next byte of the parameter block contains the height of the rectangle in charac-
ter positions, 2 to 16.

On output, the contents of the parameter block remain unchanged. The box
has been drawn on the screen.

INPUT OUTPUT

HoL Ho L
POINTERTQ PARAMHS | =—> | UNCHANGED

. .

PARAM+Z | UPPER LFT X PARAM+g | UNCHANGED
+1 | UPPERLFTY +1 | UNCHANGED
+2 | WIDTHINCP +2 | UNCHANGED
+3 | HEIGHT IN CP :? +3 | UNCHANGED

Algorithm

The DRBOXS subroutine contains two smaller subroutines called DRBWH and
DRBWYV. DRBWH draws a horizontal line, while DRBWV draws a vertical line.
Both are not in the standard subroutine form because CALLs to the subroutine
would not be relocatable.

DRBWH is entered from DRBOXS with HL containing the memory location
that represents the leftmost character position for the horizontal line to be
drawn, with B containing the width in character positions, and with C contain-
ing a flag for the return point.

DRBWYV is entered from DRBOXS with HL containing the memory location
that represents the topmost character position for the vertical line to be drawn,
with B containing the height in character positions, and with C containing a
flag for the return point.

In DRBOXS proper, there are four steps to draw the box. A call is made to
DRBWH to draw the top line, a call is made to DRBWYV to draw the right-hand
line, a call is made to DRBWYV to draw the left-hand line, and finally, a call is
made to DRBWH to draw the bottom line.

First, the starting line position (y) is picked up and multiplied by 64 (DRB010).
The result is added to the character position (x) and to the start of the screen

82

7F88

location (3COOH). This result is the memory location representing the corner
point. It is saved in the stack.

A call is then made to DRBWH to draw the top line. The return is made to
DRB020.

HL now points to one location greater than the end of the line. HL is decre-
mented and a call is made to DRBWYV to draw the right-hand side. The return is
made to DRB030.

The original corner location is now picked up from the stack, and a call is made
to DRBWV to draw the left-hand line. The return is made to DRB040.

HL now points to one line greater than the bottom of the line. HL is decre-
mented, and a call is made to DRBWH to draw the bottom line. The return is

made to DRBO050.

Sample Calling Sequence

NAME OF SUBROUTINE? DRBOXS

HL VALUE? 40020

FARAMETER BLOCK LOCATION? 408040
PARAMETER BLOCK VALUEG?

4

o 4

1 g‘" UPPER LEFT X, Y =32, 8
1 1z WIDTH =12
1 4 HEIGHT =4
2 0

R

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7?7 33888
SUBRROUTINE EXECUTED AT 38288

INPUT: QUTPUT =
Hl.= 402060 HL= 42000
PARAM+ @ 32 PARAM+ @ 32
PARAM+ 1 8 PaRAM+ 1 B
NCHANGE
PARAM+ 2 12 PARAM+ 2 11X UNCHANGED
PARAM+ 3 4 PARAM+ 3 4
Notes
1. If the parameters cause the rectangle to exceed screen limits, the system

may be “bombed.”

2.

The top and bottom lines are wider than the side lines in the rectangle.

Program Listing

D106 ORG 7FO@aH s@szs
BRLID §HFEEREERREEERFEREFERFEERERRERFREFRERERFRRRBERERER R AR
20120 :¥ DRAW BOX. DRAWS BOX OF GIVEN WIDTH AND HEIGHT AT #*
PR130G 3% SPECIFIED LOCATION. ¥
PR14@ 3* INPUT: HL=> PARAMETER BLOCK #
BA1I58 s+ PARAM+B=UPPER LEFT CORNER CHAR POS (X} #
PB16B s» PARAM+1=UPPER LEFT CORNER LINE # (Y} ¥*
BB178 s+ PARAM+Z=WIDTH IN CHARACTER POSITIONE *
ae18@ s* PARAM+3=HEIGHT IN CHARACTER POSITIONS *
PB178 ¥ OUTPUT:BOX DRAWN ON SCREEN ¥
20200 SHEURRFHAEEREEERREEFEERERERERREERRERE R R ERERRARRERRRRR RS
PRz18 3

83

7F54
7F58
TF3A
Lttty

18FD
DD4EBD
BLBB
av
Di1BB3C
@87

ES
DD46BZ2
BEGG
i81icC
2B
DD46B3
1821
El
DD46B3
BED1
1819
BY
ED5Z2
DD46@G2
1886
DDE1
El

D1

Cl

ce
36BF
23
18FEB
CR41
2808
1BEF
114666
ILBF
19
19FE
CR4al
=8D3
18D%

PRzzB
BB230
QBz248
20258
Boz6B
Boz78
oozl
o298
ralr it}
Ba318
28320
Ba338
03408
ea358
Ba360

ap37d
208380
B8396

60400
6410
6B420
B8436
22440
aa450
DB46B
BB470
o480
20498
et}
BB516
8520
BB536
Ba540
GB350
ap566

BB576
20580

Bason
il e
PBL1B
BesL2B
28630
BB6H4D
Bas58
BRALLD
BU6E7R
Qo680
Bas76
700
aa710
Ba7ze

2apue TOTAL ERRORS

DREOXS

DRE@12

DREBZD

DREB3S

DREB4G

DREBSHO

DRBWH

DREWY
DREWV1

PUGH
PUSH
PUSH
PUSH
CALL
PUSH

POP

IX

Le (IX+1)
Hs @

Bsé
HL. s HL.
DRBB1@
Cs {IX+@)
B8
HLsBC
BCs 3CRBGBH
HL«BC
HL.

Bs (IX+2)
Cs @
DREWH
HiL.

Bs {IX+3)
DRBWY
HiL.

Bs (IX+3)
Cel
DRBWV

A

HL.s DE

By (IX+2)
DRBWH

IX

HL

DE

BC

(HL) s BBFH
HL.

DRBWH

@sC

Zs DRE@ZG
DREA52
DE s 48H
(HL.)Y s @BFH
HL.s DE
DREWVL

@s C
2y DREB3B

DREQ4G

DRBOXS DECIMaL VALUES

1974
225G

253,

213
23l
221

Ty ZEDs

221s 788 35

ls 24

by Z2le
16y 251

@By 544
24

CHRBUM=

84

=5

225

2B3

1914

128

229
11@s
78

221

S35

&5y 40

221 289

1e 38y @y

Bs bs B Ty
T@s 2 14

A3y 2254
2375 BZs
2809

1bs 251

193,
A19y
&5 4.

$SAVE REGISTERS

sE#EGET PR LOCTN##%
sTRANSFER TO IX

SGET Y IN LINES
sNOW IN HL
sITERATION COUNT

sFIND LINE DISPLACEMENT

SLINE # % 64
sGET CHAR POSITION
SNOW IN BC
sFIND DISPL FROM START
$START OF SCREEN
SFIND ACTUAL MEMORY LOC'N
$SAVE LOCN
SGET WIDTH IN CHAR POSNS
sFLAG FOR RETURN
sDRAW TOP LINE
sPOINT TO END OF LINE
sGET HEIGHT IN CHAR POSNS
sDRAW RIGHT SIDE
$GET UPPER LEFT CORNER LOC
$GET HEIGHT IN CHAR POSNS
$FLAG FOR RETURN
sDRAW LEFT SIDE
sCLEAR CARRY
$POINT TO END OF LINE
$GET WIDTH IN CHAR POSNS
sDRAW BOTTOM LINE
$RESTORE REGISTERS

$RETURN TO CALLING PROG
$8ET CHAR POSN TO ALL ON
$HORIZ INCREMENT
;LOOP "TIL LINE DONE

sTEST FLAG

sRTN POINT 1

$RTN POINT 2

1 INCREMENT FOR VERTICAL LN
$SET CHAR POSN TO ALL ON
SPOINT TO NEXT POSITION
SLOOP *TIL LINE DONE

STEST FLAG
$RTN POINT 1

5RTN POINT 2

E7s 1@y 2299 221
415 16s
&0 s

B8 43

T@hs 3s 14
T@s 2y Z4s
Z2@01s 54

191s 35
2395 175 b4
21l

DRHLNE: DRAW HORIZONTAL LINE

Configuration

Model I, Model 1il.

Description

DRHLNE draws a horizontal line on the screen. The line may be any length and
may start on any character position of any screen line.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the
line, from O to 63. The leftmost character position of the line must be specified.
The next byte of the parameter block contains the starting line number y of the
line, from 0 to 15. The next byte of the parameter block contains the number of
character positions in the line length. This will be a maximum of 64 for a line
that starts at the left edge of the screen.

On output, the parameter block contents are unchanged. The horizontal line
has been drawn.

INPUT QUTPUT
H oL Ho L
POINTER T(): PARAM-+@ | mm— [UNCH/:\NGED]
H i
PARAM-+@ X, 9-63 PARAM-+@ UNCHANGED
+1 Y, §—-15 +1 UNCHANGED
+2 LENGTH N +2 UNCHANGED

—

Algorithm

The DRHLNE subroutine performs the move by computing the starting address
of the line in video display memory and by controlling the operation with the
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3COOH to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

A byte of OBFH is stored for each character position in the line. The current
video display memory position in HL is then incremented to find the next
location of the line. A count of the number of character positions involved is
then decremented and a jump is made to DRH020 if the count is not zero.

85

7F08

7F D@
7F@1
7FRZ
7F4
7F@7
7FRS
7FRA
7F@D
7F@F
7F11
7F1z
7F14
7F17
7F19
7F1A

5

ES
DDES
CD7FBA
ES
DDE1
DD&EG Y
2608
L2151
29
16FD
DD4EGEG
L0
a9
@21003C

7F1iD @9

7F1E
7FZ1
TF23

DD4sB2
J6BF
a3

22100
0a11o
a1z
20130
o140

o150
on160
pB178
ae186
ha190
phzoe
Bozi16
Poz2

=30
22240
oRE50
BB260
pRz7a
20288
alreied
o300
on3ie
Ba320
pa33e
BB348
2a3sa

20360
ae37a

2u38a
aR39a

Sample Calling Sequence

NAME OF SUBROUTINE? DRHLNE

HL VALUE? 50000

PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?

+ @8 1 @

+1 1 15 [XY=0,15
+ 2 1 &4 LENGTH=64
+ 3 8 @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 450006
SUBROUTINE EXECUTED AT 4502008

INPUT: QUTPUT :

HL= 50008 HL= 50000

PARAM+ @ @ PARAM+ @ @

PARAM+ 1 15 PARAM+ 1 15 - UNCHANGED
PARAM+ 2 64 PARAM+ & 64

NAME OF SUBROUTINE?

Notes

1. The program may “bomb’’ the system if the length of travel goes beyond
video display memory boundaries.

2. The program may “‘bomb’’ the system if the x and y coordinates are im-
properly specified.

3. Change location 7F22H to draw a narrower line.

Program Listing

ORG 7FBBH ;@552
§ IS I T IN AT H I HH T IIEIETETE TN KK
$% DRAW HORIZONTAL LINE. DRAWS A HORIZONTAL LINE FROM *
s# GIVEN LINE (Y)s CHARACTER POSITION (X). *
ER INPUT: HL=» PARAMETER BLOCK *
5% PARAM+@=CHAR POSITION (X)s 8 — 63 *
5% PARAM+1=LINE NUMBER (Y)s B-15 *
5% PARAM+2=LENGTH OF LINE IN CHAR POSITIONS *
3% QUTPUT:LLINE DRAWN *
Rl 2 s S e R R R I Y s I T
?
DRHLNE PUSH BC $SAVE REGISTERS

PUSH HL

PUSH IX

CaLL BATFH s%¥GET PE LOCTN##*x

PUSH HL. $TRANSFER TO IX

POP IX

LD Ls (IX+1) $GET LINE NUMBER

LD Hs @ SNOW IN HL

LD Bs b sITERATION COUNT
DRHB®1@® ADD HL s HL SMULTIPLY LINE # * 64

DJINZ DRHO 1@ sLOOP TILL DONE

LD Cs (IX+0) sGET CHAR POSN (X))

LD B.@ INOW IN BC

ADD HLsBC sDISPLACEMENT FROM START

L.D BCs 3ChaH $8TART OF SCREEN

ADD HLsBC sFIND ACTUAL START LOC’N

LD Bs (IX+2) $GET NUMBER OF CHAR POS’NS
DRHBZ® 1D (HL) 2 QBFH sALL ON FOR CHAR POSITION

INC HL $BUMP POINTER

86

7F24 10FRB BR400 DJINZ DRHB:z®
7FZé6 DDEX 22410 POP IX
7FZ28 E1 PR4Z0 POP HL.
TF29 €1 Pa4s30 POP BC
TFZA €9 20440 RET

ralnly 2R450 END

sLOOFP TTIL DONE
sRESTORE REGISTERS

$RETURN TO CALLING PROG

20208 TOTAL ERRORS

DRVLNE: DRAW VERTICAL LINE

DRHLNE DECIMAL VALUES

197y Z29s 221 229 Z205. 127 10s 229 ZZ1s 225,
221 118y 19 38s Qs by by 41y 16y 253

221e 78 By by By 99 1y B 6By T

221 7@y 29 B4y 1919 35: 1by Z81. 221y 2254

225y 193s 201

CHKSUM= 1@

Configuration

Model 1, Model HII.

Description

DRVLNE draws a vertical line on the screen. The line may be any length and
may start on any character position of any screen line.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the
line, from O to 63. The topmost character position of the line must be specified.
The next byte of the parameter block contains the starting line number y of the
line, from 0 to 15. The next byte of the parameter block contains the number of
character positions in the line length. This will be a maximum of 16 for a line
that starts at the top of the screen.

On output, the parameter block contents are unchanged. The vertical line has
been drawn.

INPUT OUTPUT
H L HoL
T
POINTER TO: PARAM+@] — { UNCHANGED
i
T H
PARAM-+g X, §-63 PARAM-+@ UNCHANGED
+1 Y, §-15 +1 UNCHANGED
+2 LENGTH +2 UNCHANGED
87

TFQB

Algorithm

The DRVLNE subroutine performs the move by computing the starting address
of the line in video display memory and by controlling the operation with the
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to a character position of the start
from the parameter block to find the displacement from the start of video dis-
play memory. This value is added to 3COOH to find the actual video memory
address for the line start.

A byte of OBFH is stored for each character position in the line. The current
video display memory position in HL is then incremented by 40H to find the
next location of the line. A count of the number of character positions involved
is then decremented and a jump is made to DRV020 if the count is not zero.

Sample Calling Sequence

NAME OF SUBRROUTINE? DRVLNE

HL VALUE? 50000

PARAMETER PLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?

+ 0 1 B}XY=89

+ 1 i 2
+ 2 15 LENGTH =5
+ 3 B0 @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7? 4D100
SURROUTINE EXECUTED AT 42100

INPUT: QUTPUT =

HL.= 502000 HL= 50000

PARAM+ B 8 PARAM+ @ 8

PARAM+ 1 9 PARAM+ 1 9 - UNCHANGED
PARAM+ 2 5 PARAM+ 2 5

NAME OF SUBROUTINE?

Notes

1. The program may ‘bomb’’ the system if the length of travel goes beyond
video display memory boundaries.

2. The program may ““bomb’’ the system if the x and y coordinates are im-
properly specified.

Program Listing

Q0100 ORG 7FOeH ;@522
QAL LD 5936963396369 36 363636 3636 36 36 33636363696 63696 636 96 96 96069636 36 6 3 36 56 9626636 96 64636 36 6 36 36 6 3 6 36 06 36
P212B 5% DRAW VERTICAL LINE. DRAWS A VERTICAL LINE FROM #*
B0138 ¥ GIVEN LINE (Y)s CHARACTER POSITION (X). ¥*
Q2148 3% INPUT: HL=> PARAMETER BLOCK *
20150 s+« PARAM+B=CHAR POSITION (X)s @ — &3 *
PR16G 3 PARAM+1=LINE NUMBER (Y)s D-15 *
PB173 5% PARAM+Z=LENGTH OF LINE IN CHAR POSITIONS ¥
Q0iBd 5% OQUTPUT:LLINE DRAWN *
DDIFD 3 B9 3634336 33963636369 3656 36 3606 9636 366 3 3696 9696 0606 6 3696 96 5696 636 0006 36 96 3606 36 56 6 36 06 46 36 6 o
a0z00 s

88

7F a0
7Fa1
7FBz
7FD3
7F@5
7F@a8
7Fa%
7Fae
7FRE
7F10
7F12
7F13
7F15
7F18
TF1A
7F1B
TF1E
7FiF
TFZ2
7F25
FZ
7Fz8
TFZA
7FzC
TFED
7FZE
TFEF
vl

aoen

C5

D5

E5
DDES
CD7F @A
ES
DDE1
DD&6EB1
24600
D686
29
10FD
DD4EDRB
R&OG
a9
B10B3C
a9
DD46DZ
114000
36BF
19
10FE
DDE1
El

D1

C1

ca

@Bz1B DRVLNE PUSH

AD22B
Boz3a
aaz4@
BR250
BBz&60
aBz7d
2oz80
et)
BB300
20310
20320
pa330
20340
pa3se
PR360
ae37a
72380
pa370
o046a
oR410
o420
o430
AB44@
22452
22460
20470
30480

TOTAL ERRORS

DSEGHT: DIVIDE 16 BY 8

DRV@1@

DRVGAZEG

PUSH
PUSH
PUBH
CALL
PUSH
POP
LD
LD
LD
ADD
DJINZ
LD
LD
ADD
LD
ADD
LD
LD
LD
ADD
DJINZ
POP
POP
POP
POP
RET
END

BC

DE

HL.

IX
BA7FH
HL

IX
Le{IX+1)
Hs: @

B b
HL s HL
DRVA1@
Cs (IX+@)
Bs
HLsBC
BCy 3COOH
HL:RC

Bs (IX+2)
DE s 40H
(HL) s BBFH
HL. s DE
DRVBZB

$SAVE REGISTERS

s###GET PB LOCN#x*
$TRANSFER TO IX

sGET LINE NUMBER

sNOW IN HL

s ITERATION COUNT
sMULTIPLY LINE # = 64
sLOOP TILL DONE

$GET CHAR POS’N (X)

SNOW IN BC

sDISPLACEMENT FROM START

sSTART OF SCREEN

sFIND ACTUAL START LOC™N

$GET NUMBER OF CHAR POSNG

:LINE DISPLACEMENT
sALL ON FOR CHAR POSITION
sFIND NEXT POSBITION
sLOOP *TIL DONE

$RESTORE REGISTERS

sRETURN TO CALLING PROG

DRVLNE DECIMAL VALUES

1975 229 221
2E8s
253
Qs ZZ1s 7@s 25 175 b4y B 54

1éae Z51. 221 225, Z25. 209

213s ZE9s 221 229s 205 127+ 18-
221y 11@s 15 38y @s b5 63 41y 1bs
221 78s Bs b5 Bs Fs 1s @ 68
191
1935

25
281

CHKSUM= 247

System Configuration

Model 1, Model I, Model I Stand Alone.

Description

DSEGHT divides a 16-bit binary number by an 8-bit binary number. The divide
is an “unsigned’’ divide, where both numbers are considered to be absolute
numbers without sign. Both the quotient and remainder are returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit dividend. The next byte of
the parameter block contains an 8-bit divisor. The next two bytes of the param-
eter block are reserved for the 16-bit quotient. The next byte is reserved for the
8-bit remainder.

89

On output, PARA 3, + 4 hold the 16-bit quotient and PARA+ 5 holds the 8-bit
remainder. The contents of the rest of the parameter block remain unchanged.

INPUT QUTPUT
HooL HooL
POINTER TO: PARAM-+8 l _ [UNCH{ANGED
1 1
PARAM+0 16.BIT PARAM-+@
T owpoewn T ., T UNCHANGED
+2 | 8BIT DIVISOR +2 UNCHANGED
+3 RESERVED :> +3 16.BIT
va | ouoment | +4 | QUOTIENT
+5 | RES. FOR REMAIN. +5 | 8-BIT REMAINDER
Algorithm

The DSEGHT subroutine performs the divide by a ““restoring’” type of bit-by-bit
binary divide. The dividend is put into the HL register pair. The divisor is put
into the C register. The A register is cleared. For each of 16 iterations in the
divide, the HL register pair is shifted left one bit position into the A register. A
subtract of the divisor (C) from the “residue’ in A is then done. If the result is
positive, a one bit is put into the least significant bit of HL. If the result is
negative, a zero bit is put into the least significant bit of HL, and the previous
value in A is restored by an add.

Quotient bits fill up the HL register from the right as the residue is shifted out
into the A register toward the left. At the end of 16 iterations, the HL register
pair contains the 16 quotient bits and the A register contains an 8-bit remainder.

The code at DSEQ10 is the main loop in DSEGHT which shifts HL left by an
“ADD HL,HL"” and “ADC A,A.” The Isb of HL is preset with a quotient bit of
one, and the subtract of C from A is done. If the result is positive, a loop to
DSEO10 is done for the next iteration. If the result is negative, C is added back to
A, and the Isb of HL is reset. The B register holds the iteration count.

Sample Calling Sequence

NAME OF SUBROUTINE? DSEGHT

HL VALUE? 42200

PARAMETER BLOCK LOCATION? 42208
PARAMETER BLOCK VALUES?

+ @ 2 4BGBB DIVIDEND
+ 2 1 111 DIVISOR
+3 7 B
+5 1 B
+6 0 0

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 430600
SUBROUTINE EXECUTED AT 43068
INPUT: QUTPRUT :

HL= 42200 HL= 42200

90

PARAM+ @ 96 PARAM+ @ 96

PARAM+ 1 234 PARAM+ 1 234 -UNCHANGED
PARAM+ 2 111 PARAM+ 2 111

PARAM+ 3 @ PARAM+ 3 B :})
PARAM+ 4 D PARAM+ 4 2 | QUOTIENT=540
PARAM+ 5 D PARAM+ 5 6@ REMAINDER =60

NAME OF SUBROUTINE?

Notes

1. Maximum dividend is 65,535. Maximum divisor is 255. The maximum
quotient will be 65,535 and the maximum remainder will be 255.

2. Division by 0 causes an invalid result of OFFFFH.

Program Listing

7+ P2100 ORG 7F@QaH ;@5z2
R R T T R R R R R Y R R e S s T

22120 s+ DIVIDE 16 BY 8. DIVIDESE A 16-BIT UNGIGNED NUMBER BY %
PO130 5% AN 8-BIT UNSIGNED NUMBER TO GIVE A QUOTIENT AND RE- *
22140 ;% MAINDER. *
BA150 5% INPUT: HL=» PARAMETER BLOCK *
AR160 s PARAM+@s +1=16-B1IT DIVIDEND *
BB17a 5% PARAM+2=8~BIT DIVIBOR *
PR18B ;% PARAM+3, +4=RESERVED FOR QUOTIENT *
20170 3= PARAM+5=RESERVED FOR REMAINDER *
PRzoR 5% QUTPUT : PARAM+3s +4 HOLDS 146-BIT QUOTIENT *
Boz10 3% PARAM+S HOLDS B8-BIT REMAINDER *
BRZZD 5 %3155 5 96 396 5 3 30 365 5 39 36363636 3 36963 396 362 0 23696 5 0 0 W6 F I 3 26 I 0 0 B
2az38 3

7F@@ F5 Bez4® DSEGHT PUSH AF $SAVE REGISTERS

7F@1 €5 AR50 PUSH BC

7F@z ES 2azoed PUSH HL.

7F@3 DDES anz7o PUSH IX

7F@5 CD7F@A 2t J 17 CALL DATFH 3 #%GET PR LOC N#*x

7F@8 ES 20290 PUSH HL. s TRANGFER TO IX

7FB9 DDE1 pa3be POF X

7FOE 8610 PB310 LD Bsléb $ITERATION COUNT

7F@D DD4EG= ra3ze L.D Ce (IX+2) sLOAD DIVISOR

7F1@ DD&LEGG 20330 LD Ls (IX+3) sPUT DIVIDEND IN Hi.

7F13 DDé&6BL 20340 LD Hs (IX+1)

7F16 AF Pa350 XOR A s CLEAR EXTENSION REG

7F17 29 20368 DSE@16 ADD HL s HL. sSHIFT HL LEFT 1 BIT

7F18 8F BB370 ADC As A $SHIFT A LEFT W/CARRY

7F19 z2C o380 INC L. SSET @ BIT TO |

7F1A 21 Bo370 sue C sBUBRTRACT D*H5OR FROM D’END

) SERAS s

7E1B 89%< BB1%8 ABp RTEPORO<P IREHhRE VST RACT WENT

7F1E 2D 2420 DEC L. sRESET @ BIT

7F1iF 1@F6 PB430 DSEMZB® DJNZ DSEG1G sLOOP FOR 16 ITERATIONS

7F21 DD7383 ea4q40 LD (IX+3)sL $ETORE QUOTIENT

7F24 DD7404 20450 LD (IX+43sH

7F27 DD77@5 apasLR LD (IX+5)s A 58TORE REMAINDER

7FzA DDEL 20470 POP IX $RESTORE REGISTERS

7F2C El o480 POP HL

7FZD Ci o490 POP BC

7FZE F1 Baseo POP AF

TF2F C% pB510 RET $RETURN TO CALLING PROG

aooa rasee END

0608 TOTAL ERRORS

91

DSSIXT: DIVIDE 16 BY 16

DBEGHT DECIMAL VALUES

2459 197s 229. 221y 229 Z05. 1275 18s 227 221
2259 he 16y ZZ1s T78s 29 22Z1s 118s By 2215

1@Zs 19 1755 41s 143s 444 145s 48s Zs 129

455 1és Z4bs Z21e 117s 39 221s 11&s 49 2215

119s Ss 221s 225. 225 193s 241 201

CHKGUM= 83

System Configuration

Model I, Model 11I, Model 1l Stand Alone.

Description

DSSIXT divides a 16-bit binary number by a 16-bit binary number. The divide is
an “unsigned’’ divide, where both numbers are considered to be absolute
numbers without sign. Both the quotient and remainder are returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit dividend. The next two
bytes of the parameter block contain a 16-bit divisor. The next two bytes of the
parameter block are reserved for the 16-bit quotient. The next two bytes are
reserved for the 16-bit remainder.

On output, PARA+4, +5 hold the 16-bit quotient and PARA+ 6, + 7 holds the
8-bit remainder. The contents of the rest of the parameter block remain un-
changed.

INPUT QUTPUT
H oL Ho L
. H
POINTER TO PARAM:+9 | — | UNCHANGED
PARAM+@ 16-BIT PARAM-+@
T T + UNCHANGED -+
1 DIVIDEND o
+2 +2
+ oivisor T + UNCHANGED +
+3 ::__—> +3
+4 | ReseRveD | +a | - i
+5 QUOTIENT +5 QUOTIENT
el RESERED | t6] 16BIT |
+7 REMAINDER +7 REMAINDER

92

Algorithm

The DSEGHT subroutine performs the divide by a “’restoring”’ type of bit-by-bit
binary divide. The dividend is put into the DE register pair. The divisor is put
into the BC register pair. The HL register is cleared. For each of 16 iterations in
the divide, the DE register pair is shifted left one bit position into the HL register
pair. A subtract of the divisor (BC) from the “residue’” in HL is then done. If the
result is positive, a one bit is put into the least significant bit of DE. If the result
is negative, a zero bit is put into the least significant bit of DE, and the previous
value in HL is restored by an add.

Quotient bits fill up the DE register from the right as the residue is shifted out
into the HL register pair toward the left. At the end of 16 iterations, the DE
register pair contains the 16 quotient bits and the HL register contains a 16-bit
remainder.

The code at DSS020 is the main loop in DSSIXT which shifts DE left by an
exchange of DE and HL, an “ADD HL,HL,” and an exchange back. HL is
shifted by an “ADC HL,HL,” merging any carry from DE. The Isb of DE is preset
with a quotient bit of one, and the subtract of BC from HL is done. If the result is
positive, a loop is made back to DSS020 for the next iteration. If the result is
negative, BC is added back to HL, and the Isb of DE is reset. The A register
holds the iteration count.

Sample Calling Sequence

NAME OF SUBROUTINE? DSGIXT

HL VALUE? 452006

FARAMETER BLOCK LOCATION? 45000
FARAMETER BLOCK VALUES?

+ B & 1000@ DIVIDEND
+ 02 2 999 DIVISOR
+ 4 2 @

1 h 2 B

+ B @ @

MIMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO07 50000
SUBROUTINE EXECUTED AT 502006

INPUT: OUTPUT :
HL= 45000 HL= 45000

PARAM+ @ 16 PARAM+ B 16

FARAM+ 1 39 PARAM+ 1 39

PARAM+ Z 231 PARAM+ 2 231 [UNCHANGED
PARAM+ 3 3 PARAM+ 3 3

PARAM+ 4 @ PARAM+ 4 1@ })
PARAM+ 5 @ PARAM+ 5 @ | QUOTIENT=10
PARAM+ 6 @ PARAM+ & 1@ B
PARAM+ 7 @ PARAM+ 7 @ }REMA'NDER-Q

NAME OF SUBROUTINE?

Notes

1. Maximum dividend is 65,535. Maximum divisor is 65,535. The maximum
quotient will be 65,535 and the maximum remainder will be 65,535.

2. Division by 0 causes an invalid result of OFFFFH.

93

7F o6

7F 00
7F@1
7Fez
7F03
7F4
7FB6
7FB9
7FBA
7FBC
7FOF
7Fiz
7F15
7F18
7F1B
7F1D
7F1E
7F1F
7F20
7F22
7F23
7F24
7F26
7F28
7F29
7F2A
7F2B
7F2D
7F30
7F33
7F36
7F39
7F3B
7F3C
7F3D
7F3E
7F3F
o00@

F5
cs

D5

ES
DDES
CD7F@A
ES
DDE1
DDSE®@
DD5601
DD4EQZ
DD4603
10000
3E1D
EB

29

ER
ED&A
13

B7
ED4Z
3002
B

29

3D
20F0
DD7304
DD7205
DD7506
DD7407
DDE 1
E1

D1

ct

Fi

c9

baioe
BR116
20120
20130
BB140
3150
Pai6d
BaL7E
20186
Ba1Ig@
alredral]
eozie
Lt el
Boz36
BBz40
aoz56
20260
aBz70
22280
28290
22300
BB316
oa3ze
BB330
BB340
BB356
22360
66376
aa380
fa0390
2400
Qo410
20420
20430
20440
Ba450
22460
2471
20480
20490
vason
28510
ea520
22530
20540
o550
aa56B
ao570
26580
Uaamied
20500

BbBOB TOTAL ERRORS

Program Listing

FHKEER

ORG 7FBBH @522
HEREHEREREEEREERERREREE R RERERRRR R L LR RF R R RE RS

s# DIVIDE 16 BY 16. DIVIDES A 16-RIT UNSIGNED NUMBER BY *

s# A 16-BIT UNSIGNED NUMBER TCO GIVE A QUOTIENT AND RE-
;% MAINDER.
§ % INPUT: HL=> PARAMETER PLOCK

3 #*
¥
3%
3 ®
33
3%

PARAM+@s +1=16-BIT DIVIDEND
PARAM+2s +3=16-BIT DIVISOR
PARAM+4 5 +5=RESERVED FOR QUOTIENT
PARAM+&s +7=RESERVED FOR REMAINDER
QUTPUT : PARAM+45+5 HOLDS 16~BIT GUOTIENT
PARAM+&s +7 HOLDS 16-BIT REMAINDER

® %k o ok ok ok ok ok ok

FHERUEERAKERERERERRLREREFERARREEERRRER B RR R SRR R HRHRER
DSBIXT PUSH AF $SAVE REGISTERS
PUSH BC
PUSH DE
FUSH HL
PUSH IX
CaLL BATFH s#%#GET PB LOC’ N###
PUSH HL s TRANSFER TO IX
POP IX
LD Es (IX+8) $PUT DIVIDEND INTO DE
LD Dy (IX+1)
LD Cs (IX+2) sPUT DIVISOR INTO BC
LD Bs (IX+3)
LD HLs@ $ZERC HL
LD Arlb s ITERATION COUNT
D5s@28 EX DEsHL sDE TO HL
ADD HLsHL 5SHIFT LEFT
EX DEs HL iDE BACK
ADC HL s HL sSHIFT LEFT PLUS CARRY
INC DE $SET @ BIT TO 1
OR A sCLEAR CARRY
SBC HLsBC $SUB DIVISOR FROM DIVIDEND
JR NCs DS5038 3G0 IF SUBTRACT OK
DEC DE SRESET @ BIT
ADD HLsBC $RESBTORE
D55@30 DEC A sDECREMENT ITERATION CNT
JR NZ s DSS020 sLOOP FOR 16 ITERATIONS
LD (IX+4)sE sSTORE QUOTIENT
LD (IX+5)sD
LD (IX+6)sL ;STORE REMAINDER
LD (IX+7)sH
POP IX SRESTORE REGISTERS
pPOpP HL
POP DE
PoOP BC
POP AF
RET SRETURN TO CALLING PROG
END

DESIXT DECIMAL VALUES

2455 197s 213s 229 221 205 1275 18s 229
Z221s 225+¢ 2213 P45 @ 86s 1y 2Z1s 78s

2y 221s 78y 3¢ 33s @ ibs Z35s

41y 235s 237s 1065 19 237y bbs 481 Zs

275 Fs bls 32 248y 221 4y 2ZZ1s 114

Ge Z221s 117s by 2215 116 221ls ZE5s Z2Z5

209s 193s Z41s 201

CHKBUM= 149

94

NEEEP W $PUE $TEEE N TN S TEE T T e T T T e e e

EXCLOR: EXCLUSIVE OR

7FE8

7F@B F5
7FB1 CD7F@A

System Configuration

Model 1, Model Hil, Model Il Stand Alone.

Description

EXCLOR performs an exclusive OR on two 8-bit operands.

Input/Qutput Parameters

On input, the H register contains operand number one and the L register con-
tains operand number two. On output, L contains the 8-bit result.

INPUT QUTPUT

HooL HooL
OPERAND 1 OPERANDZI > [8 RESULT

Algorithm

The EXCLOR subroutine performs the exclusive OR by the XOR instruction and
returns the result in the L register with H set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? EXCLOR

HL VALUE? 13141 H=51=00110011;L=85= 01010101

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE T07 41111

SUBROUTINE EXECUTED AT 41111

INPUT: OUTPUT:

Hi= 13141 HL= 182 RESULT: 00110011 XOR 1010101 = 61100110

NAME OF SUBROUTINE?

Notes

1. BASIC contains no exclusive OR command.
Program Listing

o188 ORG 7FOBH @522
BO11G 5 #REXEFRHRERFERERR LR RER AR RRRREER R R RFRH R R AR ER LR RRE

PR12e 3% EXCLUSIVE OR. PERFORMS EXCLUSIVE OR OF TWO EIGHT-BIT #

208136 3% OPERANDS. *
PR140 ¥ INPUT: HL=OPERAND 1 (H)s OPERAND = (L) #*
BRi58 s+ OUTPUTtHL=0PERAND 1 XOR OPERAND Z #*
DR160 $HFEREREREEEEEEHEREERFEEFXRREEERREERFEFRERRHRREREREERF LR
pai7ze s
29188 EXCLOR PUSH AF $SAVE REGISTERS
aB192 CaLL BATFH s#¥#GET OPERANDG®%*

95

FILLME: FILL MEMORY

TFR4
7FA3
7FB6
TF@7
7FB%
7F@A
7F@aD
radradradr}

7¢ POZ00 LD
AD 20210 XOR
&F iyt LD
2600 POZ30 LD
F1 A0Z40 POP
C39A0A BBISO Jp
€9 BOZ60 RET
anz70 END

paR@B TOTAL ERRORS

EXCLOR DECIMAL VALUES

Fals Z@5s 127e 1@s 1245 1735 111

195 154 10+ 201

CHKBUM= 42

System Configuration

AsH

LA
H: B
AF
BAFAH

Model 1, Model 11, Model! Il Stand Alone.

Description

sOPERAND 1

SOPERAND 1 XOR OPERAND 2
SRESULT NOW IN L

SNOW IN HL

SRESTORE REGISTER

s #¥HRETURN ARGUMENT##%
SNON-BASIC RETURN

B8 @ 2414

FILLME fills a block of memory with a given 8-bit value. Up to 65,535 bytes of

memory can be filled.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the fill value to be used. The next two
bytes of the parameter block define the starting address for the block of memory
to be filled in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the block to be filled.

On output, the block of memory has been filled; the parameter block remains

unchanged.

INPUT
H L

i

1
POINTER TC‘) PARAM-+Q
¥

| == |

PARAM-+@ | FILL CHARACTER
1 poinTER |
2 TO MEM1+8
3 | s BYTES TO
4 FILL

96

—

QUTPUT
H L
t
UNCHANGED
}
i
PARAM-+g UNCHANGED
+1
T UNCHANGED
+2
+3
+ UNCHANGED -+
+4

MEM1+8 MEM 140
T iy E AREA s
FILLED
+2 AREA +2 WiTH
“+ TO BE + T FLLCHAR T
+3 FILLED :? +3 ACTER
+4 +4
+5 +5
+6 | L +6 | 1
Algorithm

The FILLME subroutine first picks up the number of bytes in the block and puts
it into the BC register pair. Next, the starting address is put into the HL register
pair. The A register is then loaded with the fill character.

The loop at FILO10 fills each byte in the memory block. The count in BC is
decremented and the pointer in HL is adjusted to point to the next memory
byte.

Sample Calling Sequence

NAME OF SURROUTINE? FILLME

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ B 1 &5 “A"” FILL CHARACTER
+ 1 2 50008 AREATOFILL

+ 3 2 5 # OF BYTES

+ 5 @ B

MEMORY BLOCK 1 LOCATION? 500080
MEMORY BLOCK 1 VALUES?

+ @ 2 B
+ 2 2 @
+ 4 o @ INITIALIZE FILL AREA FOR EXAMPLE
+ & 2 @
+ 8 B @8

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO7? 38008
SUBROUTINE EXECUTED AT 38000

INPUT: QUTPUT s

HiL= 40260 Hl.= 40808
PARAM+ B &3 PARAM+ @ 63
PARAM+ 1 B8O PARAM+ 1 8@
PARAM+ 2 195 PARAM+ 2 195
PARAM+ 3 5 PARAM+ 3 5
PARAM+ 4 B PARAM+ 4 B
MEMBI+ B @ MEMBiI+ B 65
MEMB1+ 1 @ MEMBLI+ 1 45
MEMBI+ 2 @ MEMBI+ 2 63 -FIVE“A”S FILLED
MEMBI+ 3 0 MEMBi+ 3 &5
MEMBiI+ 4 8 MEMBI+ 4 &5
MEMBI+ 3 @ MEMBiI+ 3 @
MEMBI+ & @ MEMB1+ & 8
MEMBLI+ 7 O MEMB1+ 7 @

NAME OF SUBROUTINE?

97

7Fon

7Fae
7F@1
7FBz
7F@3
7F@4
7FB&
Fee
7F@A
7FBC
7FaF
7Fiz2
7F15
7Fi8
7F1B
7FiC
7F1D
7F1E
TF1F
7Fz@
7F21
TF22
TF24
TFZ2é
TF27
7FZ8
TF29
7EZA
2608

F5

C5

D5

ES
DDES
CD7FBA
ES
DDE1
DD4&B4
DD4E®3
DD&6BZ
DD&EB1
DD7EQQ
77

23

ae

57

78

B1

74

Notes

1. The FILLME subroutine can be used to ‘“‘zero’” memory or to initialize the
video display.

Program Listing

pRiae

ORG

7FoeH

1B528

BB 1@ 59399036 546 496 36 9696 9696 36 96 96 3 96 36 36 3646 3 96 36 56 36 96 46 96 3 3036 36 3 36 96 9 5 96 96 56 9 36 3 S0 0 B0

BPB12B s¥ FILL MEMORY.

BB138 5% VALUE.

Ba14B 5%
20158 s+
20166 sx
eB17B 3=
22188 5=
20198 s+

INPUT:

0210 3

B@z20 FILLME PUSH
28230 PUSH
2040 PUSH
[raft: Mo i) PUSH
e PUSH
DB270 (WARR
Bez80 PUSH
BB298 POP
pazaa LD
aa3ia LD
2320 LD
an332 LD
R340 LD
20350 FILBI® LD
PO362 INC
Q0374 DEC
aa380 LD
28390 LD
224002 OR
084108 LD
P40 JR
28430 POP
DB440 POP
0456 POP
PB4 6@ POP
DB473 POP
B2480 RET
D490 END

aoe02 TOTAL ERRORS

HL=> PARAMETER BLOCK

PARAM+@=FILL CHARACTER

PARAM+1.:+2=FILL STARTING ADDRESS

PARAM+3, +4=# OF BYTES TO FILLs 1 TO 63335,
P=655364

QUTPUT:BLOCK FILLED WITH GIVEN CHARACTER

GAZOD S HRHXRHEREEREREE I EFE R F R R RS H BTN R H I EERRE

AF

BC

DE

HL

IX
BATFH
HL.

IX

Bs (I1X+4)
Cs (IX+3)
Hs (IX+2)
Le {IX+1)
As (IX+@)
(HL)s A
HL.

BC

DsaA

AsE

C

AsD
NZsFILB1@
iX

HL

DE

BC

AF

FILLME DECIMAL VALUES

245

221

197¢ 2135 Z2U9s 2215 229

225, 221

Zy Z221s 110

87+
193,

1280 1775
241s 201

CHKSUM= 17

98

s 7@ 4y ZZ1s 78Bs 3

19 221s 126s @
122 32 247

1195

221

203

FILLS A BLOCKW OF MEMORY WITH A GIVEN

$5AVE REGISTERS

s###GET PR LOC?N###
$TRANSBFER HL. TO IX

sPUT # OF BYTES IN BC

sPUT START IN HL

sPUT FILL CHARACTER IN A
sFILL

BYTE

sBUMP POINTER TO NEXT
s DECREMENT COUNT
$SAVE A
sTEST BC

$RESTORE A
$GO. IF DONE
sRESTORE REGISTERS

SRETURN TO

127+ 1@
221s 102
355 11

225, 225

CALLING PROG

2EDs

20T

% &k ok ok ok ok ok K

FKBTST: FAST KEYBOARD TEST

Systemn Configuration

Model 1, Model IIL

Description

FKBTST is a “‘fast” keyboard test that tests for any key press and for five special
keyboard keys, CLEAR, UP ARROW, DOWN ARROW, LEFT ARROW, and
RIGHT ARROW. FKBTST returns a zero if no key is being pressed, a negative
value if one of the special keys is being pressed, or a positive value if another
key is being pressed. It can be used for games control or any other application
where fast keyboard scanning is required.

Input/Output Parameters

No input parameters are required. On output, HL is returned with a zero for no
keypress, — 1 for CLEAR, —2 for UP ARROW, — 3 for DOWN ARROW, —4 for
LEFT ARROW, and 5 for RIGHT ARROW, or + 1 through + 127 for other key
combinations.

INPUT ouTPUT

Ho L HoL

NONE j —— l KEY Co:DE OR @
H

Algorithm

The row address for the special keys is 3840H. This row is first read by an “LD
A,(3840H).” The contents of A are then compared with the column bit configu-
ration for the special keys (2, 8, 16, 32, and 64), and if there is a match the
corresponding negative code is returned in HL. If there is no match, a “LD
HL,(387FH)"" is done. This reads all column bits into L. H is then cleared. If
there was no key press, HL will now be set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? FKBTST

HL VALUE? @

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO?7 45000

SURROUTINE EXECUTED AT 45000

INPUT: OUTPUT ¢

HL= @& HL= 63333 -3=DOWN ARROW

NAME OF SUBROUTINE?

Notes

1. Detection of a special key will take about 60 microseconds, average time.

99

2. FKBTST may be used to detect muitiple key presses, such as “JKL” or

“123.”
3. The SHIFT key is not tested.

Program Listing

7Fad oBi06 ORG 7FaBH

;@52

BOL1IO SHRFEXBRHREERRREERE R R TR R REEERRR R R R ERRERRRE R RS R R RN B R

@6@B120 % FAST KEYRBOARD TEST. TESTS FOR ANY KEYPRESS AND FOR *
BB130 5% FIVE SPECIAL KEYS. #
BR140B 3% INPUT: NONE *
BH156 3+ QUTPUTsHL=0 FOR NO KEY PRESS+:-1 FOR CLEAR:-2 FOR #
B2168 3% UP ARROWs -3 FOR DOWN ARROWs -4 FOR LEFT *
BO178 5% ARROWs AND ~5 FOR RIGHT ARROWs 1-127 FOR *
Ba1sG 5= OTHER KEY COMBINATIONS. #
DBIFB s HERFREEE R R EREREERHEE RS R REEERERRRRERRRERRERRRRRRERERHL R
pBzee 3

7FBB F5 @oz1@ FKRTST PUSH AF $SAVE REGISTER

7F@1 21FFFF Bazz0 LD HLs—1 sCLEAR CODE

7FB4 3A4038 20230 LD A5 (3848H) sREAD ROW

7F@7 FEBZ BDz240 cP 2 s CLEAR?

7F@9 2819 2Bz50 JR Z2:FREBIG $60 IF YES

7F@eB 2B Boz60 DEC HL $UP ARROW CODE

7FBC FEBB Poz70 cP a sUP ARROW?

7FBE 2814 Baze6 JR ZsFREB13 $GO IF YES

7FiB 2B Lyl DEC HL sDOWN ARROW CODE

7F1i1 FE1@ aa3en cP 16 $DOWN ARROW?

7F13 ZBOF 23106 JR ZsFREB1G $G0 IF YES

7F13 ZB Be320 DEC HL. (LEFT ARROW CODE

7Fi16 FEZ@ 28330 CcP 3z sLEFT ARROW?

7Fi8 z80a BR340 JR ZsFRE@1G $GO IF YES

7F1A 2B ar350 DEC HL. $RIGHT ARROW CODE

7F1BE FE40 BR360 cP b4 sRIGHT ARROW?

7F1D 2805 22370 JR Z5sFREBI® 360 IF YES

7F1F 2A7F38 BR380 LD HLs (387FH) 5READ ALL COLUMNS

7Fzz 2600 o390 LD Hs @ SREGULT IN HL

7Fz24 F1 22420 FKRO1@ POP AF SRESTORE REGISTER

7F25 C39ABDA Ra410 JP BATAH 3R ERETURN ARGUMENT ##%#

7F28 C9 20420 RET sNON-BASIC RETURN

2000 22430 END

20028 TOTAL ERRORS

FREBTST DECIMAL VALUES

4% 33 25%s 5B &4
25s 43. B: 4@, 20s 434
1% 43y 32y A4 10 43

S 4. 127y 3és 38s @ 2415

S

CHRSUM= 29

FSETGR: FAST GRAPHICS SET/RESET

System Configuration

Model I, Model I1I.

160

Siéss

25bs s 48

254y 1dHye 46,

384y bhs 40

195 154+ 10

Description

FSETGR is a subroutine that sets or resets a given screen pixel. It is designed to
perform screen actions rapidly and uses a table lookup structure to avoid the
time-consuming processing present in other graphics subroutines. Any of the
6144 graphics pixels, arranged in 128 columns by 64 rows, may be set or reset.
Previous to using FSETGR, the screen area to be utilized must have been
cleared with graphics characters (80H).

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the starting address of the FSETGR subrou-
tine, in standard Z-80 address format, least significant byte followed by most
significant byte. The next byte of the parameter block is the x coordinate, 0 to
127. The next byte of the parameter block is the y coordinate, 0 to 47. The next
byte of the parameter block is a set/reset flag. This byte is O if the pixel is to be
set, or O if the pixel is to be reset.

On output, the pixel is set or reset, and the parameter block remains un-
changed.

INPUT OQUTPUT
HooL Ho L
POINTER TO: PARAM-+8 l T [UNCH%\NGED
T H
PARAM-+8 START PARAM-+@
-+ ADDRESS OF -+ + UNCHANGED -+
+1 FSETGR +1
+2 X, §-127 +2 UNCHANGED
+3 Y, 8-47 :j +3 UNCHANGED
+4 | B=SET, 1=RESET +4 UNCHANGED
Algorithm

The FSETGR subroutine uses a table of 48 entries to implement fast graphics.
Each entry in the table corresponds to one of the 48 rows of graphics and gives
the actual memory address that contains the pixel and the mask to be used in
processing the pixel. The first twelve bits of an entry represent the memory
address when four zeroes are added to the twelve bits. The fifth entry of 3C44H,
for example, represents 3C40H, the start of the fifth graphics row in memory.
The last four bits represent the graphics mask to be used in processing, as we'll
explain.

FSETGR first gets the y value from the parameter block. This y value is multi-
plied by 2 and added to the base address of FSETGR and TABLEA displace-
ment; the result points to the TABLEA entry. The entry address is put into HL and
IY. Next, the four least significant bits of HL are reset to mask out the graphics
mask. HL now points to the start of the line containing the graphics byte.

Next, the x address is picked up from the parameter block. The x address is
divided by two and added to the HL register. The HL register now points to the
actual byte in memory containing the pixel to be processed.

101

7F 26

700
7F@1
7Kz
7FQ3
7F 04
7FRé
7FDB
7F OB

2e100
pa11a
oR1za
80130
aR140
BB15e
Ba1460
Pa1L79
PRi80

aazse
RAZ6D
ABz7R
A0zB0

Next, the A register is loaded with the least significant byte from the TABLEA
table. This contains the graphics mask. The mask value is ANDed with TFH to
get only the mask. If X is even, the mask is left unchanged, as it represents the
left-hand bit; if X is odd, the mask is shifted left for the right-hand bit.

The byte containing the pixel is now loaded into B. If a set is to be done, the
mask in A is ORed with B and the result stored to set the pixel. If a reset is to
be done, the complement of the mask in A is ANDed with B and the result
stored to reset the pixel.

Sample Calling Sequence

NAME OF SUBROUTINE? FSETGR

HL VALUE? 400008

PARAMETER BLOCK LOCATION? 40000
PARAMETER BPLOCK VALUES?

+ 2 37000 START OF FSETGR

oz
+ 21 b4 _
3 1 o4 _}x,v—6¢24
+ 4 1B SET
+5 0 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 37000
SUBROUTINE EXECUTED AT 37800

INPUT: OUTPUT ¢

HL= 40280 HL= 40000

PARAM+ @ 1364 PARAM+ @ 136

FARAM+ 1 144 PARAM+ 1 144

PARAM+ 2 64 PARAM+ 2 b4 UNCHANGED
PARAM+ 3 24 PARAM+ 3 =4

PARAM+ 4 @ PARAM+ 4 0

NAME OF SUBROUTINE?

Notes

1. This subroutine can set/reset about 4000 points per second.
Program Listing

ORG 7FaaH ' e oy

R R s R S e IR e S S Ly T T I T T2
% FAST GRAPHICE SET/RESET. SETGS/RESETS A GIVEN PIXEL. *
5% INPUT :HL=> PARAMETER BLOCK *
3% PARAM+Q +1=8TART ADDRESS OF FSETGR *
R PARAM+Z=Xs B TO 127 ®
3 FARAMA*3=Ys @ TO 47 *
LR PARAM+4=GET/RESET FLAG. B=8ETs 1=RESET *
§ % QUTPUT:PIXEL SET OR RESET *
2 Y Y S S e e R S A Y S sl
FBETGR FUSH AF ;SAVE REGISTERS

PUSH BC

FUSH DE

PUS HL.

PUSH X

PUSH Iy

CALL QAATFH ¥ ¥GET PB LOC Nx*%

PUSH HL. s TRANSFER TO IX

102

7F89
7FBE
7F8D

. DDE]

1600
DDREEDAS
CRE3
DD&EDD
DD&66BL
19

> Q15788
- a9

E3
FREL
FD7EQD
E&HE®
&F

7 FD&LBR]

DDBE®:
1600
CB3R

L 17

FD7ERD
E&1F
DDCEBZ4E
80z
CR27

4é
DDCEB446
=804

2F

Al

1801

Ba

77

= FDE1

DDE1

2 El

D1
Ci
Fi
ce

@B13C
B43C
183C
413C

© 4430

5@3C
g213C
843C
Fa3c
C13C

. C43C

D@3
BiaD
@430
103D
413D
443D
503D

2 B13D

843D
RAD
C13D
C43D
D@D
@13E
D438
1@3E
413

GREon
Q@3
pe21d
aa3ze
an33a
Da342
aaasa
Ba368
ABx70
2389
anaga
DR4LoB
pa410
DR420
nRa3a
BB440
ae4nhe
D460
aaa70
Ba430
490
et
aa51a
PR320
apniae
Bas42
pRss5e
BB56@
@ar5s7a
BB580

aBsea
BosB0

pas1@
a6z
bas3e
BB64D
pasoLk
Bo6LD
BR678

AR6B0
2as90

Pa7ow
PA7iIo
P70
PE730
PA74@
PA7Tse
@760
oR770
o786
pa7o0
PB0B
peRie
PB820
PER3o
BOR4G
peesn
oRBLD
ululzydy
ARBEe
gl tatede]
20700
pavia
eIz
PR3N
PRAP4B
20950
PB760

FEE@z@

FSEAD
FEE@4@

TABLEA

103

POF
LD
LD
Sl.a
LD
LD
ADD
LD
ADD
PUSH
POF
LD
AND
LD
LD
LD
LD
SRL.
ADD

AND
BIT
JR

S5LA

BIT
JR

CPL
AND
JR

OR

LD

POP
POP
POP
pop
POPR
POP
RET

Gy
BEFM

DEFW
DEFW
DEFHW
DEFW
DEFUW
DEFW
DEFW
DEFW
DEFUW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

IX

Dsid

B {ITX+3)
E

Los {IX+@)
He (IX+1)
HL.s DE

BCs THRLEA
HLsBC

HL

1Y

A (1Y)
QEAH

Ls&

Hs (IY+1)
Es (IX+2)
D@

E

Hi. s DE

fy (IY+)
1FH

Bs (IX+2)
2 FQEQZEA
A

Eis (HIL)
Be (I X+4)
I+ FBEQIE

B
FSEQ4B
B
(HL) » A
1Y

IX

HL.

DE

BC

AF

ScoBhIT"
3C0BH+4
3CBBH+16
3C4BH+1
ACHQH+4
3C40H+16
3CBAH+1
3CBBH+4
ICBOH+14
JCCaH+1
ICCaH+4
3CCRAH+16
3nBOH+1
3DP@AH+4
3DA2H+16
3D4DH+1
3D4@H+4
3D4BH+146
3DagH-+1
2DB@aH+4
3DEOH+146
3DCAH+1
IDCBH+4
30CBH+16
JEBOH+1
SEQDH+4
JEQBH+16
3E4BH+1

$ZERO D

3Y TO DE

s2#Y FOR TABLE LOORUP
1GET BASE ADDRESS

sADD ZwY

s TABLE DISPLACEMENT
sPOINT TO TARLE START
sTRANSFER TO 1Y

sGET LINE START
SMAEBK OUT MAGK!
LS BYTE NOW INM L

sGET X

SNOW IN DE

SNOW X/2

$POINT TO GRAPHICE BYTE
sGET BIT

sGET MASK VAL UE

sTEST LER OF X FOR ODD/EVEN
560 IF LEFT

sRIGHT COLUMN

sGET GRAPHICES BYTE
sTEST SET/RESET

s60 IF SET

3 INVERT MASK

sRESET BIT

3 CONT INUE

$SET BIT

;STORE GRAPHICS BYTE
$RESTORE REGISTERS

sRETURN TO CALLING PROG
sDISP OF TABLE FROM START

TFEF 443E aae7n DEFW 3E4@H+4

7FP1 S5@3E aa780 DEFW JEAQH+14
7F93 B13E aavvn DEFW JEE@H+1

7F95 843E aiooa DEFW JEBOH+4

YF97 Q@3E Bio1e DEFW JEQRH+16
7F99 CI13E Bio2e DEFW JECOH+1

TR C43E 21038 DEFW JECOH+4

7F9D D@3E B1240 DEFW JECOH+164
TF9F B13F 01056 DEFW 3F@DH+1

7FAL B43F BLlosB DEFW FBAH+4

7EAZ 183F aiaze DEFW JFABH+14
JFAL 413F @1080 DEFW 3F4@QH+1

TEAT 443F 1094 DEFW IF40H+4

7FAY S583F 21106 DEFW 3F40H+145
JEAE 813F @a111@ DEFW SFBOH+1

7FAD B43F a1120 DEFW 3F80H+4

7FAF 9B3F B113@ DEFW AFBRH+14
7FR1 C13F 31140 DEFUW JFCOH+1

7FBE3 C43F @115@ DEFUW 3FCaH+4

7FB3 DB3F Alisa DEFW JFCAH+14
atrdalag B117@ END

2008 TOTAL ERRORS

FSETGR DECIMAL VALUES

2455 1975 213s 2295 2Z1s 339y IO3s 239y 205y 137,
1@s 229 221s 25 225 @ 221y 94 35 203
35s 221 118y @s 221y 102 1s 3255 15 87

@y 95 229y 283y Z25s 2535 124 @y 230s T4,
111 283 10Z. 1s 221s 945 25 235 By 203,
39 I5s 253 1Z6s B 230y 31 1s Z03s 2
7@0s 4@ s 2035 395 7@ 221 TOEs by 7@

4@s 43 475 168y 245 1y 176y 119 2539 225,
221y 225 225 2095 1935 241s 01 15 &Ry 4
6@ 16y 4B &5y &@s 6By 60 88y 6@ 179,

6Ws 132+ 60y 1445 685 1935 60s 196, &@s 208,
0y 1y bls 45 bls léy bls 659 61 68

b1y B@s 613 129 b1s 1325 bls 144s &1 193,
6l 1265 61 208y 61y 1s 63 4y 671 1és

&2y 65y 62y 6Bs 629 BBy 63 129 675 137
G221 1445 62y 193y 625 1963 &3y 208y &3 1s
63s 45 635 16 63 &5 &35 &8s 635 50,

635 129y 63: 132y 63 1445 63y 1935 635 194
63s ZDBs 63

CHKSUM= &9

INBLCK: INSERT BLOCK

System Configuration

Model 1, Model i, Model Il Stand Alone.

Description

INBLCK inserts a block in the middle of a larger block of memory. The block is
inserted by moving down all bytes after the insertion point, as shown below.
This subroutine could be used for inserting a block of text, for example, and
moving the remaining text below the inserted block. Both the ““larger block”
and “insert block” may be any size, up to the limits of memory.

104

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the larger block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the insertion block in Z-80 address
format. The next two bytes are the address of the insertion point in Z-80 address
format. The next two bytes of the parameter block contain the number of bytes
in the larger block; the next two bytes contain the number of bytes in the
deletion block. Both are in standard Z-80 format.

On output, the contents of the parameter block remain unchanged. The inser-
tion block has been inserted by a move of the insertion block into the insertion
point.

INPUT OuUTPUT
Ho L Ho L
H T
POINTER TO PARAM+0 i _ [UNCHANGED
T T
PARAM+Q POINTER TO PARAM-+
+ LARGE BLOCK -+ + UNCHANGED
+1 | START (MEM1-+@) +1
+2 POINTER TO +2
-+ INSERT BLOCK -t 4 UNCHANGED -+
+3 (MEM2-+0) :j +3
+4 INSERT +4
4+ ADDRESS IN 4+ UNCHANGED +
+5 LARGE BLOCK +5
+6 4 BYTES +6
-+ IN -+ 4+ UNCHANGED +
+7 LARGE BLOCK +7
+8 # BYTES +8
-t IN e - UNCHANGED -
+9 INSERT BLOCK +9
MEM 1+8 MEM 1+
| T " “LARGE" i
A ~“LARGE" e 4 BLOCK 4
+2 BLOCK WITH
1 1 1 INSERT 1
BLOCK
3 4 L ———j 1 INSERTED |
+4
1 4 — /
e 1 __/leegT /_,
BLOCK
+6 | 1 ya g Ve
MEM2+8 MEM2+8
+1 +1
-+ INSERT + -+ +
+2 BLOCK +2
+3 :> +3 UNCHANGED
+4 +4
+5 +5
+6 +6

105

Algorithm

The INBLCK subroutine performs the insertion by “opening up’’ space in the
larger block for the bytes of the insertion block and then moving the insertion
block into the space created.

Space is created by doing a block move downward of the area in the larger
block from the insertion point to the end. This must be an LDDR to avoid
replication of data. The LDDR is followed by an LDIR to insert the insertion
block.

The LDDR must be set up with HL containing the address of the last byte of the
farger block, DE containing the address of the last byte of the larger block plus
the number of bytes in the insertion block, and BC containing the number of
bytes in the larger block from the insertion pointon. The HL address is found by
adding the start of the larger block plus the number of bytes in the larger block
minus one. This is saved in the stack for the LDDR. The BC count is found by
subtracting the insert address from the end address and adding one. This is also
saved for the LDDR. The DE address is found by adding the number of bytes in
the insertion block to the end address. The move is then done by an LDDR.

The LDIR for the insert is then done after setting up DE with the address of the
insertion point, HL with the address of the insertion block, and BC with the
number of bytes of the insertion block.

Sample Calling Sequence

NAME OF SUBRCOUTINE? INBLCK

HL VALUE? 420800

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 50008 LARGEBLOCKSTART

+ 2 2 55000 INSERTBLOCK START

+ 4 2 58802 INSERTPOINT

+ &6 2 05 5 BYTES IN LARGE BLOCK
+ 8 2 3 3BYTES IN INSERT BLOCK
+ 16 B B

MEMORY BLOCK 1 LOCATION? S0008
MEMORY BLOCK 1 VALUES?

+ @8 1 @]

+1 1 1

+ 2 1 2 LARGE BLOCK

+ 3 1 3 - INITIALIZE LARGE BLOCK FOR EXAMPLE
+ 4 1 4

+5 1 5

+6 1 4

+ 7 1 7 -

+8 1 B

+9 B8 @

MEMORY BLOCK & LOCATION? 35000
MEMORY BLOCK 2 VALUES?

+ B8 1 255

+ 1 1 254 -INSERT BLOCK

+ 2 1 253

+ 3 B @

MOVE SUBROUTINE TO7 37000
SUBROUTINE EXECUTED AT 370008
INPUT: OUTPUT:

HL= 40000 HL= 42000

106

7Fa

700
7F@81
7FRz
7F03
7F@4
7FB6
7F@9
7F@A
7Fac
7FaF
7F1z
7F15
7F18
7F19
7FiA

DDES
CD7F @A
E5
DDE1
DD&EDR

DD&6@
DD4AERS

DD46B7
29
2B
ES

PARAM+ @ 886
PARAM+ 1 195
PARAM+ 2 216
PARAM+ 3 214
PARAM+ 4 B2
PARAM+ 5 195
PARAM+ & 5
PARAM+ 7 @
PARAM+ B8 3
PARAM+ & @
MEMB1+ @ B
MEMBI+ 1 1
MEMRI+ 2 2
MEMBiI+ 3 3
MEMBiI+ 4 4
MEMBI+ 5 5
MEMR1+ & &
MEMBI+ 7 7
MEMBiI+ B @
MEMRZ+ B 255
MEMBZ+ 1 254
MEMBZ+ 2 253

PARAM+
PARAM+

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMBE 1+
MEMB1+
MEMB1+
MEMB 1+
MEMB 1+
MEMB 1+
MEMB 1+
MEMB 1+
MEMB1+
MEMBZ+
MEMBZ+
MEMBZ+

MREONC VPN~ 090NVRLIN-T

NAME OF SUBROUTINE?

Notes

1.

80

195
216
214

= 03
g k)
L

MEPHMNNRN-98LE WV

- UNCHANGED

-ORIGINAL DATA

HINSERT
INS ED DATA | 8 BYTES
= OF NEW BLOCK

-ORIGINAL DATA

~ UNCHANGED INSERT BLOCK

The maximum number of bytes in either block may be 65,535.

2. The term ““larger block” is somewhat misleading. The larger block may be
smaller than the insertion block!

3. The insertion point must be within the larger block.

Program Listing

pB1206
20110
o@1ze
pB136
pa146
paLse
r@16@
Bo170
aun1ae
an1ea
ety
Q0z10
relrgred
Rz30
Baz40
eREse
DBzé6D
oRz7e
pRzen
it
PR320
e
pa3:z0
au330
Q2340
PR35
PD36HD
oas7e

ORG

7FORH

10520

3 g e T S F R E X P LT LS L LT L ELEE L LT LR SR R

3% INSERT BLOCK.

¥
;¥
5 ¥
5 ¥
3%
;¥
5 ¥
L 3

INPUT:

INSERTS BLOCK IN MIDDLE OF LARGER BLOCK#*

HL=>PARAMETER BLOCK *
PARAM+Ps +1=8TART ADDRESS OF LARGER BLOCK
PARAM+Zs +3=5TART ADDRESBS OF INSERT BLOCK
PARAM+4 s +5=INSGERT ADDRESS IN LARGER BLOCK

PARAM+B +9=# OF BYTES IN INSERT BLOCK
OUTPUT: INSERT BLOCK INSERTED IN LARGER BLOCK AND
FOLLOWING BYTES MOVED DOWN

k-9

#*

*

PARAM+&s +7=# OF BYTES IN LARGER BLOCK *
*

*

.x.

®

- [PRTRVEVETE IR R EE R E R R S ST E F X SR R L LR L TR L LT LS L L

INBLCK

107

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

LD
LD

L.D
ADD
DEC
PUSH

AF

BC

DE

HL.

IX
BATFH
HL.

IX

Ls (IX+@)

He: (IX+1)
Cs (IX+6)

Bs (IX+7)
Hl.s BC
HL.

HL.

sBAVE REGISTERS

s #E#GET PR ADDREGG®®%
$TRANSFER TO IX

sSETART OF LARGE BLOCK
OF BYTES IN LARGE BLK
sEND OF LARGE BLRK+1

3 SAVE

7F1R
7F1E
7F21
7FIE
sE54
7FZ6
7F27
7FZA
72D
7FZE
7 EF
7F30
7F 3
7F35
7F38
7F 3R
7F3E
7F41
7F 44
7F46
7F48
7F49
7F4A
7F4R
7F4C
2000

DD4E@4
DD4&6B5
B7
ED4Z

BY

5
DDLERS
DD&ABD
19

EB

Ci
EDBR8
DDSER4
DD5 &GS
DDAOEDZ
DD&6AHB3
DD4ERG
DD46AT
EDB®
DDE1
E1l

D1

C1

F1i

Co

BO380
pA39H

BR4o
Q416

88438

Ba440
apase
BR4 &G
BR4a7a
BR430
av49B
Pa50a
2e5sien
Basz0
Ba53e
2054@
ae550
nAas560
nas7a
20580
pas9e
il
bRs1d
BB6L20
24538
aB640

20088 TOTAL ERRORS

METEST: MEMORY TEST

L.D
LD
8124
SBC
PlF
PUSH
LD
LD
ADD
EX
POP
L.DDR
LD
LD
LD
LD
LD
LD
LDIR
POP
POP
POP
POP
POP
RET
END

Cos (IX+4)
Bls (TX45)
P

HL. s BC
B

HL.

Ls (IX+8)
Hs (IX+9)
HL. s DE
DEsHL
B

Es (IX+4)
Ds (IX+3)
Ly (IX+2)
Hs {IX+3)
Cs (IX+8)
Bs (IX+7)

IX
HL
DE
BC
AF

INBLCK DECIMAL VALUES

245, 197y 2133 2329: 2321

22l 225, 2

bs Z21s 70

221y 7By 5,
11@s By 221,

2215 G4y 4,

102s 35 221,
221y 225 225y 2095 193,

CHREUM= &4

21s 1185 B

79 G 435
183y 237,

10%s 99 25,
221s 863 5
78s By 221

System Configuration

s INGERT ADDRESS

s CLEAR CARRY
sFIND # TO MOVE

$SOURCE ADDRESS
F5AVE # TO MOVE
i# OF BYTES IN INSERT BLK

SFIND DESTINATION
$PUT IN PROPER REGISTERS
SRESTORE #
IMOVE BYTES
s INGERT ADDRESS

$BOURCE ADDRESS

s# OF RYTES TO MOVE

SMOVE INSERT BLK TO INS PT

sRESTORE REGISTERS

SRETURN TO CALLING PROG

Z2@5s 127s 1@ 229,

182s 19 2215 78s
221s 783 44

209y 229y Tl

193s 2375 184,

11@s 25 221
Ps 2379 176

201

Model I, Model 1ll, Model 1} Stand Alone.

Description

This subroutine tests a given block of memory by a *“PUSH/POP” method. One

pass is made through the test with each byte of the block being tested twice,
except for the starting and ending addresses of the block, which are tested only
once. Pseudo-random data is used to test all locations.

The memory test is considered successful if pseudo-random data can be writ-

ten into every location and then retrieved successfully. If data is retrieved and it
is not identical to the pattern stored, the test immediately returns with an error

108

flag set, a record of the failing location, the proper test pattern, and the errone-
ous result.

METEST should be called repetitively to exercise and test memory; the more
iterations performed, the greater the confidence that memory is working.

Input/Output Parameters

On input, the HL register pair points to a parameter block on entry to METEST.
The first two bytes of the parameter block contain the starting address of the
block to be tested. The next two bytes contain the ending address of the block.
The ending address must be at least one location greater than the starting ad-
dress.

The next four bytes are reserved for the test results.

The last two bytes contain a “‘seed”’ value for the memory test data. This seed
value must be nonzero.

On output, PARAM+4, +5 contain the address of the failing location or the
address of the failing location minus one if the test failed at any point. It con-
tains a zero if the test was a success. PARAM+6, +7 and PARAM+8, +9
contain additional failure parameters.

INPUT QUTPUT
Ho L H oL
1 EH
POINTER TO PARAM+0] _ [UNCHANGED
T ¥
PARAM+@ STARTING PARAM-+@

4+ ADDRESS + 4 UNCHANGED -+
+1 OF BLOCK +1
+2 ENDING +2

1 ADDRESS 4 + UNCHANGED -+
+3 OF BLOCK :> +3
+4 RESERVED +4 ¢=SUCCESS-

4 FOR SUCCESS -+ + FUL, FAILING +
+5 FLAG +5 | ADDRESS IF NOT
+6 RESERVED +6 “IS" VALUE

T FORTIS T T ONFAILURE T
+7 RESULT +7
+8 . . +8 “SHOULD BE”

+ SAELEDE + 4+ VALUEON -+
+9 VALU +9 FAILURE

The byte of PARAM+ 6 is the byte at the location equal to the failing address;
the byte at PARAM+7 is the byte at a location one less than the failing address.
Here’s an example: If the failing word location is 20H, 80H (location 8020H)
and PARAM6, + 7 contain a 63H, 32H with PARAM+ 8, + 9 containing 67H,
32H, then the failing location is bit 2 of 8021H. If the failing word location is
8020H, PARAM-+6, +7 contains a 66H, 32H and PARAM+8, +9 contains

109

67H, 33H then the failing location is bit 0 of 8020H. It is possible, of course, for
both bytes to fail in the test.

A typical memory test first stores all zeroes into memory and then reads back
the locations expecting to find all zeroes, It then stores all ones and reads back
the data expecting all ones. At this point random data is usually stored and read
back. METEST bypasses the first two tests of zeroes and ones.

More comprehensive memory tests are geared to the physical implementation
of the type of memory. Various memory types have ‘“worst case’” test patterns.
The dynamic memory used in the TRS-80s typically fails when adjacent loca-
tions are accessed. This test is an attempt to rapidly access adjacent locations
by using stack instructions. Each PUSH or POP accesses two adjacent loca-
tions. Pseudo-random (repeatable) data is used for the test.

The pseudo-random data is generated from the last value in PARAM+8, +9.
This value is multiplied by an odd power of 5, 125. The result is used as a test
pattern for the two-byte PUSH and as the basis for the next generation of ran-
dom data. The starting “’seed’’ value can be maintained in later tests or varied
to generate a new set of pseudo-random numbers.

Sample Calling Sequence

MAME OF SURROUTINE? METEST

HL VALUE? 40000

FARAMETER BLOCK LOCATION? 40000
FARAMETER BLOCK VALUES?

+ @ 2 42008 START ADDRESS
+ 2 2 4BBWOEB END ADDRESS
+ 4z B

+ 6 2D

+ 8 2 1234 SEED VALUE

+ 10 @ o

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7?7 37800
SUBROUTINE EXECUTED AT 37800

INPUT OUTPUT £
HL= 42000 HL= 40000 -

PARAM+ B 16 PARAM+ @ 16

PARAM+ 1 164 PARAM+ 1 164 | NCHANGED

PARAM+ 2 128 PARAM+ Z 128

PARAM+ 3 187 PARAM+ 3 187

PARAM+ 4 @ PARAM+ 4 @

PARAM+ 5 B PARAM+ 5 @ [SUCCESSFLAG

PARAM+ &6 @ PARAM+ & B2]| rorTvigv vALUE
FARAM+ 7 @ PARAM+ 7 238 |

PARAM+ B Z1@ PARAM+ B8 82 “ "
PARAM+ 9 4 PARAM+ 9 238 LAST “SHOULD BE"” VALUE

NAME OF SUBROUTINE?

Notes

1. Make certain ending location is at least one more than starting location.

2. Odd seed values generate a string of odd test values, even seed values
generate even test values.

110

TFaB

7F DB
7F@1
7FRz
7F @3
7FB4
7F@6
7F D8
7FER
7FBC
7FQE
7FOF
7F1z2
7F15
7F19
7F1B
7F1E
7F 21
7F24
7TFZ7
TF2A
7FZD
7FZE
7F31
7F34
7F35
7F36
7F39
7F3C
7F3D
7F3E
7F40
7F41
7F4z
TF 44
7F45
7F47
7F48
7F4A
7F 4B
7F4D
7F50
7F53
7F54
7F55
7F56
7F58
7F59
7F5C

FDz10000
FD39
DD&EDS
DD66BL
DD75@4
DD74@5
DD&ER4
DD&&E@S
23
DD7584
DD74@5
23

F?
DDAEDS
DD&46DY
5D

54
3EBR7
29

3D
2@FC
B7
EDS2
B7
EDSZ
B7
EDSZ
DD7388
DD748%9

19
DD75086
DD7487

Program Listing

20108

ORG

TF@aH

;@520

BAa11d 3 FETEEELTELESELTEREE S TP LEEEE S LT L LT L EEE S S ELEE L 50 E R

pBi1z@ 3% MEMORY TEST.

BO138 3%
BB14D 3%
Be158 5=
PB16B 5%
BB170 3%
2eise =
BR198 3%
PBzBd 3=
pR210 %
BBZZB 5%

paz4B s
bB258 METEST
ey

apz7e

BB

BBzI0

DR300

Ba316

BR3Iz0

2a336

BE340
BR350
D360
pR376
o380
BB37a
2420
pa410
BB420
go438 METD1@
BB440
BR4se
PR460D
BR470
22480
80498
ae500
BR516
aes2a
BB538
BB548
o558 METRZG
oa56G
o578
Be5806
a5
DasB0
PR&61D
o620
PBs3a
DBL4D
BB65
PRL6E
os78
20680
BBLI8
oa70d
pB718

INPUT:

PUSH
PUSH
PUSH
PUSH
PUGH
PUSH
caLL
PUSH
POP
DI
LD
LD
LD
ADD
LD
LD
LD
LD
LD
LD
INC
LD
LD
INC
LD
LD
LD
LD
LD
LD
ADD
DEC
JR
OR
SBC
OR
8BC
OR
SBC
LD
LD
PUSH
POP
OR
SBC
ADD
LD

TESTS A BLOCK OF MEMORY. *
HL=> PARAMETER BLOCK *
PARAM+@: +1=STARTING ADDRESS OF BLOCK *
PARAM+Zs +3=ENDING ADDRESS OF BLOCK *
PARAM+4: +5 RESERVED FOR SUCCESS FLAG *
PARAM+6s +7=RESERVED FOR "IS" RESULT *
PARAM+Bs +9=NON-ZERO *SEED" VALUE #

QUTPUT : PARAM+4 5 +5=0 IF TEST SUCCESSBFULs FAILING #*

LOCATION IF TEST NOT BUCCESSFUL *

PARAM+6+ +7=TWO BYTES FROM MEMORY - "Ig" *

PARAM+B: +9=TEST PATTERN - "S/B" *

AP230 B3 36 3 U 6 I I 30 36 36 36 96 36 36U 36 36 3 3 3 36 36 ¥ 3 36 36 3 3 5 36 30963 366 36

AF sSAVE REGISTERS

BC

DE

HL.

X

1y

BATFH sxxGET PR LOC N##xx

HL s TRANSFER TO IX

1X

sDISABLE INT FOR STACK

Ca {IX+Z) sEND ADDRESS TO BC

By (IX+3)

IYs@ sZERO 1Y FOR ADD SP

1YsSP sTRANSFER CURNT 8P To IY

Ls { IX+8) sGET START

Hs (IX+1)

(IX+4) L. sINITIALIZE CURRENT

(IX+5)sH

Ls (IX+4) sCURRENT ADDRESS TO HL

Hs (IX+5)

HL. sBUMP CURRENT ADDRESS

(IX+4)s L sCURNT FOR FAILING LOC

{IX+5)sH

Hi.. 1187 STACK ACTION AT —1

SPs HL sSET SP FOR TEST

s (IX+8) sGET SEED

Hs (I1X+9)

Esl. sPUT IN HL AND DE

DsH

As 7 sLOOP COUNT FOR SHIFT

HL s HL sSEED®Z

& sDECREMENT LOOP COUNT

NZsMETOZO 57 TIMES=TIMES 128

A

HL.s DE sTIMES 127

A

HL.s DE sTIMES 126

A

Hi.s DE sTIMES 125

{IX+8)sL sSTORE NEW SEED

{IX+9) s H

HL sACTUAL TEST HERE

DE s PUSH AND RETRIEVE

A s CLEAR CARRY

HL. s DE sTEST FOR EQUAL

Hi.s DE sRESTORE "I&"

(IX+6)sL sSAVE IN "IB®

(IX+7)sH

pa7ze

111

LD

7F3F 2@12 2a73e JR NZsMETB30 560 IF NOT EGUAL

7F61 DD&EB4 20743 LD Lo (IX+4) 3GET CURRENT LOCATION
7F64 DD&&BS BB75a LD Hs (IX+3)

TF&7 B7 237460 OR A sCLEAR CARRY

7F68 ED4Z Ba778 SeC HLsBC $TEST FOR END

7F6A ZOBRE oe780 JR NZsMETO10 sLOOP FOR NXT 78T OF 2
7F6C AF PO790 XOR A $TEST SUCCESSFUL HERE
7F6D DD7704 20800 LD (IXt+4)s: 4 $SET SUCCESSFUL FLAG
7F7@ DD7705 20810 LD (IX+5):4A

7F73 FDF9 20820 METB3@ LD 8Py 1Y sRESTORE 8P

7F75 FDE1 o830 POP Iy $RESTORE REGISTERS
7F77 DDE1 Ba0840 POP IX

7F79 E1 au850 POP HL

7F7A D1 22868 POP DE

7F7R Ci 28870 POP BC

7F7C F1 arisisin] POP AF

7F7D C% 228790 RET SRETURN TO CALLING PROG
Rone rafriiegrili] END

20880 TOTAL ERRORS

METEST DECIMAL VALUES

245,
1@
3

221
11@s
116y
F3s

82

221
117,
e
119

225,

253,
iy

Sy
845

b

4y

CHIKSUM=

1974

229

182y

183,
11é4s

102,

225,

213
221l 225,
33: Bs @s
s 2219
E21s 182s 59 35 221,
35+ 249y ZZ1s 118s 8,
bEs 79 415 b1+ 325 252
237+ 8Zs 183y 237s B3

T 2295 ZB9: 1835 237
221s 1165 7 32+ 18s 2219 1
5¢ 183y 2375 bbs 325 187
221 1192 55 253 2495 253
2095 193+ 241+ 201

2EF 229

T 1
Ll L8

253
78s I
‘2ls 110
s 114

117

221

221
243y
253s 57,
117y 45 |

ey i
i

51

183

82,

1275

s B
5
4 g
1@z

221
221

Ps
2374

s 117+ 85
Z8s 221
1@s 4
175 2

225

MLEBYE: FAST 8 BY 8 MULTIPLY

System Configuration

Model I, Model 11i, Model 1l Stand Alone.

Description

MLEBYE multiplies an 8-bit binary number by an 8-bit binary number to give a
16-bit product. The multiply is a “fast” multiply that operates twice as fast as
conventional multiplies. The multiply is an “unsigned”” multiply, where both
operands are treated as 8-bit absolute numbers.

Input/Output Parameters

On input, the H register contains the 8-bit multiplier and the L register contains
the 8-bit multiplicand. On output, HL contains the 16-bit product.

112

7F @@

7Fo6
7F@B1
TFB4
7F@s
7FB7
7F@8
7F@9
7F@e
7Fac

00100
20110
PB120
00130
PB140
20150
22160
PB170
80180
08190
20200
0210
00220
P30
PO240
POZ5@

INPUT OUTPUT
HooL HoL
MULTIPLIER | MULTIPLICAND ‘
TR SodCAND] —— | PRODUCT 0-65.825

Algorithm

The MLEBYE subroutine performs the multiply by a bit-by-bit multiply in eight
steps. To reduce overhead, “straight-line”” coding rather than a loop structure is
used.

The multiplicand is put into BC and the multiplier into H. The L register is
cleared. The HL register is used to shift out multiplier bits from the left end into
the carry and to hold the partial product in the L register end. The HL register is
shifted left eight times. For each shift, a multipler bit from H is tested. If it is a
one bit, the multiplicand in C is added to HL by an “ADD HL, BC"; if itis a
zero, nothing is done. The next shift moves the partial product in L toward the
left. At the end of the eight steps, the entire multiplier has been shifted out of H,
and HL holds the 16-bit product.

Sample Calling Sequence

NAME OF SUBROUTINE? MLEBYE

HL VALUE? 65535 MULTIPLIER = 255, MULTIPLICAND = 2565
FARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7?7 55000

SURROUTINE EXECUTED AT 55000

INPUT: QUTPUT :

HL= 65535 HL= &50%% RESULT =2565x 255

NAME OF SUBROUTINEY

Notes

1. Maximum multiplier is 255. Maximum multiplicand is 255. The maximum
product will be 65,535.

Program Listing

ORG 7FaaH 30520
T E R R e s X I e E R R e LR S s R S L

s# FAST 8 RIT BY 8 BIT MULTIPLY TO YIELD 16 BIT PRODUCT.*

3% INPUT: HL=MULTIPLIER IN Hs MULTIPLICAND IN L *
3% OQUTPUT:HL=16~BIT PRODUCTs 8-63533 *
SHNERRFHERHH AR ERRRFRR AR R RRERRXR SRR R FF R R R RRRE R R AR LR ER RS
MLEBYE PUSH BC 38AVE REGISTER

calLl BATFH % ¥GET HL#%%

LD CsL SMULTIPLICAND TO C

LD B0 sNOW IN BC

LD LsB 386 TO L

ADD HL.s HL. $SHIFT MULTIPLIERs PRODUCT

JR NCsMLEO1® $GO IF MULTIPLIER BIT=8

ADD HL.BC sADD MULTIPLICAND
MLEB1® ADD HL s HL

113

7Fap 3861 BB268 JR NCsMLEBZD

TFaF @9 Baz7a ADD HLsBC

7Fi@ 29 0e286 MLEB2B ADD HLs HL

7Fi1 3861 BB278 JR NCsMLEB3B

7F13 @9 BB300 ADD HLsBC

7Fi4 29 2a31d MLEB3@ ADD HL s HL

7F15 3881 pB3z2a JR NCs MLEG4G

7F17 @9 BB338 ADD HLsBC

7Fig 29 20348 MLEB48 ADD HL s HL

7F19 3861 Be356 JR NC: MLEBSS

7FiB 8% Ba360 ADD HL.»BC

7FiC 29 28378 MLEBSB ADD HL s HL

7F1D 38@1 Ba3as JR NCs MLEB&B

7FiF 89 22370 ADD HL.-BC

7F28 29 20408 M_EBLB ADD HLs HL

7F21 3801 28410 JR NCsMLEB78

TFZ3 @9 20422 ADD HLsBC

7Fz4 29 20430 MLEB78B ADD HL s HL

7FZ25 3081 Ba440 JR NCs MLEGBO

TF27 @9 BB456 ADD HLsBC

7F28 Ci 80460 MLEBBB POP BC sRESTORE REGISTER
7F29 C37ABA BB47a JP BATAH ;% #RETURN ARGUMENT###
7F2C C9 28486 RET INON-BASIC RETURN
2066 BB49B END

BBBaB TOTAL ERRORS

MLEBYE DECIMAL VALUES

197 205, 127y 18s 775 bs @ 184 419 48,
1s 99 41y 48y 1s 95 41s 48s 135 9D

41s 48s 1s 9y 415 48s 135 95 415 48,

1s 9y 41s 48y 15 9y 41s 48 15 9

193 195 154+ 10s 201

CHRBUM= 223

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY

System Configuration

Model 1, Model 1lI, Model Il Stand Alone.

Description

MLSBYS multiplies a 16-bit binary number by a 16-bit binary number. The
multiply is an ““unsigned”” multiply, where both numbers are considered to be
absolute numbers without sign. A 32-bit product is returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit multiplicand. The next two
bytes of the parameter block contain a 16-bit multiplier. Both are in Z-80 16-bit
format. The next four bytes of the parameter block are reserved for the 32-bit
quotient.

114

On output, PARAM+ 3 to PARAMA+6 hold the 32-bit product, arranged in next
ms, ms, Is, next Is format. The contents of the remainder of the parameter
block remain unchanged.

INPUT QUTPUT
HoL Ho L
POINTERTO PARAM+S | == [UNCHANGED
; |
PARAMAE | oo | PARAMG | ein L
+1 | MuLTIPLICAND »
+2 +2
=T Mol T ; g T UNCHANGED
+4 +4
+5 RESERVED +5 32817
w6 | mesor | +¢ | PRODUCT T
w7 | T w7 | 1

Algorithm

The MLSBYS subroutine performs the multiply by a “bit-by-bit"” multiply in 16
iterations. The multiplier bits are tested from left to right. For each one bit in the
multiplier, the multiplicand is added to a “partial product.” The partial product
is shifted left with each iteration. At the end of 16 iterations, all multiplier bits
have been tested, and the partial product contains the true 32-bit product of the
multiply.

The multiplicand is first put into BC, and the multiplier in DE. The A register is
initialized with the iteration count of 16. The HL register is cleared t0 0. The DE
and HL registers will contain the partial product and will be shifted toward the
left.

The code at MLSO10 is the 16-iteration loop of MLSBYS. For each iteration, DE,
HL is shifted one bit left. As it is shifted, the multiplier bit from DE goes into the
carry. If the carry is set (multiplier bit is a one), the multiplicand in BC is added
to the partial product. If the carry is reset (multiplier bit is a zero), no add is
done. At the end of 16 iterations DE, HL contains the 32-bit product.

Sample Calling Sequence

NAME OF SUBROUTINE? MLBBYS

HL VALUE? 38888

PARAMETER BLOCK LOCATION? 38888
PARAMETER BLOCK VALUES?

+ B 2 65335 MULTIPLICAND

+ 2 2 65535 MULTIPLIER

+ 4 2 0

+ & # @ FINITIALIZE RESULT FOR EXAMPLE
+8 B 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 40860
SUBROUTINE EXECUTED AT 42020

INPUT: QUTPUT s
HL = 38888 HL= 38888
115

TFBB

7Fo0
7FB1
7F@z
7FB3
7F@4
7F@6
7FB9
7FOA
7F@C
7F@BF
TFiz
7F15
7F18
7F1A
7F1iD
7F1E
7F1F
7Fz1
TF2Z
7F24
7F25
TF27
7FZ28

TFz9? 2

7FIB
7FZ2E
7F31
7TF34
TF37
7F39
7F 34
7F3B
7F3C
7F3D
alalrdry

en188
Bai1e
D120
Ba13a
DB140
Ba150
601460
BBi170
BB180
20196
v
20210
Bazzo
Boz30
BRz40
22250
BR260
oBz7a
20280
Bo290
Ba320
ae310
a3z
Be33a
pa34@
22356
22360
ae37e
BR380
28398
2400
22418
BB420
80430
DB440
BR450
D460
w476
22480
Ba49a
BaS6G
0518
2520
2a530
P55 4@

Q020D TOTAL ERRORS

PARAM+ -

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

@ 255
I 255
2 255
3 255
4 B
3 P
& @
7 @

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

NP W8

N/AME OF SURROUTINE?

Notes

255
255
55
255
547
55

i

- UNCHANGED

— 254,255, 1, @ = 255, 254, @,
1=4,2094,836, 225

@

1. Maximum multiplier is 65,535. Maximum multiplicand is 65,535.
2. Note that the product is in 1,0,3,2 order.

Program

Listing

ORG

7FaoH

10522

FHAREREFEHEEAERRREEREE AR RREEEREFEREEFHRRRE R LR ERE R RERS
7# SIXTEEN BY SIXTEEN MULTIPLY TGO YIELD 32-BIT PRODUCT.

3 H
3 H
ER 3
3%
33

MLSBYS

MLED12

MLEBZB

116

INPUT: HL=3>

*
PARAMETER BLOCK *
PARAM+@s +1=MULTIPLICAND #*
PARAM+Z2s +3=MULTIPLIER #
PARAM+45 +5s +65 +7=RESERVED FOR PRODUCT #

#*

QUTPUT : PARA+45 +55 +43+7 HOLD 32-BIT PRODUCT
R 2 SRR R R R R L R T X Ry

PUSH
PUSH
PUSH
PUSH
PUSH
CAaLL

IX

BA7FH

HL.

IX

Cy (IX+3)
By (IX+1)
Es (IX+2)
Ds (IX+3)
Aslé

HL.s @3
HL. s HL
DE s HL.
HL s HL
DEsHL.

NCs MLSBZ8
HLsBC
NCsMLEBZEG
DE

A
NZsMLSD10
(IX+4)4E
(IX+5)4D
(IX+&) sl
(IX+7)3sH
IX

HL.

DE

BC

AF

s5AVE REGISTERS

sH¥HGET PB LOC™ N###
s TRANSFER TO IX

$PUT MULTIPLICAND IN BC
sPUT MULTIPLIER IN DE

sITERATION COUNT

3ZERO PARTIAL PRODUCT
$SHIFT PARTIAL PROD LEFT
5GET MS 16 BITS
sEHIFT PART PROD PLUS C
SRESTORE UPPER 16 BITS
GO IF MULTIPLIER BIT=0
$ADD IN MULTPLICAND
5G0O IF NO CARRY
sBUMP UPPER 146 BITS
sDECREMENT ITERATION CNT
5LOOP FOR 16 ITERATIONS

$STORE PRODUCT

SRESTORE REGISTERS

sRETURN TO CALLING PROG

MOVEBL: MOVE BLOCK

MLSBYS DECIMAL VALUES

455 1975 213s ZR9s 221 229 205 127. 1@ 229
FFls FESs 21 78y By 2Z1s 70y 1s 2E21s 94,

s 221 Bbs 35 &Zs lbs 332 B Bs 415

235 2375 10&y 2355 48s 4y 99 48s 15 19

bls 32 2429 2ZT1s 11%s 45 221 1145 55 E21

1173 &s 2215 11ds 72 2212 225, 235, 209+ 193
241, 281

CHKS8UM= 201

System Configuration

Model I, Model 1ll, Model 11 Stand Alone.

Description

MOVBLK moves a block of memory to another block of memory. The blocks
may be overlapping; a check is made for the proper direction of the move to
prevent replication of data if the block move is made in the wrong direction.
Any number of bytes up to the limit of memory may be moved.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the source block in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the destination block in Z-80 ad-
dress format. The next two bytes of the parameter block contain the number of
bytes to move in Z-80 format.

On output, the parameter block contents remain unchanged. The source block
has been moved to the destination block area.

INPUT OUTPUT
Ho L Ho L
1 T
POINTER TQ PARAMAE | =—=p | UNCHANGED
T T
PARAM-+-0 SOURCE PARAM-+&
1 ADDRESS + 4+ UNCHANGED -+
+1 (MEM1-+9) +1
+2 | DESTINATION +2
4+ “ADDREss + 4 UNCHANGED +
+3 (MEM2-+9) > +3
+4 # OF +a
4+ Bvres 4+ 4+ UNCHANGED +
+5 TO MOVE +5
117

MEM 140 MEM 1+
+1 +1
+ SOURCE + T +
+2 BYTES +2
+ + + UNCHANGED <+
+3 é +3
+4 +4
+B +5
+6 +6
MEM2+g MEM2+-8
+1 +1
" AREA i T T
2| FOR 1 *2 | source |
+3 DESTINATION : +3 BYTES
4 BYTES 4 4 4
+4 +4
+5 +5
+6 +8
Algorithm

The main concern in MOVEBL is to test for either a “’beginning to end” move
or an “‘end to beginning”’ move. The wrong choice will replicate data in the
block when the source and destination areas are overlapping. A test for overlap
is not done, since it is simpler to choose either an LDIR or LDDR based on the
relationship of the starting addresses.

The source address is put into HL, the destination address into DE, and the
number of bytes into BC. A comparison is then done by subtracting the destina-
tion address from the source address. If the result is positive, the source address
is less than the destination and an LDIR will perform the move with no conflict.
ff the result is negative, an LDDR must be done. In this case the source and
destination addresses are recomputed so that they point to the end of the blocks
for the LDDR.

Sample Calling Sequence

NAME OF SUBROUTINE? MOVERL

HL VALUE? 45000

PARAMETER BLOCK LOCATION? 45000
PARAMETER BLOCK VALUES?

+ B Z 50BOGB SOURCE ADDRESS

+ 2 2 58081 DESTINATION ADDRESS
+ 4 205 5 BYTES

+6 B 0

MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?

+2 1 @

+1 1 1

+2z 1z

+ 3 1 3 INITIALIZE SOURCE FOR EXAMPLE
+ 4 1 4

+5 1 5

+6 1 b

+7 @ @

118

7F B8

7Faa
7FB1
7F@Z
7FO3
7F@3
7F@8
7F@9
7F@B
7FBE
7F11
7F14
7F17
7F1iA
7F1D
7F1E
7F1F
7F21
TFZ23
7F24
TFzé6
7FZB
TF2A
TFz2e
7FzC
7FZD
TFZE

DD4E@4
DD46@5
E3

B7
ED52

ce7¢C
El

2004
EDBB
isls
eB
a9
EB
a9
EB

20100
2116
P18
BB136
PR2140
PR158
D160
ne176
0B180
Ba1o90
6B200
20218
BD2zd
2Rz230
PB240
20256
BR2&0
PRz78
PB280
B2:2?0
20300
2a316
o320
20332
B340
B350
PB360

o372
a6380

Bo3%2
20400
o410
62420
28430
2B440
20450
20460

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777

INPUT:
HL= 4520@
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
FPARAM+
MEMBI+
MEMB1+
MEMBRi+
MEMB1+
MEMB 1+
MEMB1+
MEMB1+

RPN UL~

8
1
a8
1

UM Lin-88W

OUTPUT:

HL= 45002

@ PARAM+
5 PARAM+
1 PARAM+
75 PARAM+
PARAM+
PARAM+
MEMB1+
MEMBE1+
MEMB1+
MEMBI1+
MEMB1+
MEMB1+
MEMB1+

NAME OF SUBROUTINE?

Notes

(IR S U NE S R S I el

86 |

195
81
195
3

[l R A A s

1l

- UNCHANGED

FDESTINATION

1. The number of bytes moved may be 1 to 65,536 (0 is 65,536).

Program Listing

ORG

7FBoH

s@612

5 R R I I 6 3 I 3 6 B R I 3 6

1% MOVE BLOCK. MOVES BLOCK OF DATA FROM SOURCE AREA TO =
s% DESTINATION AREA. AREAS MAY BE OVERLAPPING. *
$ INPUT: HL=> PARAMETER BLOCK *
5% PARAM+B+ +1=50URCE ADDRESGS *
$ % PARAM+2 s +3=DESTINATION ADDRESS *
s ¥ PARAM+4. +5=# OF BYTES TO MOVE *
5 ¥ OUTPUT :BLOCK MOVED *
§ M AR I T R T I K I R 2 2
MOVEBL PUSH BC $8AVE REGISTERS

PUSH DE

PUSH HL

PUSH IX

CaLL BATFH s¥u##GET PB LOC” N###

PUSH HL $ TRANSFER TO IX

POP IX

LD L+ {IX+@) sPUT SOURCE ADDRESS IN HL

LD Hs (IX+1)

LD Es (IX+2) sPUT DESTINATION ADD IN DE

LD Ds (IX+3)

LD Cs (IX+4) sPUT BYTE COUNT IN BC

LD Bs (IX+5)

PUSH HL $SAVE SQURCE ADDRESS

OR A sCLEAR CARRY

SBC HLsDE s COMPARE SOURCE TO DEST ADDR

BIT ZsH sTEST SIGN

POP HL $RESTORE SOURCE ADDRESS

JR NZ s MOVBZ0 360 IF LDDR REQUIRED

LDIR $MOVE BLOCK

JR MOVE36 $GO TO CLEANUP
MOVBzB DEC BC $# OF BYTES-1

ADD HL. s BC sPOINT TO NEW SOURCE

EX DE s HL. $GET DESTINATION

ADD HLsBC sPOINT TO NEW DESTINATION

EX DEsHL $RESTORE

119

7FZ

TF36
7F3Zz
7F34
7F33
7F36
7F37
rdnlnlr]

2@470
oB480
Ba49@
DB500
2510
2B520
o530
20540

20008 TOTAL ERRORS

INC BC s# BYTES
LDDR $MOVE BLOCK
Movas3a POP IX sRESTORE REGISTERS
POP HL
PoOP DE
POP BC
RET SRETURN TO CALLING PROGRAM
END

MOVERL DECIMAL VALUES

197 2135 239y Z21s 229y 285 127+ 18 229s 31
228 221y 1185 @y 221. 182y 1y 221y 94y s

221y Bbs 35 221 7By 45 221s 7B S5 229

183s 237y 8Zs Z03s 124+ 225 325 49 2375 176
249 8y 11ls 95 238y 9y 235, Fs 2375 184

221y ZE5s ZI%. ZB9. 193, 201

CHKSUM= 12

MPADDN: MULTIPLE-PRECISION ADD

System Configuration

Model I, Model 1ll, Model Il Stand Alone.

Description

MPADDN adds a “source’” string of bytes to a “destination’” string of bytes and
puts the result of the add into the destination string. Each of the two strings is a
multiple-precision binary number. Each of the two strings is assumed to be the
same length. The length of each string may be any number from 1 through 255 or
0, which is 256 bytes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains
the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the multiple-precision add.

INPUT QUTPUT
H L H L
T H
POINTER T(? PARAM+@] ::> L UNCH{ANGED]

120

PARAM-+g PARAM--g
ADDRESS
T+ + UNCHANGED +
41 OF MEM 140 »
+2 +2
ADDRESS
-+ + + UNCHANGED -+
+3 OF MEM2-+¢ : +3
+4 4 OF BYTES +4 UNCHANGED
MEM 1+¢ MEM 1-+0
+1 1] T
T opPerAND T T RESULT -+
2] ONE +2 OF
BYTES T T T
+3 :j +3 BYTES
+4 +4 T
+5 +5 | T
+6 | 1 +6 | i
MEM2+9 MEM2-+8
+1 T T
1 OPERAND | o 4
+2 TWO +2
+ BYTES 4 + UNCHANGED -+
3 —_—>
+4 +a | T
+5 15 | 1
+6 T T
A A +6 A 4
Algorithm

The MPADDN subroutine performs one add for each byte in the operands. The
destination string address and source string address are first picked up from
the parameter block and put into DE and HL, respectively. The number of bytes
in the add is then picked up and put into the BC register pair. This number
minus one is then added to the source and destination pointers so that they
point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next destination byte is then picked up from the destination string (DE
register pointer). An ADC is made of the two source string digits (HL register
pointer). The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bytes of each operand. The B register
count is then decremented by a DJNZ, and a loop back to MPAQ10 is made for
the next add.

The carry is cleared before the first add, but successive adds add in the carry
from the preceding operation. If the destination operand was 00H, F5H, 6EH,
11H and the source operand was 00H, FFH, 77H, 33H, then the number of

121

operand bytes must be 4. The result in the destination operand would be 01H,
F4H, E5H, 44H. Note that the result may be one bit larger than the original
number of bits in the operands.

Sample Calling Sequence

NAME OF SUBROUTINE? MPADDN

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 4ZBBO POINTS TO DESTINATION
+ 22 44000 POINTS TO SOURCE

+ 4 205 5 BYTES

+ 6 @ @

MEMORY BLOCK 1 LOCATION? 42000
MEMORY PLOCK 1 VALUES?

+ @ 1 255
+ 1 1 255

+ 2 1 255 - DESTINATION = FFFFFFFEFFH
+ 3 1 254

+ 4 1 255 |

+5 B @

MEMORY BLOCK 2 LOCATION? 44000
MEMORY BLOCK 2 VALUES?

+ 0 1 0 7

+1 1 0

+ 2 1 1 - SOURCE = 0000010001

+3 1 B

+ 4 1 1]

+5 @ @

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT ¢
HL= 40000 HL= 40000 _

PARAM+ B 16 PARAM+ @ 16

PARAM+ 1 164 PARAM+ 1 164

PARAM+ = 234 PARAM+ T ou4 |

PARAM+ 3 171 PARAM+ 3 171 | UNCHANGED
PARAM+ & 5 PARAM+ 4 5

PARAM+ 5 @ PARAM+ 5 B |

MEMB1+ @ 255 MEMBI+ B @]

MEMBI+ 1 255 MEMBi+ 1 @

MEMB1+ 2 255 MEMBI+ = - RESULT = 00000000F FOoH
MEMEl+ 3 =54 MEMBi+ 3 255

MEMBL+ 4 355 MEMBI+ 4 @ |

MEMBZ+ B O MEMBZ+ B B

MEMEZ+ 1 @ MEMBZ+ 1 O

MEMBZ+ % 1 MEMBZ+ Z 1 | UNCHANGED
MEMBZ+ 3 @ MEMEZ+ 3 @

MEMBZ+ 4 1 MEMBZ+ 4 1 |

NAME OF SUBROUTINE?

Notes

1. The destination string is fixed length. Leading zero bytes must precede the
operands to handle the result, which may be one bit larger than either of the
operands.

2. This may be either a “’signed”” or ““unsigned’” add. If a two's complement
number is used, then the sign must be “‘sign extended’’ to the more significant
bits of the operands.

122

T7FB8

7Foa
7F@1
7FRz
7F@3
7FB4
7FBS
7FO?
7F@A
7+@c

7FBF
7F1z

7F15
7F18
7F1B
7F1D
7F1E
7F1F
7F20
7F21
7F 2z
7F23
7F24
7FZ5
7Fz6
7Fz7
7Fz8
7F 29
7F 24
7FzC
7F2E
7FZF
7F30
7+31
7F32
200

F3

€5

D3

ES
DDES
CD7F@aA
ES
DDE1
DDSE@®

DD5601
DDAEDZ

DD&603
DD4EQ@4
Q608
2e
a9
EE
a9
EE
41
B4
B7
1A
8E
1z
2B
iB
10F2
DDE
El
Di
Ci
Fi
ce

20160
20110
20120
BB138
2140
28158
201468
20178
@180
28192
pozod
2azio
aDz22D
22230
A0=240
P25
QBz260
2Bz7@
2280
2aze0
8308
22310

pa3zd
22338
20340
20350
28360
2370
720380
20320
22400
PR410
BB420
pa430
20448
PB450
BR4460
28470
28480
o490
Bas520
pas1i0
8520
2as36
Bas40
Bass5a

o208 TOTAL ERRORS

Program Listing

ORG

7FoeH

@522

SHERUERUEUSUERURRRLRRARSEE R LR R RS RRR SR RN RBEE RSN R SRS

j# MULTIPLE-PRECISION ADD.

s# OPERANDS
$# INPUT:

3%
7%
3 ¥

MPADDN

MPAGL1DB

PUSH
PUSH
PUSH
PUSH
PUSH
CaLL
PUSH
POP
LD

LD
LD

LD
LD
LD
DEC
ADD
EX
ADD
EX
LD
INC
OR
LD
ADC
LD
DEC
DEC
DJINZ
POP
POP
POP
POP
POP
RET
END

ANY LENGTH.

ADDS TWO MULTIPLE~-PRECISION

HL=> PARAMETER BLOCK

PARAM+2.+3=ADDRESS OF OPERAND Z
PARAM+4=%# OF BYTES @-256

$% OUTPUT: OPERAND 1 LOCATION HOLDS RESULT
R e s e S e s e T R

AF

B¢

DE

HL.

IX
BATFH
Hi.

ix

Es {IX+8)
Ds {IX+1)
Le (IX+2)
Hs (IX+3)
Cs (IX+4)
B+

BC
HL.+BC
DE s HL.
HLsBC
DEs HL
BsC

B

A

As (DE)
As (HL)
{(DE)sA
HL

DE
MPAGLB
IX

HL.

DE

8¢

AF

MPADDN DECIMAL VALUES

245, 197

2135 229s 221 229

221y 225y 221s P45 Bs ZELs

25 221
Py 2354
43y 27
281

CHRBUM=

123

1@z

Ps
163

73

s 33 £21s 7Bs 494
235s 65 45 183,

2495 221 225,

8és
b
29

225

-
-

#*
*
*
PARAM+@: +1=ADDRESS OF OPERAND 1 *
#*
#*
*

$8AVE REGISTERS

s #¥GET PB LOC N#x%
sTRANSFER TO IX

SGET OP 1 LOCN
$GET OP 2 LOCYN

sGET # OF BYTES

sNOW IN BC

sH-1

sPOINT TO LAST Oopz

sGWAP DE AND HL

sPOINT TO LAST OP1

sSWAP BACK

i#-1 BACK TO B

sORIGINAL NUMBER

sCLEAR CARRY FOR FIRST ADD
5GET OPERAND 1 BYTE
sADD OPERAND 2
s8TORE RESULT
sPOINT TO NEXT OP2
$POINT TO NEXT OP1
sLOOP FOR N BYTES

$RESTORE REGISTERS

SRETURN TO CALLING PROG

@5s 137s 1@s 229
13 221 118
@s 114

1425 18s

289y 193+ 241

MPSUBT: MULTIPLE-PRECISION SUBTRACT

System Configuration

Model 1, Model lil, Model 1l Stand Alone.

Description

MPSUBT subtracts a ““source’ string of bytes from a ““destination” string of
bytes and puts the result of the subtract into the destination string. Each of the
two strings is a multiple-precision binary number. Each of the two strings is
assumed to be the same length. The length of each string may be any number
from 1 through 255 or 0, which is 256 bytes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of the destination string in
standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes of the parameter block contain the address of the
source string in the same format. The next byte of the parameter block contains
the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-
tion string contains the result of the multiple-precision subtract.

INPUT oUTPYT
Ho oL HooL
T T
POINTER TQ PARAM+g | === | UNCHANGED
T H
PARAM-+@ PARAM-+g
ADDRESS
+ + + UNCHANGED +
» OF MEM1+0 1
+2 +2
ADDRESS
+ + + UNCHANGED +
43 OF MEM2+@ :—_j +3
+4 # BYTES +4 | UNCHANGED
MEM 1-+@ MEM 1+
+1 +1
T OPERAND T + RESULT T
+2 ONE +2 OF
+ BYTES + + SUB +
+3 :j +3 BYTES
+4 +4
+5 +8
+6 +6

124

MEM2-+0 MEM2-+-¢
| T] T
BT OP_‘g\sivAéND + o T T
T BYTES + ; L3] UNCHANGED T
+4] T 4| 1
+5 T T w5 | 1
v | ! ve | !

Algorithm

The MPSUBT subroutine performs one subtract for each byte in the operands.
The destination string address and source string address are first picked up
from the parameter block and put into DE and HL, respectively. The number of
bytes in the subtract is then picked up and put into the BC register pair. This
number minus one is then added to the source and destination pointers so that
they point to the least significant bytes of the source and destination strings.
The number of bytes is then put into the B register for loop control.

The next destination byte is then picked up from the destination string (DE
register pointer). An SBC is made of the two source string digits (HL register
pointer). The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to
point to the next most significant two bytes of each operand. The B register
count is then decremented by a DJNZ, and a loop back to MPSO10 is made for
the next subtract.

The carry is cleared before the first subtract, but successive subtracts subtract
the carry from the preceding operation. If the destination operand was 00H,
F5H, 6EH, 11H and the source operand was 00H, FFH, 77H, 33H, then the
number of operand bytes must be 4. The result in the destination operand
would be FFH, F5H, E6H, DEH. The result may be one bit larger than the
original number of bits in the operands or may be a negative number.

Sample Calling Sequence

NAME OF BUBROUTINE? MPSUBT

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 408006
PARAMETER BLOCK VALUES?

+ B 2 42000

+ 2 E 44008

+ 4 2 5 #OFBYTES
+ 6 B 0

MEMORY BLOCK 1 LOCATION? 42080
MEMORY BLOCK 1 VALUES?

+ @8 1 @

+ 1 2

+ ® 1 @ DESTINATION = ¢@00@000H
+ 3 1 B

+ 4 1 B

+ 5 @8 2

125

MEMORY BLOCK 2 LOCATION? 44000
MEMORY BLOCK 2 VALUEG?

+ @& 1 8
+ 1 1 @
+ Z 1 @ -SOURCE = 00000001+
+ 3% 1 @
+ 4 1 1
+5 8 @

MOVE SUBROUTINE T07 38200
SUBROUTINE EXECUTED AT 38008

INPUT: OUTPUT :

AlL= 40000 HL= 4pooe)

PARAM+ B 16 PARAM+ B 16

PARAM+ 1 164 PARAM+ 1 164

PARAM+ 2 224 PARAM+ 2 224 | UNCHANGED
PARAM+ 3 171 PARAM+ 3 171

PARAM+ 4 5 PARAM+ & 5

PARAM+ 5 @ PARAM+ & @ |

MEMB1+ B @ MEMBI+ @ 555]

MEMEI+ 1 @ MEMB1+ 1 5%

MEMB1+ 2] MEMBI+ = #8%5 + RESULT = FFFFFFFFH
MEMBI+ 3 @ MEMEI+ 3 555

MEMB1+ 4 @ MEMB1+ 4 255

MEMEZ+ @ @ MEMBZ+ @ @

MEMBZ+ 1 B MEMBZ+ 1 @

MEMBZ+ = @ MEMBZ+ ¥ @ -SOURCE UNCHANGED
MEMBZ+ 3 @ MEMBZ+ 3 @

MEMBZ+ 4 1 MEMBZ+ 4 1

NAME OF SURROUTINE?

Notes

1. The destination string is a fixed length. Leading zero bytes must precede
the operands to handle the result, which may be one bit larger than either of the
operands.

2. This may be either a “signed” or ““unsigned”’ subtract. If a two's comple-

ment number is used, then the sign must be “sign extended” to the more
significant bits of the operands.

Program Listing

7F o6 bo16e ORG 7FaeH @522
BRLIB sH%RBRBURFHRRREER RS ERER BB L RREREERFE LR LR LB R R RSB R RRERRERER

@128 5% MULTIPLE-PRECISION SUBTRACT. SUBTRACTS TWO MULTIPLE- *

BBi30 s PRECISION OPERANDSs ANY LENGTH. #*
PB140 3% INPUT: HL=> PARAMETER BLOCK #
BB158 3% PARAM+@s +1=ADDRESS OF OPERAND 1 *
001668 5% PARAM+25; +3=ADDRESS OF OPERAND 2 *
BBLI7O s+ PARAM+4=# OF BYTES 8-236& *
218G 5= QUTPUT:OPERAND 1 LOCATION HOLDS RESULT #

R R R S 222 X T I R R R R T TR AR R Ty
20200

7FBB F5 BBz1@d MPSUBT PUSH AF $8AVE REGISTERS
7FBL C5 oB220 PUSH BC

7FB2z D5 B30 PUSH DE

7FB3 ES BBz40 PUSH HL

7F@4 DDES 250 PUSH IX

7FB6 CD7FBA B02460 CALL BATFH JR#RGET PR LOC N##s
7FB9 E5 Baz7a PUSH HL. s TRANSFER TO IX
7FBA DDE1 20280 POP IX

7F@C DDSEBGA pozee LD Es (IX+@) $GET OP 1 LOC'HN

126

7FOF
7F12
7F15
7F18
7F1B
7F1D
7F1E
7F1F
7FZ0
7F21

7Fz2
7F23
7F24
7F25
7FZz6
7F27
7F28
7F29
7FZA
7F2C
7F2E
7FZF
7F30
7F31

7F32
2o

DD5681
DD&EGZ
DD&6E3
DD4EB4
fas80
BE

@9

ER
a9

ER
41
B4
B7

BB30e
22310
PB320
28330
PB340B
20350
20368

20378
aa380

28390
BB408
20410
BR428
28430
BB440
o450
Ba460
ae47e
82480
D640
BB500
PR5106
pasz

PB530a
20540
pas5e

PBeDB TOTAL ERRORS

MSLEFT: MULTIPLE SHIFT LEFT

OR
MPS@i@ LD
SBC
LD
DEC
DEC
DJNZ
POP
POP
POP
POP
FOP
RET
END

De (IX+1)
L (IX+2)
He {IX+3)
Cs (IX+4)
B0

BC
HL+BC

DE s HL.
HLsBC

DE s HL.
BsC

B

&

As {DE)
Ay (HL)
(DE)s A

MPSUBRT DECIMAL VALUES

2455 1975 213,
221s 2Z20s 2219
P ZZ1e 10Es 3

Py Z238. Fs Z33.

43 279 1lbe 249 221s 225

201

CHRSUM= 89

System Configuration

29

659 4o

22l 229s
Dby @Be Z21s
221 78s

Béa
Y]
abe

235

Model I, Model Hil, Model 1l Stand Alone.

Description

sGET OP 2 LOC'N

$GET # OF BYTES

$NOW IN BC

fH~1

sPOINT TO LABT OPZ2

;SWAP DE AND HL

sPOINT TO LAST OP1

18UWAP BACK

s#—-1 BACK TO B

FORIGINAL NUMBER

s CLEAR CARRY FOR FIRET BUB
$GET OPERAND 1 BYTE
$SUB OPERAND 2
sGTORE RESULT
$POINT TO NEXT OPZ
$POINT TO NEXT OP1
sLOOP FOR N BYTES

$RESTORE REGISTERS

SRETURN TO CALLING PROG

205s 127+ 1@s 2295
1s 221y 11
Bs 11+

138s 18
2095 193s Z4ls

MSLEFT shifts a given 16-bit value left a specified number of bit positions. The
shift performed is a ““logical” shift where zeroes fill vacated bit positions on the

right.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the number to be shifted in standard
Z-80 16-bit format, least significant byte followed by most significant byte. The
next byte of the parameter block contains the number of shifts to be performed,

from 1 to 15.

127

7Feo

On output, the value in the first two bytes of the parameter block has been
shifted the appropriate number of times. The count in the third byte of the
parameter block remains unchanged.

INPUT QUTPUT
HooL Ho L
11 ¥
POINTER TC}) PARAM-+] > [UNCH?NGED
i
PARAM-+¢ 16-BIT VALUE PARAM+g SHIFTED
-+ TO BE + T RESULT T
+1 SHIFTED +1
" # OF SHIFTS +2 UNCHANGED

—

Algorithm

The MSLEFT subroutine performs the shift by placing the number to be shifted
in HL and the count in the B register. HL is added to itself a number of times
corresponding to the count in the B register to effect the shift.

Sample Calling Sequence

NAME OF SUBROUTINE? MSLEFT

HL. VALUE? 400608

PARAMETER PLOCK LOCATION? 400806
PARAMETER BLOCK VALUES?

+ @ 2 1 VALUE TOBESHIFTED = 0OCe00RReaE0EeaR 1
+ & 1 8 8SHIFTS

+ 3 8 @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 50000

SUBROUTINE EXECUTED AT 50000

INPUT: OUTPUT

HL= 40000 HL= 40000

PARAM+ @ 1 PARAM+ @ @ _

PARAM+ 1 PARAM+ 1 1 [RESULT = 0000000100000000
PARAM+ 2 8 PARAM+ 2 8 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. 11 0 is specified as a shift count, 256 shifts will be done, resulting in all
zeroes in the result.

2. If 16 to 255 shifts are specified, the result will be all zeroes.

3. Note that the value to be shifted is Is bytes, ms byte.

Program Listing

ooioa ORG 7FB@aH $@52E

DBLLIO 5 #¥HREHHER IR ERIERE KRNI KT RIS AT 333003603026 5006 60606 2696 6 260 6
P@iz@ sx MULTIPLE SHIFT LEFT. SHIFTS THE GIVEN 16-BIT VALUE *
Q@130 1* A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION *
014D 3% INPUT: HL=:*PARAMETER BLOCK #
2a15@ s« PARAM+@, +1=VALUE TO BE SHIFTED *
aa16@ s PARAM+Z=NUMBER OF SHIFTS *
aaL7e 5% QUTPUT s PARAM+B: +1=8HIFTED VALUE *
QOI8O SHAREXEAUHEFRAFERFEERLERRREFRIEEEREHLHEEEEEHEEREEFE AL RBEHEEER

128

7F a6
7F@1
Faz
TFEB4
a7
7Fa8
T RA
7F@D
7Fi@
7F13
7Fi4
7F16
7F19
TFicC
7F1E
TFLF
TFz8
alrilrind

alrlninln)

5

ES
DDES
CD7F@4
ES
DDE1
DDLHEDS
DD&6LBL
DD46@2
29
16FD
DD7500
DD7401
DDE1
El

Ci

ce

aniva s

ezl MSLEFT PUSH BC 1GAVE REGISTERS

POZ1D PUSH HL

ppzz@ PUSH X

BBz30 call BATFH s#%#GET PR LOC? N##®*
BOz40 PUSH HiL. sTRANSFER TO 1X

ADE5H ROP IX

[als yetot] LD Ls { ITX+22) sGET L8R OF VALUE
DR=7H LD Hs (IX+1) $GET MSR OF VALUE

Ll edzln LD s {IX+2) sGET # OF SHIFTS
PRz MSLO1@e ADD His Hi. sLEFT BHIFT MG BYTE
Ll Xt DJINZ MSLB1G sLOOP *TIL DONE
BB3i6G MSLD36 LD (IX+@B) sl SSTORE SHIFTED RESULT
ap3zo LD (IX+1)sH

QP330 MSLB4B POP IX sRESTORE REGISTERS
2348 POP HL.

PH356 POP BC

pR36G RET sRETURN TO CALLING PROG
DB370 END

TOTAL ERRORS

MSLEFT DECIMAL VALUES

197 229s 22le Z29. 205 12 FEGs ZZ1e 2E5s
221y 118+ By 2215 103 1 Ea Al

14 253 221 @By 221 221 225
225 193, 201

CHKBUM= 28

MSRGHT: MULTIPLE SHIFT RIGHT

System Configuration

Model I, Model 1lI, Model Il Stand Alone.

Description

MSRGHT shifts a given 16-bit value right a specified number of bit positions.
The shift performed is a “logical” shift where zeroes fill vacated bit positions
on the left.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the number to be shifted in standard
7-80 16-bit format, least significant byte followed by most significant byte. The
next byte of the parameter block contains the number of shifts to be performed,
from 1 to 15.

On output, the value in the first two bytes of the parameter block has been
shifted the appropriate number of times. The count in the third byte of the
parameter block remains unchanged.

INPUT OUTPUT
oL HoL
1 L
POINTER TO PARAM-+] _— | UNCHANGED
H

129

7Foe

7Fae
7F@1
7Faz
7FQ4

C5

ES
DDES
CD7F@aA

MEM1+0 | 16@% \é’éLUE 1 MEMIHE |
+1 SHIFTED +1 RESULT
+2 # OF SHIFTS +2 UNCHANGED

—

Algorithm

The MSRGHT subroutine performs the shift by placing the number to be shifted
in HL and the count in the B register. HL is shifted right by first shifting H with
an SRL. This shifts H one bit position, with the carry being set by the Isb of H. L
is then shifted right by an RR, which shifts L to itself and places the previous
value of the carry into the msb of L. This shift sequence is done a number of
times corresponding to the count in the B register.

Sample Calling Sequence

NAME OF SUBROUTINE?
HL VALUE? 50000 MSRGHT

PARAMETER BLOCK LOCATION? Sp000
PARAMETER BLOCK VALUES?
+ @ 2 32748 VALUE TO BE SHIFTED - 1000000000000000

+ 2 i 15 15 SHIFTS

+3 B @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 44444
SUBROUTINE EXECUTED AT 44444

INPUT: OUTPUT:

HL= 50000 HL= 50000

PARAM+ @ @ PARAM+ B 1

PARAM+ 1 128 PARAMs 1 @ } RESULT = 0000000000000
PARAM+ 2 15 PARAM+ 2 15 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. If 0 is specified as a shift count, 256 shifts will be done, resulting in all
zeroes in the result.

2. If 16 to 255 shifts are specified, the result will be all zeroes.

Program Listing

epi1ae ORG 7FeoH @522
DOLID 55K RAARAAA KIS H 3263365659696 5T 06696

Q0128 3% MULTIPLE SHIFT RIGHT. SHIFTS THE GIVEN 14~BIT VALUE #
PR138 :% A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION #*
2140 5% INPUT: HL=>PARAMETER BLOCK #
o150 3% PARAM+@, +1=VALUE TO BE SHIFTED *
p2160 3% PARAM+3=NUMBER OF SHIFTS ¥*
aBL7a = OQUTPUT : PARAM+Ds +1=SHIFTED VALUE *
e R R R L L R R Y Ty T T Ty e

@192 ;

POZOR MSRGHT PUSH BC :SAVE REGISTERS
00210 PUSH HL

L) FUSH X

20230 CALL PATEH s k6 %GET PR LOC? N#*x

130

TFEB7 ES 2az40 PUSH HL. s TRANEFER TO IX

7FB8 DDEL BB250 POP IX

TF@A DD&EDD el LD Ls (IX+2) $GET LSE OF VALUE

7F@D DD&6BI BB270 L.D He (TX+1) sGET MSE OF VALUE

7F1@ DD4sB2 pozed LD B (IX+2) sGET # OF GHIFTS

7F13 CB3C pazee MERB1A HRL H sRIGHT SHIFT MS BYTE
YF15 CRID pa30n RR L. sRIGHT SHIFT LS BYTE
TF17 18FA D318 DJNZ MSRELG $1.00P *TIL DONE

F19 DD7506 PR3ED MERA38 LD (1X+8) L $STORE SHIFTED RESULT
FF1C DD74@1 wo338 LD (IX+1)aH

71U1F DDE PR340 MERDLAG POP IX sRESTORE REGISTERS
F2l El B350 POP Hi.

TFze Cl pazen FOR B

7F23 CF aa37a RET SRETURN TO CALLING PROG
aneg aazen EEND

papan TOTAL ERRORS

MERGHT DECIMAL VALUES

197y 229y 221 2299 2B%. 127 BEFs ZELs ZZ25.
221 118 @ 221 102y 1s s 203
258y 231 221y 11és

&l
1

CHRSUM=

MUNOTE: MUSICAL NOTE ROUTINE

283y 299 16

P28y 2EDs

193, 201

System Configuration

Model |, Model 111

Description

MUNOTE outputs a musical note through the cassette port. The cassette jack
output may be connected to a small, inexpensive amplifier for music, audio
sound effects, or warning tones. The tone ranges over seven octaves starting
with A three octaves below middle A and ending with G#, three octaves
above middle G#. The duration of the tone may be specified by the user in
1/16th second increments. Pitches and durations are approximate!

Input/QOutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of MUNOTE in standard
7-80 address format, least significant byte followed by most significant byte.
This address may be easily picked up from the USR call if MUNOTE is called
from BASIC or from the assembly-language CALL address. It is necessary so that
the code in MUNOTE is completely relocatable. The next byte of the parameter
block contains the note value of O through 83. This note value corresponds to
musical notes as shown in the table below. The next byte of the parameter
block specifies the duration of the note in 1/16th second increments. A value of
3, for example, would be 3/16ths second.

131

On output, the contents of the parameter block remain unchanged and the note
has been played.

INPUT ouTPUT
H oL Ho oL
1
POINTER TQ PARAM-+0 *f — L UNCHANGED
i
T 1
PARAM-+ LOCATION | PARAM+@
+ OF -+ <+ UNCHANGED -+
+1 MUNOTE +1
NOTE VALUE
+2 g-83 +2 UNCHANGED
DURATION 1N
+3 1716 NOTES :j +3 UNCHANGED

Table of values for musical notes.

VAL NOTE FREQUENCY TABLE VALUES
a A 27.5 122+ 5 1, @
i Al 29.1352 43s 3 is @
2 B 38.8677 225, 4 1. @
3 c 32.7032 154: 4 Zs B
4 C# 34.6478 88s 4 2y @
5 D 36.7081 2bs 4 Zs @
6 D# 38.8989 223s 3 2y @
7 E 41.2835 167 3 2: B
8 F 43.6535 114s 3 2y B
9 F# 46.2493 655 3 Zs B
i@ G 48.9995 18s 3 3y B
11 G# 51.9131 238s 2 3s @
iz A 33 188s 2 3: @
i3 A 58.2785 148 =2 3: @
i4 B 61.7355 111, 2 3. @
15 C 65. 4064 76 2 4y B
16 C# 69.2957 43s 2 4 B
17 D 73.4163 12s Z 4s @
i8 D# 77.7818 238, 1 4s @
19 E 82.407 218 1 5: B
20 F 87.3071 184, 1 5, @
21 F# 2. 4987 159 1 5s @
22 G 97.999 1365 1 bs B
23 G# 103.826 114, 1 bs B
24 A 118 93s 1 6: B
25 A 116.541 73s 1 7s B
26 B 123.471 B34y 1 7s @
27 c 136.813 37: 1 8: @
28 C# 138.592 2@y 1 8: @
29 D 146,833 55 1 9 @
30 D# 155.564 246 B F: @
31 E 164.814 232s 8 1. @
32 F 174.614 219: B 18 @
33 F# 184.997 286 B 11, @
34 G 195.998 195, B 12, @
35 G# 207. 653 iB4s @ 125 B
3& A 22 173s @ 13, @
37 Al 233.0882 163y B 14 @
38 B 246,942 154 @ 13, @
39 c 261.626 143 @ 16: B
4@ C# 277.183 137+ @ 17 @
41 D 293. 6465 129 @ 18: @
42 D# 311.128 122 B 19, @
43 E 329.628 115, B 2@ @
44 F 349,289 108 @ 21, @
45 F# 369.995 182, @ 23 B
46 G 371.996 Fbs B 245 @
&7 G# 415. 386 F1s @ 25: @

132

48 A 440,081 B6s 8 27. @
49 A 4bb. 1635 81, 8 29 B
58 B 493.884 76y B 36, O
51 C 523. 252 72. @ 32s B
52 C# 554.3467 67: @ 34y B
53 D 587.331 b4s @ 36 @
54 D# b2E. 256 68 B 38: @
55 E 659. 257 54 @ 419 @
56 F 6£98. 458 53 @ 43 B
57 F# 739.991 58 B 46 @
58 G 783.993 47+ B 48, @
59 G# 83@.612 445 B 51, @
60 A 880. 283 42s B 35, @
61 Al ?32.33 39s B 58+ @
62 B 987.769 37, @ 61y @
63 C 1B46.51 35, B &5 B
b4 C# 1128.73 33, @ &% @
63 D 1174. 466 31, B 73 @
bb D# 1244.51 29 @ 77, @
&7 E 1318.51 7. @ 8z: B
68 F 13%26.92 25y B 87 O
57 F# 14779.98 245 B 92, B
78 G 1567.99 22+ 0@ 97+ @
71 G# lbb61.22 2ls B 183s @
72 A 1760.81 28, 0 112, @
73 A 1864. 66 i8s @ 116 B
74 B 1975.54 17: B 123 @
75 C 2093.081 165 B 130 B
76 C# 2217.47 15 @ 138, @
77 D 2349,33 14s B 1446 B
78 D# £489.083 13s @ 155+ 0
79 E 2637.03 12+ B 164, @
8@ F 2793.84 12 0 174, @
81 F# 2959.97 11s @ 184 @
82 G 3135.98 18, B 195: @
83 G# 3322. 45 Zs @ 207 @

Algorithm

Operation of MUNQOTE is very similar to TONOUT. MUNOTE, however, picks
up a frequency count and duration count from the MUNTB table. This table is
referenced to the note value in the parameter block. The note value of 0
through 83 is multiplied by 4, added to the starting address of MUNOTE from
the parameter block, and then added to the displacement of the table, MUNTB,
to point to the table entry. The frequency count and duration count from
MUNTB are then picked up and put into DE and BC, respectively. The duration
count is multiplied by the number of 16ths specified in the parameter block,
and the final duration count is put into IX. From this point on, the code is
almost identical to the TONOUT code.

MUNOTE uses two loops. The outer loop (from MUNO010) produces the num-
ber of cycles equal to the duration count. The inner loop is made up of two
parts. The MUNO20 portion outputs an “on”’ pulse from the cassette output.
The MUNO30 portion turns off the cassette port for the same period of time.
Both portions use the frequency count from the DE register for a timing loop
count.

The MUNO10 loop puts the DE frequency count into HL and turns on the
cassette (OUT OFFH,A). The count in HL is then decremented by one in the
MUNO20 timing loop. At the end of the loop, the count is again put into HL

133

7F06

7Fa@
7F@1
7Rz
7FB3
TF@4
7Faé
7F0B
7FaB
7FBC
7FRE
7F11

F5

C3

D3

ES
DDES
FDES
CD7F @A
ES
DDE1
DD&EGZ
2600

from DE, the cassette is turned off, and the count is decremented by one in the
MUNO30 timing loop. After this loop, the duration, or cycle, count in IX is
decremented by one and if it is not negative, a jump is made back to MUNO10
for the next cycle.

Sample Calling Sequence

NAME OF SUBROUTINE? MUNOTE

HL VALUE? 40008

PARAMETER BLOCK LOCATION? 4000@
PARAMETER BLOCK VALUES?

+ @ & 37880 START OF MUNOTE

+ o 1 &8 FIFTH OCTAVE, A
+ 3 12 1/8TH SECOND
+4 @ 0

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 37620
SUBROUTINE EXECUTED AT 37200

INPUT: OUTPUT =

HL= 40060 HL= 4@20&
PaRaM+ @ 136 PARAM+ @ 134
PARAM+ 1 144 PARAM+ 1 144
PaRAM+ 2 60 PARAM+ 2 6B
FARAM+ 3 & PARAM+ 3 &

NAME OF SUBROUTINE?

Notes

1.

The table values are for a standard TRS-80 Model | clock frequency. They

must be recomputed for clock speed upgrades or adjusted for a Model Ili.
Multiply the frequency values by 1.143 and divide the duration values by 1.143
for a Model 111,

2.

Lower octave durations and higher octave frequencies are approximate.

Program Listing

Bo102 ORG 7FaaH 18522

DL 1D 5535888030 5453300336 T 36 3603 36 0 60 3 3630 0 16 26 R B 2606 T B KN
BRA12B 3% MUSICAL NOTE ROUTINE. QUTPUTS MUSICAL NOTE THROUGH *
BA13@ s* CASSETTE PORT. *
pB140 3% INPUT: HL=> PARAMETER BLOCK *
PB1I50 5% PARAM+@s +1=L0CATION OF MUNOTE *
BRB16D 3% PARAM+Z=NOTE VALUE, @ THROUGH B3 *
BB17@ 5% PARAM+3=DURATION IN 1/16TH NOTES *
20180 3= OUTPUT eNOTE OQUTPUT TO CASSETTE PORT *
DOLFD 3553393 35553 F A3 3632380 3 36T B 0 3
20z00 3

BR210 MUNOTE PUSH AF sSAVE REGISTERS

pozze PUSH BC

G230 PUSH DE

Q240 PUSH HL

[ulresalr] PUSH IX

BRz60 PUSH 1Y

Bez7e cal.l. BA7FH s##%GET PE LOC N##x#

ralriped et PUSH Hi. s TRANSFER To IX

Bz96 POP IX

Pa30o LD L (IX+2) sGET NOTE VaLUE

aB318 L.D Hs @ SNOW IN HL

134

TF13 29 BO3:B ADD HL» HL s INDEX®2

7F14 29 B33 ADD HL s HL s INDEX*4

7F15 DDSEQ® BB348 L.D Es (IX+@) sPUT MUNOTE BASE IN BC
7F18 DD5&B1 358 LD Ds {IX+1)

7FiE 19 0368 ADD HL. s DE sRASE PLUS INDEX

7F1C 115F0PR PRO370 LD DE« MUNTE sTABLE DISPLACEMENT

7FiF 19 PR380 ADD HLs DE sPOINT TO ENTRY

TFzB ES Ba370 PUGH HL s TRANSFER ENTRY LOC TO IY
7Fz1 FDE1L Bo40 POP Iy

7FZ3 FD3EQ@B pR41@ LD Es (IY+@) s PUT FRE® COUNT IN DE
7F26 FD5601 Bo4z6 LD Ds {(IY+1)

7F2% FD4EBZ BR430 LD Cy (IY+2) sPUT DUR COUNT IN EC

7Fz2C FD46@3 PB4 4D LD By {IY+3)

7FZF 210000 PR450 LD HL-8 5INITIALIZE DURATION

7F32 DD7EB3 BD46D LD B2 (IX+3) $GET DURATION IN 1/16THS
7F35 @9 DR470 MUNBBS ADD HLsBC s CHANGE TO SPEC DURATION
7F346 3D 2o48a DEC A iDECREMENT 1/16THE CNT
TF37 28FC D470 JR NZ s MUNRES sLOOP TIL DONE

7F37 E5 2588 MUNBBB PUSH HL t TRANSFER NEW CNT TO IX
7F3A DDEL po510 POP IX

7F3C BIFFFF pBs5z@ LD BCs—1 sFOR TIGHT LOOP

TF3F 6B @530 MUNBLIR LD LsE 1PUT FRE® COUNT IN HL 4
TF48 62 Bo54@ LD HsD 54

7F41 3E81 PB550 LD sl sMAXIMUM POSITIVE 7
7F43 D3FF 2560 ouT (BFFH)» A sOUTPUT 11

7F45 @9 20570 MUNBZB ADD HL-BC 5COUNT-1 11

7F46 DA4STF @580 JP Cs MUNBZO sLOOP FOR 172 CYCLE 7/12
7F49 4B 598 LD LsE $PUT FRE® COUNT IN HL 4
TFa4n &2 20602 LD H:D 54

7F4B 3EDZ BR&e1d LD As sMAXIMUM NEGATIVE 7
7F4D D3FF aln oy QuT (BFFH) = A sOUTPUT 11

7F4F 0% PR630 MUNB3B® ADD HLsBC $COUNT-1 11

7F5@ 38FD DBs4D JR C» MUNB3O sLOOP FOR 1/2 CYCLE 7/12
7F52z DD@% BR&50 ADD IXsBC sDECREMENT DUR COUNT 15
7F54 3BE®9 BDR&LD JR CyMUNB1G sLOOP IF NOT DONE 7/12
7F56 FDE1 RRL70 POP 1Y sRESTORE REGIBTERS

7F58 DDE1L PR6E0 POP IX

7F34 E1l bt POP HL.

T7F3B D1 alrrgrlt POP DE

7F3C Ci oB710 POP BC

7F5D F1 Ba7z0 PGP AF

7F3E C9 o730 RET SRETURN TO CALLING PROG
BBSF BA74@8 MUNTE EQuU S~MUNOTE

PR7S@ 1 MUSICAL NOTE TARLE. ENTRY+@:+1 IS5 FREQUENCY COUNT.
PB768 5 ENTRY+Z:+3 I8 DURATION COUNT FOR 1/146THS.

it bR77a END

BopBE TOTAL ERRORS

MUNDTE DECIMAL VALUES

P45 197s 213s 239s 21 229. 253 ZEFs 285 127s
1@s 2295 221y 22%. 221y 11@y Zs 38B: @ 41,

413 221y Fhs B 2215 Bbe ls 25 174 T3

By 255 229 532 IEB. 283y T4y B 253+ Béo

1s 253y 7B 2. 253 78 35 33 B B

2Pl 12&s 32 9y Hls 32 252 2EFs 221 225,

1s 25%s 25%s 107 98y 62 12 Z11s 255 95

F18s &Py 137s 1@7: 98. 62 Iy 2Z11s 25D 9y

Sk 253 Z21ls 9 Sb&s 233 2535 22DHe 21 225
Z2E8s 209, 193s Z41s 281

CHKBUM= 225

135

MVDIAG: MOVING DOT DIAGONAL

System Configuration

Model I, Model 1.

Description

MVDIAG moves a ““dot” along a diagonal line with a varying time delay. This
effect can be used for games or other applications. The dot may move along the
diagonal from “bottom”” to “‘top’” of the screen, or from “‘top’’ to ““bottom.”
The amount of time that the dot remains in any position can be adjusted under
program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from O to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 16
for a diagonal that starts 16 character positions or greater from the side of the
screen. The next byte of the parameter block contains the time delay value
from 1 to 255 or O (256). One is a minimum time delay, while 255 and 0 (256)
are maximum time delays. The next byte of the parameter block contains the
direction of travel—0 is up to the right, 1 is up to the left, 2 is down to the right,
and 3 is down to the left.

On output, the parameter block contents are unchanged. The dot has moved
over the specified diagonal.

INPUT QUTPUT
HooL Ho L
H
POINTER TQ PARAM+ | ——> | UNCHANGED
¥ T
PARAM+@ | STARTING X PARAM+@ | UNCHANGED
+1 | sTarTING ¥ +1 | UNCHANGED
LENGTH OF
+2 NCTH ¢ +2 | UNCHANGED
+3 | TIME DELAY :: +3 | UNCHANGED
+4 DIRECTION +4 | UNCHANGED
Algorithm

The MVDIAG subroutine performs the move by computing the starting address
of the dot in video display memory, by computing the “increment” to add to
the address to obtain the next dot position, and by controlling the move with a
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of

136

video display memory. This value is added to 3COOH to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, an incre-
ment value of —41H (up to left), —3FH (up to right), 3FH (down to left), or 41H
(down to right) is found. This represents the number to be added to the last
video display memory location to find the next video display memory location
for the dot.

The code at MVDO020 is the main loop of the subroutine. A byte of OBFH is
stored to the current video display memory position. A time delay is then done
by decrementing the count value in the C register. After the delay, a byte of 80H
is stored to “‘erase’’ the last dot.

The increment value is then added to the current video display memory posi-
tion to find the next location of the dot. A count of the number of character
positions involved is then decremented, and a jump is made to MVDO020 if the
count is not zero.

Sample Calling Sequence

NAME OF SUBROUTINE7 MVDIAG

HL. VALUE? 43333

PARAMETER BLOCK LOCATION? 43333
PARAMETER BLOCK VALUEG?

+ 8 1 8 X=8

+ 1 1 15 Y=15

+ 2 1 1& LENGTH = 16 (END X, Y =24, @)
+3 1 @ MAXIMUM DELAY

+ 4 1 @ UP TO RIGHT

+ 5 @ 6

MEMORY BLOCK 1 LOCATIONTY
MOVE SUBROUTINE TO7 38888
SUBROUTINE EXECUTED AT 38888

INPUT = QUTPRUT:

HL= 43333 HL= 43333

PARAM+ @ 8 PARAM+ @ 8

FARAM+ 1 15 PARAM+ 1 15

PARAM+ = 16 PARAM+ 2 1& FUNCHANGED
PARAM+ 3 @ FARAM+ 3 D

PARAM+ 4 8 PARAMA 4 @

NAME OF SUBROUTINE?

Notes

1. The program may “‘bomb’’ the system if the length of travel goes beyond
video display memory boundaries or if x or y are incorrect values. Maximum
length is 16.

2. Add additional time wasting instructions as required.

3. Delete time wasting instructions as required. Substituting NOPs (zeroes)
will shorten the delay.

4. Speed at maximum delay is about 85 character positions per second.

137

7FB8

7F 00
7FD1
7FDZ
7F 03
7FD4
7F6
7FO8
7FOE
7FBC
7FOE
7F10
7F13
7F15
7F16
7F18
7F 1B
7F1C
7F1F
7F21
TF22
7F25
7Fz8
7FZA
7FZD
7F2F
7F3z2
7F34
7F36
7F37
7F38
7F3A
7F3D
7F3E
7F42
7F46
TF4A
7F4E
7F50
7F52
7F53
7F55
7F57
7F59
7F5A
7FSB
7F5C
7F5D
2000

DD&E®B 1
2600

29

1@FD
Bioo3c
a9
DD4EGG
2600

a9

DD4 &0
DD4ER4
CB49
LIBFFF
2803
113F2@a
CB41
ZBez

13

13

36BF
DD4EB3
(] 8)
FDzAGRRB
FDz2ABRGR
FDzARRRD
FDzADG2O
Z20ED
3686

19

1BE3
FDE1
DDE1

boion
Bo11@
@120
Bo130
D140
20158
0166
aB17e
218G
28176
iy
Boz1a
GRzz0
B0=230
oaz4n
BR=50
BRz68
aBz7n
2@z
alr il
20300
BR3i@
o320
pB336
Ba340
an35a
Q0360
GR370
o380
BR39a
Da40a
BB410
@420
DB430
22440
BB4sa
BB460
aB47d
Da480
Bo49a
aes500
Bo51@
BB5:20
2253a
BB540
B2550
B2560
o570
aa580
82590
2a600
22610
Bas620
20638
BRs540
BR650
Ba660
2670
20680
BR&73
aa7o6
BB710
ae720

22@0B TOTAL ERRORS

Program

Listing

ORG

7FBaH

10522

PHREEREEEEEIHERERREEEERREE R ERE R R EEREERR R R E RN EETHR
3% MOVING DOT DIAGONAL. MOVES DOT ALONG DIAGONAL LINE

3% WITH VARYING TIME DELAY
INPUT: HL=>

3 ®
3%
;¥
3 %
§
3 *
33
ER 3
3 ®

"

MVDIAG

MVD@1@

MVD@15

MVDBZD

MVDB30

138

LEFT

PARAMETER BLOCK
PARAM+B=8TARTING CHAR POS’N (X)
PARAM+1=8TARTING LINE # (V)
PARAM+Z=LENGTH OF TRAVEL IN CHAR POSNS
PARAM+3=TIME DELAY:
PARAM+4=@ 1S UP TO RIGHT
2 I8 DOWN TO RIGHT:

235/@=MAX
1 IS UP TO LEFT
3 IS DOWN TO

1=MIN

OUTPUT:DOT MOVES ALONG DIAGONAL LINE
FHEEHEE R H RN R AT FHIRH RN H W R E I HH R H R EHE

PUSH
PUSH
PUSH
PUGH
FUSH
PUSH
CaLL
PUSH
FOP
LD
LD
LD
ADD
DJINZ
LD
ADD
L.D
LD
ADD

AF

BC

DE

HL.

IX

1Y

BATFH

HL

IX

Baéb

Ls {IX+1)
Hs &
HL s HL.
MVD@1@
BCs 3CBOH
HL.« BC

Cs (IX+@)
B:@
HL+BC

B (IX+2)
Cs {IX+4)
1sC
DEs—41H
ZsMVD@aLs
DE s 3FH
@+ C

NZ s MVDBZ
DE

DE
(HL) s BBFH
Cs (IX+3)
c

1Ys (3)
IYs (@)
IYs (@)
IYs (@)
NZ s MVDB30
{HL.) » BOH
HL.s DE
MVDaze
Iy

IX

HL.

DE

BC

AF

sGAVE REGISTERS

TR¥GET PB LOCT Nx%x
s TRANBFER TO IX

sITERATION COUNT
3GET LINE #
$NOW IN HL

sLINE# # 64

SLOOP ?TIL DONE
38TART OF SCREEN
3FIND LOC OF LINE START
5GET CHAR POSN (X))
SNOW IN BC
SFIND ACTUAL LOC'N
$GET LENGTH OF TRAVEL
5GET DIRECTION CODE
3TEST DIRECTION
SINCREMENT FOR NEXT DOT
$GO IF UP
$ INCREMENT FOR DOWN
STEST RIGHT/LEFT
GO IF LEFT
sRIGHT

3GET

SGET DELAY COUNT
sDECREMENT COUNT
sWABTE TIME

sDELAY LOOP
SRESET CHAR POB

¥ ok B ok ok ok ok ok ok ok %k

CHAR POS TO ALL ON

SPOINT TO NEXT POSITION
sLOOP FOR LENGTH OF LINE

SRESTORE REGISTERS

SRETURN TO CALLING PROG

MVDIAG DECIMAL VALUES

245 253y 229 285 127
1@ 2295

s 413 1bs

197s 213s 259s 2215 2894
22le 225s by by ZE1s 118 1s 38
253y 1. By 6By 95 231y 78s

@By by By P 221 7By 2y 221y T8Bs 4

Z03. 735 17 1919 255 48s 39 17+ 635 B
2B3s 65y 3Ey Zs 19y 19 54y 191 Z21s 78
3 13y 253y 429 By B 2D3s 420 @ O

253y 422 By By 253y 42 By @y 322 237
B4, 128s 25 1b&e 227 253s 225 225
2@09. 193y 241y 201

28l

225,

CHRSUM= 173

MVHORZ: MOVING DOT HORIZONTAL

System Configuration

Model I, Model 1.

MVHORZ moves a “‘dot” along a horizontal line with a varying time delay.
This effect can be used for games or other applications. The dot may move
along the horizontal line from right to left, or from left to right, on the screen.
The amount of time that the dot remains in any position can be adjusted under
program control.

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from 0 to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 64
for horizontal travel that starts at a right or left edge of the screen. The next byte
of the parameter block contains the time delay value from 1 to 255 or O (256).
One is a minimum time delay, while 255 and 0 (256) are maximum time delays.

On output, the parameter block contents are unchanged. The dot has moved
over the specified horizontal line.

INPUT

H L

s

T
POINTER T(? PARAM+@
1

l Description

PARAM-+@ STARTING X

+1 STARTING Y
[ENGTH

+2 (—64TO+64)

3 TIME DELAY
COUNT

139

QUTPUT
Ho oL
t
] — l UNCHANGED
T
PARAM+@ | UNCHANGED
+1 | UNCHANGED
+2 | UNCHANGED
::> +3 | UNCHANGED

Algorithm

The MVHORZ subroutine performs the move by computing the starting ad-
dress of the dot in video display memory, by finding the direction of travel, and
by controlling the move with a count of the number of character positions
involved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3CO0H to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, a “move
right’” code segment (MVH040) or a “move left” code segment (MVHO020) is
entered. Both segments are very similar, except that the “‘move right’’ incre-
ments the next character position pointer, while the ““move left” decrements
the next character position pointer.

In each code segment, a byte of 0BFH is stored to the current video display
memory position. A time delay is then done by decrementing the count value
in the C register. After the delay, a byte of 80H is stored to “‘erase’’ the last dot.

The current video display memory position in HL is then incremented or decre-
mented to find the next location of the dot. The count of the number of charac-
ter positions involved is then decremented, and a jump is made to MVH020 or
MVHO040 if the count is not zero.

Sample Calling Segence

NAME OF SUBROUTINE? MVHORZ

HL. VALUE? 43000

PARAMETER BLOCK LOCATION? 48022
PARAMETER BLOCK VALUES?

+ @ 1 @ XxX=0

+ 1 1 B Y=8

+ 2 1 &4 LENGTH =64 (END X, Y =64, 8), RIGHT
+ 3 1 3 MAXIMUM DELAY

+ 4 0 @

MEMORY BLOCK 1 LOCATION?

MOVE SURBROUTINE TOY 37000
SUBROUTINE EXECUTED AT 37008

INPUT: OUTPUT =

HL= 4@@0a Hi.= 4DD2G
PARAM+ @ O PARAM+ @ B
FARAM+ 1 & FARAM+ 1 &
PARAM+ 2 64 PARAM+ 2 64
PARAM+ 3 B PARAM+ 3 @

NAME OF SUBROUTINE?

Notes

1. The program may “‘bomb’’ the system if the length of travel goes beyond
video display memory boundaries. Maximum length is —64 or +64.

140

2. The program may ‘‘bomb’’ the system if the x and y coordinates are im-
properly specified.

3. Use additional time-wasting instructions as required.

4. Delete time-wasting instructions as required. NOPs (all zeroes) may be
substituted to shorten delay times.

5. Speed at maximum delay is about 85 character positions per second.

Program Listing

7r b Ba1ad ORG 7F@aH @522
NIRRT TR S e ey eSS R T R R L

P@1z@ s# MOVING DOT HORIZONTAL. MOVES DOT ALONG HORIZONTAL *
@138 i+ LINE WITH VARYING TIME DELAY. *
14D 5% INPUT: HL=> PARAMETER BLOCK *
Bois5e % PARAM+@=STARTING CHAR POG N (X) *
pR16l 5% PARAM+1=8TARTING LINE # (V) *
pRni7a s * PARAM+Z=LENGTH OF TRAVEL IN CHAR POSNS *
PRI 5% + 15 TO RIGHT: - IS TO LEFT *
2R19@ i FARAM+3=TIME DELAYs 1=MIN 253/@8=MAX *
pBzon 5w OUTPUT:DOT MOVES ALONG LINE *
D@21 5 %8335 9035 35K 5 3960 H 390 5396963 36363 5 00 B M 3 S N
gz s

7F@R Fa @0z30 MVHORZ PUSH aF $8AVE REGISTERS

7F@L C3 BRz4d PUGH B

7F@z ES ralri et PUSH HL.

7F@3 DDES BRz6a FUSH X

7F@5 FDES BoE7a PUSH 1y

F@7 CD7F@A aRzen Cal.L DATFH 3H##GET PE LOCT N#¥#x

7FRA ED rarabeddty PUSH HL. $TRANGFER TO IX

7F@B DDE1 Q300 POP IX

7F@D 0606 20319 LD Bsé SITERATION COUNT

7F@F DD&6ERI Q0320 1.D La {IX+1) sGET LINE #

7F1z 2600 Pn33d LD He @ SNOW IN HL

7F14 29 BR340 MYHBLE ADD Hi. s HL. PLINE# * &4

7F1% 1@FD pa3Es50e DJINZ MVH@1 @ :LOGP *TIL DONE

TF17 B1083C BR360 L.D BC.3C00H 3START OF SCREEN

Fia @y @378 ADRD HLs BC SFIND LOC OF LINE START

7F1E DD4EBR PB380 LD Co (IX+2) $GET CHAR POGN (X))
a3y LD B INOW IN BC
BR400 ADD HLs BC sFIND ACTUAL LOC'N
20410 LD Bs (IX+2) sGET LENGTH OF TRAVEL
ralgeedr BIT 735 B 3TEST SIGN
BB430 JR Zs MVHBA4AG 3GO IF RIGHT
PD440 1.D Hs B SLEFT
aaase NEG sFIND ABSOLUTE VALUE
B@46@ LD Eah sBACK TO B FOR DJNZ

¢ 36BF DR47a MVHB:ER LD {(HL.) s BEFH $SET CHAR POS TO ALL ON
ZE DD4EB3 De48a LD Ca (IX+3) $GET DELAY COUNT

7F31 @D B249@0 MVHRB3BG DEC C sDECREMENT COUNT

7F32 FDZADROD Q20500 LD IYs (@) IWASTE TIME

7F36 FDzADRDE 20510 LD IYs (@)

7F34 FDzADBRE 00526 L.D IY. (@)

7F3E FDzADBDE BRES30 LD IYs (@)

TF4z ZQED 22548 JR NZs MVHO32 sDELAY LOOP

7F44 3680 PO558 L.D (HL.) » BOH sRESET CHAR POS

7F44 ZB o560 DEC HL. $POINT TO NEXT POSN

7F47 1BE3 aB57d DJINZ MVHB2G sLOOP FOR LENGTH OF LINE

7F49 181D Ba58a JR MVHE?0 iG0O To CLEAN UP

7F4B 36BF PBR590 MVHB4G LD (HL.) s BBFH $SET CHAR POS TO ALL ON

7F4D DD4E®3 rafrtetnly LD Co (IX+3) sGET DELAY COUNT

7F5@ @D P61 MVHEBSD DEC C sDECREMENT COUNT

7F51 FDZADROR BBL20 LD IYs (@) SWASBTE TIME

7F35 FDZARBOR 2BL30 LD IVs (@)

141

7F59
7FED
TF&L
TF&63
TF&5
-1
TF&8
TF&A
7F&C
7F&D
7FGE
7F&F
alrinlrd

FDZAQOOE BO&64D
FDzabRBo BBeSD

ZBED
3688
23
1BEZ
FDE1
DDE1
El
Ci
Fi
ce

B2660
2as78
204688
aaose
2070
pa7id
Be7:20
DB738
Ba74a
pa758
aa740

28068 TOTAL ERRORS

MVVERT: MOVING DOT VERTICAL

LD Ivs (3

LD IYs (@)

JR NZ s MVYHESE $DELAY LOOP

i.D {HL) » 88H $REBET CHAR POS

INC Hi. SPOINT TO NEXT POSN

DJINZ MVHR4D sLOGP FOR LENGTH OF LINE
MVHBZ3 POP Iy SRESTORE REGISTERS

POP IX

ROP HL.

POP BC

ROP AF

RET sRETURN TO CALLING PROG

END

MYHORZ DECIMAL VALUES

2455 1979 229s 221s I29s

E2Fe 2215 2285y &e by T
41y 1hs 2535 1s @ 6HD: Ty
by @y Fy ZZ1s 70y 25 203
128s 2371 68y 71s 545 1915 22
2535 42 By By 253y 42 Os @
Bs By 253: 425 @s Bs 33
43y 1&s 2279 245 293 S4y
135 2535 425 B By 253: 435 By B 253,
4% B @s 253y 425 B Bs 325 2375 54

128s 35. 1és 227s 2535 23259 EE5

241, 201

2953 2294 205
11@s 1+ 38s O
L 78s Bs

4@y 35,
78s 3s 13,

253y 42

2371 54, 128

191y 221y 78s¢ 3

127y 1@

225¢ 1935

221

CHREUM= 146

System Configuration

Model 1, Model ili.

Description

MVVERT moves a “dot’”” along a vertical line with a varying time delay. This
effect can be used for games or other applications. The dot may move along the
vertical line from top to bottom, or from bottom to top, on the screen. The
amount of time that the dot remains in any position can be adjusted under
program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the starting x character position of the dot,
from O to 63. The next byte of the parameter block contains the starting line
number y of the dot, from 0 to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 16
for vertical travel that starts at the top or bottom of the screen. The next byte of
the parameter block contains the time delay value from 1 to 255 or 0 (256). One
is & minimum time delay, while 255 and 0 (256) are maximum time delays.

On output, the parameter block contents are unchanged. The dot has moved
over the specified vertical line.

INPUT OUTPUT
Ho L Ho L
1 ¥
POINTER TO PARAM+f] =51 l UNCHANGED
1 T
PARAM-+@ STARTING X PARAM+@ | UNCHANGED
+1 STARTING Y +1 UNCHANGED
[ENGTH
+2 (~16TO+16) +2 | UNCHANGED
TIME DELAY
+3 E ORT :> +3 | UNCHANGED

Algorithm

The MVVERT subroutine performs the move by computing the starting address
of the dot in video display memory, by finding the direction of travel, and by
controlling the move with a count of the number of character positions in-
volved.

First, the line number value is picked up from the parameter block. This is
multiplied by 64 to find the number of bytes (displacement) from the start of
video display memory. This value is added to 3COOH to find the actual video
memory address for the line start. This value is added to the character position
of the start from the parameter block to find the starting position in video
display memory.

Next, a test is made of the direction of travel. Based on the direction, an incre-
ment value of 40H (down) or —40H (up) is stored in DE.

The code at MVV020 is the main loop of the subroutine. A byte of OBFH is
stored to the current video display memory position. A time delay is then done
by decrementing the count value in the C register. After the delay, a byte of 80H
is stored to ““erase’’ the last dot.

The current video display memory position in HL is then incremented or decre-
mented by the increment value in DE to find the next location of the dot. The
count of the number of character positions involved is then decremented, and a
jump is made to MVVO020.

Sample Calling Sequence

NAME OF SUBROUTINE? MVYVERT

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 42000
PARAMETER BLOCK VALUES?

+ @8 1 3z X =32

+ 1 1 @ Y=0

+ 2 1 248 LENGTH = 16, DOWN
+ 3 i @ MAXIMUM DELAY
+ 4 @B @

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 37000
SUBROUTINE EXECUTED AT 37000
INPUT: QUTPUT:

143

7F b@

TFOQ
7F@1
7Faz
7Fa3
TF B4
7F@6
7Fo8
7F@oe
7FBC
7FOE
7F10
7F13
7F15
7F16
7F18
7F1B
7FiC
7F1F
7F21
TFZZ
TF25
TF27
7FZ2A
TF2C
7FZD
TFEF

DD6EGL
2600
29
1@FD
21203C
B9
DD4EDG
2600
a9

DD4 6B
Ce78
L1 COFF
2807
78
ED44
47

HL= 40000 HL= 40000
PARAM+: @ 33 PARAM+ @ 32

FARAM: 1 B PARAM+ 1 @

PARAM+ = 240 PARAM+ = pag | UNCHANGED
PARAMS 3 @ PARAM+ 3 O

NAME OF SUBROUTINE?

Notes

The program may “‘bomb’’ the system if the length of travel goes beyond

video display memory boundaries.

2.

The program may ‘‘bomb’’ the system if the x and y coordinates are im-

properly specified.

3.

Use additional time-wasting instructions as required.

4. Delete time-wasting instructions as required. NOPs (all zeroes) may be
substituted to shorten delay times.

5. Speed at maximum delay is about 85 character positions per second.

Program Listing

D216 ORG 7FBEH (@522
DOLLD 5 H MK R H T AT 9636 392 360696 50636 56 06 36 0B B MU H 2
BB128 s+ MOVING DOT VERTICAL. MOVES DOT ALONG VERTICAL LINE *
BA130 s¥ WITH VARYING TIME DELAY *
02140 5= INPUT: HL=> PARAMETER RLOCK *
aise s« PARAM+@=8STARTING CHAR POS'N (X) *
BB160 5% PARAM+1=8TARTING LINE # (Y *
BB17@ 3= PARAM+Z=_ENGTH OF TRAVEL IN CHAR POSNS #*
BoiBB 5% + I8 UPs — IS5 DOWN *
0190 5% PARAM+3=TIME DELAYs 1=MIN 255/0=MAX *
BozBe % QUTPUT:DOT MOVES ALONG VERTICAL LINE *
DAZLD 5 #5953 R H 353 HH W H T I3 300 30 T T 0 3003 3006 06 06 36 36 96 36 06 363 3636 36 36 6 46 6 366
Bozza s
BAZ238 MVVERT PUSH AF $8AVE REGISTERS
QBz40 PUSH BC
Qazse PUSH DE
a1 e Y] PUSH Hi
az7e PUSH IX
BRzBa PUSH Iy
QBz0 CaALL QATFH s¥¥¥GET PR LOC N#xx
Q300 PUSH Hi. i TRANSFER TO IX
BB31@ POP IX
a3z LD Bsé sITERATION COUNT
pR330 LD Le{IX+1) iGET LINE #
QB340 L.D Hs @ sNOW IN Hi
Da35@ Mvwaio abD Hi. s HL. sLINE# % 64
BA3&LD DJINZ MUW@a 16 sLOOP TIL DONE
DR37e LD ECs 3CHBBH sSTART OF SCREEN
22380 ADD HL.s BC SFIND LOC OF LLINE START
Q0390 LD Co (IX+01) SGET CHAR POSN (X))
BE40a LD Bs@ SNGW IN BC
QR41@ ADD HL.s BC sFIND ACTUAL LOC™N
Ba4z0 L.D B (IX+2) 5GET LENGTH OF TRAVEL
D430 BIT 7s B sTEST SIGN
20440 L.D DE s —-4@H F INCREMENT FOR NEXT DOT
2R45@ JR 2 MVVBZE $GO IF UP
D460 LD A3 B s DOWN
Da47a NEG $FIND ARSOLUTE VALUE
20480 LD Bs A FBACK TO B FOR DJINZ

144

TF38
7F33
7F35
7F38
7F39
7F3D
7F41
7F45
7F49
TF4B
7F4D
7F4E
7F50
7F52
7F54
7F553
7F5é6
7F57
7F58
ilnlnln]

114008
346BF
DD4EB3
@D
FDZADBRO
FDZABB00
FDzABDOD
FDzABDOD
Z0ED
34680

19

18E3

Bo49
BO50G
o510
pB520
pas3e
a5 40
PA550
DB560
R@57@
pa580
BR590
22420
BR&1o
rifritoyed
PBL30
BR64B
aas50
PR6LD
BBL78
nB6Ba

PPBRB TOTAL ERRORS

LD DE s 40H
MYVRaE® LD (HL.) + BBFH

LD Cr {IX+3)
Myvai3a DEC C

LD I¥s (@)

LD Ivs (@)

LD IY: (@)

LD IV (@)

JR NZ s MUVE@3D

L.D {HL.)+ BBH

ADD HL. s DE

DJINZ MYVEEe

POP 1Y

POP IX

POP HL

POP DE

POP BC

POP AF

RET

END

MVVERT DECIMAL VALUES

221a 229

245,
1@

1975

229

2135 229
2219 225. by by 2210
Br 4ls 16y 253y 15 By 6085 9
By by By Fy Z21s 7@y 20 203
192y 255 4Qs 73 120y 2375 684
@s 545 191. 221 78Bs 3: 13,

Ay 253y 42+ By By 253+ 425 B
429 By By 32s 237s 54 128Bs Z5s
293 225¢ 221 225 2255 209

CHRKBUM= 81

NECDRV: NEC SPINWRITER DRIVER

System Configuration

Model 1.

Description

2534
11@s 14
221
120+
71
253
B

1935

s INCREMENT FOR DOWN
$GET CHAR POSE TO Al
$GET DELAY COUNT

sDECREMENT COUNT
sWASTE TIME

ON

iDELAY LOOP
$RESET CHAR POS
SPOINT TO NEXT POSITION
$LLO0OP FOR LENGTH OF LUINE
$RESTORE REGISTERS

sRETURN TO CALLING PROG

FE9s 2B5s 127

38

784
174
17

@

by
42
253
16y 227

241 201

NECDRYV is a printer driver for the serial NEC Spinwriter Printer or similar type
of serial printer. Previous to use, the SETCOM subroutine must have been run

to initialize the RS-232-C interface to the

proper baud rate and other serial

parameters. The NECDRV subroutine outputs a single character to the serial
printer with automatic line feed. The wiring configuration for the Spinwriter

cabling is shown in the figure below.

Input/Output Parameters

On input, the L register contains the character to be printed. On output the
character has been printed and all registers are unchanged.

145

7F o

INPUT CUTPUT
H L H L
T
4 CHARACTER l =_ L UNCHANGED
T

Algorithm

The NECDRV subroutine first gets the status from the RS-232-C controller
holding register. If the transmitter holding register is not empty, the previous
character has not been sent. If it is empty, the Clear to Send (CTS) line is
checked. If there is a CTS, the character in HL is output. A test for a carriage
return is then done. If the character is a carriage return, a line feed character is
sent by a jump back to NECO10.

Sample Calling Sequence

NAME OF SUBROUTINE? NECDRV
HL. VALUE? 653 A"

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7?7 37000
SUBROUTINE EXECUTED AT 27000
INPUT: QUTPUT

HiL= &5 HL= &%

NAME OF SUBROUTINE?

Notes

1. See the SETCOM subroutine for comments about setting up the RS-232-C
interface.

2. Baud rates of 110 to 1200 may be used.

Program Listing

s e NEC CABLE
CABLE
TD
™ 2 RD 2
RD 3 3
:
5
Foerwen
TOGETHER 6
20
SGND
SGND 7 7 SGND
CTS 5 19 REVERSE
CHANNEL
NEC spinwriter connections.
o106 ORG TFBoH ;@522

BBLLID 5 R RS W3R T I H T3 3636003636036 06 260 660656 3606069636 36 56 36263006 36 36
P012@ 3% NEC SPINWRITER DRIVER. ROUTINE FOR USING NEC SPIN- +*

0B13@ 3% WRITER WITH SERIAL OUTPUT. *
20148 5% INPUT: HL=CHARACTER TO BE PRINTED *
Baisg s OUTPUT : CHARACTER PRINTED ON SPINWRITER #*

DD1ED 5 HRHREE RIS E RN S IR 1IN0 5530 3 3690 1600 2650 20556
Bai7e s

16

7+ 28
7F@1
TFB4
TFB7
TF@9
7Fae
7FaD
TFBF
7F11
7F1Z
7F14
TF1é6
7F18
TF1A
7F1C
7F1iD
Ladradrids

F5
CD7FaA
3AEARD
cezv
2BFY
DRES
CR7F
Z8F3
7D
D3ER
FEZD
2004
3ERA
1BES
Fl

c7

201G NECDRYV PUSH &F 1BAVE REGISTER

BB190 CALL BATFH s###GET CHARACTER®#®%
PRzeE NECRI® LD A (BEAHD $GET STATUS

pazie BIT by A sTEST XMTR HOLDING REG
ralrsbrped s JR Z+NECBID ;GO IF NOT EMPTY
il IN A (BEBH) $GET CLEAR TO SEND
DOz4D BIT AT sTERT

ralripedat| JR ZsNECBIAD G0 IF NOT CTB
PRz6D LD As b sPUT CHARACTER IM &
BBz7e ouUT {BEBH) s A sOUTPUT CHARACTER
aoz8e CFr @DH sTEST FOR CR

ralrdeardli JR NZ . NECB70 GO IF NOT CR

an30e L.D A DAH sL.INE FEED

Ba31a JR NECB1S FOUTPUT LF

PR3zB NECRYE POF AR sRESTORE REGISTER
Qp330 RET

BE340 END

2eBRB TOTAL ERRORS

NECDRY DECIMAL VALUES

D45y ZP%. 1275 1@y 58y 234 @ 2B3s 119 405
249, 219y 232 Z2@03s 1275 48 Z 125 Z1ls 235
T84, 13Z: 3T 45 LTy 10 24s E35s Z4l. 281

CHRBUM= 102

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR

System Configuration

Model |, Model 1ll, Model 11 Stand Alone.

Description

This subroutine returns a pseudo-random number in 32 bits. A pseudo-random
number differs from a random number in that it is repeatable. If the same
“seed’’ value is used, the same sequence of numbers as previously generated
will be repeated. At the same time, the sequence of numbers will appear to be
randomly distributed and can be utilized as random numbers for games, simu-
lations, and modeling.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The four
bytes of the parameter block contain the seed, or starting value, of the pseudo-
random number sequence. The seed value may not be zero.

On output, the four bytes of the parameter block contain the next pseudo-
random number in sequence.

INPUT OUTPUT
HoL Ho L
T 1
POINTER TC; PARAMA+@ ! pr— [UNCHANGED
1

147

7FBe

PARAM+0 16 MS BITS PARAM+G 16 MS BITS
T oFseed T T QhNew
+1 +1 VALUE
42 +2 16 LS BITS
16 LS BIT
+ Ofde T T OFNEW -+
3 —> = VALUE
Algorithm

A pseudo-random number sequence with a relatively long cycle time can be
generated by multiplying a 32-bit value by an odd power of 5. In this case, the
third power of five is used to multiply the seed value by 125.

The 32-bit seed is picked up from the parameter block and put into DE, HL. DE,
HL is now added to itself three times in the PRAO10 loop to multiply the original
seed by 128. Next, the original seed value is put into BC. BC is then subtracted
from DE, HL three times to produce a result that is the original number times
125. This value is then stored back into the parameter block to be used as the
new seed.

Sample Calling Sequence

NAME OF BUBROUTINE? PRANDM

HL. VALUE? 42800

PARAMETER BLOCK LOCATION? 4poog
PARAMETER BLOCK VALUES?

ez %}sseowmmmmw
v 4 0 O

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO?7 37000
SUBROUTINE EXECUTED AT 37000

INPUT: QUTPUT:
HL= 4000 HL= 42006
PARAM+ B 1 PARAM+ @ 123
PARAM+ 1 @ FARAM+ 1 B

NEW E= 7
PARAM+ 2 1 PARSM+ 2 1325 VALUE = 007D0070H
PARAM+ 3 & FARAM+ 3 @

NAME OF SUBROUTINE?

Notes

1. Initialize the seed value at the beginning of the sequence with a nonzero
value. Thereafter, simply call PRANDM with the previous pseudo-random
number in the parameter block.

2. Aninitial seed of an odd number generates all odd numbers, an initial seed
of an even number, even numbers. You may use only the most significant n bits
of the 32 bits to obtain odd and even numbers.

Program Listing

o106 ORG 7F@adH @522

BO1L10 5#¥RAEHERERRERERHEAFEERF R RS RRRRR R RRREREERE R RE R RN ER
BO120 5% PSEUDO~-RANDOM NUMBER ROUTINE. GENERATES A PSEUDG- #
2B130 ;% RANDOM (REPEATABLE) NUMBER. *
DR140 5% INPUT: HL=3> PARAMETER BLOCK #*
aB150 3% PARAM+@s+1=16 MS BITS OF SEED *
22160 3% PARAM+Z, +3=16 L8 BITS OF SEED *
aa17@ s* OUTPUT : PARAM+B +1=16 M3 BITS OF NEW VALUE #*
2D18A 3% PARAM+Zs+3=16 LB BITS OF NEW VALUE *®
L R R e e R e T e Y L L T T TR ey

148

BazoB 3
TFBE FS BB210 PRANDM PUSH AF sSAVE REGISTERS
7F@1 C3 @220 PUSH BC
7+@z D3 22230 PUSH DE
7F@3 ES P0z40 PUSH HL.
7+@4 DDES pRE5G PUSH IX
7FB6 CD7F@A PRz60 CalLL BATFH ;#%#GET PAR BL ADDR 3%
7FB9 ES aRz70 PUGH HL s TRANSFER TO IX
7FBA DDEL 22280 POP IX
7FBC DDSEGE B2z LD Es (IX+@) sDE HOLDS MS SBEED
7F@OF DD54@1 2a300 LD Ds (IX+1)
7F1Z DD6EBZ pa310 LD Ly (TX+2) sHL HOLDS LS SEED
7F15 DD&6B3 BB3:z0 LD Hs (IX+3)
7Fi8 @607 BR330 LD Bs7 5FOR LOOP COUNT
7F1a 29 DB340 PRABLIB ADD Hi s HL 32 TIMES LS 16 BITS
7F1iE EB BR350 EX DE« HL. $MS NOW IN HL
7F1C ED&A 203460 ADC HL s HL 52 TIME MS 16 BITS
7F1E ER aB37a EX DE s HL.
7F1F 10F% 20380 DJINZ PRABLO 37 TIMES=TIMES 128
7Fz1 3E@3 BA37a LD As 3 s COUNT FOR SUBTRACT
7TFE3 DD4ERZ ha40@ PRAGZG LD Co (IX+2) $GET L8 16 BITS OF SEED
7Fz26 DD46B3 22410 LD Bs (IX+3)
7FZ9 B7 BB420 OR A sRESET CARRY
7FEA ED4Z BR430 SBC HLsBC s SUBTRACT
7FZC EB BR440 EX DEs HL. ; SWAP
7FzD DD4EGB BR45a LD Cs (IX+8) 5GET M& 16 RITS OF SEED
7F30 DD46@1 B0460 LD Bs (IX+1)
7F33 ED4Z pR4v7e SBC HL: BC sSUBTRACT
7F35 EB 72480 EX DE s HL ;BWAP BACK
7F36 3D 20490 DEC A 33 TIMES=SEED*125
7F37 Z@EA aa500 JR NZ s PRABDZOD 3GO IF NOT 3
7F39 DD7300 PR510 LD (IX+@)sE $STORE NEW VALUE
7F3C DD7201 20520 L.D (IX+1)sD
7F3F DD758z @aas53a LD (IX+2)sL
7F42 DD74@3 Bo540 LD (IX+3)sH
7F45 DDE1 22550 POP IX $REETORE REGISTERS
7F47 E1 BB568 POP HL
7F48 D1 2B574a POP DE
7F49 C1 Ba580 POP BC
7Fa4n F1 pes9a POP AF
7F4B C9 PR&00 RET SRETURN
oo Bas1B END

B0 TOTAL ERRORS

PRANDM DECIMAL VALUES

245 197y 213s 229 221 229s 205¢ 127 1@s 229
221y 2259 221s 945 By 221s Bbs 13 221s 118s
2y Z21s 182 39 &y 73 414 235 2375 106

2358s 1by 249y b2Ze 39 2219 78s 2Zv 2212 78
33 183s 2379 bbs 235s 221s 78s Bs 221 78s
1y 2379 66 235 &1y 32y 234, 2219 1159 @5
221y 1145 1y 2215 1175 2 221: 116s 35 221
225¢ 225y Z2B9s 193+« 241, 201

CHRBUM= 229

RANDOM: RANDOM NUMBER GENERATOR

System Configuration

Model 1, Model 1ll, Model 1l Stand Alone.
149

Description

This subroutine returns a true random number of 0 through 127, provided cer-
tain conditions are met. If the subroutine is called at unpredictable intervals the
number returned will be truly random. An example of this would be a CALL to
RANDOM after a keypress from the TRS-80 keyboard. If RANDOM is called
repetitively to generate 100 “random’’ numbers, however, the numbers gener-
ated will not be random. It's very possible in this case that the number of
microprocessor cycles between each CALL will be fixed, and that the resulting
numbers will simply differ by a fixed amount.

RANDOM generates random numbers by using the count in the R register. As R
is used for refresh and is continually counting from 0 through 127, the event
that causes the CALL to random must be ““asynchronous’”” compared to the Z-80
timing and must occur over relatively long periods of time (hundreths of sec-
onds). RANDOM is simply a means to use the asynchronous event to conven-
iently generate a number from O through 127.

Input/Output Parameters

There are no input parameters to RANDOM,

On output, RANDOM returns the count in the R register in HL. H will be 0 and
L will be a value of 0 through 127.

INPUT QUTPUT

H L H L

NOENE | —> |) #8-127

Algorithm

Obtaining the count from the R register can be compared to spinning a wheel
that has 128 divisions numbered 0 through 127. The wheel is stopped at ran-
dom times to yield a true random number.

R is incremented from 0 through 127 to provide a refresh address for the TRS-80
dynamic RAM. An increment occurs each ‘““fetch” cycle of an instruction,
which is either once or twice per instruction (some instructions have two fetch
or M1 cycles). If a typical instruction takes 5 microseconds, R counts 200,000
times per second, making the time between external events such as keypresses
sufficiently large to generate true random numbers.

Sample Calling Sequence

NAME OF SUBROUTINE? RANDOM

HL VALUE? @

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000
INPUT: QUTPUT ¢

HL= @ HL= 1& RANDOM #

NAME OF SUBROUTINE?

150

Notes

1. To get a number in a range other than 0-127, subtract the range required
from the value in HL until the number is less than the range required. If the
number returned is 99, for example, and the number required is 0-9, then
subtracting 10 until the result is less than 10 produces 9, a number in the range
required.

Program Listing

7F o8 20100 ORG 7FOBH 10520
BALLD HHEEEREEERRHERER R ERE R IR ER AR ERRERERHEE AR A ARRRRR R RR AR

PP17@ :# RANDOM NUMBER GENERATOR. GENERATES A TRUE RANDOM NUM-#

PP13@ 1% PER PROVIDED CALLED AT ASYNCHRONOUS TIMES! *
o140 5% INPUT: NONE *
BE150 3% QUTPUT : RANDOM NUMBER 8-127 IN HL *
PR16D HEARARFAUFEREREERERERREFEERRFERFERRR XA RH AR EERERERRRE RS RF
Ba17e s

7FB@ F5 20188 RANDOM PUSH AF $5AVE REGISTER

7FB1 EDSF ’eei7e LD AsR sGET @-127 FROM R

7F@3 &F ralnedrilt LD LsA $NOW IN L

TFB4 2600 poz10 LD H:@ sNOW IN HL

7F@6 F1i pozz@ POP AF $RESTORE REGISTER

7F@7 C39ABA o230 JP AAFAH s#%#RETURN WITH ARG®#*%

7F8A C9 pRz40 RET $NON-BASIC RETURN

2000 PR250 END

PRBBE TOTAL ERRORS

RCRECD: READ CASSETTE RECORD

RANDOM DECIMAL VALUES

245, 237s 99, 111y 38s Bs 241y 195s 154. 10
281

CHK8UM= 247

System Configuration

Model [, Model L.

Description

RCRECD reads a previously written record from cassette to memory. The
WCRECD subroutine must have been used to generate the cassette record. The
record may be any number of bytes, from 1 to the limits of memory. The record
is prefixed by a four-byte header that holds the starting address and number of
bytes in the remainder of the record. The record is terminated by a checksum
byte that is the additive checksum of all bytes in the record. Data in the record
may represent any type of data the user desires; the record is read in as a “core
image.”’

151

Input/Qutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the starting address of the data to be read
in, in standard Z-80 address format, least significant byte followed by most
significant byte. If the starting address of the cassette record header is to be
used, this parameter is 0. The next two bytes of the parameter block are re-
served for the number of bytes value from the record header. The next byte is
reserved for the checksum from the record header.

On output, the contents of the parameter block is unchanged and the record
has been read from cassette. PARAM+ 2,4 3 contain the starting address of the
data from tape, if this address was to be used. PARAM-+4 contains the check-
sum for the read operation. If this value is a zero, the tape data has been read
correctly; atherwise, an invalid read of one or more cassette bytes has oc-
curred.

INPUT OUTPUT
H L H L
i ¥
POINTER TC? PARAM-+@] ::i [UNCH/?NGED
PARAM-+@ STARTING ADD PARAM+0 STARTING ADD
T ORQ IF + -+ OR ADDRESS -+
+1 USE TAPE ADD +1 FROM TAPE
+2 RESERVED +2 # OF
-+ FOR # + - BYTES FROM -+
+3 OF BYTES > +3 TAPE
+a RESERVED 4 @ IF GOOD
FOR CHECKSUM CHECKSUM

Algorithm

The RCRECD subroutine uses Level Hl or Level Ill ROM subroutines to perform
the write. First, a CALL is made to 212H to select cassette 0. Next, a call is made
to 296H to bypass the leader and sync byte on the cassette.

The four-byte header is next read from the cassette record. The number of bytes
from the cassette record is saved in the parameter block. The starting address
from the cassette record is saved if the starting address was zero. At this time
also, the B register contains the checksum of the first four cassette bytes.

The value from PARAM+0, +1 (original starting address or starting address
from cassette) is picked up at RCR020. The code from RCRO30 on is a loop to
read a cassette byte by a CALL to 235H, store the byte in memory via the HL
pointer, increment the pointer and decrement the byte count, and checksum
each byte. When DE has been decremented down to zero, the read of the body
of the cassette record is done, and a final read is performed to pick up the
checksum byte from the cassette.

The checksum value in B is subtracted from the cassette checksum, and the
result stored in the parameter block. The two should be equal, resulting in a
difference of zero. Finally, a CALL to 1F8H is done to deselect the cassette.

152

7FB0

7FBY
7F@1
7F@z
7F@5
7Fe8
7F@B
7F@ac
7FOE
7F10
7F13
TFi4
7F13
7F18
7F19
TF1A
7F1iR
7F1E
TF1F

F3

AF
cDizez
CD968%
CD7FQRA
ES
DRE1
DDES
CD3582

Sample Calling Sequence

MNaME OF

M. Val.Uk
PARAME

SUBROUTINE? RORECD

LOCK VALUES?
USE TAPE ADDRESS

L LOCATIONT 40000

g }lNIT!AL!ZE FOR EXAMPLE

2

MEMORY BLOCK 1
MOVE SUBROUTINE TOY 37800
SUBROUTINE EXECUTED AT 370606

INPUT:

HL= 40000

PARAM+ @

FARAM+ 1

FARAM+ 2
FaRAM+ 3
PARAM+ 4

sea8g

LOCATION?

OUTPUT:
Hl= 42006

PaRAM+ @ B }ADDRESS FROM TAPE (3COGH)
PARAM+ 1 4@

FaraM+ 2 @

1024 BYTE
PARAM+ 3 4 }-0 s
PARAM+ 4 @ CHECKSUM OK

NAME OF SUBROUTINE?Y

Notes

1. This subroutine uses cassette O only.
2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.

3. This subroutine does not save registers.

Program L

o106

isting

ORG

7FB8H ;@520

aaLio s [TV SRR RS R S Y B ST LS R L L S SRS SRR Sk

PR120 3% READ RECORD FROM CASSETTE. READS RECORD PREVIOUSLY
@138 3% WRITTEN BY WCRECD ROUTINE.

D148 3%
Ba15@ s#
po16l 3%
Ba17a s*
pR1IBE %
AB198 5%
pBzBB 3%

INPUT:

QUTPUT:

HL=> PARAMETER BLOCK

PARAM+B, +1=5TRTNG ADDR OR @ IF TAPE ADDRS
PARAM+Z, +3=RESERVED FOR NUMBER OF BYTES
PARAM+4=RESERVED FOR CHECKBUM

PARAM+0s +1=8TARTING ADDRESS: ORIG OR TAPE
PARAM+Zs +3=# OF BYTES FROM TAPE RECORD *
PARAM+4=CHECKSUM. @ IF VALIDs ELSE NON-ZER *

% ok ok & ok %k %k

paz1e 3 FPRTREETEAE SRR R R S P P F L ST LT L LS LTSS L LSS SR LS

20z20
PBz30 RCRECD
o240
BRE5S0
o260
PRz7d
oaz80
o278
PR30
pR310
Pe320
BO330
2340
80352
o360
BR370
ar380
2398
00408

153

DI
XOR
Cal.l
CALL
CaLL
PUSH
POP
PUSH
CalL
LD
PUSH
calL
POP
LD
PUSH
CALL
LD
PUSH

sDISABLE INTERRUPTS

A $ZEROQ A

212H $SELECT CASBSBETTE @
2946H sBYPASS LEADER
BATFH s #%%GET PB LOCT Newx
HL. 3 TRANSFER TO IX

IX

IX 3 SAVE

235H sGET START LGB

LsA 1 8AVE

HL

235H sGET START MGB

HL 3RESTORE LEBBE

Hs A $MERGE MGR

HL

235H SGET # LSB

Esh $SAVE

DE

7F2@ CD3582 B241@ CALL 235H
TFZ3 D1 Ba42@ POP DE

7F24 57 oB43a LD Ds A

7FZS E1L 22440 PoOP HL

7FZ46 DDE1 an4sa POP IX

TF28 7A BB462 LD AsD

7F29 83 BB470 ADD AsE

7Fz6 B4 Ba48o ADD AsH

7FzB 85 20498 ADD Al

TFZC 47 paseo LD Bs A

7FZD DD7302 a@sia LD (IX+2)sE
7F3@ DD7283 Q8528 LD (IX+3)sD
7F33 DD7EBG 25336 LD As (IX+2)
TF36 B7 22540 GR A

TF37 Z00é 28550 JR NZs RCRBZ@
7F3% DD75008 BB546@ LD (IX+@3 L
7F3C DD74@1 BoBs76 LD (IX+1)sH
7F3F DD&EGG P@58@ RCRE:ZB® LD L (ITX+@)
TF42 DD&ABI B2590 LD Hs (IX+1)
7F45 DDES Bos0D PUSH IX

TF47 €5 0B461@ RCRB3B PUSH BC

7F48 D5 Basz0 PUSH DE

7F49 E5 BB&3D PUSH HL

7F4A CD3502 BB640 Cal L 235H
7F4D E1 BRBs65E POP HL

7F4E D1 BR66D POP DE

7F4F C1 Bos70 POP EC

7F5@ 77 BasBs LD (HL) s A
7F51 86 20690 ADD AsE

TF52 47 aa7on LD Bsa

7F53 23 ag71d INC HL.

7F534 1B ba7za DEC DE

7F33 7a Ba730 LD AsD

7F36 B3 Be740 OR E

7F57 ZBEE Ba750 JR NZs RCRO3B
7F39 C5 ao74@ PUSH BC

7F54 CD3582 BB778 CALL Z35H
7F5D C1 2a78a POp BC

7F5E DDEL 2a79a POP IX

7F6D 90 22800 SUR B

7F&1 DD7704 o281 LD (IX+4) 354
7F64 CDFB@L ralni=pedn Call. 1FBH
TF67 C% B30 RET

ralrijrl} @eg4a END

DOBBE TOTAL ERRORS

RCRECD DECIMAL VALUES

243 175s 2055 18s
1@ 229y Z221s 225,

95 213y 205+ 53s Iy 209

122 131s 132s 1335 71+ 221

3 221y 1245 Bs 183y 3
221s 116y 1s Z21s 1105 @
229y 197s Z13s 229 205
119 128+ 715 355 275 127
205 53y Zs 193 FZ1s
2B05. 248. 15 231

CHRGUM= 185

154

205,
221s 229

205 B3y 25 225, 103

225

5GET # MGSB
sRESTORE #

SRESTORE STARTING ADDRESS
$POINTER TO PAR PLOCK
SINITIALIZE CHECKBUM

$5AVE CHECKSBUM
$SAVE # OF BYTES

$GET STARTING ADDRESS
sTEST FOR B

G0 IF USE ADDRESS IN PB
$5TORE TAPE ADDRESS

SGET BTARTING ADDRESS

$SAVE POINTER
$SAVE CHECKSBUM
$BAVE ENDING ADDRESS
s BAVE CURRENT LOCATION
sREAD NEXT BYTE
$RESTORE POINTER
SRESTORE ENDING LOC’N
$REBTORE CHECKSUM
$S8TORE BYTE
5ADD IN CHECKSUM
$5AVE CHECKSUM
sBUMP POINTER
sDECREMENT # OF BYTES
sTEST FOR @

;G0 IF NOT LAST BYTE
;8AVE CHECKSUM
sREAD CHECKEUM BYTE
SRESTORE CHECKSUM
SRESTORE POINTER
sTEST CHECKSUM
ISTORE FLAG
sDESELECT
SRETURN TO CALLING PROG

ey 205 1274
@5 893y Zs 111
205 53y Zs
225 : 2

115 Zs

117+ By

1832 1s 221
225. 2095 193

s R38s 1975

221y 1199 4y

RDCOMS: READ RS-232-C SWITCHES

Systen Configuration

Model |.

Description

RDCOMS reads the configuration of switches on the RS-232-C controller
board. The configuration of the switches is analyzed and put into separate
parameters. RDCOMS may be used to verify that the switches are set correctly
without having to reopen the RS-232-C access and reset the switches.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
six bytes of the parameter block are reserved for the results of the read. The
last two bytes of the parameter block (PARAM~+6,+7) hold the address of
RDCOMS in standard Z-80 address format, least significant byte followed by
most significant byte. This address can be obtained from the USR call address
in BASIC or in the assembly-language CALL address.

On output, the first two bytes of the parameter block contain the baud rate for
which the RS-232-C interface is set, 110, 150, 300, 600, 1200, 2400, 4800, or
9600. The next byte is set to a zero if parity is enabled, or to a one if parity is
disabled. The next byte of the parameter block is set to a zero if one stop bit is
used, or to a one if two stop bits are used. The next byte contains the number of
bits in the RS-232-C transfer; 0 is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The
next byte contains a zero if odd parity is used, or a one if even parity is used.

INPUT QUTPUT
H , L H i L
}]
POINTER TO PARAM-+8 i — { UNCHANGED
L
T i
PARAMAG PARAM-0
4+ RESERVED T %ﬁ#g T
+1 +1
+2 RESERVED +2 | @-PE 1=PD
#=71 5TOP BIT
13 RESERVED I:> +3 | =2 STOP BITS
iG=5 BITS, 1=7 BITS
+4 RESERVED +4 [2=6BITS,3=8 BITS
@—0DD PAR
15 RESERVED +5 1=EVEN PAR
+6 ADDRESS +6
4 € 4 UNCHANGED +
+7 RDCOMS +7

155

Algorithm

The SETCOM subroutine reads the switches and strips and aligns the fields into
the proper format for the parameter block.

First the switches are read by an “IN A(OE9H).” Next, the parity type is
obtained by a rotate left and an AND of 1 and stored in the parameter block.
The switch byte is then rotated again two bits and an AND of 3 picks up the
number of bits, which is stored in the parameter block. The switch byte is then
rotated left and an AND of 1 picks up the number of stop bits, which is stored in
the parameter block. The switch byte is then rotated left and an AND of 1 picks
up the parity enable/disable bit, which is stored in the parameter block. The
switch byte is then rotated left three times. An AND of 7 obtains the baud rate
index.

The baud rate index is put into HL and an ADD of HL to itself is done to
multiply the index by two. The result is added to the location of RDCOMS and
to the displacement of TABBD. HL now points to the TABBD entry, which is the
baud rate corresponding to the switch code. This code is picked up from the
table and stored in the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? RDCOMS

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ = @
+ 2 2@ INITIALIZE FOR EXAMPLE
+4 2 @

+ & @ 3789@ START OF RDCOMS

+8 0 ©

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO?7 37890
SUBROUTINE EXECUTED AT 37890

INPUT: OUTPUT =
HL= 40000 HL= 40000
PARAM+ @ B PARAM+ @ 176]42005AUD
PARAM+ 1 B PARAM+ 1 4
PARAM+ 2 @ PARAM+ = @ PE
PARAM+ 3 O PARAM+ 3 1 TWOSTOPBITS
PARAM+ 4 O PARAM+ 4 2 SIXBIT LENGTH
PARAM+ 5 B PARAM+ 5 1 _ EVENPARITY
PARAM+ & 2 PARAM+ & 2

UNCHANGE
PARAM+ 7 148 PARAM+ 7 148]_ GED

NAME OF SUBROUTINE?Y

Notes

1. Note transposed order of number of bits.

156

7FR8

7E00
7FB1
TEDE
7FB3
7ED4
TFBé
7F 09
7FDA
7F0C
7FQE
7EOF
7F11
7Fiz
7F14
7F17
7F19
7F1B
7F1C
7+ 1E
7F21
7FE3
TF 24
7F 36
7EZ9
7FZR
TEEC
7FZE
7F31
7F33
7F35
7F37
7F38
7F3A
7F3B
7F3D
7F3E
7F41
TF44
7E45
7F48
7F49
TE4A
7E4D
7F4E
7F4F

F5
cs

D5

E5
DDES
CD7F@A
ES
DDE1
DREY
47
CROD
78
E6B1
DD77085
CROD
CERoR
78
E6D3
DD7704
CROD
78
E6D1
DD7783
CROO
78
E6wl
DD778%
CROO
CEO
CEOD
78
E6Q7
6F
2600
29
DDSE®6
DD5687
19
115900
19

7E
DD77020
23

7E
DD77@81

Program Listing

baioe
a0116
2B1z0
Ba13a
@140
p@i5a
160
Ba17a
186
3190
ralreln]
BRz10
ilrededi]
DOZ3G
2az4d
Baz50
aRz6
BRz70
g al]
Bazea
Ba30e
o310
Ba3z0
BB330
22340
Ba350
BR360
2a37@
aa380
2a390
radrgel]
22410
BB420
BR430
BR440
BB450
BBass
Da47a
DR4BG
BB490
Ba500
285108
20520
Be53a
PB540
@550
Ba560
o578
pB580
pBs?0
alntXrilts
pBLIB
DA6Z0
Ba&30
BB64@
BR&50
DD66D
ln L)
Bae8a
20690
Po700
2B71io

ORG

7FOOH @522

I ET TR S R e S ST TSRS S LS SRS TSR R R R TR Lk b Tt R

$# READ RE-232-C SWITCHES.

3% SWI
$ %
3%
3 ¥
3%
5%
HE 3
3R
p-d
EE
5 #
$ %

RDCOMS

157

TCHES.

INPUT: HL=> PARAMETER BLOCK
PARAM+@ — PARAM+5: SEE QUTPUT
PARAM+&6s+73 ADDRESS OF RDCOMS

QUTPUT =

PUSH
PUSH
FUSH
PUSH
PUSH
CALL
PUSH
POP
IN
LD
RLC
LD
AND
LD
RLC
RL.C
LD
AND
LD
RLC
LD
AND
LD
RLC
LD
AND
LD
RLC
RLC
RLC
LD
AND

HL=> PARAMETER BLOCK

PARAM+@s +1=BAUD RATE - 110
128, 2400. 4800

PARAM+Z=0=PARITY ENABLED;

PARAM+4=0=3 BITSs 1=7 RITE
BITS

READS THE RS~232-C BOARD

s 1580s 300,
s 2600

&B3

1=PARITY DISAR
PARAM+3=0=0NE STOP BIT: 1=TW0O STOP BITS

3 2=6 BITSs

PARAM+5=0=0DD PARITY: 1=EVEN
S R H N R R RN R RN R R R R R EREFER RN R RRERH R AR

3=8

& F ok ok % ok ok & Kk &k ok ok &

AF sSAVE REGISTERS

BC

DE

HL

X

BATFH su%#GET PE LOCT Nx#*
HL. 5 TRANSFER TO IX

X

A (BETH) s READ SWITCHES

Bsh s8AVE IN B

B ;AL IGN

AsB

1 sGET PARITY TYPE
(IX+5)sA s8TORE

B ;AL IGN

B

Al B

3 sGET # OF BITS
(IX+4)s 4 sSTORE

B sALIGN

AsB .

1 sGET # OF QTOP BITS
(IX+3): 4 $8TORE

B sALIGN

As B

1 sGET PARITY ENAB/DIS
(IX+Z2) A $STORE

B sALIGN

B

B

AsB

7 sGET BAUD INDEX

Lsé sBAUD INDEX NOW IN L
H: @ sNOW IN HL

HL s HL. 3 INDEX %2

Es (IX+6) sLOCATION OF RDCOMS
Ds {IX+7)

HL.s DE s INDEX PLUS BASE ADDRESS
DEs TABRD sBAUD RATE TABLE

HL s DE s INDEX + BASE + TABLE DIS
As {HL) sGET TABLE ENTRY
(IX+@)s A $8TORE

HL- sPOINT TO NEXT BYTE
As (HL) sGET NEXT BYTE
(IX+1)sA $STORE

7F52
7F54
7F35
7H56
7F37
7F358
Be59
7F59
7F3B
7F3D
7F5F
7F&61
TF63
7F&5
TF&7
arlnln

DDE1
El
Di
C1
Fi
co

HEBD
608
=2C0B1
5802
R@o4
&80
Caiz
8@25

BR720
aB736
Ba740@
BB758
20760
Be778
Ba780
pa7o@
lara=inlt
ae810
opsza
20830
B840
o850
2a8sa
zee78

POP
POP
POP
POP
POP
RET
TABBED EquU
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFUW
END

IX
HL.
DE
BC
AF

$-RDCOMS

118
15@
3o
(=yridr
1200
2480
48086
600

$RESTORE REGISTERS

sRETURN TG CALLING PROG
sBAUD RATE TABLE

apoBe TOoTAlL ERRORS

READDS: READ DISK SECTOR

RDCOME DECIMAL VALUES

197 213s 229 221« 229 205« 127+ 18s 229
2EB. 219y 233s 71y 283s B 12@0s 2385 1
119« 5y 2035 @y 203 B 128 23805 3s
119 45 Z2B3s By 120 230y 1s 221 119s

35 235 Bs 120 Z30s 1s 2215 1195 29 203

Bs B3y @y Z@3y @s 120 230y 7+ 111+ 38

@Be 41e 221s Fh4s &y 221 Bby 75 28B+¢ 17s

89y @y 25 126y 221+ 119y @+ 35s 126y 221

1195 19 221s 225 225 2Z09s 193+ 241: 201s 11@s

@Gs 15@s @9 44+ 1: B8s 2
s 19Zs 18s 128s 37

1765 45 Féhs

CHRBUM= 122

System Configuration

Model 1.

Description

READDS reads one sector from a specified disk drive into a 256-byte user
buffer. The user must know where a particular file is and what sectors are in-
volved to utilize this subroutine; it is not a general-purpose ““file manage”’
subroutine.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the disk drive number, 0 to 3, corresponding
to disk drives 1 through 4. The next byte of the parameter block contains the
track number, O through N. (The standard TRS-80 uses disk drives with 35 tracks;
other drives are available for 40 tracks.) The next byte is the sector number, 0
through N (0 through 9 will be the most common range). The next two bytes are
the user buffer area for the read in standard Z-80 address format, feast signifi-

158

cant byte followed by most significant byte. The next byte contains a zero if a
wait is to occur until the disk drive motor is brought up to speed; the byte
contains a 1 if the motor is running (disk operation has just been completed)
and no wait is necessary. The next byte (PARAM+6) is reserved for the status of
the disk read on output.

On output, all parameters remain unchanged except for PARAM+6, which
contains the status of the read. Status is O for a successful read, or nonzero if an
error occurred during any portion of the read. If an error did not occur, the
specified disk sector has been read into the buffer area.

INPUT OUTPUT
Ho oL Ho L
H 1
POINTER TO PARAM+0] —_> f UNCHANGED
1
T T
PARAM-+0 DRIVE # ¢-3 PARAM-+0 UNCHANGED
+1 TRACK # +1 UNCHANGED
+2 SECTOR # +2 UNCHANGED
+3 BUFFER :> +3
4+ ADDRess - <4 UNCHANGED -+
+4 (MEM 1) +4
G=WAIT 1=NO
+5 AT +5 UNCHANGED
F=NO ERROR
+6 RESERVED +6 | g reROR
MEM 1+ MEM 1+8
+1 +1
T T T 286BYTES T
+2 RESEC;RVED +2 SEgF
+ FOR T -+ TOR T
+3 READ j +3 FROM
-+ DATA -+ -+ DISK +
+4 +4
+6 +6
Algorithm

The disk drive number in L is first converted to the proper select configuration
at REAO10. The select byte is then output to disk memory-mapped address
37EOH to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at REAO15 counts HL
through 65,536 counts to wait until the disk drive motor is up to speed before
continuing.

The disk status is then examined (REAQ20). If the disk is not busy, the track
number is loaded into the disk controller track register 37EFH) and a seek
command is given (37ECH) to cause the controller to ‘‘seek’ the track for the
operation. A series of time-wasting instructions is then done.

The code at REA030 gets the disk status after completion of the seek and ANDs it
with a “‘proper result” mask. If the status is normal, the read continues, other-
wise an “abnormal”’ completion is done to REAQ90.

159

The sector address from the parameter block is next output to the controller
sector register (37EEH). Two time-wasting instructions are then done.

A read command is then isued to the disk controller command register
(37ECH). Further time-wasting instructions are done.

The loop at REAO40 performs the actual read of the disk sector. A total of 256
separate reads is done. HL contains the disk address of 37ECH, DE contains a
pointer to the buffer address, and BC contains the data register address of the
disk controller. For each of the 256 reads, status is checked. If bit O is set, all 256
bytes have been read. If bit 1 of the status is set, the disk controller is still busy
and a loop back to REA040 is done. If bit 1 of the status is not set the next byte is
read, stored in memory, and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the read, status is again read,
and an AND of 1CH is done to check for the proper completion bits. The status
is stored back intoc the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? READDS

HL VALUE? 42000

FARAMETER BLOCK LOCATION? 4B200
PARAMETER BLOCK VAILLUES?

+ @ 1 8 DRIVE @
+ 1 1 17 TRACK 17
+ 2 1@ SECTOR @
+ 3 2 45000 BUFFER
+5 1 @ WAIT

+ & 18

+ 7 @ @

MEMORY BLOCK 1 LOCATIONY
MOVE SURBROUTINE TO7 38008
SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT:

HL= 42000 HL= 40000

PARAM+ @ @ PARAM+: @ @

PARAM+ 1 17 PARAM+ 1 17

PARAM+ 2 @ PARAM* 2 @ | NCHANGED
PARAM+ 3 208 PARAM+ 3 200

PARAM+ 4 175 PARAM+ &4 175

PARAM+ 5 @ PARAM+ 5 B

PARAM+ & @ PARAM+ & @ STATUS=0K

NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before doing initial disk /O to reset
the disk controller.

160

7F 00

7F 0B
7F@1
7FRz
7FQ3
7F D4
7FD6
7FD9
7F DA
7FBC
7FOF
7F10
7F11
7F13
7F14
7F16
7F19
7F1C
7F1D
7F1F
7Fz2
TFE3
TFZ4
7FE5
7EZ7
TFEA
TFEC
TFZE
7F31
7F34
7F35
7F36
7F38
7F 3B
7F3C
7F3D
7F3E
7F3F
TF43
TE 44
746
7F48
TF4A
TE4D
7F50
7F51
7F5%
7F55

B7
prdrilriie)
Z10nBo
2B

7D

B4
ZBFE
3AEC37
CB4a7
ZOF9
DD7E®GL
3ZEF37
5

C1
3E17
J3ZEC37
5

C1

C5

C1
JAELRT
CB4a7
2OF9
E698
2020
DD7ERE
3ZEE3Y
5

C1
BIEC37
DDSERS

Program Listing

Bol1oe
po1ie
pRize
BB1302
BR14@
pa1se
p@1sed
Ba17d
poigyd
@i
ez
pozie
BRzz@
aez3a
paz4d
Bazne
BRz6D
poz7@
o280
BRzZeo
iy
p@31d
BB328
BH338
B340
BB3sk
Goss6D
aB37a
aa38e
Ba396
BR400
Das1d
Boszh
@Go43n
Bo440
Bo4sh
B4 6B
an4a7a
2p48@
aaasE
rlrdsttlr
pes18
PO528
Beas30
BB540
BB55a8
pasen
BBL7a
pa586
2OsS98
raintoyary
Ba&1B
BR6ZE
BB6L3a
D648
nass8
BELELE
BB&e7o
28680
BB&T3
po7as
bp71@

ORG 7F@BH

1@522

3 **

1% READ DISK SBECTOR.
s# MEMORY BUFFER.
INPUTY HL=>x

3%
;%
HE 3
B 4
i
3%
3%
5
5 %

READDS

READLD

READLE

REABZE

READ3G

161

READS SPECIFIED TRACLK:

PARAMETER BLOCK

PARAM+D=DRIVE #s @ — 3
PARAM+1=TRACK #: @ ~ N
PARAM+Z=GELCTOR #» © — N
FARAM+ 3, +4=BUFFER ADDRESS

PARAM+S=B=WAIT AFTER SBELECTS

PARAM+&=RESERVED FOR STATUS

OQUTPUT t TRACK
PARAM+&6=8TATUG: B=0K:s
PP T T T X TS ST R SRS 2 AR R S R S

SECTOR READ INTO BUFFER
1=BAD

=

SECTOR INTO

NGO WATT

PUBH
PUSH
PUGH
PUSH
PUGH
Call
FUSH
Pop
LD
INC
LD
LD
RL.CA
DJNZ
LD
LD
OR
JR
LD
DEC
LD
OR
JR
I.D
BIT
JR
LD
LD
PUGH
POP
LD
LD
FUGBH
POP
PUGH
POP
LD
BIT
JR
AND
JR
LD
LD
pUSH
POP
1.0
LD

AF

Be

DE

HL

X
DATFH
HL.

X

By (TX+E)
A

s A
A9 BEAH

REAGLG
{(Z7EBHY s &
As (TX+5)
A

MZs READZD
HL.s &

Hi.

Al

i

NZ: REABDLS
Ay (B7ECH)D
Dz &4

NZ s REABZE
Ay (IX+13
(A7EFH) s A
Be

BC

As 17H
(Z7ECH) 1 A
Bl

BC

BC

Be

Az {BT7ECH)
@Bs i

NZ s REAB3D
F8H

NZ: REABZE
&5 (TE+E)
{A7EEH)Y = A
BC

Be

Hi.s 37ECH
Ee (IX+3)

15AVE REGIBTERS

1###GET PB LOCT Ne#x
s TRANSFER 7O IX

3GET DRIVE #
s INCREMENT BY ONE
sPUT IN B FOR CONVERT
iMABK
1ALIGN FOR SELECT
s CONVERT TO ADDRESS
sSELECT DRIVE
SGET WAIT/NO WAIT
s TEST
GO IF NO WAIT
sWAIT COUNT
sDELAY LOOP &
sTEBT DONE 4
54
$LOOP UNTIL HL=B 7/12
sGET STATUS
s TEST BUBY
5L.00P IF BUBY
$GET TRACHK NUMBER
sOUTPUT TRACK #
SWASTE TIME

$SEEK COMMAND
sQUTPUT
sWASTE TIME

sGET STATUS
3 TEST BUBY
1LOOP IF BUSBY
s TEST FOR NORMAL COMPL
16O IF ABNORMAL
IGET SECTOR #
;OUTPUT
IWASTE TIME

sDISK ADDRESS

¥
*
*
*
*
#*
®
*
#*
*
*
*

:PUT BUFFER ADDRESE IN DE

7F58
7F5E
7F5D
7F3E
7F5F
TF60
7F&1
7F6Z2
TFL5
TF&b
TF&7
7F&69
7FLA
7F&C
7F6D
7F6E
TF&F
TF71
TF74
TF76
TF79
7F78B
7F7C
TF7D
TF7E
TFTF
Baka

drtnnln]

DD5604
3e8C
77

5

Ci

5

(051
BIEF37
7E

18F 4
3AEC37
E&lc
DD770é6
DDE1
El

D1

Ci

F1

ce

BO720 LD
aa73a LD
aa74@ LD
Ba75G PUSH
Ba760 PGP
Qa77a PUSH
ae780 FOP
pa79 L.D
Bashyn REAG4G LD
aas1a RRCA
pusze JR
ulnizmin) RRCA
2840 JR
a5 LD
86w LD
aas7e INC
20880 JR
he8Yd REABSG LD
alraedrln] AND
DO716G REABYEH LD
aaeza PoP
aas3a POP
QaP40 POP
et] POP
BAFLE POP
bae7@ RET
Basse END

TOTAL ERRORS

RESTDS: RESTORE DISK

Do (IX+4)
A3 BCH
(HiLY s &
BC

BC

B

BC

BCs 37EFH
As (HL)

NCs REABS @

NCs REAB4D
A (BC)
(DE)s &

DE

READ4@

As (B7ECHD
1CH
(IX+b)sh
IX

DE
EBC

$READ COMMAND
FOUTRUT
SWASTE TIME

sDATA REG ADDRESS
sGET 8TATUS
SALIGN
5GO IF DONE
salIGN
5GO IF NOT DRG
3GET BYTE
$STORE IN MEMORY
$ INCREMENT MEMORY PNTR
$LOOP TIL DONE
sGET BTATUS
$CHECK FOR PROPER BTATUS
sSTORE STATUS
sRESTORE REGISTERS

SRETURN TO CALLING PROG

READDS DECIMAL VALUES

2455 1974 2135 229 2Z1s 229 205 1275 1@y 229,
E21y 225. 220y 1265 Bs 60 71y &2 128y 7
16 253y 38y 2245 55 221 1265 5. 1835 33,
8s 33 By B 43 125s 180s 3 251s 58

236 55y 203 T1s 32 249 2E1s 12&s 15 56
2395 855 197 193y 62y 23 S50 Z36s 8%y 197
193 197y 193s 58y 236 5% ZB3Zs 71is 335 249
23Bs 15Zs 3Zs 44y 221y 126 2y S50y 238y 554
197 193y 33s 236y 55y 221s G4 35 Z01s Bbs
4s 62y 148y 119 197y 1935 1971 193 12 239,
8% 1Z26&s 15s 48s By 15 48s 24%s 10« 184

19y 249 2445 58s 236+ 85 230 28y 271 119
by EEls 225 225 20%s 193s 241, 701

CHKGUM= 12

System Configuration
Model 1.

Description

RESTDS performs a restore operation on disk drive 1 through 4. The disk drive
head is moved over track 0. RESTDS is an “initialization”” procedure for
READDS and WRDSEC to reset the disk to a known configuration.

Input/Qutput Parameters

On input, the L register contains the drive number of the disk drive to be used, 0
through 3 (corresponding to drives 1 through 4). The H register is set to 0 if a

162

7F20

7FBR
7FB1
TF@z
7FB5
7FBé

F3
C3
CD7F@A
7D
3c

“wait after select” is to be done, or to a 1 if “no wait” is to occur. The wait is
used if no current disk operation is taking place and the disk drive motor is not
spinning.

On output, the disk head is restored over track 0. If the operation is successful,
HL is returned with a zero result. If a disk error has occurred, HL is returned
with a nonzero result.

INPUT QUTPUT
oL oL
G=WAIT, = G
[on [orvesos | — [g—OK, + =ERROR
1

Algorithm

The disk drive number in L is first converted to the proper select configuration
at RESO10. The select byte is then output to disk memory-mapped address
37EOH to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at RESO15 counts HL
through 65,536 counts to wait until the disk drive motor is up to speed before
continuing.

The disk status is then examined (RES020). If the disk is not busy, a restore
command (3) is sent to the disk controller command register at address 37ECH.
A series of time-wasting instructions is then done.

The code at RESO30 gets the disk status after completion of the restore, ANDs it
with a “proper result’” mask, and returns the status in HL.

Sample Calling Sequence

NAME OF SUBRROUTINE? RESTDS

HL. VALUE? @ WAIT,DRIVE®
PARAMETER BLOCK LOCATION7?
MEMORY BLOCK 1 LOCATION?

MOVE SURROUTINE To7 38000
SUBROUTINE EXECUTED AT 38000
INPUTS OUTPUT =

Hi= @ HL= @ STATUS=0K

NAME OF SUBROUTINE?Y
Program Listing

pBi100 ORG 7TF2@H @522
DOL1M I HHEFERFERRFEREREREFRERFEEFRRRRHE AR RRRERREARRRRRARERRERR

PR1i7@ 3% RESTORE DISK. PERFORMS A RESTORE OPERATION ON DISK. «#

o130 3% INPUT: H=0 IF WAIT AFTER SELECTs 1 IF NO WAIT *
BB14@ 3% L=DRIVE NUMBER: 8 -~ 3 #
PB158 5% OUTPUT tHL=@ FOR OKs «>8 FOR ERROR #*

GRLAD I HEEARFAERFFERUERAFREAF LR RERERERRFRERRRAER AR AR RRRRRRREHR
QBaL78 3

PR18BD RESTDS PUSH AF s BAVE REGISTERS

o193 PUSH BC

il Call BATFH ;%% %#GET DRIVE #%%%

pBziad LD As L sPUT IN A

pazzo INC A 3 INCREMENT BY ONE
163

TFa7
7F28
7F@A
7Fae
7F@D
7F1@
7F11

7Fiz
7F14 :
7F17

7F18
7F19

7F1A 2

7F1C
7F1F
7F21
7F23
7F 25
7F28
7F29
7TF2A
7FZE
7FEC
TFEF
7F31
7F33
7F35
7F36
7F38
7F39
7F3A
7F3D
20D

€1
JAEC3T7
CB47
20F9
E&98
&F
2606
Ci

Fi
C37404
<9

Baz30
BBz48
ralripgatr
bEz6d
Baz70
lralriegslr
Boz98
o300
BB310@
Ba3za
2a330
BB340
BB350
BR36a
Ba37e
22380
o376
Ba4ba
20410
22420
Ba430
QD440
o450
BBALD
aB470
2B480
Bo490
3500
aas1a
pasze
2530
2a540
Basse

ooBBe TOTAL ERRORS

RES@1@

RES@15

RESBZ8

RESB38

POP
POP
JP

RET
END

Bsa
A3 BBH

RESG1G
(37EBH) s A
AsH

A

NZs RESBz8
HL+ @

HL.

Al

H

NZ: RESBIS
As {37ECH)
B4

NZs RESB2@
A 3
(37ECH) « &
BC

BEC

BC

BC

& (37ECH)
B A

NZs RES@A3@
F8H

s &

Hs @

BC

aF

BATAH

SNOW IN B
iMAGK FOR CONVERSION
sCONVERT TO ADDRESS
sLOOP "TIL DONE
sGELECT DRIVE
SGET WAIT/NO WAIT
5TEST
3GO IF NO WAIT
SWAIT COUNT
sDELAY LOOP 64
sTEST DONE 4
54
LOOP UNTIL HL=8 7/12
3GET S8TATUS
sTEST BUSBY
560 IF BUSY
sRESTORE COMMAND
sOUTPUT TO DISK
SWASTE TIME

sGET STATUS
sTEST RUSY
sGO IF BUSY
$TEST STATUS
SNOW IN A
SNOW IN HL
$RESTORE REGISTERS

s #¥*RETURN STATUG*%%
SNON-BASIC RETURN

RESTDS DECIMAL VALUES

245 1975 2B5. 127s 10s 1255 6Bs 71s 6325 1358,
73 16s 253y 5@8s 224y 5%s 174y 1835 32s 8s

33: @y Bs 43y 125+ 180 325 251 58s; 234

33s 2035 71y 32s 249 625 3y 50 236 55

197+ 193y 197+ 1935 S58s 236s 555 2035 71 35
249: 230s 1525 1115 38y By 193 2415 195 154,
1@y 201

CHK8UM= 197

RKNOWT: READ KEYBOARD WITH NO WAIT

System Configuration

Model 1, Model 111

Description

RKNOWT reads the keyboard and returns immediately after scanning all keys
to determine if a keypress has occurred. If a keypress has occurred, the subrou-
tine returns with the key code; if no keypress has occurred, the subroutine
returns with 0. The key position is converted to a code from a user-specified
table of codes. Normally, these codes would be the ASCII codes for the keys on

164

ROW @

the keyboard, but the user may substitute his own codes for special key func-
tions. Both upper- and lower-case keys are translated, and all keys are read
including BREAK, CLEAR, up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters

On input, the HL register pair contains the address of RKNOWT. This address is
the same as the USR location in BASIC or the address in the assembly-language
call. It is used to make all of the code in RKNOWT relocatable.

On output, HL contains the keycode if a key was pressed, or 0 if no key was
detected.

INPUT OUTPUT
Ho L HoL
1
ADDRESS OF RKNOWT | =—= | P CHARACTER
1

Algorithm

The basic problem in RKNOWT is to detect if a key is being pressed, and if it
is, to convert its row—column coordinates into an index to a table to obtain the
key code.

The table is at RKNTAB. RKNTAB is a 120-byte table that contains all the trans-
lation codes for the keys. The row arrangement is determined by the electrical
connections to the keys, shown below. The first 56 bytes of the table represent
keys with no SHIFT. There is a “gap’’ of 8 unused bytes to simplify coding, and
then 56 additional bytes that represent keys with a SHIFT.

Keyboard layout and codes.

BIT RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES
o] 1 2 3 4 5 6 7 FOR STANDARD ASCH
@ A B C D E F G (40,41,42,43,44,45,46,47
H i J K L v N o] 48,49,4A,4B,4C,4D,4E 4F
P Q R s T U v W 50,51,62,63,54,65,566,57
e
X Y z g | 58595A08088
! # $ % & g
[} " 2 3 4 5 5 4 30.31.32,33,34.35,36,37
{) N + < = > ?
8 9 ’ i y 38,39,3A,3B,2C,2D, 2E,2F
ENTER|CLEAR|BREAK| 1 i - - |SPACE 0D,2F,01,58,5C,5D,5E,20
SHIFT (GAP) 0009899888

20,61,62,63,64,65,66,67
68,69,6A,6B,6C,6D,6E,6F
70,71,72,73.74,75,76,77
78,79,7A.9.8.9.0.9

20,21,22,23,24,25,26,27
28,29,2A,2B,3C,3D,3E,3F
0D,2F,01,5B,5C,5D,5E,20

SHIFT

165

7FoB

The loop at RKNO30 scans the seven rows of the keyboard and looks for a
keypress in a row. The address of row 0 is 3801H, and this is initially put
into HL. If no key is found in row 0, the L portion of the address is shifted left to
-produce an address in HL of 3802H. This process is repeated for the additional
rows until all seven rows have been scanned, as evidenced by a one bit in bit 7
of L. If no key has been found (A register is a zero), a return with HL equal to
zero is made at RKNQO90.

If any row is nonzero when read, RKNO40 is entered. At this point, the row
address of 3801H, 3802H, 3804H, etc., is in HL; the code at RKNO50 converts
this row address to a row number 0 to 7 times 8. This “index’’ of 0, 8, 16, 24, 32,
40, or 48 is saved.

The A register contains the column bits for the row. One column bit (or more
for multiple key presses) is a one. The code at RKNO70 converts the column bit
into a column number of 7 to 0. This column number is then added to ROW=8.

Next, the SHIFT key is read by ““LD A,(3880H).” The shift key bit is aligned and
merged with COL+ ROW=8 to produce an index of SHIFT=64-+ ROW#8+ COL.,
This index is then added to the start of RKNOWT and the displacement of the
code table, RKNTAB, to point to a location within the table corresponding
to the key pressed. The code just prior to RKN090 accesses the code table to
pick up the proper code for the key that has been pressed. If multiple keys in
the same row have been pressed, the rightmost key is detected and the others
ignored.

Sample Calling Sequence

NAME OF SUBROUTINE? RKNOWT

HL. VALUE? 347822 ADDRESS OF RKNOWT
PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATIONT

MOVE SUBROUTINE TO7 36788
SUBROUTIME EXECUTED AT 3&788
INPUT = OUTPUT:

Hi.= 36788 ML= @ NO KEY PRESSED

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.
2. The calling program must “time out”” keyboard debounce.

Program Listing

pa10a ORG 7FaOoH ;@522
POLIO SHEARRARREBEEEEREREERERRFRRI R R ERR R R AR LG LR EFRR BB L EREH R
20128 3 READ KEYBOARD NO WAIT. READS KEYBOARD AND RETURNS *
BB13@ 5% WITH NO WAIT. *
@14l s INPUT: HL=> ADDRESS OF RKWAIT #
BALI5d s+ QUTPUT :HL=CHARACTER READ OR @ IF NO KEY PRESSED #
DOIED S HEERBRAREEERIERERRERERRRRFEAR LR BRI SRR EE ARG FRERE LR HRRERE
ea178 s

166

7F 00
7F@1
7FRZ
7FR4
7FB7
7F@8
7F DA
7F@D
7FQE
7FOF
7F11
7F13
7F15
7F17
7F1A
7F1C
7F1iD
7F1E
7F 20
7F22
7F 24
7F26
7FZ8
7F29
7FZR
7F2D
7FZE
7FZF
7F3z
7F33
7F 34
7F35
7F36
7F38
7F3A
7F3D
7F3F
7F42
7F 44
7F46
7F47
7F48
7F 4B
2R4C
poRE
2008
200s
poRE
o008
o008
ooos
2008
o008
POOS
o0oE
00BS
o008
0]
008
RO
P0DBD

FS

cs
DDES
CD7F@A
ES
DDE1
210138
7E

B7
2008
CBZS
CB7D
ZBF6
210000
1828
4F

AF
CB3D
3804
cow8
18F8
P&FF
24
CB39
30FE
80

4F
348038
oF

oF

81

4F
0400
DDBY
014CO@
DDBY
DD4EQ@
2600
DDE1
1

Fi
C39A0A
o

o180
BBi170
obzno
BRziaG
pazz0
PDz30
BR240
aBz56
PBz60
BRz73
28280
BBz78
29382
28316
B3z
8332
o340
B350
pas3s6e
Qa378
268380
22392
20400
20410
Qo422
00436
22440
2R450
20462
aa470
208480
DB470
20500
20510
aa520
PB530
22540
aes558
PE560
Bas70
2582
radr i}
Uit
nos18
n@asza
20630
Bas64d
Bas650n
BRLLD
Bas7o
2os8a
28670
oa7oe
Ba718
na7ze
Bo730
20740
Ba758
aB760
Ba778

TOTAL ERRORS

RENOWT

RKNG2B
RKNB3@

RKNB4D

RKN@58

RKNB&G
RKNG72

RKN@90

RKNTAR

ADD

POP
POP
POP
JP
RET
EqU
DEFgS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS&
DEFS
DEFS
DEFS
DEFS
END

AF

BC

X

@BATFH

HL.

IX

HL s 3BB1H
As (HL)

A

NZ s RKNG4@
L

7l

Zs RKNG38
HL-@
RKNGZD
Cs &

A

L.

Cs RKNB&LB
As 8
RKNGS @

B @FFH

B

C

NCs RKNB7@
AsB

Cs A

As (388aH)

As

Cs A

BB

IX+BC

BCs RKNTAR
IXsBC

Ls (IX+8)
Hs @

X

relieeleclis Neslacucheugesies s R cer)

RENOWT DECIMAL VALUES

245, 197
33: 1s Sés
1259 48,

167

221
126
Zhbs

FEDs 205
183+ 32
33s @e B

$8AVE REGIBTERE

s ##%#GET BABE ADDRESS###
$TRANSFER TO IX

sADDRESS OF FIRST ROW
SGET NEXT ROW
$TEST FOR KEY
;G0 IF KEY PRESS
$GET NEXT ROW ADDRESS
sTEST FOR LABT ADDR
56O IF NOT LAST
5@ FOR NO KEY
sG0O TO RETURN
$8SAVE COLUMN BITS
sCLEAR COUNT
sSHIFT OUT ROW ADDRESS
1GO IF ONE BIT FOUND
sROW*8
sLOOP TIL DONE
sINITIALIZE COUNT
sFIND COLUMN BIT
$SHIFT OUT COLUMNS
sLOOP *TIL FOUND
sROW=E+COL
SNOW IN C
$GET BHIFT BIT
SNOW IN BIT 7
sNOW IN BIT 6
$SHIFT#64+ROW#B+COL
$INDEX TO C
$NOW IN BC
sBASE PLUS INDEX
s TRANSLATION TABLE
sEBASE+INDEX+DISPL
$GET CHARACTER
SNOW IN HL
sRESTORE REGISTERS

s#E##RETURN WITH ARGUMENT®*%
sNON-BASIC RETURN

s TRANSLATION TABLE

$NO SHIFT ROW 2

3 1
3 3
3 4
H 5
H &
sNOT USED
$8HIFT ROW 74}
H 1
3 2
3 3
3 4
H 5
5)

127s 18s 229 221e 225,

11y 203. 37s 203

249 48 79 175

2035 b1s 5463 49 198: 8y T4y 248s by 3554
4y Z03s 579 48y 2515 128y 795 S8 138: 56
135 135 1329 799 &1 By 2215 95 1: 7hs

By 221s Fs Z21e 118y @s 38s By 201 255
193: 241y 195y 154: 10. 201

CHK8UM= 29

RKWAIT: READ KEYBOARD AND WAIT

System Configuration

Model I, Model T1il.

Description

RKWAIT reads the keyboard and returns after a key has been pressed. The key
position is converted to a code from a user-specified table of codes. Normally,
these codes would be the ASCll codes for the keys on the keyboard, but the
user may substitute his own codes for special key functions. Both upper- and
lower-case keys are translated, and all keys are read including BREAK, CLEAR,
up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters
On input, the HL register pair contains the address of RKWAIT. This address is
the same as the USR location in BASIC or the address in the assembly-language

call. It is used t©0 make all the code in RKWAIT relocatable.

On output, HL contains the keycode.

INPUT QUTPUT
HoL HooL
' CHARACTER
| ADDRESS OF RKWAIT | — i) ARAC
T

Algorithm

The basic problem in RKWAIT is to detect if a key is being pressed and if it is,
to convert its row column coordinates into an index to a table to obtain the key
code.

The table is at RKRWTAB. RKWTAB is a 120-byte table that contains all the
translation codes for the keys. The row arrangement is determined by the elec-
trical connections to the keys, shown below. The first 56 bytes of the table
represent keys with no SHIFT. There is a ““gap”” of 8 unused bytes to simplify
coding, and then 56 additional bytes that represent keys with a SHIFT.

168

ROW @

BIT RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES

@ 1 2 3 4 5 6 7 FOR STANDARD ASCII

@ A B c D E F G 40,41,42,43,44,45,46,47

H I J K L M N o] 48,49,4A,4B,4C 4D 4E 4F

P Q R s T U v w 50,61,62,63,54,55,56,57

F—.
u

X Y z T | 58,59,5A.9.0.8.8.9
I " # $ % & 2

o4] 2 3 4 5 5 7 30.31,32.33,34,36,36,37

{) “+ < . > ?

g 9 ' 38,39,3A,38,2C,2D,2E,2F
ENTER|CLEAR|BREAK| 1 ! - - |sPACEH| 0D,2F,01,5B,5C,5D,5E,20
SHIFT (GAP) 009889899
Keyhoard layout and codes. 20.61,62,63.64,65,66,67

68,69,6A,6B,6C,6D,6E,6F
70,71,72,73,74,75,76,77
78,79.7A.8.9,8.8.8

20,21,22,23,24,25,26,27
28,28,2A,2B,3C,3D,3E,3F
0D,2F,01,5B,5C 5D,5E,20

SHIFT

The loop at RKWO030 scans the seven rows of the keyboard and looks for a
keypress in a row. The address of row 0 is 3801H, and this is initially put
into HL. If no key is found in row 0, the L portion of the address is shifted left to
produce an address in HL of 3802H. This process is repeated for the additional
rows until all seven rows have been scanned, as evidenced by a one bit in bit7
of L. If no key has been found after seven rows, a loop is made back to RKW020

to repeat the scan.

If any row is nonzero when read, RKNO40 is entered. At this point, the row
address of 3801H, 3802H, 3804H, etc., is in HL; the code at RKW050 converts
this row address to a row number of O to 7 times 8. This ““index’” of 0, 8, 16, 24,
32, 40, or 48 is saved.

The A register contains the column bits for the row. One (or more for multiple
key presses) is a one. The code at RKNO70 converts the column bit into a
column number of 7 to 0. This column number is then added to ROW=8.

Next, the SHIFT key is read by “LD A,(3880H).” The shift key bit is aligned and
merged with COL+ ROW?=8 to produce an index of SHIFT#64+ ROW=*8+ COL.
At this point a “debounce delay”” of 50 milliseconds is performed. This ensures
that the key is not reread if RKWAIT is reentered immediately by the calling
program.

The index is then added to the start of RKWAIT and the displacement of the
code table, RKWTAB, to point to a location within the table corresponding to
the key pressed. The code just prior to RKW090 accesses the code table to pick
up the proper code for the key that has been pressed. If multiple keys in the
same row have been pressed, the rightmost key is detected and the others
ignored.

169

7Fae

7F 00
7F01
7F@2
7F 04
7F07
7F08
7F0A
7F@D
7FOE
7FOF
7F11
7F13
7F15
7F17
7F19
7F1A
7F1R
7F1D
7F1F
7F21
73
7F25
7E24
7FE8
7EZA
7F2B
7F2C
7F2F
7E3D
7F31
7E32
7E35

FS
s
DDES
CD7F @A
E5
DDE1
210138
7E

B7
2008
CBZ5
CB7D
2BF 6
18F 1
4F

AF
CE3D
3804
Co08
18F8
BEFF
@4
CB39
3oFe
80

4F
348038
oF

oF

81
21100F
BIFFFF

Sample Calling Sequence

NAME OF SUBROUTINE? RKWAIT

Hi. VaAILLUE? 38008 ADDRESS OF RKWAIT
PoRAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 38080
SUBROUTINE EXECUTED AT 38000
INPUT: QUTPUT ¢

HL= 38002 HL= &3 “A" KEY, NOSHIFT

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.

2. The debounce delay may be adjusted as required. A 50 millisecond delay
is about 20 characters per second or 240 words per minute. Change locations

7F33H and 7F34H to alter the debounce delay.

Program Listing

o1 a0 ORG 7F e+ @522

B110 R E R s R TR ST TSI LT L LT LT IR T E IR TR R R DR AR Ry
2@12@ 3% READ KEYROARD AND WAIT. READS KEYBOARD AND WAITS *
BB130 3% UNTIL. KEY PRESS. *
BO140 5% INPUT: HL=>* ADDRESS OF RKWAIT #
BR150 3% QUTPUT s HL=CHARACTER READ *
110 B AT SHEREEUKERREEEEREEREERRREE R AR REREERRRERREA R EEA RO EER LS
ani17a s

P01BO RRWAIT PUSH AF $BAVE REGISTERS

aa196 PUSH BC

Doz0B PUSH X

Baz10 CALL BA7FH s###GET BASE ADDRESG®=#
POz PUSH HL. STRANSFER TO IX

Baz3a POP IX

BB24@ RRKWRZG LD HL. s 38@1H $ADDRESS OF FIRST ROW
20250 RKWO3D LD A (HL) $GET NEXT ROW

260 OR A 3TEST FOR KEY

BAz70 JR NZ» RKW@40 sGO IF KEY PRESS
[ulmesin SLA L sGET NEXT ROW ADDRESS
auze6 BIT 7l sTEST FOR LAST ADDR
D300 JR Zs RKW@a3e ;GO IF NOT LAST

Ba31ia JR RRW@GZ2O sLAST-LOOP "TIL KEY
PR320 RKWR4Z LD Cs A $SAVE COLUMN BITS

RO330 XOR A s CL.EAR COUNT

B340 RRWE58 SRL L. $BHIFT OUT ROW ADDRESS
B350 JR Cr RRWB&G sGO IF ONE BIT FOUND
Q0360 ADD A B sROW*E

28370 JR RKWASH 51.00P TIL DONE

2380 RKWALE LD B BFFH sINITIALIZE COUNT

B30 RKWA7@ INC B sFIND COLUMN BIT

20400 SRIL. C sEHIFT OUT COLUMNS
QB410 JR NCs RKWB7@ SLOOP *TIL FOUND

BB4z0 ADD AsE s ROW=B+COL.

Ba430 LD Cs A SMOW IN C

BB440 LD As (3BBEAH) sGET SHIFT BIT

BB450 RRCA SNOW IN BIT 7

B4 60 RRCA sNOW IN RIT &

QB47a ADD AsC §BHIFT#64+ROW*B+COL.
Q480 LD HL.s 3854 sDELAY COUNT (58 MS)
PB476 LD BCs~1 sDECREMENT VALUE

170

7F38
7F39
7F3e
7F3C
7F3E
7F 4@
7F43
7F45
7F 48
TF4A
7F4C
7F4D
7F4E
7F51
05z
2o0S
PVDB
PoOS
Pens
oODE
008
o028
000s
008
o0RE
POOS
P0RS
opRS
0008
oeos
2000

89
38FD
4F
0600
DDBY
015200
DDBY
DD&EDD
2600
DDE1
c1

F1
C39A0A
o

Basoe
Pas510
20520
PB538
aa540
Bas50
20560
DRas7a
22580
pB5s9>
20600
28610
iy
Bos30
PBs&40
Bas65a
266G
o678
20480
BB&7D
oB7e0
Ba71d
a7z

Ba730
aa74@
Ba7sa
na760
BRa77e
pR780
Pa730
ralntsinltl

pReDn TOTAL ERRORS

RRKWRED

REKWTAR

RRKWAIT DECIMAL VALUES

ADD
JR
LD
LD
ADD
LD

ADD
LD
LD

POP
POP
POP
JP
RET
EQU
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFG
DEFS
END

HLBC

C» RKWEBE

Cs A
Bs@
I1XsBC

BCs RKWTAR

IXsBC

L (IX+8)

Hs @
IX

BC

AF
BAFAH

$—RKWAIT

DUV ®

sDELAY FOR BOUNCE 11
$LOOP "TIL HL NEG 7/12
$INDEX TO C
$NOW IN BC
$RASE PLUS INDEX
s TRANSBLATION TABLE

sBASE+INDEX+DISPL
$GET CHARACTER
SNOW IN HL
$RESTORE REGISTERS

s #%#RETURN WITH ARGUMENT®#%%
$NON-BASIC RETURN
$TRANSLATION TABLE

$NO SHIFT ROW @

o~ U b

NOT USED
SHIFT ROW

Rt SR ENE S

2455 1973 221s 229 Z2B5s 127s 1@s 22T 221 225,
33y 1s S&sy 12Zb6s 1B3. 32 Bs 203s 375 =03y

125 48 24b6s 24 241 79s 1792 203+ &1s Db

45 198s Bs Z4s 248s 69 2555 45 203 57

48y 251 12Bs 79y 58s 1285 36: 15: 15 129y

33s 1és 159 1. 2855y 255 99 56y 2539 79

by B 221 B9 1s BEZs Bs ZZ1s P 221

11@s @s 38: 8. 221s 225s 1935 241: 193s: 154,

1@s 201
CHKSUM= &9

SCDOWN: SCROLL SCREEN DOWN

System Configuration

Model 1, Model {11

Description

SCDOWN scrolls the video display down one line. Scrolling down causes lines
1 through 15 to be moved up into line positions 0 through 14. Scrolling can be
used in displaying text or data that cannot be displayed in the 1024 bytes of one
video screen.

171

7Fan

7FoG
7F@1
7Faz
7F@3
7F@4

F5
Ch
D5
E5S
Z14B3C

When scrolling down, line 15 is blanked in preparation for displaying the next
line ““below’’ the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCDOWN simply causes a
scroll down of one line, with a return to the calling program immediately fol-
lowing.

INPUT OUTPUT
Ho L Ho L
1 T
NONE | — | UNCHANGED
T H

Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 “‘block move”
instructions. The LDIR moves a block of data from one area of memory to
another, transferring the data “‘beginning to end” (lower-valued memory loca-
tions to higher-valued memory locations) of each block, one byte at a time.

The LDIR automatically transfers video memory bytes to locations 64 bytes
“down” in memory. A total of 960 bytes are transferred as the first line ““disap-
pears.”’

After the transfer, the last line has been moved up to the second to last line, but
still remains on the bottom of the screen. This line is “’blanked’” by a fill of 64

bytes of blank characters at SCD010.

Sample Calling Sequence

NAME OF SURROUTINE? SCDOWN

HL VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7? 36646
SUBROUTINE EXECUTED AT 36466

INPUT: QUTPUT:

NAME OF SUBRQUTINE?

Program Listing

2160 ORG 7FBaH @522

BDL1IB SHEHREERERERERERRERERE LR R RREREREE R REREE R R ERR RS
P@1z0 s* SCROLL SCREEN DOWN. SCROLLS SCREEN DOWN ONE LINE. *
o138 5% INPUT: NONE #*
DB140B s+ OUTPUT e SCREEN SCROLLED DOWN *
BRISE s HHEHEHRFREERERERE R R LR R R E R E AT R R R R EEEH R R RRH R AR
22166 3

B0170 SCDOWN PUSH AF $5AVE REGISTERS

o180 PUSH BC

2a190 FUSH DE

Baz00 PUSH HL

oozio LD HL.s 3C48H $SOURCE

172

7F@a7
TF@A
7F@D
7F@F
TF1Z
7F14
7F1é6
TF17
7F18
7F1A
7FiB
7FI1C
7F1iD
7F1E
it

11803C
@1C003
EDBE@
21CR3F
3E28
B&40d

Bozzn LD DE. 3CO0H sDESTINATION

a3 LD BCs 2460 s# OF BYTES

Daz4a LDIR $SCROLL

POL5E LD HL s 3FCBH sLINE TO BE BLANKED
Baz60 LD A 7 sLOAD BLANK CHARACTER
o270 LD B 64 &4 CHARACTERS ON LINE
guz80 SCD@ig LD (HL) s A $STORE BLANK IN LINE
pazoe INC HL sBUMP POINTER

2306 DJNZ SCDR1a sLOOP IF NOT DONE
310 poP HL. $RESTORE REGISTERS
a3z POP DE

aR33a POR BC

aB340 POP AF

2350 RET s RETURN

PB366 END

po@pd TOTAL ERRORS

SCUSCR: SCROLL SCREEN UP

SCDOWN DECIMAL VALUES

P45, 197s 213 229 335 bbby 6@8s 17 Bs 60
1s 192y 3y 237s 1765 33Fs 192 43y HEs 32s
by bas 119s 35 lbs 252y 225 209« 193s 241
201

CHKBUM= 86

System Configuration

Model |, Model 111

Description

SCUSCR scrolls the video display up one line. Scrolling up causes lines O
through 14 to be moved down into line positions 1 through 15. Scrolling can be
used in displaying text or data that cannot be displayed in the 1024 bytes of one
video screen.

When scrolling up, line 0 is blanked in preparation for displaying the next line
“above’’ the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCUSCR simply causes
a scroll up of one line, with a return to the calling program immediately fol-
lowing.

INPUT ouTPUT
Ho L Ho L
H
[N():NE } E— [UNCHANGED
¥ ¥

173

Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 “‘block move”

instructions. The LDDR moves a block of data from one area of memory to
another, transferring the data "‘end to beginning’’ (higher-valued memory loca-

tions to lower-valued memory locations) of each block, one byte at a time.

The LDDR automatically transfers video memory bytes to locations 64 bytes

“up” in memory. A total of 960 bytes are transferred as the last line “disap-
pears.”’

After the transfer, the first line has been moved down to the second line, but
still remains on the top of the screen. This line is “’‘blanked’” by a fill of 64 bytes

of blank characters at SCUO010.

Sample Calling Sequence

NAME OF SUBROUTINE? SCUSCR

HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO?7 41111

SURROUTINE EXECUTED AT 4111l
INPUT:

QUTPUT:

NAME OF SUBROUTINE?

Program Listing

7F 00 2120

ORG

7FooH

@522

DL 1D 5835563969366 096 6.6 0690 36 3636 363696 36 3696963 6696 26 963696 96 3636 36 96 636 96 9636 96 06 36 36 6 3636 36 3696 696

20120 5% SCROLL SCREEN UP.

INPUT:

QUTPUT :SCREEN SCROLLED UP

NONE

SCROLLS SCREEN UP ONE LINE.

*
*
#

DDBIS@ 5969956303 K H6 336 2 36363696 3636306 16363696 16 I K 369626063 9696 36 3696 606 00 06 36 46 36 656 06 06 6 6 6 6 36

PUSH
PUSH
PUSH
L.D
LD
LD
LLDDR
LD
LD
LD
LD
INC
DJINZ
POP
POP
POP
POP
RET

QB130 s«

02148 s+

enise s
7F@@ F5 20170 SCUSCR PUSH
7F@1 €5 20180
7F@z D5 20190
7FB3 ES A6200
7F@4 Z1803F eozie
7F@7 11CO3F Boz20
7F@A 210023 2230
7F@D EDBESB P24
7FOF Z210@3C eoz50
7F12 3EZ0 Baz60
7F14 Q&40 goz7e
7F16 77 20280 sSCUBLD
7F17 23 20290
7F18 10FC 22300
7F1A EI 22310
7F1B D1 20320
7F1C Ci1 aB330
7F1ID F1 2340
JF1E C% 20350
zaBo6 20366

22088 TOTAL ERRORS

174

END

HL

HL. s 3FB0H
DEs 3FCOH
BCs 740

HL s 3COBH
A’ k4 k]

B 64
(HL) s A
HL.
SCUBLD
HL.

DE

BC

AF

sSAVE REGISTERS

5 BOURCE
sDESTINATION
OF BYTES
5SCROLL
SLINE TO BE BLANKED
sLOAD BLANK CHARACTER
364 CHARACTERS ON LINE
$8TORE BLANK IN LINE
sBUMP POINTER
FLOCP IF NOT DONE
SRESTORE REGISTERS

s RETURN

SCUSCR DECIMAL VALUES

2455 197s 2135 229 33s 12Bs &35 175 1932 635
1s 192 3s 237 184s 33: 0y 680s 62 32»

by b4y 11%s 3Bs 1bs 2B3s 225, Z09. 193. 241,
281

CHRBUM= 161

SDASCI: SCREEN DUMP TO PRINTER IN ASCHH

Configuration

Model |, Model 1.

Description

SDASC! dumps the contents of the video display to the system line printer.
SDASC! may be called at any time to record the contents of the screen. ASCII
characters are printed as they appear on the screen. Graphics characters are
printed as a period. The system line printer must be able to print 64 character
positions across. The screen is printed as 16 lines of 64 characters.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to
the calling program is done.

INPUT QUTPUT
H L H L
U 1
NO}NE l :@ l UNCHI:\NGED

Algorithm

The HL register pair holds the current screen location starting from 3CO0H, the
screen start. The B register is used to hold the number of characters per line, 64.
It is decremented down to zero so that a carriage return at the end of line can
be made to the system line printer.

There are two loops. The main loop starts at SDAQ05. The inner loop handles
each screen line and starts at SDA010. For each new line, the line character
count of 64 is placed into the B register at SDA0DO5.

In the SDAO10 loop, a character is loaded into A from the next character posi-
tion. Bit 7 of the character is tested. If this bit is a one, a period is substituted for
the graphics character. If the character is not a graphics character (SDAQ20), a
20H is subtracted from the character and bit 7 is tested. If bit 7 is set, the value
of the character is less than 20H, and 40H is added to compensate for the lower
case option. The character is then saved in the stack while a status check is
made of the line printer.

175

7@

The code at SDAO50 checks line printer status. When the line printer is ready,
the character is popped from the stack and printed. The HL pointer is then
incremented by one, and the line character count in B decremented. If B is
zero, a carriage return is output to the line printer for the end of the line by a
jump back to SDA040.

SDAO6O tests for a condition of —1 in the B register. If this is true, a carriage
return has just been output, and a test is made for HL=4000H, which marks the
end of the dump. If H is not equal to 40H, a jump is made back to SDAQO5 to
output the next line. If there is not a — 1 in B at SDA060, the current line is still
being processed and a jump is made back to SDA010 for the next character in
the line.

Sample Calling Sequence

NAME OF SUBROUTINE? §DASCI

HL VALUE?

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATIONT

MOVE GUEROQUTINE TO7 42000

TRE~B@ ABSEMBELY LANGUAGE SUBROUTINES EXERCISER

NAME OF SUBROUTIME? SDASCI
HL. VALUEY

FARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATIONT?
MOVE SUBROUTINE T

"
7 4BBDY -16 SCREEN LINES

SUBROUTINE EXECUTED AT 40006
INPUTE GUTPUT =

NAME OF SUBROUTIMNE?

Notes

1. If this subroutine is used for the Model 1il, make the following change in
the listing: Substitute “OUT (OF8H),A” for “LD (37E8H),A”’. Replace the corre-
sponding decimal values of /50, 232, 55" with decimal values of 211, 248, 0.

Program Listing

20100 ORG 7FBaH ;8526

BBILIDB HEERRRHEBEEERREREREASEERFRRERRBREERRRE R RRERF R REREERERRERE
PP12@ 3% SCREEN DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN TO %
BO132@ ;% BE DUMPED TO THE SYSTEM LINE PRINTER. GRAPHICS ARE *
20140 3% PRINTED AS A PERIOD. *
QUBIZB s+ INPUT: NONE *
P16 5% OUTPUT :SCREEN CONTENTS PRINTED *
DBLIT7D GHERRERERERSERERE R SRR R R AR R R LR LR ERE R B R R F R R B L ERE SRR R ERE RS
aBiBeB s

176

7FOD
7FD1
7FOz
7FD3
7FR6
7F@8
7F B9
7Fee
7F@D
7FOF
7H11
7F13
7F15
7F17
7F19
7F1B
7F1C
7F1F
7Fz1
7F23
7FZ5
7F26
7F29
7F2A
7F IR
7F2C
7F2D
7F2F
7F31
7F33
7H35
7F37
7+38
7F39
7H 3B
7F3D
7F3E
7F3F
7F4D
PO

F5
cs

ES
21003C
D640
7E
CR7F
2804
3EZE
1804
D6Z@
CB7F
280z
Co4d
cez

F5
3AEB37
E&6FD
FE30
ZOF7
Fi
32EB37
o3

@5

78

B7
2004
3E@D
1BE8
FEFF
Z@D1
2B

7¢
FE40
2009
E1

c1

Fi1

co

pe19a
Lralrapedvigri]
BRz1d
BB220
PRz30
BROz240
20250
AB260
onz7@
20280
ralr gl
28308
20310
PB3:0
Ba330
20340
@356
BA360
pe378
BB380
BO398
aa40a
pRs12
aB428
BB430
PR440
20450
PB46D
aB47a
20480
22490
AB500
o510
0528
20536
ae540
BB550
28568
28578
20580

ppBBA TOTAL ERRORS

5DASCI PUSH AF

PUSH BC

PUSH HL

LD HL s 3CB0H
SDABBS LD Bs b4
5DhaAB1@ LD As (HL)

BIT 73 A

JR Z:5DABZG

LD Asg? 7

JR SDAB4R
5pABZB SuB 20H

BIT 73 A

JR Z:5DAB3G

ADD As 4BH
SDAB3@ ADD A ZOH
SDAB4B PUSH AF
8DAB5B LD As (37EBH)}

AND QrFeH

cpP 3aH

JR NZ:SDADSH

POP AF

LD (37EBH) - &

INC HL

DEC B

LD AR

OR A

JR NZ,5DAGLED

LD A:13

JR 5DAR4D
SDABLG CP BFFH

JR NZ:5DADID

DEC HL

LD AsH

cP 4@H

JR NZ s 8DABEBS

POP HL

POP BC

POP AF

RET

END

SDAGCI DECIMAL VALUESR

245,
127

197 229
4@y by LI
127« 4@s s 198
A%y 230s 248
535 359 T
E32 25

201,

33s Qs
bGba E4h
&4y 198,
E545 4RBs 32y
120 1B3s 32y 45
E85s 32y ZBYs 43,
193 Z41s 201

CHRGUM= 163

SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS

Configuration
Model I, Model 111

Description

(=37 PR
1@
Bt

E47 s

$SAVE REGISTERS

sSCREEN START ADDRESS
i# OF CHARACTERS/LINE
$GET NEXT SCREEN BYTE
sTEST FOR GRAPHICS
5G0 IF GRAPHICS BYTE
sPERIOD FOR GRAPHICS
$GO TO PRINT
sTEST FOR CONTROL
sCONTROL IF SET
$GO IF NOT LT Z2H
$ADJUST FOR CONTROL
$REGTORE FOR SUR
$8AVE CHARACTER
sGET PRINTER STATUS
sMASK OUT UNUSED RITS
sTEST STATUS
s Q0 IF BUSY
$RESTORE CHARACTER
$PRINT CHARACTER
sBUMP SCREEN POINTER
sDECREMENT CHAR CNT
sGET COUNT
sTEST
560 IF NOT B
3END OF LINE
50UTPUT CR
5TEST FOR —1
sSTILL IN LINE
$ADJUST FOR FALSE INC
$JUST PRINTED CR
$AT END OF SCREEN?
560 IF NO
sRESTORE REGISTERS

SRETURN TO CALLING PROG

&drs
#3145
245,

SRRl
58s X
2411 58y
13s 4

E545 G4

bls
14

3

SDGRAP dumps the contents of the video display to the system line printer.
SDGRAP may be called at any time to record the contents of the screen. Graph-

177

ics characters are printed as they appear on the screen by an “O.”" ASCHi char-
acters are not printed. The system line printer must be able to print 128 charac-
ter positions across. The screen is printed as 48 rows of 128 pixels.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to
the calling program is done.

INPUT QUTPUT
Ho L HoL
H T
NONE] > l UNCHANGED

1

Algorithm

The SDGRAP subroutine uses an internal print subroutine at SDGO050. This
subroutine first tests the current character position contents in the A register for
graphics. If the current contents are nongraphics (ASCII), a blank character is
used for the print; if the current contents are graphics, an “O’" is used for the
print. The blank or “O” is then saved in the stack.

Next in the print subroutine, a test is made for printer status. The code at
SDGO060 loops until the printer is not busy. When the printer is ready, the blank
or “O" character is output. The print subroutine then adjusts a “’bit mask’’ in
the B register. This mask represents the current bit position in the character
position being tested. Each graphics character has six bit positions, bits 5
through 0. The bit mask is shifted left one bit to mask the next bit position.
Finally, the print subroutine tests for the return point. There are three return
points. If bits 0, 2, or 4 have just been printed, a return is made to SDG030. If
bits 1, 3, or 5 have just been printed, a return is made to SDG035. If neither of
these conditions is present (B equals zero), a carriage return has just been
printed and a return is made to SDG040. The normal subroutine structure is not
used so that all code in SDGRAP can be relocatable.

The main code in SDGRAP uses three loops. The outermost loop (SDG010)
handles character positions, in sets of three graphics rows. The next innermost
-loop handles the three rows within each character position. The innermost
loop handles each row of graphics bits.

Each set of three rows (one line) starts off with the mask bit in B set for pixel 0.
The character is picked up via the pointer in HL. SDGO050 is called to output the
first pixel. The B mask is now set to pixel 1. SDGO50 is again called for pixel 1.
Next, (SD(G035), the line pointer in HL, is bumped, and the bit mask is shifted
back to the right two bit positions. For the first row, B would now hold 1. Now a
test is made of HL. If HL is not at the end of line, the next character is picked up
and pixels 0 and T printed. If HL is at the end of line, a carriage return is
printed by a call to SDGO050, and the bit mask in B is shifted left two bit po-
sitions. If the first row had just been printed, B would now contain a 4. HL is
now adjusted to point back to the beginning of the line by adding —64. If the
next row is still within a character position, a loop back to SDG012 prints the
next row.

178

If the next row starts a new line, the pointer in HL is bumped by 64 to point to
the next line of three rows. A test is made for HL=4000H, signifying that all
rows have been printed. If this is not the case, a jump is made back to SDDGO10
to print the next set of three rows.

Sample Calling Sequence

NAME OF SUBROUTINE? SDGRAP
HL VALUE?

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO?7 38888

I~ 48 SCREEN ROWS

SUBROUTINE EXECUTED AT 38888
INPUT: QUTPUT @

NAME OF SUBROUTINE?

179

7Fee

7F28
7FB1
Fa2
7FB3
7FB4
TFB7
7F@9
TFBA
7FoR
7Fec

7FRE
7FOF

7F11
7F12
7F14
7F16
7F17
7F18
7F1A
7F1C
7F1D
7FIF
7F21
7F22
7FZ4
7F26
7F 29
7F2A
7FZC
7FZE
7F31
7F32
7F33
7F35
7F37
7F38
7F39
7F3A
7F 3B

Fsi
cs
D5
ES
21083C
P&D1
c5
c1
7€
182E
7E
1828
23
CB38
CR38
cs
7D
E&63F
ZPEE
47
3E@D
1826
c1
cB20
CRZ0
11COFF
19
CB70
>8DE
114000
19
7¢
FE4D
20D
El
D1
c1
Fi
c9

ralr gl
B0116
oBi1za
aB13a
20140
26158
22140
Ba178
o180
ppice
nB200
Qazio
a0220
BBz38
BB24D
20256
20266
pR270
2286
aRz90
pa300
PA31e
08326
ae33a
BB340
pB350
@360
aB370
2380
Ba370
PB400
PR412
BO420
aB430
av4418
20458
BB46G
pa47a
BB480
BB472
D500
Pa510
BB528
PR3320
B0548
aB550
Ba560
Bas578
Be580

Notes

1. ASCH characters on the screen are ignored, but will not cause erroneous
results.

2. The dimensions of the printout on many printers will be 12.8 inches hori-
zontal by 8 inches vertical, which will be approximately the “‘aspect ratio”” of
the screen.

3. If this subroutine is used for the Model 1, make the following change in
the listing: Substitute “OUT (OF8H),A”" for “LD (37E8H),A.”” Replace the corre-
sponding decimal values of /50, 232, 55" with decimal values of 211, 248,0.”

Program Listing

ORG 7FBaH 30526
R S R S R 2 R R R R R Rt B b A
5% GRAPHICS DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN #
% TO BE DUMPED TO SYSTEM LINE PRINTER AS 128 BY 48 MAT-#
s# RIX OF O5. TEXT IS IGNORED. *
§# INPUT: NONE *
5 OUTPUT : GCREEN CONTENTS PRINTED *
8RR RN ERE R R RRERERRE R R LR EERERRRE RS RRR R RRERR
SDGRAP PUSH AF $SAVE REGISTERS

PUSH BC

PUSH DE

PUSH HL

LD HL s 3CB8H $ETART OF SCREEN
SDGAId LD Byl sMASK BIT FOR UPPER LEFT
spGaiz PUSH BC s BAVE MASBK
SpGALS POP BC $GET MASK
SpGeze LD As (HL) $GET CHARACTER

JR 5DGD5G $OUTPUT LFT BIDE BIT
SpGB3e LD Ax (HL) sGET CHARACTER

JR SDGA58 sOUTPUT RIGHT SIDE BIT
SDGA35 INC H $BUMP LINE POINTER

SRL B sADJUST BACK MASK

SRL B

PUSH B §8BAVE MAGK

LD AslL sGET CHAR POS ADDR

AND 3FH sTEST FOR 64TH CHAR

JR NZsSDGRI15 GO IF NOT END OF LINE

LD BsA 58 TO B

LD As 13 s CARRIAGE RETURN

JR 8SDGA54 $PRINT
SpGR4d POP B sRESTORE BIT MASK

SLA B SNEXT LINE MABK

SLA B

LD DEs —&4 sFOR RTN TO LINE START

ADD HL s DE $RESET TO LINE START

BIT 63B $TEST FOR THREE LINES

JR Z:5DG@1: GO IF NOT THREE

LD DE+ &4 $FOR NEXT SCREEN LINE

ADD HL. s DE sPOINT TO NEXT SCREEN LINE

LD AsH sGET M5 BYTE OF ADDRESS

CcP 40H sTEST FOR END OF SCREEN

JR NZs8SDGA18 560 IF NOT END

POP HL. $RESTORE REGISTERS

POP DE

POP BC

POP AF

RET SRETURN TO CALLING PROGRAM
5 PRINT SUBROUTINE

180

7F3C
7F3E
7F40
7F41
7F43
7F45
7F47
7F48
7F 4.
7F4D
7F4F
7F51
7F52
7F55
7F57
7F58
7FS5A
7FSC
7FSD
7FSF
7F61
2000

CB7F
2801
AB
3E2@
BBz
3E4F
F5
3AEB37
E&F@
FE3O
20F7
F1
32E837
CR2O
78
E&AA
ZpBez
78
Eé&54
20Ra
18RE

PR570 SDGR5O
rarfatled
204610
Q623 5DEEAS2
20632
28648
BR4L5B SDGEB54
BB&LLD SDGEBLD
@ansL7a
20680
R
BB700
710
0720
BpR73a
BB743
ae7sp
08760
pa77e
Bo7e0
a7en
20806

PBeBd TOTAL ERRORS

SETCOM: SET RS-232-C INTERFACE

BIT 7sh

JR Z:5DG@52
AND B

LD As? 7

JR 7 8DGA34
LD As 707
PUSH AF

LD As (37E8H)
AND DFOH

CP 30H

JR NZ: SDGRLB
Pop AF

LD (37E8BH) - A
SLA B

LD As B

AND aasH

JR NZ + EDGB3A
LD As B

AND S4H

JR NZ s 5DGB35
JR 5DGR4G
END

SDGRAP DECIMAL VALUES

$TEST FOR NON-GRAPHICS
sG0 IF NON-GRAPHICS
$GET GRAPHICS RIT

s BLANK

$G0O IF BIT RESET

sBIT SET

s 8AVE CHARACTER

sGET PRINTER STATUS
sMASK OUT INACTIVE BITS
sTEST FOR STATUS

sLOOP IF BUSY

sRESTORE CHARACTER
sOUTPUT CHARACTER
3ADJUST BIT MASBK

$GET BIT MASK

sTEST FOR RETURN
$RETURN FOR RIGHT SIDE
sGET BIT MASK

sTEST FOR RETURN
SRETURN FOR NEXT ROW
SRETURN FOR LINE

245y 1975 213s Z29s 335 Bs 6By &5 13 197

193y 126s 249 465 1265 249 435 352 2035 Sb6
283+ Bbs 1975 123. 230« 63 325 Z38s 71s 62
132 24, 38 193y 203y 32y 2035 33s 175 1924
255s 25 203+ 112+ 40s: 219 17+ &435 Bs 254

124, 254 b4y 35y 208s 225 209 1935 2415 201

2B3s 127 405 1y 160 &35 329 40y 2y &2

79s 245+ 58s 232 53, 230 2405 2545 48s 332
2475 241 58, 232 55s 203s 32s 120 230 170
J2s 1789 120 230y 84y 32y 176 245 190
CHKEUM= 44

System Configuration

Model 1.

Description

SETCOM programs the RS-232-C controller in lieu of setting the switches on the
RS-232-C controller board. (SETCOM must be run before the NECDRV program
can be used.)

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the baud rate for which the RS-232-C
interface is to be set, 110, 150, 300, 600, 1200, 2400, 4800, or 9600. The next byte
is set to a zero if parity is to be enabled, or to a one if parity is to be disabled.

181

The next byte of the parameter block is set to a zero if one stop bit is to be used,
or to a one if two stop bits are to be used. The next byte contains the number of
bits in the RS-232-C transfer; 0 is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The
next byte contains a zero if odd parity is to be used, or a one if even parity is
to be used.

On output, the parameter block remains unchanged, and the RS-232-C inter-
face is initialized.

INPUT OUTPUT
h ot Ho L
: H
POINTER TO PARAM+8 [e L UNCHANGED
f 1
PARAM-+@ PARAM-+@
T BAUD T -+ UNCHANGED -+
1 RATE "
+2 @=PE 1=PD +2 UNCHANGED
7=1 STOP BIT ,
+3 1=2 STOP BITS ::::;> +3 UNCHANGED
@=5BITS, 1=7 BITS ,
+4 2=6 BITS, 3=8 BITS +4 UNCHANGED
@=0DD PAR
+5 —EVEN PAR +5 UNCHANGED
Algorithm

The SETCOM subroutine reads the parameters, merges, and aligns them into
the proper format for the RS-232-C controller, and writes them out to the con-
troller.

First, the controller is reset by an “OUT (0E8H),A.” Next, the parity type is
picked up into A and shifted to yield 00000P0O0. Next, the number of bits is
merged, and shifted to yield O000OPNNO. Next, the number of stop bits
is merged and shifted to yield 000PNNSOQ. Next, the parity enable/disable bit is
merged and shifted to yield PNNSP00O. Next, the BRK and RTS bits are set and
the PNNSP101 configuration is output to port address OEAH.

The next portion of code converts the baud rate to the proper RS-232-C code.
To keep the code relocatable, ““linear” code (not table lookup) is used. The
least significant byte of the baud rate is picked up and compared to the Is byte
of 110, 150, 300, etc. The proper code is then output to port address OE9H.

Sample Calling Sequence

NAME OF SUBROUTINE? SETCOM

HL VALUE? 40008

PARAMETER BLOCK LOCATION? 4000
PARAMETER BLOCK VALUES?

+ & 1208 1200 BAUD

B =
+ 2 1 1 PD
+ 3 1 @ ONE STOP BIT
+ 4 1 i SEVEN BITS
+5 1 @ ODD PARITY
+ b BB

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 39009

182

720G

7Foa
7FB1
7FRD2
7FR4
TFa7
7F B8
7FBA
7FaC
TFBF
7F1B
7F11
7F14
7F15
7F18
7F19
7F1C
7F1D
7FiE
TF1F
TFZ1
TFZ3
TF26
TFL8
TFZA
7FzC
TFZE
7F30

F5

E3
DDE3
CD7FBA
ES
DDE1
D3ES
DD7E@3
a7

a7
DDB&D4A
a7
DDR&B3
o7
DDR&BE
a7

a7

a7
F&l3
D3EA
DD7EDG
FE&E
2004
ez
1832
FES&
2004

SUBROUTINE EXECUTED AT

INPUT:

HL= 40000

PARAM+
FaRAM+
PARAM+
PARAM+
PARAM+
PARAM+

e S

76

By b 5 o b g

QUTPUT :
HL= 40230
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

(RIS PN I N Rl o

NAME OF SUBROUTINE?

Notes

39000

176
4

é UNCHANGED
1

2

1. No check is made on proper parameters in the parameter block.
2. The OR prior to OEAH output may be modified as required to set a differ-
ent configuration of BRK, DTR, RTS.

3. Note transposed order of number of bits.

Program Listing

BB120

ORG

7FBBH

@522

DAL LG 39653 333 W 3 3 33633 363 I 36 36 363636 36 36 3636 3636 9 3 36 3 I 3 336 I 363 I3 K W W3 DE W NN

BP12@ 3% SET RS-2z3:2Z-C. PROGRAMS THE RS~-232~C CONTROLLER. *
BALI3D s INPUT: HL=> PARAMETER BLOCK *
BR14@ 5 PARAM+@s +1=BAUD RATE ~ 118s 150. 380, 605, *
0150 3% 1208, 2400, 4800, 600 *
PO1&6D 5% PARAM+Z=0=PARITY ENABLEDs 1=PARITY DIGAR *
api7e 3% PARAM+3=@=0NE STOP BITs 1=TWO STOPFP BITS *
pOIBG 3« PARAM+4=0=8 BITS: 1=7 BITSs =Z=4& BITS.s 3=8 %
2B198 s5* BITS *
pRzRB 3* PARAM+S=0=0DD PARITYs 1=EVEN *
PRZ1B 3% QUTPUT :R5-232~C CONTROLLER INITIALIZED #*
e B L e T R R R R Y X Y L R
BB238 3

PRZ40 SETCOM PUSH AF $5AVE REGISTERS

aaz56 PUSH HL.

DOz6D PUSH X

QRz7o call. @ATFH s##%GET PB LOCT N¥*#

peOzsd PUSH HiL. sTRANSBFER TO IX

Ll POop IX

PO3B OUT {BEBH) s A sRESET RE~Z32-C

Q8318 LD A (TX+5) sPARITY

aa3ze RLCA s AL IGN

Qu330 RL.CA

Da340 OR {(IX+4) sMERGE # BITS

Ba35a RL.CA AL IGN

AD36B OR {IX+3) 3% OF STOP RITS

Q0378 RLCA 5ALIGN

DO3BD OR (IX+2) sPARITY ENAR/DIS

B3390 RLCA sALIGN

DR4BoB RL.CA

D410 RL.CA

B4 2a OR 5 sSET BRKs RTS

PB438 QuUT (BEAH) s A sOQUTPUT

BB440 L.D As (IX+@) sGET LSB OF BAUD RATE
a450 P 118 31107

D460 JR NZsSETO1@ 560 IF NO

0470 LD A5 22H 3118 CODE

BR48G JR SETOBD 360 TO SET

049@ SETHIB CP 150 31587

apsan JR NZ s SETBZ0 3G0O IF NO

183

7F3: 3E44 o518 .D As 44H 315@ CODE

TF34 1824 BR520 JR SETREG sGO TO BET
7F36 FEZC pO536 SETBz2G CP 44 ;3887

7F38 @84 BO540 JR NZsSETBO3G 3G0 IF NO

7F3A 3ES5 Ba550 L.D As33H 5308 CODE

7F3C 1822 20568 JR SETOBO 5GO TO SET
7F3E FES38B @B57@ SETO3B CP 88 56007

7F4@ @4 radnsgsin] JR NZ s BETB40 3GO IF NO

TF42 3E&6 oo59@ LD Ay bEH 5600 CODE

7F44 1814 adrafatradr JR SETRBO 160 TO SET
7F46 FEBD BB6&1D SETB4B CP 176 312007

7F48 B4 BBLHED JR NZ: SBETB50 GO IF NO

TF4e 3E77 BR&638 LD As77H 31200 CODE
7F4C 181z BR64G JR SETOES 360 TO SET
7F4E FE&R BB653 SETASE@ CP Fé6 324087

7F50 2004 BB6HLB JR NZ s SETBOE GO IF NO

7F32 3EAA BR676 L.D As BALH 52408 CODE
7F34 180A PBLBO JR SETOBG 3GO TO SET
7F56 FECB 2B69@ SETALE CP 122 348007

7F38 zo4 o700 JR NZsSETB70 GO IF NO

7F36 3ECC ae716 LD AsBCCH 54800 CODE
7F3C 1882 BR7=0 JR SETREA 3GO TO BET
7F5E 3EEE BB738 SETR78 LD A3 QEEH 39600 CODE
7FL@ 3ZE90D @Ba74@ SETOR LD (BETH) s A FOUTPUT TO BRG
7F63 DDEL @aa7sm POP IX sRESTORE REGISTERS
7F&5 E1L Ba766 FOP HL.

TF&E FL an77a POP AF SRETURN TO CALLING PROG
TFE&T C9 ha7en RET

rrntr Ba7e0 END

a@Bbe TOTAL ERRORE

SETCOM DECIMAL VALUES

FEFy Z@5. 127 1@ 229 221 229
el 1236y 55 7e 7s 2E1s 1825 4

7y 221 1BZs 3s 7y 221 183 2 Ts 7a

7y 246s Sy Z11s 234 ZZ21s 126 B 2545 110

329 4 b2y 34 24y 5By ZS54s5 150 325 4

by 6Bs 24y 439 2549 449 3Z9 49 6Ty BYs

245 34s 2544 885 32y 4y 6T 1032 24s Thy

2845 1765 32 4y 625 119y 4s 18y 2949 Dby

325 45 bZs 170s 245 10y 254 1925 335 4o

b2y 204y 24y e b2y 238y 580 233 By 221

SEBe 2255 241y 201

CHKSUM= 186

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY

System Configuration

Model 1, Model 111, Model 1l Stand Alone.

Description

SOIARR searches a BASIC or other one-dimensional integer array for a given
16-bit search key. The array may be any size within memory limits. The array is
assumed to be made up of 16-bit entries. SOIARR returns the address of the
entry matching the search key, or a —1 if no entry matches the search key.

184

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit address of the array, ar-
ranged in standard Z-80 address format, least significant byte followed by most
significant byte. The next two bytes of the array contain the number of entries
in the array. (Note that this value is one-half the number of bytes in the array!)

The next two bytes contain the 16-bit search key. The arrangement of the
search key may correspond to the arrangement of data in the array. If the array
is a BASIC array, the data in the search key will be least significant byte fol-
lowed by most significant byte; if the array is made up of two ASCII characters
arranged first and second, then the search key should have the same arrange-
ment. The last two bytes are reserved for the result of the search.

On output, PARAM=+ 6, + 7 holds the address of the entry corresponding to the
search key, or —1 if no entry has been found.

INPUT QUTPUT
HoL H oL
1 T
r POINTER TO PARAM+0] p— [UNCHANGED
1
¥ T
PARAM-+0 ADDRESS PARAM--@
+ OFARRAY -+ -4 UNCHANGED -+
+1 {(MEM 1-+0) +1
+2 +2
+ SERE ¢+ + UNCHANGED
+3 : +3
+4 16.8IT +4
4 SEARCH + -+ UNCHANGED -
+5 KEY +5
+6 RESERVED +6 POINTER TO
+ FOR + <+ FOUND ENTRY =
+7 RESULT +7 OR ~1
MEM 1+ MEM 1+8
4+ ENTRYBZ -+ -+ +
+1 +1
+2 +2
+ ENTRY 1 T T UNCHANGED T
+3 +3
+4 +4
-+ ENTRY2 T + +
+5 +5
+6 +6

Algorithm

The SOIARR scans the array one entry (two bytes) at a time from beginning to
end, looking for the search key. The number of entries is put into BC, the

' starting address of the array into 1Y, and the search key in DE. HL is used as a

working register for the compare of the entries to the key.

185

The loop at SOI010 performs the scan. The next entry is put into HL. The search
key in DE is then subtracted from HL. If the result is zero, the current address in
lY is returned in HL. If the result is nonzero, no match occurred, and the code at
SOI020 increments 1Y by two to point to the next entry, and then decrements
the count of entries in BC. A test is then made of BC; if it is zero, all entries have
been tested and a “‘not found” return is made. If there are additional entries to
be tested, a loop back to SOIO10 is done.

Sample Calling Sequence

NAME OF SUBROUTINE? SOIARR

HL. VALUE? 40020

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ 2 45008 ADDRESSOF ARRAY

+ T2 0B 5 ENTRIES (10 BYTES)

+ 4 2 1234 SEARCH KEY

+ s 2 B

+ 8 @ @

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

+ @ 2 2343

+ 22 3456

+ 4 2z 54678 5 ENTRY ARRAY (TABLE)
+ &2 L7899

+ 8 2 1234

+ 1@ @8 @

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

INPUT: OUTPUT ¢
HL= 40DD® HL= 40060 _

PARAM+ @ ZD@ PARAM+ @ 200

PARAM+ 1 175 PARAM+ 1 175

PARAM+ 2 5 PARAM+ 2 5

FARAM+E 3 @ PARAM+ 3 O UNCHANGED
PARAM+ 4 218 PARAM+ 4 210

FARAM+: 5 4 PARAM+* 5 4

PARAM+ & 0 PARAM+ & 208

FARAM+ 7 B PARAM+ 7 175 | FOUNDAT 45008
MEMB1+ @ 41 MEMB1+ @ 41 T

MEMRI+ 1 9 MEMBI+ 1 9

MEMEL+ 2 128 MEMBL+ 2 138

MEMEL+ 3 MEMEL+ 3 13

MEMBL+ 4 MEMB1+ 4 46

MEMB1+ 5 MEMBi+ 5 2% ~UNCHANGED
MEMB1+ & MEMBi+ & 133

MEMEI+ 7 26 MEMBI+ 7 24

MEMBiI+ 8 218 MEMBI+ 8 21D

MEMBI+ 9 4 MEMEi+ 9 4 |

NAME OF SUBROUTINE?Y

Notes

1. “Array” in this case corresponds to a table of two-byte entries.

186

Program Listing

7F 00 00100 ORG 7FBOH 30522
BALLID 5 ## 8RR H BB I T I I3 36330 36 B 3636 96 360 30 36 I 3636 36 3606 36 96 36 36 2696 06 00 36 96 36 3 %
PR1ZP 3% SEARCH ONE-D INTEGER ARRAY. SEARCHES INTEGER ARRAY
80138 :x FOR SPECIFIED SEARCH KEY. *
00140 ;* PUT: HL=> PARAMETER BLOCK *
20150 ;¥ PARAM+@» +1=ADDRESS OF ARRAY *
B016D 5% PARAM+Z +3=81ZE OF ARRAY *
POL70 5% PARAM+45 +5=16-BIT SEARCH KEY *
00180 ¥ PARAM+6, +7=RESERVED FOR RESULT OF SEARCH
@@190 5% OUTPUT:PARAM+&:+7 HOLDS ADDRESS IF KEY FOUND OR *
POZOD ;* -1 OTHERWISE *
BAZID §RERFREREFRFEEERERARERERRR R SR SRR ERE SRR R R AR RE R AR R EERR R R
20ZZ0

7E0R F5 POZ3@ SOIARR PUSH AF $SAVE REGISTERS

7FB1 C5 00240 PUSH BC

7F@Z D5 PeZ50 PUSH DE

7FD3 ES PAZ60 PUSH HL

7FB4 DDES 20270 PUSH IX

7F@6 FDES PAZB0 PUSH IV

7F@8 CD7FBA DOZ90 CALL @A7FH 3¥#%GET PR LOC™ N#%x

7FOR ES5 00300 PUSH HL s TRANSFER TO IX

7F@C DDE1 02310 POP IX

7FDE DD4EDZ 00320 LD Co (IX+2) $PUT SIZE IN BC

7F11 DD46@3 @330 LD By (IX+3)

7F14 DDAE@D 00340 LD Ls (IX+@) $PUT ADDRESS IN HL

7F17 DD66@1 QO350 LD Hs (IX+1)

7F1A DDSEQ4 DO360 LD Es (IX+4) $PUT KEY IN DE

7FID DD56@5 D370 LD Ds (IX+5)

7F20 ES 00380 PUSH HL $ARRAY ADDRESS TO IY

7FZ1 FDEI 20350 POP 1Y

7FZ3 FDAEDD Q0400 S0IQL1@ LD Ly (IY+@) 3GET NEXT ARRAY ENTRY

7Fz6 FD66B1 DB410 LD Hs (IY+1)

7FE9 B7 o420 OR A sCLEAR CARRY

7FzA EDSZ 00430 SBC HL s DE sTEST FOR EQUALITY

7FZC 2005 P4 40 JR NZ» 501020 560 IF NOT FOUND

7FZE FDES 20450 PUSH 1Y sTRANSFER 1Y TO HL

7F30 Ei P0460 POP HL

7F31 180C D470 JR 501030 360 TO RETURN

7F33 FDZ3 20480 SOIOZO INC 1Y s INCREMENT ARRAY LOC’N

7F35 FD23 20490 INC 1Y

7F37 0 008500 DEC BC s DECREMENT COUNT

7F38 79 00510 LD AsC $TEST COUNT

7F39 BO 20520 OR B

7F3A ZQE7 00530 JR NZ»S01810 sLOOP IF COUNT NOT @

7F3C ZIFFFF 00540 LD HLs -1 $7NOT_FOUND’ FLAG

7F3F DD7586 @@558 S0I03B LD (IX+6) 3L $§TORE LOC’N OR NOT FOUND

7F42 DD74@7 B0560 LD (IX+7)3H

7F45 FDE1 2@57@ POP Iy sRESTORE REGISTERS

7F47 DDEL PO580 POP IX

7F49 E1 00590 POP HL

7F4A D1 00500 POP DE

7F4B C1 20610 POP BC

7F4C F1 P0620 POP AF

7F4D €9 PR63D RET SRETURN TO CALLING PROG

0000 BOL4D END

28888 TOTAL ERRORS

SOIARR DECIMAL VALUES

22D 1275

78+

253+

2y 221

229y 205
7@s 3

213

221

EETs

2239

221

245
18

197
22D

F21s

187

2219 11@s @5 221+ 10Z2s 1s 221s 94+ 45 2214
B&s By 229 253 Z25¢ 253, 118Bs Bs 253 183
1s 183s 237y B2Zs 32s B 2535 229y 23%: D4
12y 253y 355 253+ 359 115 121y 176s 329 231
33: 2559 255s Z221s 1175 69 221y 1165 73 383
225 E21s 2E%. 225D 209y 1935 Z41s 201

CHKSUM= 17

SPCAST: SERIAL PRINTER FROM CASSETTE

System Configuration

Model 1, Model 1.

Description

SPCAST uses the cassette output port to implement output to a serial printer.
Additional external “‘hardware’’ is required to convert the cassette voltage lev-
els to levels compatible with serial printers. A character at a time is output with
a baud rate of 110, 300, 600, or 1200.

The format for output is one start bit, seven or eight data bits, and one stop bit
with no parity. If the character to be output is a seven-bit ASCII character, the
most significant bit should be set to zero, and the result will be seven data bits
with two stop bits. If the character to be output is an eight-bit character, the
result will be eight data bits with one stop bit.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the address of SPCAST, in standard
Z-80 address format. The next byte contains a baud rate code of 0, 1, 2, or 3,
corresponding to 110, 300, 600, or 1200 baud. The next byte contains the char-
acter to be output.

On output, the character has been transmitted. The parameter block remains

unchanged.
INPUT OUTPUT
Ho L HooL
H
POINTER Té PARAM-+{] —— [UNCHANGED
¥ T
PARAM-+0 ADDRESS PARAM-+g
+ OF + -+ UNCHANGED —+
+1 SPCAST +1
#=110, 1=300,
+2 | 2 a00 321206 +2 UNCHANGED
+3 CHARACTER ‘_‘j +3 UNCHANGED

188

Algorithm

SPCAST must take the given character and “'strip off”” the eight bits, translating
each into a serial bit, which is sent out to the serial printer through the cassette
port. The timing for each “‘bit time” is determined by the specified baud rate.

SPCAST first outputs a cassette off code by outputting a 2 to port OFFH. Next,
the baud rate code is obtained from the second byte of the parameter block.
The code is multiplied by two and added to the start address of SPCAST and the
table displacement. The result now points to a timing value in BAUDTB which
represents the “‘bit time’” for the given baud rate. This two-byte value is picked
up and put into DE.

The cassette port is now turned on by outputting a 1 to OFFH. This is the “'start’’
bit. The count in DE is put into HL and the delay loop at SPCO10 delays for one
bit time.

The code at SPCO15 is the main output loop of SPCAST. It loops eight times. For
each loop, a bit from the character in C is shifted out into the carry. If the bit is
a0, a2 level is output to port OFFH; if the bitisa 1, a 1 level is output to port
OFFH. The second-level loop at SPCO30 delays one bit time by decrementing
the delay count in HL. If eight iterations have not been performed, another bit is
transmitted.

The loop at SPC040 outputs a “‘stop”’ bit and delays for one bit time to terminate
the transmission of the character.

Sample Calling Sequence

NAME OF SUBROUTINE? SPCAST

HL VALUE? 39000

FARAMETER BLOCK LOCATION? 39000
PARAMETER BLOCK VALUES?

+ B 2 37008 ADDRESS OF SPCAST
+ 2 1 1 BAUD RATE = 300

+ 3 1 &5 “A” TQO BE QUTPUT
+ 4 @ @

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000

INPUT : OUTPUT :
HL= 39000 HL= 39000

PARAM+ @ 136 PARAM+ @ 136&

PARAM+ 1 144 PARAM+ 1 144

PARAM®: T 1 PARAM+ 2 1 UNCHANGED
FARAM+: 3 65 PARAM+ 3 &5

NAME OF SUBROUTINE?

Notes

1. External electronics must convert the cassette signal levels to RS-232-C
compatible levels. The output signal level for a logic O is approximately O volts.

189

7F 08

7F OB
7F @1
7Oz
7F@3
7F 4
7FB6
7F Y
7F@A
7FBC
7FQE
7F10
7F13
7F15
7F16
7F19
7F1C
7F1D
7FZ0
7Fz1
TFZZ
7FZ3
7F 24
7FE5
TF26
7FZB
7Fz2A
7FZB
7FZC
7FZD
7FZF
7F3z
7F34
7F35
7F34
7F38
7F3A
7F3C
7F3E
7F 40
7F41
TF4z
7F43
7F45
7F47
TF48
7F49

F5

C5

D3

ES
DDES
CD7F@A
ES
DDE1
JEQ1
D3FF
DD&EBZ
2600
29
DD3EG®
DD56@1
19
11590@
19

5E

23

56

D5

El
3EG:
D3FF
2B

7C

B5
2OFB
DD4EB3
ralatrdsd
D3

El
3E0z
CB39
3002
3IEQ1
D3FF
2B
7¢
BS
2OFR
10ED
D5
E1
3EG1

Bziod
Baiia
GB1zB
2n130
bai4@
BB158
6160
oBi7e
BpB18G
20150
20260
20210
agzza
alripedetri|
Baz4@
Ba250
Bazed
Boz70
bnzBb
ulrideedn}
DRz
B30
BB3z0
Ba330
B340
@335
PR36D
Ba37a
ba3sn
Ba3d
Bo4e
bo4id
BR420
23430
Ba44@
20450
Bp4s6
Bo470
2480
Qu4a
ralrmdrdn
@aasia
bE520
Ba530
BR5 4@
2e558
BB5460
ao570
Bassa
zBa399
Bosal
Da610
BosZR
BR630
BD&40
BO&650
oBs6sD
aas7a

The output signal level for a logic 1 is approximately 0.85 volts. Corresponding
RS-232-C signal levels are + 3 volts or more for a logic 0 and — 3 volts or less

for a logic 1.

2. Multiply the BAUDTB values by 1.143 for a Model il

Program Listing

ORG TFBoH 31 Jes
;**************************%***************************%*
3% SERIAL PRINTER FROM CASSETTE. OUTPUTS A& CHARACTER TO #
i% A SERIAL PRINTER USING THE (PU CASSETTE PORT #*
5% INPUT :HL=: PARAMETER BLOCK *
5 PARAM+@s +1=ADDRESS OF SPCAST *
3 ¥ FARAM+Z=BAUD RATE CODE B=11@: 1=30@ *
i® Z=600s 3=1200 *
5% PARAM+3=CHARACTER TO BE OUTPUT *
3 ¥ OUTPUT 2 CHARACTER OQUTPUT TO PRINTER ¥*
FHERRERAA LR H AKX EREEEREREREBREEERERRREERBE R R REHEEFREFEEERE
SPCAST PUSH AF $8AVE REGISTERS

PUSH BC

FUSH DE

PUSH HL

PUSH IX

Call. AAaTFH FHRGET PB LOC N#x%

PUGH HL. sTRANSFER TO IX

POP IX

LD Asl s CABSETTE ON CODE

ouT (BFFH) s A s BPACING

LD Ls (IX+3) sGET RATE CODE

L.D Hs @ SNOW IN HL

ADD HL. s HL 1 CODE*Z

LD Es (IX+0) TADDRESS OF THIS CODE

LD Dy (IX+1)

ADD Hi_ s DE SETART+CODE

LD DEsBAUDTR sTABLE DISPLACEMENT

ADD HL. s DE SPOINT TO TIMING COUNT

LD Es (HL) SGET MS BYTE

INC Hi. SPOINT TO NEXT BYTE

LD Ds {HL) SGET LS BYTE

PUSH DE SCOUNT TO HL

FOP HL.

I.D Ay 2 $CABBETTE OFF CODE

ouUT (AFFHYs A STURN OFF CABSETTE FOR &P
SPCB1@ DEC HL. sDECREMENT COUNT 6

LD AsH STEST COUNT 4

OR I sTEST FOR ZERO 4

JR NZsSPCB1@ GO IF NOT BIT TIME 7/1Z

LD Cs {ITX+3) 5GET CHARACTER

LD BEs8 sITERATION COUNT
SPCALS PUSH DE FTRANSFER COUNT TO HL

FOP HL.

I.D Ax 1 CASSETTE OFF CODE

SRL. C SEHIFT OUT BIT

JR NCs SPCOZR GO IF ZERO

LD Al sCABBETTE ON CODE
SPCOZB oUT (BFFH) = & SOUTPUT TO CASSETTE
5PCA38 DEC HL. s DECREMENT COUNT

L.D By sTEST COUNT

OR L.

JR NZ: BPCA3GE 5G0 IF NOT DONE

DJNZ SPCBIS 5GO IF MORE BITS

PUSH DE STRANSFER COUNT TO HL

PO HL.

LD Al sCABBETTE ON CODE

190

7F4E
7F4D
7F4E
TF4F
7F50
7FS2
7FS4
7F55
7F56
7F57
7FS8
eus9
7F59
7FSB
7FSD
7F5F
2RO

D3FF
2B
7C
B3
ZOFEB
DDE1
E1
D1
C1
Fi
ce

6£CR2
E300
7200
3900

20200 TOTAL ERRORS

oasLen ouT (BFFH) + A $OUTPUT TO CASBSETTE
67 SPCB4B DEC Hi. sDECREMENT COUNT
ha708 L.D A H s TEST COUNT
pa7ie OR L.
ba7za JR NZ+S5PCB40 3GO IF CNT NOT ZERO
na73a POP IX SRESTORE REGISTERS
BR74@ POR HL.
BD750 PoOp DE
BR76B POP BC
@77 POP AF
na786 RET s RETURN
aa72@ BAUDTE EoU $-GPCAST sRAUD COUNT TARLE
Qasae DEFW bHZ0 3118
pesia DEFW 227 3300
peBzd DEFW 114 ;600
B30 DEFW 57 51200
nag4n END
SPCAST DECIMAL VALUES
Se 197 213y ZE29s 221 229y 205y 127 105 229

221le BEDe HEs s Zllse 2599 221 1109 2 38,

Bs 414 21s B4y By 221s Bbs 1s 25s 17

39 B By D4s 354 B6y 213 2299 &2 2

211y 255y 43y 124+ 181s 325 251s 2213 78s 34

Gy B . by 2y 203y 97y 485 24

& 124s 181s 325 2515 1és

237 2 I s 2119 2555 43y 1245 181

e 251e Rl Z23B. 255, ZO9s 1935 2415 2R1. 108

Ze Z27s By 114s @s 57 @

CHKGUM= 15

SQROOT: SQUARE ROOT

System Configuration

Model |, Model 1ll, Model li Stand Alone.

Description

SQROQT calculates the integer square root of a given 16-bit number. For ex-
ample, if the number is 30,000, the subroutine will return 54 as the square root
in place of 54.77.

Input/Output Parameters

On input, HL contains the “square,’” the number whose square root is to be
found.

On output, HL contains the integer portion of the square root.

INPUT oUTPUT
HooL oL
NUMBER, 065535 | == | inrecen SQUARE ROOT

191

Algorithm

The SQROOT subroutine performs the square root operation by using the
widely-known fact that the square root of any number is equal to the number of
odd integers contained in the square. The square of 17, for example, contains
1+ 3+ 5+ 7 = 16. The total number of odd integers is 4, and this is the inte-
ger square root contained in 17.

The B register is initialized with a count of — 1; B will count the number of odd
integers in the square. DE is initialized with — 1; DE will hold the negated value
of the next odd integer——1, —3, —5, and so forth.

The loop at SQRO10 successively subtracts an odd integer from the original
number by the “ADD HL,DE.” The count of odd numbers in B is incremented
with every subtract. The loop is terminated when the “‘residue’’ goes negative
and the carry flag is reset after the add. At that point, the count of odd numbers
is returned in HL.

Sample Calling Sequence

NAME OF SUBROUTINE? SGROOT

HL VALUE? 45535 SQUARE ROOT IS 255.99 . ..

PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO? 55000

SUBROUTINE EXECUTED AT 55000

INPUT: OUTPUT:

HL= 43535 HL= 235 INTEGER VALUE OF SQUARE ROOT

NAME OF SUBROUTINE?

Notes

1. The square may be “‘scaled-up’’ to achieve more precision. For example, if
the square root of a number less than 100 is to be found, multiply the number
by 256. The square root will then represent 16 times the actual square root.
For example, 99 times 256 = 25344. The square root returned by the subrou-
tine will be 159. This represents 159/16 or 9 and 15/16 or 9.9375, much closer to
the actual square root of 9.949.

2. The square input in HL is an ““unsigned” number. The maximum square
can be 65,535.

Program Listing

20120 ORG 7F@6H @522
Y R R R T N R A N

20120 ;¥ SGUARE ROOT. CALCULATES INTEGER PORTION OF SGUARE *

PB13@ 5% ROOT OF A GIVEN NUMBER. *
20140 3% INPUT: HL=NUMBER #*
B2158 3% OUTPUT sHL=INTEGER PORTION OF SQUARE RT OF NUMBER *
DO16D HRERELERERREREERRE R IR E LR ERE LR E LR AR RREE R R AREREH
aa17a s

22180 SQROOT PUSH BC $SAVE REGISTERS

2a17@ PUSH DE

2o2z08 CALL BATFH FEEGET NUMBER##%%

192

TF@5 B&6FF aBz10 LD Bs @FFH SINITIALIZE RESULT

7F@7 LIFFFF iyl LD DEs—1 $FIRST ODD SUBTRAHEND
7FBA B4 PR30 SORBLIG INC B s INCREMENT RESULT COUNT
7Foe 19 20240 ADD HL s DE $SUBTRACT ODD NUMBER
7Fac 1B ARz50 DEC DE sFIND NEXT ODD NUMBER
7F@aDp 1p 20260 DEC DE

7FBE 38FA 2Rz70 JR CsSORB1O sCONTINUE IF NOT MINUS
7F1@ 68 pozen LD LsB $GET RESULT

7F11 2600 Baz?e LD Hs @ $NOW IN HL

7H13 D1 PB3AG POP DE $RESTORE REGISTERS

7Fi4 C1 BB318 POP BC

7H15 C39A0A PB3z0B JP DATAH ;##¥RETURN ARGUMENT %% %
7Fi8 C9 20330 RET FNON—-BASIC RETURN

2Ine oR340 END

P0EAE@ TOTAL ERRORS

SeROOT DECIMAL VALUES

197 213s: 205, 127 1@s & 255s 17s 255, 253,
4y 2D E7s 7. B6s 250 104, 38 @y 209
193s 195s 154. 1@ 201

CHKSUM= 217

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY

System Configuration

Model I, Model 11, Model 1l Stand Alone.

Description

SROARR sorts a BASIC or other one-dimensional integer array. The array may
be any size within memory limits. The array is assumed to be made up of 1 6-bit
entries. SROARR arranges the entries in the array in ascending order based on
their binary weight on a sixteen bit “unsigned”’ basis. In this scheme an entry of
8000H will be after an entry of 7FFFH. A ““bubble sort”’ is used which requires
no additional memory buffer other than the array itself.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the 16-bit address of the array, ar-
ranged in standard Z-80 address format, least significant byte followed by rnost
significant byte. The next two bytes of the array contain the number of entries
in the array. (Note that this value is one-half the number of bytes in the array!)

On output, the array has been sorted in memory. The parameter block remains
unchanged.

INPUT OUTPUT
oL Ho L
1 1T
POINTER TO PARAM+0 | ==——> [UNCHANGED
T 1

193

PARAM-+0 POINTER TO PARAM-+g
ARRAY -+ -+ UNCHANGED
+1 (MEM 1+0) +1

i
T

+2 SIZE OF +2

+ -+ - UNCHANGED
+3 ARRAY i +3

1
]
T

MEM 140 MEM 140

+ enTRYG 4 + +
+1 +1
+2 +2 SORTED

+ ENTRY1 4 T SRray T
+3 —>
+4 +4

+ EenTRY2 4 1 1
+5 +5
+6 +6 1

Algorithm

The SROARR sorts the entries by a bubble sort. This sort scans the array from
bottom to top, moving one entry at a time. EFach entry is compared to the next
entry. If the top entry is a higher value than the next entry, the two entries are
swapped, otherwise the entries are left unchanged. The next entry is then com-
pared in the same fashion until all entries in the array have been examined. At
the end of the scan, a ““swap’’ flag is examined. If a swap occurred, another
pass is made through the array. If no swap occurred, the array is sorted. A
number of passes through the array may have to be made to sort the entries.

There are two loops in SROARR. The innermost loop controls the scan from top
to bottom for every pass and starts at SRO010. The outermost loop handles the
next pass after a complete scan through the array and starts at SRO005.

The innermost loop at SRO010 loads HL with the entry pointed to by 1Y and
loads DE with the next entry. A subtract is done to compare the two. If the HL
entry is “"heavier” than the DE entry, a swap is made by storing HL and DE and
a “swap” flag in IX is set. If the HL entry is the same or “lighter,”” no swap
occurs. The 1Y pointer is then incremented to point to the next entry, the count
of entries in BC is decremented, and a test is made of BC. If there are more
entries, a jump is made to SRO010 for the next entry comparison.

If BC is zero, all entries have been compared for this pass. IX contains the
“swap” flag, and it is tested for nonzero, indicating a swap. If it is nonzero, a
jump is made back to SROO005 to start over at the first entry and to reset the
“swap” flag. The sort is over when a complete pass is made without the
“swap” flag being set.

Sample Calling Sequence

NAME OF SUBROUTINE? SROARR
HL. VALUE? 40000
FARAMETER BLOCK LOCATION? 40000

194

7Fo0

-0
7F@1
7F@z
TF@3
7F@4
7FR6
7Fog
TFaB
7F@C
7FRE
7F11
TF14

PARAMETER BLOCK VALUES?
4500@ LOCATION OF ARRAY

+ @ =z
+ 3
+ 4 0

MEMORY BLOCK
MEMORY BLOCK

+ @

il
-
-
e

&
8 s
+ 1@ @

R S S

5

MEMORY BLOCK 2

3 5 ENTRIES
@
1 LOCATION? 45000
1 VALUES?
7890
&789
5678 - INITIALIZE VALUES FOR EXAMPLE
4567
3456
2

LOCATION?

MOVE SUBROUTINE TO7 37777

SUBROUTINE EXECUTED AT 37777
INPUT 2 OUTPUT

HL= 40000 HL= 40000

PARAM+ B 200 PARAM+ @ 200

PARAM+ 1 175 PARAM+ 1 175

PARAME T 5 PARAM+ = 5 UNCHANGED
PARAM+ 3 @ PARAM+ 3 © |

MEMB1+ @ 210 MEMBl+ @ 138

MEMEL+ 1 30 MEMEi+ 1 13

MEMEI+ & 133 MEMBL+ 2 215

MEMBi+ 3 MEMB1+ 3 17

MEME 1 + MEMB1+ 4 46

MEME 1+ MEMB1+ 5 @z | NESORTED
MEME 1+ MEMEL+ & 133

MEME 1 + MEME1+ 7 26

MEME: 1 + MEMEL+ 8 210

MEME1 + MEMBi+ § 3@

MNAME OF SUBROUTINE?

Notes

1. The bubble sort is not particularly speedy, but requires minimal memory.
2. The number of entries must be two or greater.

Program Listing

0100

ORG

7FaaH

10522

DAL LG 3 3333693336 3 H 3 96 b 336 36 3 06 36 3 0 J6 36 96 H 3 3096 36 63 36 96 3 3 I3 I 3 3600 KRN R KR

PR128 3% SORT ONE-D INTEGER ARRAY. SORTS INTEGER ARRAY INTO

PB130 s¥ ASCENDING ORDER.

Pa14B 5%
QBi503 s+
PA1&6D s #
b@17@ 3%

INPUT: HL=xPARAMETER BLOCK
PARAM+@: +1=ADDRESS OF ARRAY
PARAM+Z: +3=817ZE OF ARRAY

QUTPUT :ARRAY SORTED IN ASCENDING ORDER

**
*#
#
*
*
k.3

Ll R= R T T I F LS LS T LS T ELE LIS LIS LTS ILISSL IS LS LSS AL L LS LT L R L X

PB19a 3
Bzl SROARR
pRz1a

ralri yeard

BRz38

BRz4@

0250

D260

BRz70

pezee

PRZFQ SROBOS
pa3ea

pe31@

195

PUSH AF $SAVE REGISTERS
PUSH B

FUGH DE

PUSH Hi.

PUSH IX

PUSH Iy

CaLL BATFH 3 #%#%GET PR LOC N¥#»
PUGH HL. s TRANSFER TO IX

POF IX

LD Ca (IX+2) sPUT SIZE IN BC
LD Bs (IX+3)

DEC BC 35I1ZE — 1 FOR SBORT

7F15
7F18
7F 1B
7F1C
7F1E
7F20
TF 34
7F27
7F2A
7F 2D
7F 30
7F31
7F33
7F35
7F37
7F38
7F3A
7F3D
7F 40
7F43
TF46
7F48
7F4A
7F4E
7F4C
7F4D
7F4F
7F51
7F52
7F54

7F56 .

7F358
7F3A
7F5C
7F3D
7F5E
7F5F
7F68
adrafrthi}

20008 TOoTAL

DD&EB@ BB3:2
DD&6B Ba33e
ES B340
FDE1 22350
DDES BR360
DDZ10022 be370
FRDOERO 2a380
FD&66D1 Ba39e
FD3E@Z 20400
FD5603 BR41d
B7 BB4=B
EDS2 Ba430
3811 28440
280F BR450
i9 Bo4LB
DD23 BR47a
FD7300 bB480
FD7z@1 22490
FD758% Bas520
FD74@3 20510
FD23 o520
FD23 BB530
ae Bas 4@
78 pe550
B1 PR5 6B
2@D5 28570
DDES o586
El 22590
ED4Z alanl]
DDE1 20610
20B6 DBLHZD
FDE1 20630
DDE1 BR&4D
El 20650
Di Bos6R
C1 D670
Fi anta=tn)
ce rujr oyl

2B720

ERRORS

LD Ls (IX+0) $PUT ADDRESS IN HL

LD Hs (IX+1)

PUSH HL. sCOPY INTO 1Y

POP 1Y

PUSH IX s8AVE IX

LD IX,0 $SET NGO CHANGE® FLAG
SROQIG LD Ls (IY+@) sPUT CUR ENTRY INTO HL

LD Hs (IY+1)

L.D Es (IY+Z) sPUT NEXT ENTRY IN DE

L.D Ds (IY+3)

OR A s CLEAR CARRY

SBC Hl.s DE s COMPARE PAIR

JR Cys SROBZO GO IF CUR<NEXT

JR Z3s SRODEG 5G0O IF EQUAL

ADD HL» DE $RESTORE VALUE

INC IX 3SET SWAP FLAG

LD (IY+@)sE 5SWAP PAIR

LD (IY+1)sD

LD (IY+Z)sle

LD (IY+3)sH
SROQEZ@ INC Iy $POINT TO NEXT ENTRY

INC ing

DEC EC sDECREMENT COUNT

LD AR 3TEST COUNT

OR C

JR NZ:SROBIG GO IF NOT END

PUSH IX sFLAG TO HL

FOpP HL.

SeC HLsBC $TEST FLAG

PoOP IX sRESTORE IX

JR NZ s SROBBS 56O IF SWAP OCCURED

POP Iy SRESTORE REGISTERS

POP IX

POP HL

POP DE

FOP B

POP AF

RET

END

SROARR DECIMAL VALUES

245 197+ 213 2EPs 2535 229 2B%¢ 127
1@y 229y 221 225y 78y 2y 221s 7@ 3y

11y 221 11@s Bs 2215 102y 1 s 253 225
221y 229 221s 33 By B 2532 110y @y 253

1BZs 1s 2535 945 2 253 B&s 35 183, 2374

B2y H5és 17+ 48y 15s 25y 2215 359 253s 115,

@y 2535 114 15 253 117+« 29 Z9B3s 116+ 3s

253y 35s 2539 35« 11s 120 177s 32y 213 22
2o 225y 2375 bbs 221y 22%. 32 1825 293 5%
221s 225. 225y 209 193 241 201
CHKSUM= Zz4%

SSNCHR: SEARCH STRING FOR N CHARACTERS

System Configuration

Model I, Model 1li, Model 1l Stand Alone.

196

Description

SSNCHR searches a string of any length for a “’substring”” of any length. A
““found”” or ““not found”” address of the substring is returned. The strings may
contain any combinations of data—ASCll, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next two bytes of the parame-
ter block contain the starting address of the ““key’’ string, the string for which
the search is to be made. The next two bytes in the parameter block contain the
number of bytes in the key string. The next two bytes are reserved for the result.

On output, PARAM+ 7,48 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a — 1 if the search key has not
been found in the string to be searched. If the search key has been found, the
result is the actual address of the first occurrence of the search key in the string
to be searched.

INPUT OUTPUT
Ho L Ho L
¥
POINTER Tcé PARAM-+9 | —_— I UNCHANGED]
T T
PARAM+0 | START ADDRESS PARAM-+0

+4OF STRING TO BE+4 4 uncHanGep +
+1 |SRCHED (MEM1+0) +1
+2 # BYTES IN +2

4+ strnGTO 4+ + UNCHANGED +
+3 | BE SRCHED : 43
+4 STARTING +4

4 ADDRESS OF + 4 UNCHANGED +
+5 KEY STRING +5
+6 | # BYTES IN KEY +6 UNCHANGED
*7 | RESERVED | *7 | ADDRESSIF |
+8 FOR RESULT +g] FOUNDOR—1

MEM 1+0 MEM 1+

+1 +1 i

+ STRNG T+ + +
+2 TO BE +2

4 SEARCHED + + UNCHANGED +
+3 :j +3
+4 +4 T
+5 +5 1
+6 +6

197

MEM2-+g MEM2-+g
+1 +1
T KEY + + T
+2 STRING +2
+ + + UNCHANGED -
+3 —> #
+4 +4
+5 +5
+6 +6
A e i e
Algorithm

The SSNCHR subroutine performs the search in two steps. First, a “CPIR" block
search is made for the first character. If the first character is not found, the
search has been unsuccessful. If the first character is found, a further compari-
son is done for the other characters in the search string.

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched is put into BC. The first character of the search string is put into the
A register. (Also at this point, the search string start is put into DE.) The CPIR
search is done at SSNO60.

I the Z flag is not set after the CPIR, the first character of the string has not been
found and the code at SSNO8O puts a — 1 into the result. If the Z flag is set, the
first character of the string has been found.

The code at SSNO70 compares the remaining bytes to see if the key string
matches. In this loop, HL points to the locations of the string to be searched,
while 1Y points to the locations in the key string. B contains the count of the
number of characters in the key string. If any characters do not compare, a
return back to the CPIR is done with HL pointing to the next byte after the byte
that was found. If all characters compare, the address of the first character in
the string to be searched is put into the result.

Sample Calling Sequence

N&ME OF SUBROUTINE? SSNCHR

HL VALUE? 40000

PARAMETER BLOCK LOCATION? 40600
PARAMETER BLOCK VALUES?

+ @ 2 45HQBE@ START OF STRING TO BE SEARCHED
42 Do Y 6 BYTES IN STRING TO BE SEARCHED
+ 4 2 446Q00@ START OF KEY STRING

+ b 1 3 3BYTES IN KEY STRING

+ 7 & 8

+ 9 B @

MEMORY BLOCK 1 LOCATION? 45000

MEMORY BLOCK 1 VaAlLLUES?

+ @ 1 @

+ 1 1 i

+ 2 1 &

I i 3 STRING TO BE SEARCHED

+ 4 1 4

+ 5 15

+ & @ @

MEMORY BLOCK 2 LOCATION7? 446008

198

7FoB

7Fon
7FB1
7FRz
7FB3
TF@4
7FB6
7Fa
7FoR
7F@cC
7FOE

E

1
1
+ 3 B

M
S
+
+

M
2 1
1

5
3

ORY BLOCK 2 VALUER?

3
4 } KEY STRING

MOVE SUBROUTINE TO7 38800
SUBROUTINE EXECUTED AT 382020

INPUT:

HL= 43208

PARAM+
FaRAM+
FARAM+
FARAM+
PARAM+
FraRAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB 1+
MEME 1+
MEMB. 1+
MEME 1+
MEMB 1+
MEMBZ+
MEMB2+
MEMBZ+

Pl S WAL LR RN W R R

200
175
&

@
176

179

WML Lib-8 880

QUTPUT =
HL= 402G
FARAM+
FARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB 1+
MEME 1+
MEMB 1+
MEMB 1+
MEMB 1+
MEMBZ+
MEMBZ+
MEMBZ+

et
175
é

FUNCHANGED
174
179
3
el s
175

} FOUND AT 45603

FUNCHANGED

IS U PLMN= 8 ONE RS-

L LU LR e &)

NAME OF SUBROUTINE?

Notes

1. The key string may be one byte.

2. The key string may not contain a larger number of bytes than the string to
be searched.

Program Listing

Be10s

ORG

TFBaH

PO1ID SHERFEREFREARERREFERRERERRREERRERREREE R RRERRRER AR ERE R E SR
PB1z@ 3% SEARCH STRING FOR N CHARACTERS. SEARCHES STRING FOR
@130 3% A BUBSTRING.

20140 3%
a@15e 3=
PO16D 5%
BR170 3=
20180 =
B19@ s*
A28 5%
Rz1D 5x
pOzZzB 3%

INPUT:

QUTPUT :

HL=> PARAMETER BLOCK

PARAs +@: +1=8TARTING ADDRESES OF STRING TO
BE SEARCHED

PARAM+Zy +3=# BYTES IN STRING TO BE SRCHED
PARAM+45 +3=8TARTING ADDRESS OF KEY STRING
PARAM+6=%# OF BYTES IN KEY
PARAM+7 5 +8=RESERVED FOR RESULT
PARAM+7 5 +8=ADDRESS OF SUBRSTRING IF FOUND
OR -1 IF NOT FOUND

B ok ok ok ok k& K ok ok %

it R = T L TEE S E L L L L L LSS L L L L LL SRS S LS EAE LRSS EEEE XSS

pozal i
PR250 SBNCHR
BB268
Boz7a
BB:280
rilt el
ae360
pR310
PB3zB
a330
20340

199

PUBH
PUSH
PUSH
PUSH
PUSH
PUSH
CaL.L
PUSH
FOP
LD

AF 3SAVE REGISTERS

Ba7FH s ##%GET PR LOCT N¥x%

HL. s TRANSFER TO IX

IX

La (IX+8) 5PUT STRING START IN HL

7F11 DD&66BI aa358 LD He (IX+1)
7F14 DD4EBZ PB368 L.D Co (IX+2D
7F17 DD46B3 Bpa37é LD Bs (IX+3)
7F1A DDOERG4 aB380 LD Es (IX+4)
7F1D DD3625 Bo39a LD Ds {IX+35)
7F2@ D3 20408 PUSH DE

7Fz1 FDE1 Lrari EO R POP Iy

7Fz3 FD7EQO PR4z0 S5NB6B LD As (IY+@)
7Fzé6 EDBEL ne430 CPIR

TFEZ8 2021 BB4sd JR NZ s SENO8O
7F2A DD46B6 aR450 LD B (IX+&)
7F2D @5 B246D DEC B

TFZE 2813 BO470 JR 25 BSNB72
7F380 E3 Be488 PUSH HL

7F31 FDES aB49a PUSH 1Y

7F33 FDZ3 Basee INC 1Y

7F35 7E BB5 1@ SSNO7@é LD A (HLD
7F36 FDREQD Des2e cP (1Y)
7F3% 200B nes53a JR NZ s 88N@B75
TF3R =3 BO548 INC HL

7F3C FDZ3 BB558 INC Iy

7F3E 1@F3 Das6d DJINZ S5GN@70
7F4B FDEL bas7a POP Iy

7F4% E1 20580 POP Hi.

7F43 2B B@59@ 88NG7Z2 DEC HL.

TF44 1808 BRLBB JR HENBYE@
7F46 FDEL BR&1B BENBT7S POP 1Y

7F48 E1 BOLZD POP Hi.

7F49 18D8 o630 JR SENB&EB
7F4R Z1FFFF AB64B S5NBBBG LD HLs—1
7F4E DD7587 PBL5E SONBIZ LD (IX+7)sL
7F31 DD74@8 00660 LD (IX+8)sH
7F54 FDE1 20670 POP i 4

7F56 DDEL 20480 POP IX

7F38 El o670 POP HL

7F59 D1 20700 POP DE

7F5A Ci PB710 POP BC

7F5B F1 Ba720 POP AF

7F3C C9 Ba730 RET

aooo BO74@ END

20RO TOTAL ERRORS

S6NCHR DECIMAL VALUES

2455 197s Z13¢ 229 221y 229
1@ 229 221s 225 Z21s 1105
221s 7Bs 2Zs 221s 7By 3¢ 221s
Béhs 5y 213+ 253s 225y 253,
32y 33s 221+ 7Bs &5 55 40
229s 253s 35 1269 2535 19@»
253y 35+ 1é6+ 245 2535 225
253s 225y 2295 24y 216s 33s

Ts 221s 11ds 8s 253s 225,
193s 241s 201

CHKBUM= 198

SSOCHR: SEARCH STRING FOR ONE CHARACTER

System Configuration

Model 1, Model 1ll, Model 1l Stand Alone.

200

sPUT # OF BYTEB IN RC
$PUT 88 IN DE
s TRANSFER TGO 1Y

sGET FIRST CHAR OF 88
sSEARCH FOR 18T CHAR
5G0 IF FIRST CHAR NOT FND

sGET # OF BYTES IN S8
sDECREMENT FOR FIRST
$ONE BYTE REY CASBE
sB5AVE LOC’N OF FIRST
sSAVE 18T CHAR OF 85
sPOINT TO SECOND OF 88
sGET NEXT BYTE
;s COMPARE
$GO IF NO MATCH
sBUMP STRING PNTR
sBUMP 85 PNTR
5G0 IF MORE
sGET 1ST CHAR POS OF 88
sRESTORE LOC’N OF FIRST+1
s ADJUST FOR CPIR
;G0 FOR CLEANUP
sRESET
sRESTORE CUR LOCTN
s CONTINUE CPIR
sNOT FOUND FLAG
$STORE LOC’N QR "NOT FND?

$RESTORE REGISTERS

$RETURN TO CALLING PROG

E53s 229s 2855 127
221 102y 14

b4y 221

@y 2379 177>
2295 253
32y 11y 35

435 Z4s B
285s ZZ1s 117

225s 225y 209

Description

SSOCHR searches a string of any length for a given byte. A “found”” or “"not
found’” address of the character is returned. The string and byte may contain
any combinations of data—ASCIl, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next bytes of the parameter
block contain the “key’”’ byte, the byte for which the search is to be made. The
next two bytes are reserved for the result.

On output, PARAM+ 5,46 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a —1 if the search byte has
not been found in the string to be searched. If the search byte has been found,
the result is the actual address of the first occurrence of the search byte in the
string to be searched.

INPUT QUTPUT
Ho L Ho L
H T
POINTER TO PARAM-+0 } s l UNCHANGED
T 1
PARAM-0 PARAMAG
+ ADDRESS + UNCHANGED -+
. OF MEM 1+ .
+2 +2
4+ #BYIES 4 UNCHANGED -
3 IN STRING i 3
+4 SRCH CHAR +4 UNCHANGED
+5 RESERVED +5 ADDRESS OF
+ FOR + 4 FOUND CHAR +
+6 RESULT +6 OR —1
MEM 1+8 MEM 1+¢
11 stRNG |] 1
+2 OF +2
| CHARACTERS | 1 uNcHANGED |
3 —> 3
14 | +4
+5 +8
+6 | +8 L
Algorithm

The SSOCHR subroutine performs the search by a “CPIR” block search for the
first character.

201

7FBa

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched are put into BC. The search byte is put into the A register. The CPIR
search is then done.

If the Z flag is not set after the CPIR, the key byte has not been found and the
code at SSO010 puts a — 1 into the result. If the Z flag is set, the key byte has
been found.

Sample Calling Sequence

NAME OF GUBROUTINE? SSOCHR

HL VALUE? 500800

PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?

+ @ 2 40008

+ 2 2 5 ADDRESS OF STRING TO BE SEARCHED
+ 4 1 446 B5BYTES

+ 5 Z @ SEARCH CHARACTER

+ 7 B @

MEMORY BLOCK 1 LOCATION? 48008
MEMORY BLOCK 1 VALUES?

+ @ 1 &7

+ 1 1 68

+ 21 b& STRING TO BE SEARCHED
+ 3 1 45

+ 4 1 4B

+5 @8 @8

MEMORY BPLOCK 2 LOCATION?
MOVE SUBROUTINE T0?7 52000
SUBROUTINE EXECUTED AT 52000

INPUT: OUTPUT ¢
HL= 50200 HL= 5200
PARAM+ B &4 PARAM+ B 64
PARAM+ 1 156 PARAM+ 1 156
PARAM+ Z 5§ PARAM+ 2 5 ~UNCHANGED
FARAM+ 3 @ PARAM+ 3 @
PARAM+ 4 &6 PARAM+ 4 &b
FARAM+ 5 @ PARAM+ 5 &6
PARAM+ 6 @ PARAM+ & 156 | [OUNDAT 40002
MEMBI+ @ &7 MEMBI+ @ &7
MEMB1+ 1 &8 MEMBi+ 1 &8
MEMBI+ 2 46 MEMBi+ = 646 UNCHANGED
MEMBI+ 3 &5 MEMB1+ 3 65
MEMB1+ 4 &0 MEMBI+ 4 4@
NAME OF SUBROUTINE?
Program Listing
P0100 ORG 7F@@H @522

BBL L@ 55 H R R A 6T IS0 36360 63 3636003 T 20360626 2336 36 46 06 36 963646 96 2 36 6

BR120 3% ONE-CHARACTER STRING SEARCH. SEARCHES STRING FOR ONE #
28138 s* GIVEN CHARACTER. *

214G 5% INPUT: HL=> PARAMETER PLOCK #*
Ba150 s* PARAM+@s +1=ADDRESS OF STRING TO BE SRCHED =
QD168 3% PARAM+Zs +3=% OF BYTES #*
2B178 s+ PARAM+4=8EARCH CHARACTER *
201i8a 5= PARAM+5 5 +6=RESERVED FOR REBULT #*
Ba190 5% OUTPUT :PARAM+5++6 SET TO ~1 IF NOT FOUND OR ADD- *
pezZoB % RESS OF CHARACTER IF FOUND *

al g i IR S TR R 2 2 X 2 R s S R R R S e e
oBzze

202

7FBB F5 P@Z3D SSOCHR PUSH aF $8AVE REGIBTERS

7FB1 (5 a0z40 PUSH BC

7Faz ES pazsa PUGH HL

7F@B3 DDES Bozsw PUSH IX

7F@s CD7FBA paz7a CALL BATFH ;%% GET PB LOCN#x=®
7FB8 ES 26280 PUSH HL $ TRANSFER TO IX

7F®9 DDEL BRzIa POP IX

7F@AB DD&GERG aa308 LD La (IX+3) $PUT STRING ADDRESS IN HL
7F@E DD&&BT 28310 LD He (IX+1)

7F11 DD4E@GZ BB3z20 LD Ce (IX+2) sPUT # BYTES IN BC

7F 14 DD4&IA3Z PR3320 LD Bs {TX+3)

7F17 DD7EB4% BB340 LD As (IX+4) 1PUT SEARCH KEY IN A
7Fia EDBIL 20358 CPIR s SEARCH

7F1C ZB@3 PA36B JR NZs 3850818 GO IF NOT FOUND

7F1E ZB ap37@ DEC HL sFOUNDs ADJUST POINTER
7FiF 1863 26380 JR 850820 G0 TO STORE RESULT
7F21 ZIFFFF pR39@ ssopi@d LD HLs~1 sFLAG FOR NOT FOUND
7F24 DD73@5 2B40B S80BZB LD (IX+5)sL $STORE RESULT

;EQX BBE?@é 882%3 %8P §§X+6),H $RESTORE REGISTERS
TFZC EL pR430 POP HL.

7FZD C1 20440 POP BC

TFZE F1 2450 POP AF

7F2F C9 BR446D RET sRETURN TO CALLING PROG
el 8478 END

PAREY TOTAL ERRORS

S850CHR DECIMAL VALUES

T45 1975 ZE9 TIlse 229, 205s 127 1@s 229 221
By 221s 118s Bs s 1@Zs 13 2219 785 2»
1 7@ Rs 221ls 12b6s B9 F37 1775 325 3
43F5 P4y 3Fs 339 259 255s 221 1175 58 221

11bs by 221s 225 225, 193+ 241. 201

CHKSUM= 137

SSTCHR: SEARCH STRING FOR TWO CHARACTERS

System Configuration

Model 1, Model I, Model 1l Stand Alone.

Description

SSTCHR searches a string of any length for a “‘substring” of two bytes. A
“found”” or “‘not found’’ address of the substring is returned. The strings may
contain any combinations of data—ASCl, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the
number of bytes in the string to be searched. The next two bytes of the parameter
block contain the “key” string, the string for which the search is to be made.
The next two bytes are reserved for the result.

203

On output, PARAM+6,+7 contain the result of the search. All other bytes in
the parameter block are unchanged. The result is a — 1 if the search key has not
been found in the string to be searched. If the search key has been found, the
result is the actual address of the first occurrence of the search key in the string
to be searched.

INPUT OuTPUT
H , L H ! L
$ T
POINTER TO PARAM-+@] — L UNCHANGED]
i t
PARAM-+0 ADDRESS OF PARAM-+3
|l STRINGTOBE | 4+ UNCHANGED -+
» SEARCHED 1
(MEM 1+0)
42 +2
L B#YTOEFS L + UNCHANGED +
3 —> =
+4 +4
SEARCH
4 s 4+ UNCHANGED -t
+5 CHARACTERS 45
6 +6 ADDRESS OF
RESERVED
4 4 -+ FOUND STRING —+
+7 FOR RESULT 7 OR o1
MEM1+8 MEM1-+0
1 +1
-+ STRING -+ T T
+2 TO +2
4 BE + T+ T
+3 SEARCHED > +3 UNCHANGED
+4 +4
45 +5
+6 | 1 +6 | L
Algorithm

The SSTCHR subroutine performs the search in two steps. First, a “CPIR"” block
search is made for the first character. If the first character is not found, the
search has been unsuccessful. If the first character is found, a further compari-
son is done for the second character in the search string.

The registers are first set up for the CPIR. The string start address of the string to
be searched is put into the HL register pair. The number of bytes in the string to
be searched is put into BC. The first character of the search string is put into the
A register. The CPIR search is then done.

If the Z flag is not set after the CPIR, the first character of the string has not been
found and the code at SST020 puts a — 1 into the result. If the Z flag is set, the
first character of the string has been found.

The code following the CPIR compares the remaining byte to see if the key
string matches. In this loop, HL points to the location of the second byte in the
string to be searched, while IX points to the parameter block location. If the
second character does not compare; a return back to the CPIR is done with HL
pointing to the next byte after the byte that was found. If the second character
compares, the address of the first character in the string to be searched is put
into the result.

204

Sample Calling Sequence

NAME OF SUBROUTINE? SS8TCHR

HL VALUE? 42222

PARAMETER BLOCK LOCATION? 4Zz222
PARAMETER BLOCK VALUEG?

+ @ 2 45555 START OF STRING TO BE SEARCHED
+ 2oz 7 7 BYTES IN STRING TO BE SEARCHED
+ 4 1 4%

EARCH CHARACTERS
+5 1 48 }S ¢
+ 6 2 @
+ 8 B 2

MEMORY BLOCK 1 LOCATION? 435533
MEMORY BLOCK 1 VALUES?

+ @ 1 45

+ 1 1 46

+ F 1 47

+ 3 1 48 INITIALIZE STRING TO BE SEARCHED
+ 4 1 49 FOR EXAMPLE

+ 5 1 48

+ h 1 47

+ 7 B 8

MEMORY BLOCK 2 LOCATION?
MOVE SUBRROUTINE ToO7 38000
SUBROUTINE EXECUTED AT 38006

INPUT OUTPUT :

Hl= 42222 HL= 4Z2&83% _

PARAM+ @ 243 PARAM+ @ 243

PARAM+ 1 177 PARAM+ 1 177

PARAM+ & 7 PARAM+ 2 7

PARAM+ 3 B PARAM+ 3 @ UNCHANGED
PARAM+ 4 49 PARAM+ 4 49

PARAM+ 5 48 FARAM+ B 48 _

PARAM+ & B PARAM+ & 247]_ FOUND AT 45559
PARAM+ 7 @ PARAM+ 7 177

MEMBLI+ @ 43 MEMR1+ @ 45

MEMBLI+ 1 46 MEMBI+ 1 46b4

MEMB 1+ 2 47 MEMB1+ 2 47

MEMB LI+ 3 48 MEMB1+ 3 48 - UNCHANGED
MEMB1+ 4 49 MEMB1+ 4 49

MEMBL+ 5 48 MEMBI+ 5 48

MEMBI+ & 47 MEMBI+ & 47 |

NAME OF SUBROUTINE?Y

Notes

1. If asearch is to be made for an address, the order of the search key should
be least significant byte followed by most significant byte. If the search is for
character data, the order of the search key should be first character, second
character. In other words, arrange the bytes the way they would occur in the
string to be searched.

Program Listing

7FB6 paiow ORG 7FBoH 3@522
DDL LD 5% %5555 5963 33 363 6069 333000 333 0003 30060 160636 3 363 3 B0 SRR

@1z 3% TWO-CHARACTER STRING SEARCH. SEARCHES STRING FOR TWO %

@B13@ 3% GIVEN CHARACTERS. *
20140 s+ INPUT: HL=> PARAMETER BLOCK *
BB158 3% PARAM+@s +1=ADDRESS OF STRING TO BE SRCHED #
PR1I6D s PARAM+Z s +3=# OF BYTES *
BBL70 3% PARAM+4 5 +5=5EARCH CHARACTERS *
PBigd s PARAM+& s +7=RESERVED FOR RESULT *
BB170 3+ QUTPUT: PARAM+6s+7 SET TO ~1 IF NOT FOUND OR ADD- =
pRzea s« RESS OF CHARACTERS IF FOUND *

BAZ LD 5355 36 33 3330 3 33 3636 536 33 3 3 5 96 3 W %3 903 3 56 363 96936 300 W R R R RN R HRR

205

7F @
7FB1
TFBE
7F@3
7F25
7F@8
7F09
7FoB
AFBE
7F11
7Fi4
7F17
TF1A
7F1C
7F1iE
TF1F
7Fz@
TFz2
TF25
TFz6
7FZ8
729
7FZEB
TF2E
7F31
7F34
7F36
TF37
TF38
7F39
lrtals]

F5

5

ES
DDES
CD7F @A
E3
DDE1
DD&ERG
DD&6B1
DD4E@Z
DD4 623
DD7EQ4
EDE1
<2aD
78

B1
=809
DD7E®BS
PE
ZBEF
ZB
1803
Z21FFFF
DD75@6
DD74@7
DDE1
El

Ci

Fi

co

lra g
0B230
baz4w
gaz5e
BRz60
22270
drora =]l
ralrpeardn]
B30
Ba31o
Ba3z0
BB330
BB340
Ba3s5e
Ba360
BB370
pB380
Br390
23400
PB410
Ba4z0
20430
2448
BB450
20460
Qo470
@480
BR4ca
BR506
Be516
PR320
Be53a

AB2Ba TOTAL ERRORS

SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE

85T CHR DECIMAL

S8TCHR PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
LD

S8T@10 LD
CPIR
JR
LD
OR
JR

CP
JR
DEC
JR
sS5TRZ2 LD
55T@30 1.D
LD
POP
FOP
PopP
POPF
RET
END

177 4@

1169 79 221

CHKSUM= 8

System Configuration

Model [, Model Iil.

Description

197y 2294
21y 1185
7@y 3y 221

24 33 334

AF

BC

HL

IX
BATFH
HL.

IX

s (IX+8)
Hs (IX+1)
Ce {TX+2)
By (IX+3)
As (IX+4)

NZsS5TOz8
A B

¢

Z: 587020
As (L IX+5)
(HL)
NZ:s55TO18
HL.

S55TO3Q
HLs—1
(IX+bH) el
(IX+7)aH
X

HL.

21

AF

VaLUES

E21s 229 2055

@y

221y 10

s 4y P37s 1775 32s
221 126
255 Z55s 221y 1171 bs
2259 225y 193y

18AVE REGISTERE

s ¥%¥GET PB LOCT N¥x%
FTRANSFER TO IX

$PUT STRING ADDRESS IN HL
sPUT # BYTES IN BC

sPUT SEARCH KEY IN A
sSEARCH

GO IF NOT FOUND

sTEST FOR END

GO IF AT END OF STRING
$GET SECOND CHAR OF REY
sCOMPARE TO NEXT BYTE
SCONTINUE IF NG MATCH
sADJUST BACK TO START
3GO TO STORE RESULT
sFLAG FOR NOT FOUND
$8TORE RESULT

sRESTORE REGISTERS

$RETURN TO CALLLING PROG

7y 1@
e 221 785

55 190y 324

41y 201

SXCASS writes the video display as a cassette record or reads in a previously
written record to the display. All screen characters and graphics are written to
the cassette and the subsequent read will restore the entire screen as it ap-
peared before the write.

206

7F08

Input/Qutput Parameters

On input, the HL register pair contains a zero for a write or a one for a read. On
output, the screen has been written as a single cassette record, or the next
cassette record has been read to the screen.

INPUT QUTPUT
HooL Ho L
H T
@=WRITE 1=READ l p— [UNCHANGED
H H
Algorithm

If a screen write is to be performed, the code at SXCO10 is executed. This uses
the ROM subroutine to write leader (287H) of zeroes and a sync byte. The loop
at SXCO10 calls the ROM ““write cassette byte”’ subroutine to write the video
display memory contents from location 3COOH through 3FFFH. HL contains the
pointer to video display memory. The write is done until the H register contains
40H, signifying that the last screen byte has been written. No checksum or
other header data is put on the cassette record.

If a read screen is to be performed, the code at SXC025 is executed. ROM
subroutine 296H is called to bypass the leader of the next cassette record. The
loop at SXC030 calls the ROM ‘“‘read cassette byte’” subroutine to read in the
bytes of the next cassette record into video memory locations 3CO0H through
3FFFH. HL is used as a memory pointer. The read is done until the H register
contains 40H, signifying that the last screen byte has been read.

Sample Calling Sequence

NAME OF SUBROUTINE? SXCASS

HL. VALUE? @ WRITE

FARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?

MOVE SURROUTINE To? 37777
SUBROUTINE EXECUTED AT 37777
INPUT: OUTPUT =

= @ HL= @

NAME OF SUBROUTINE?

Notes

1. The read or write operation takes approximately 25 seconds.
2. This subroutine does not save registers.

Program Listing

o180 ORG 7FRaH . ;@522

DALID 15 HHHRERHEREREREERERRELEFRERAEER LR R B RER LR ERERRRRRRES
ARiz@ ¥ WRITE/READ SCREEN CONTENTS TO CASSBETTE. *
20130 5% INPUT: HL=@ FOR WRITE SCREENs 1 FOR READ ¥
20140 s+ OUTPUT: SCREEN/CASBSETTE ACTIONS *

DAL1SD 5555553305963 96363006 KA T IR I N3 I IR I N
PR160

207

7Fees
TFB1
7Faz
7FBs
TFB8B
7F3A

7FacC
7FBF
TF12
7Fi3
TFi4
7F17
7F18
7F19
TF1A

JFIC 2

7F1E

7F 20
7F23
7F26
7HE7
7F2A
7F 2B

7FZC

TFZD
7FZE
TF3@
TF3Z
TF35
Bana

7C
FE4D
T@Fa
CDFa@al
ce

2e008 ToTaL

BBL17@ SXCABE DI sDISABLE INTERRUPTS
BBiseG XOR 1) $ZERO A
al] CALL Z12H $SELECT CASSETTE @
alridesrit CAlLL BATFH 5% #GET FUNCTION#®X#
gasie BIT @s L. sTEST FUNCTION
BBz JR NZ:5XCB25 3G0 IF READ CASSETTE
QB30 5 WRITE HERE
BRz40 CaAl.L 287H sWRITE LEADER
Qo5 LD Hi. s 3CRBH $SETART OF SCREEN
Baz6B SXCO18 PUSH HL. $SAVE CURRENT LOCATION
BRz70 LD As (HL) $GET NEXT BYTE
aledslt) CALL 2&64H sWRITE TO CASSETTE
Bazoa POP HL. $RESTORE POINTER
QB300 ING Hi. 1BUMP POINTER
Bazie LD s H sGET POINTER MSE
PR3z CP 4@H $TEST FOR SCREEN END+1
aa33e JR NZsSXC@hia sLOOP IF NOT END
BB34 JR SXCB40 ;s CLEANUP
ARA35@ 5 READ HERE
BA36Q SXCAZ53 Cal.l 29EH sBYPASE LEADER
Baz7e LD HL.: 3CHAH sBTART OF SCREEN
BA38B SXCO30 FUSH Hi. $BAVE CURRENT LLOCATION
Bazeen Call 235H sREAD NEXT BYTE
Qa4Ba POP Hi.. SRESTORE POINTER
aa416 LI (ML) s A iSGTORE BYTE
BB4z0 INC HL. sBUMP POINTER
Q@430 LD As H sGET POINTER MSE
BA44G oP 4H ITEST FOR SCREEN END+1
BRLssen JR MNZs SXCR3R $LOOP IF NOT END
PRLLD SXCA4E CALL iF8H sPDESELECT
Bas7e RET TRETURN TO CALLING PROG
aR4ae END
ERRORS

SXCASS DECIMAL VALUES

243 175 205 18y Ze 205 18 203« 69

32 2@y 2@5s 1355 2y 335 Bs BE2Gs 1326

205, 180, Zs 225¢ 354 1374, b4y 3

245 18y 205+ 15@. 29 33y G» E29s !

53s Fy 2E5s 119 35y 124 254 b4y 324 2445

205 248 1. 201

CHRBUM= 229

TIMEDL: TIME DELAY

System Configuration

Model 1, Model Ili, Model Il Stand Alone.

Description

TIMEDL delays a specified amount of time, from 1 millisecond to 65,536 milli-
seconds, before returning to the user calling program.

Input/Output Parameters

On input, the HL register pair contains the number of milliseconds to delay,
from 1 to 65,536. A value of zero is treated as 65,536. TIMEDL returns after the
specified delay.

208

INPUT QUTPUT
Ho L H oL
H
DELAY COUNT ¢-65,535 { _ l UNCHANGED
T 1

Algorithm

The 1 millisecond time delay loop is the heart of TIMEDL. It consists of one
instruction, the DJNZ at TIM020. This instruction takes 13 cycles when the loop
is made or 8 cycles when B is decremented to zero. With a given count in B,
therefore, the time delay is:

Delay (cycles) = (CNT—~1)%13 + 8

A cycle in the Model | with a standard clock takes 0.56375 microseconds. The
delay in microseconds is therefore:

Delay (microseconds) = (CNT—1)%7.32875 -+ 4.51
To get a time delay of 1000 microseconds (1 millisecond):

1000 = (CNT—1)%7.32875 + 4.51;
CNT= 134.83

The outer loop of TIMEDL controls the number of 1 millisecond inner loops.
The outer loop has some overhead associated with it, so the count in B for the
DJNZ is made 134 even. The actual time delay for a given value in HL, HLCNT,
is now:

Delay (cycles) = HLCNT=(7 + (133#13+8) +15 +12)
Delay (microseconds) = HLCNT%998.40

This is about a 0.1% error on the low side, or about a millisecond for a one-
second delay.

Sample Calling Sequence

NAME OF SUBROUTINE? TIMEDL

HL VALUE? @ MAXIMUM DELAY = 65.535 SECONDS
PARAMETER BLOCK LOCATION?

MEMORY BLOCK 1 LOCATION?

MOVE SUBROUTINE TO7 52020

SUBROUTINE EXECUTED AT 50008

INPUT s OUTPUT ¢

Hi= @ Hi= @

NAME OF SUBROUTINE?

Notes

1. Adjust the immediate value loaded into B for clock modified TRS-80s.
2. Use an immediate value of 153 for Model ills.

3. Use an immediate value of 151 for Model lis for delays of .5 to 32768
milliseconds in units of 1/2 millisecond.

209

Program Listing

ORG 7FeaH

;@5z@

R A R ST 2 2 SIS BT R R Yy Y T YTy

INPUT: HL=TIME DELAY COUNTs
OUTPUT:RETURN AFTER DELAY

—f wn we un o um

TIME DELAY. DELAYS 1 TO 65:536 MILLISECONDS.

#
1 TO 65535. B=65536 *
#*

LR R e SR 2 R R R el Ty Y Y s 2 S T LT R

7FoB 20100

bolie

22120

2130

22140

28156

p2160
7Fo@ C5 Pe170
7FB1 D5 28180
7FBZ ES an190
7FB3 CD7FBA AOz00
7FBé6 110100 aozi1o
7FR7 0686 2azza
7F@B 1@FE 2230
7F@D ED5Z BD240
7FOF ZoFB Bazse
7F11 El ARz60
7F12 D1 Poz70
7F13 €1 aazee
7F14 C9 oazoe
aaoe O30

fueae TOTAL ERRORS

TONQUT: TONE ROUTINE

IMEDL PUSH BC $8AVE REGISTERS

PUBH DE
PUSH HL.
CALL BATFH s¥##GET TD COUNT#%%
LD DEs 1 s DECREMENT

TIMB18 LD Bs134 s INNER LOOP COUNT 7

TIMRZ@ DJINZ TIMBZ2@ sLOOP FOR 1 MS 8/13
SBC HL.s DE sDECREMENT TD COUNT i5
JR NZ:TIMB1Q 5G0 IF NOT OVER 7/1Z2
POP HL. SRESTORE REGISTERS
POP DE
POP BC
RET SRETURN TO CALLING PROG
END

TIMEDL DECIMAL VALUES

197 213 229 ZB5s 127+ 105 17+ 13 @5 &

134y 1é&y 254 2375 82y 32+ 248s 22%, 209 193,
201
CHRSBUM= 2@

System Configuration

Model |, Model 111

Description

TONOUT outputs a tone through the cassette port. The cassette jack output
may be connected to a small, inexpensive amplifier for audio sound effects or
warning tones. The tone ranges from approximately 0 cycles per second (hertz)
to 14,200 cycles per second. The duration of the tone may be specified by the
user.

TONOUT is not a musical tone generator (see MUNOTE), but is a general-
purpose tone generator to produce tones over a wide range and duration.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block contain a frequency count for the subroutine.
The frequency count may be 1 to 65,535. A frequency count of 0 is regarded as

210

65,536. The frequency decreases as the frequency count increases. A frequency
count of 1 is approximately 14,200 hertz, while a frequency count of 256 is
approximately 150 hertz. The exact frequency is given by

Frequency = 1,000,000 / (25.9#COUNT + 44.53)

The next two bytes of the parameter block contain a duration count of 1 to
65,535. A duration count of 0 is regarded as 65,536. The greater the duration
count, the greater will be the duration of the tone. Each duration count pro-
duces one “‘cycle’” of the tone plus one additional cycle. A tone of 400 hertz,
for example, is 1/400 or 2.5 milliseconds per cycle, and a duration count of 100
would cause the 400 hertz tone to be generated for 100%2.5 milliseconds or 1/4
second. The higher the frequency, the smaller the cycle time, and the duration
count should be adjusted to compensate for this. Two consecutive 400 hertz
and 800 hertz tones of 1/4-second duration, for example, should have duration
counts of 100 and 50, respectively. Maximum duration for a 1000 hertz tone is
65.5 seconds.

INPUT QUTPUT
H L H L
T T
POINTER TO PARAM-+0 | — [UNCHANGED
i
H T
PARAM+9 PARAM-+
FREQUENCY
4 4+ UNCHANGED -+
» COUNT o
+2 +2
_+ D%%R?” + 4+ UNCHANGED -+
3 — 3
Algorithm

TONOUT uses two loops. The outer loop (from TONO10) produces the nurmber
of cycles equal to the duration count. The inner loop is made up of two parts.
The TONO020 portion outputs an “on’’ pulse from the cassette output. The
TONO30 portion turns off the cassette port for the same period of time. Both
portions use the frequency count from the parameter block for a timing loop
count.

The frequency count is first put into DE and the duration count into IX. The
TONO10 loop puts the DE frequency count into HL and turns on the cassette
(OUT OFFH,A). The count in HL is then decremented by one in the TOINO20
timing loop. At the end of the loop, the count is again put into HL from DE, the
cassette is turned off, and the count is decremented by one in the TOMNO30
timing loop. After this loop, the duration, or cycle, count in IX'is decremented
by one and if not negative, a jump is made back to TONO10 for the next cycle.

Sample Calling Sequence

NAME OF SUBROUTINE? TONOUT

HL VaALUE? 462028

FARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

211

7FBG

7Fo@
7F@1
72
7Fa3
7F4
7F26
7FB9
7FBA
7F@ac
7FaF
7F1z
7F13
7F1é
7F19
TF1A
7F1iB
7F1D
F2

7FZ1
TFaz
TF24
TF2é6
TFZ7
TFZA
TFZR
7FzC
7F2E
7F30

+
E
+ 4

Pa

[N

37
16000
@

FREQUENCY COUNT OF ABOUT 1060 HZ
DURATION OF ABOUT 10 SECONDS

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO7 37000
SUBROUTINE EXECUTED AT 37006

INPUT:

HL= 40200
PARAM+ @ 37
PARAM+ 1 @
PARAM+ 2 16

PARAM+ 3 39

QUTPRUT =

HL= 42000

PARAM+ @ 37

PARAM+ 1 @ | NeyanGeED
PARAM+ T 16

PARAM+ 3 39

NAME OF SUBROUTINE?

Notes

1. Cassette port electronics limits the tone output to 100 through 6000 hertz

Or so.

2. The frequency equation above is for a standard TRS-80 Model I clock fre-

quency.

Program Listing

Baio6

CORG

7FBoH

10522

@110 FHRKERARREAEEEEREEEERERRERFERERBREREEEEREREEREE RS SR RS ERER

0B120 3% TONE ROUTINE.

D140 3%
Ba15a 5=
DRisd 5%
AA178 5%

INPUT: HL=>X

OUTPUTS A TONE THROUGH THE CASSBETTE
@BO130 5% PORT OF SPECIFIED FREQUENCY AND DURATION.
PARAMETER PLOCK

PARAM+@s +1=FREGUENCY COUNT

PARAM+Zs +3=DURATION COUNT

OQUTPUT:TONE ON CASSETTE PORT

& Kk ok ok ok

o188 HEKEREREREREE R IR R RER SR EHFREERF AL R AR RLRER AR R RE R ERERREES

2819@ 3
ABZ0B TONOUT
aaz1@

20zz0

BB:38

Q0z40

Bez50

Baz60

o270

20280

B@z27a

20300

PO310

PR320

DB330

RB340

BB350

BB3460

28370 TON@1@
B380

ae390

B0400

PB418 TONBZD
oR420

Ba43a

2440

20450

28460

@o470 TOND3G

212

PUSH
PUSH
PUSH
PUSH
PUGBH
CALL
PUSH
POP
LD
LD
DEC
L.D
LD
DEC
PUSH
POP
LD
LD
LD
LD

aF i5AVE REGISTERS

BC

DE

HL.

IX

QA7FH s#¥#GET PR LOC N#E®+

HL. $TRANSFER TO IX

IX

Es (IX+0) sPUT FREG COUNT IN DE

Dy (IX+1)

DE $ADJUST FOR LOOP

Co (IX+2) sPUT DUR COUNT IN BC

By (IX+3)

BC $ADJUST FOR LOOP

BC $TRANSFER TO IX

IX

BCs—1 SFOR TIGHT LOOP

LsE 3PUT FREG COUNT IN HLL 4
Hs D 54

Ayl sMAXIMUM POSITIVE 7
(BFFH)Y s A sOUTPUT 11

Hl.s BC sCOUNT—-1 11

Cs TONBZQ sLP FOR 1/2 CYC 7742
LsE 3PUT FREG COUNT IN HL 4
Hs D 54

Ay 2 sMAXIMUM NEGATIVE 7
{(BFFHYs & SOUTPUT 11

HL.s BC sCOUNT~1 11

7F31
7F33
7F35
7F38
7F3A
7F3B
7F3C
7F3D
7F3E
ralrlrdry
rdraldrdn]

38FD
DD@%
DAZATF
DDE1
El

D1

Ci

F1

ce

480 JR Cs TONB3B sLP FOR 1/72 CYC 7712
20490 ADD IXsBC $DECREMENT DUR COUNT 15
20500 JP Cs TONRLID sLOOP IF NOT DONE 7 /12
2051@ POP X sRESTORE REGISTERS

e5:2@ POP HL.

[a530 POP DE

D540 POP BC

aRs5e POP AF

PO560 RET sRETURN TO CALLING PROG
ans7e@ END

TOTAL ERRORS

TONOUT DECIMAL VALUES

245y 197s 135 229y Z21s 229 ZBBs 127 1@s 229
23l 225 IRl P4 B 221 Bbs 1y Z7s EZ1s

78s Dy FP1s 7Bs 33 11s 1975 221 E25e 1

2559 299 1807s 98: 62 1y 211y 255s 9y 218

38s 127+ 187: 983 62¢ Zs 2115 255s 93 Débs

253 221s 95 2185 32s 127 221y 225, 225. 209
193: 241, 281

CHKBUM= 182

WCRECD: WRITE RECORD TO CASSETTE

System Configuration

Model I, Model 111

Description

WCRECD writes a variable-length record from memory to cassette. The record
may be any number of bytes, from 1 to the limits of memory. The record is
prefixed by a four-byte header that holds the starting address and number of
bytes in the remainder of the record. The record is terminated by a checksum
byte that is the additive checksum of all bytes in the record. Data in memory
may represent any type of data the user desires; the record is written out as a
“core image.”’

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
two bytes of the parameter block are the starting address of the data to be
written out, in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block are the num-
ber of bytes to be written in the record, 1 to 65,535. A value of 0 is treated as
65,536 bytes.

On output, the contents of the parameter block are unchanged and the
record has been written to cassette.

213

INPUT OUTPUT

H , L H , L
i H
POINTER TO§ PARAM+G 7 :@ L UNCH/{\NGED]
PARAMA+0 STARTING PARAM-+@
-+ BUFFER -+ -+ UNCHANGED -+
+1 ADDRESS +1
+2 4 OF BYTES +2
+ TO BE + + UNCHANGED +
+3 WRITTEN :j +3

Algorithm

The WCRECD subroutine uses Level If or Level Il ROM subroutines to perform
the write. First, a CALL is made to 212H to select cassette 0. Next, a call is made
to 287H to write 256 zeroes and a sync byte as leader for the cassette record.

The four-byte header is written out in the WCR005 loop. This header is taken
from the parameter block and consists of the two address bytes and the two
bytes containing the number of bytes in the record. Each byte is written by a
CALL to 264H. A checksum in B is cleared before the operation; after the
four-byte write, it contains the partial checksum for the four bytes.

The starting address for the data and the number of bytes is next put into HL
and DE, respectively. The loop at WCR010 writes out all of the bytes in the
memory block by CALLS to 264H. For each CALL, the current value of the byte
is added to the B checksum subtotal, the pointer to memory in HL is bumped
by one, and the count in DE is decremented by one. When DE reaches zero,
the checksum in B is output as the last byte and the cassette is deselected by a
CALL to TF8H.

Sample Calling Sequence

NAME OF SUBROUTINE? WCRECD

HL. ValUE? 42020

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

+ @ F 13368 BUFFER

+ 22 1824 1024 BYTES

+ 4 B B

MEMORY BLOCK 1 LOCATION?

MOVE BUBROUTINE TO7 38000
SUBROUTINE EXECUTED AT 38000

INPUT : OUTPUT:
HL= 40000 HL= 40000

PARAM: @ @ PARAM+ @ @

PARAM+ 1 60 PARAM+ 1 60

PARAM+ = B PARGM+ = @ [UNCHANGED
PARAGM+ 3 4 PARAM+ 3 4

NAME OF SUBROUTINE?

Notes

1. This subroutine uses cassette 0 only.
2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.

3. This subroutine does not save registers.

214

7FB2

7FB8
7F@1
TFRZ
7F@5
7FR8
7FeB
7F8C
7F@F
TF1B
7F11
7H1z2
TF13
7F14
7F15
7F16
7F19
7F1A
7F1B
7F1C
7F1E
7FZ20
7Fz1
TF24
TF27
TFZA
7FZD
7FZE
TF2F
7F30
7F31
TF34
7F35
7F36
7F37
7F38
7F39

TF3A 2

7F3B
7F3C
7F3D
7F3E
7F4D
7F41
7F44
7F47
200D

F3
AF
Chiz@z
cDB7082
CD7F@A

CDo64B2
CDFB@1
ce

20100
P11
PR120
20130
00140
20150
22160
0170
00180
00190
0Z00
00210
00720
00230
POZ4D
P05
00260
00270
POZED
029
PO30D
20310
PO3Z0
00330
00348
D@35
PO36D
20370
20380
00390
PR40D
20410
PR4ZD
20430
0440
PO45@
PB460
0470
PR4S0
004950
PO500
00510
PO5Z0
20530
PB54D
20550
PB560
@570
2580
0590
PBLOD
00610
PRLZD
00630
PBL4D
00650

Program Listing

ORG 7F@agH @528
§ I A I I I RN H AR RRRRERRERR
3% WRITE RECORD TO CASSETTE. WRITES A VARIABLE-LENGTH *
5% RECORD TO CASSETTE FROM A GIVEN BUFFER. *
5 INPUT: HL=> PARAMETER BLOCK *
3% PARAM+Bs +1=8TARTING BUFFER ADDRESS #*
3% PARAM+2Z, +3=NUMBER OF BYTES TO BE WRITTEN *
5% OUTPUT:RECORD WRITTEN TO CASBETTE *
SHEEUREEEERRRERFEREERREEERFRFRHERR AR R AR EREE AR R AR RERRRRHR
WCRECD DI sDISABLE INTERRUPTS

XOR A $ZERC A

CaLL 212H $SELECT CASSETTE @

CaLL 287H sWRITE LEADER

CaLlL BATFH s###GET PAR BL ADDR¥*%%

PUGH HL 3 SAVE

LD BCs 1024+0 34 TO By B TO C
WCRBBS LD As (HLD 5GET HEADER BYTE

PUSH AF $BAVE BYTE

ADD As C 3 CHECKSUM

LD Csh $8AVE CHECKSUM

POP AF sRESTORE ORIG BYTE

PUSH BC $8AVE COUNTs CHECKSUM

PUSH HL $SAVE POINTER

CALL 264H $WRITE BYTE TO CABSETTE

POP HL sRESTORE POINTER

POP BC $GET COUNT: CHECKSUM

INC HL sBUMP POINTER

DJINZ WCRBAS sLOOP FOR 4 HEADER BYTES

POP IX s COMPLETE TRANSFER TO IX

LD BsC 3 CHECKSUM

LD Ls (IX+3) sGET STARTING ADDRESS

LD He (IX+17

LD Es (IX+2) sGET # BYTES

LD Ds (IX+3)
WCRB1B PUSH BC $ SAVE CHECKBUM

PUSH DE $SAVE # OF BYTES

PUSH HL $SAVE CURENT LOCATION

LD As (HLD sGET NEXT BYTE

CaLL 264H SWRITE TO CASSETTE

POP HL sRESTORE POINTER

POP DE $RESTORE # OF BYTES

POP BC $GET CHECKSUM

LD As (HL) sBYTE JUST QUTPUT

ADD AR s COMPUTE CHECKSUM

LD BsA $ SAVE

INC HL $BUMP POINTER

DEC DE sDECREMENT # BYTES

LD AsD sTEST FOR ZERO

OR E

JR NZsWCRG18 sLOOP IF NOT END

LD AsE $GET CHECKSUM

Call 264H $OUTPUT A8 LAST BYTE

Call iF8H sDESELECT

RET SRETURN TO CALLING PROG

END

WCRECD DECIMAL VALUES

243
18s =z
1974

2219

215

175 2B5: 18: 2
29y 1s By 49 126
29y 205. 100, Zs
225y 659 221 118s

205
245,

225

129,
193,

e 205 127
TFs 241

35y 1b6s 241
182s 1+ 221

WRDSEC: WRITE DISK SECTOR

P4 Es ZZ1s Bby 3y 1978 213y II9y 1565 205,
18@- 2s 2355 209y 193y 136y 178s 71 35s 27
122 179 32 237. 12Bs 205 18B: s 205; 248,
is 281

CHRBUM= 139

System Configuration

Model 1.

Description

WRDSEC writes one sector from a specified buffer area to a specified disk
drive. The user must know where a particular file is to be and what sectors are
involved to utilize this subroutine. It is not a general-purpose “file manage’’
subroutine.

Input/Gutput Parameters

On input, the HL register pair contains a pointer to a parameter block. The first
byte of the parameter block contains the disk drive number, 0 to 3, correspond-
ing to disk drives T through 4. The next byte of the parameter block contains the
track number, O through N. (Standard TRS-80s use disk drives with 35 tracks;
other drives are available for 40 tracks.) The next byte is the sector number, 0
through N (0 through 9 will be the most common range). The next two bytes are
the user buffer area for the write in standard Z-80 address format, least signifi-
cant byte followed by most significant byte. The next byte contains a zero if a
wait is to occur until the disk drive motor is brought up to speed; the byte
contains a 1 if the motor is running (disk operation has just been completed)
and no wait is necessary. The next byte (PARAM+ 6) is reserved for the status of
the disk write on output.

On output, all parameters remain unchanged except for PARAM+ 6, which
contains the status of the write. Status is O for a successful write, or nonzero if
an error occurred during any portion of the write. If an error did not occur, the
contents of the buffer has been written to the sector.

INPUT QuTPUT
HooL HoL
1 ¥
POINTER TO: PARAM+@] — L UNCH/{ANGED
PARAM-+-0 DRIVE # 0-3 PARAM-+@ UNCHANGED
+1 TRACK # +1 UNCHANGED
+2 SECTOR # +2 UNCHANGED
+3 BUFFER > +3
+ ADDRESS + UNCHANGED -+
+4 (MEM 140} +4
F=WAIT 1=NO
+5 WAIT +5 UNCHANGED
@=NO ERROR
+6 RESERVED +6 ~“B—ERROR

216

MEM 1+8 MEM 1+
+1
E

+2 | OF 1 +2 | 1

+3 %\T;E ::> +3 UNCHANGED

a WRITTEN 4

+5 +5

+6 +6 |
Algorithm

The disk drive number in L is first converted to the proper select configuration
at WRDO10. The select byte is then output to disk memory-mapped ad dress
37F0H to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at WRDO15 counts
HL through 65,536 counts to wait until the disk drive motor is up to s peed
before continuing.

The disk status is then examined (WRDO020). If the disk is not busy, the track
number is loaded into the disk controller track register (37EFH) and a seek
command is given (37ECH) to cause the controller to “‘seek’” the track for the
operation. A series of time-wasting instructions is then done.

The code at WRDO030 gets the disk status after completion of the seel and
ANDs it with a “proper result’” mask. If the status is normal, the write contin-
ues, otherwise an “abnormal” completion is done to WRDQ90.

The sector address from the parameter block is next output to the controller
sector register 37EEH). Two time-wasting instructions are then done.

A write command is then issued to the disk controller command register
(37ECH). Further time-wasting instructions are done.

The loop at WRD040 performs the actual write of the disk sector. A total of 256
separate writes is done, one for each byte. HL contains the disk address of
37ECH, DE contains a pointer to the buffer address, and BC contains the data
register address of the disk controller. For each of the 256 reads, status is
checked. If bit O is set, all 256 bytes have been written. If bit 1 of the status is
set, the disk controller is still busy and a loop back to WRD040 is done. If bit 1
of the status is not set the next byte is read from memory, written to the disk,
and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the write, status is again
read, and an AND of 7 is done to check for the proper completion bits. The
status is stored back into the parameter block.

Sample Calling Sequence

NarE OF IBROUTINE? WRDBEC

Hl. VALUEY 480

PARAMETER BLOCK LOCATION? 40000
FaRaMETER BLOCK VALUER?

+ @ 1@ DRIVE @

+ 1 1 2d TRACK 2@

217

7Fo@

7Fo@
TF@1
7Fez
7FD3
TFD4
7FD&
7FB7
7FaA
7Fac
7FaF
7F10
7F11
7F13
7F14
7F16
TF19
7F1C

7F1D 2
7ELF 2
7FIE 2

7FE3
7F 4

26100
agi118
BB1z0
2130
22140
BB15a
2160
oo178
2180
22190
ooz00
ogz1@
Bazz0
o230
Baz40
20250
BOz6B
2azv7e
pozae
Uil rored |
o360
oa31@
2o320
o330
Pa342
Be350
pa3sd
Bo370
20380
pa370
o400
22410
o420
ae430
Ba440
2a45@

+ 2 105 SECTOR 5

+ 3 F 45000 BUFFER

+ 5 1@ WAIT

+ b i @

+ 7 @ @

MEMORY BLOCK 1 LOCATION?

MOVE SUBRROUTINE TO7 38000

SUBROUTINE EXECUTED AT IBO00

INPUT = OUTPUT ¢

HL= 4B006 HL= 43800

PARAM+ @ @ PARAM+ @ @

PARAM+ 1 2@ PARAM+ 1 =@

PARAM+ 2 5 PARAM+ 2 5 UNCHANGED
FARAM+ 3 206 PARAM+ 3 2020

FaRaM+ 4 175 PARAM+ 4 175

FARAM+ 5 @ PARAM+ 5 @

PARAMY 6 @ PARAM+ & @ —~STATUSOK
NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before initial disk /O to initialize the
disk controller.

Program Listing

ORG

7FaaH

5@5E2

FRARAERREREHEAERRREREAEEEERRERRRRER R R ERFREREERERRRR LR ER A%
WRITES BUFFER INTO SPECIFIED

3% WRITE DISK SECTOR.

* & Kk ok k ok &k ok &k Xk

;% TRACKs SECTOR OF DISK.
3% INPUT: HL=> PARAMETER BLOCK
HE 3 PARAM+@=DRIVE #., @ - 3
5% PARAM+1=TRACK #s @ — N
¥ PARAM+2=SECTOR #, @ —- N
HE S PARAM+3s +4=RUFFER ADDRESS
HE S PARAM+5=0=WAIT AFTER SELECTs 1=NO WAIT
5 * PARAM+6=8TATUSs @=0Ks 1=BAD
5 % QUTPUT :BUFFER WRITTEN TO TRACKs SECTOR
SEERERREREREEERERREAEREEREEREFREER B RRERERREEEEEREERERFRE
WRDSEC PUSH AF 5SAVE REGISTERS
PUSH BC
PUSH DE
PUSH SHL
PUSH IX
CALL BATFH s##RGET PR LOCTN#®®
PUSH HL. s TRANSFER TO IX
POP X
LD As (I X+@) SGET DRIVE #
INC A 3 INCREMENT BY ONE
LD BaA $PUT IN B FOR CONVERT
LD Ay BOH FMASK
WRDB1@ RLCA sALIGN FOR SELECT
DJNZ WRDO1@ s CONVERT TO ADDRESS
L.D (37E@H)Y s A sSELECT DRIVE
LD As (IX+5) SGET WAIT/NO WAIT
OR A STEST
JR NZs WRDAZO sGO IF NO WAIT
L.D HL.+ @ sWAIT COUNT
WRDB15 DEC HL. sDELAY LOOP &
LD Al sTEST DONE 4
OR H 54

218

7F25
TFZ7
TF2A
7FzC
7FZE
7F31
7F34
7F33
7F36
7F38
7F 3B
7FE3C
7F3D
7F3E
7F3F
7F4%
TF 44
TF46
7F48
7F4A
7F4D
7F58
7F51
7F52
7F55
7F58
7F5E
7F3D
7F3E
7F5F
TF&D
7F61
TF&6Z
7F&5
TF &6
TF&7
TF 69
TF&A
7F&C
7F&D
7F&E
7F6F
7F71
TF74
7F76
7F79
TF7R
TF7C
7F7D
7F7E
7F7F
2000

2@FB
3AEC3T
CBa7
2BF9
DD7EBL
3ZEF37
CH

Ci
3E17
3ZEC37
CH

C1

o

Ci
3AEC3T
CB47
2BF9
E&478
2820
DD7E@Z
3ZEE37

Bn4&60
Ba47a
pR4BG
Bo47a
pR5Do
pes1d
pa520
aB530
pR540
BB55a
PR5 60
Bas7a
2es5ea
2590
nesaR
P2&1D
BasLen
PR630
BR&AD
BR&650
2D&L6E
AD&70
BaLBD
Bas7@
pa7e
a71io
28720
Pa730
DR74@
Ba75a
BR7460
@77
o780
oa770
BoB00
PO810
ez
P0s30
22840
Besse
aoB60
pa87e
rairtstsln)
lris i)
2B726
ae710
vy
BO730
poT43
lrigat
Bo760
bar7a

ANER® TOTAL ERRORS

WRDDZ®

WRDB3D

WRDO4O

WRDB52

WRDB73

LD

NZsWRDB15
A (B7ECH)
@s A

NZ: WRDBZD
As (IX+1)
(37EFH) 1 A
BC

BC

Ay 17H
(37ECH) s A

A (37ECH)
DA

NZs WRD@230
8H

NZ s WRDBZ@
As (IX+2)
(37EEH) s A
BC

BC

HL» 37ECH
Es (IX+3)
Ds (IX+4)
As BACH
(HLL) s A

BC

BC

BC

BC

BCs 37EFH
Ax (HL)

NCs WRDOSO

NCs WRD@4Q
As (DED)
(BCls A

DE

WRD@4@

As (B7ECH)
7
(IX+H)a A

WRDSEC DECIMAL VALUES

F4%5 1975 213
S2ls 2255 221
16 2535 58
8s 33: Bs @»
Z3bs 55 2R3
239 B85, 1975
193 1973 193
238 152y 32

219

229 221

126 @y b
DE4 B5e Z21s
43y 125s 180
Tils 3Ze 249
193s &Ey 23
58y 2346 55
ady 221 1269

B2Gs

203

sLOOP UNTIL HL=B 7/1 2
sGET STATUR
sTEST BUSBY
$LOOP IF BUSBY
5GET TRACK NUMBER
sOUTPUT TRACK #
sWASTE TIME

$SEEX COMMAND
sOUTPUT
3WASTE TIME

$GET BTATUS
sTEST BUSY
sLOOP IF RBUSBY
sTEST FOR NORMAL COMPL
360 IF ABNORMAL
5GET SECTOR #
s OUTPUT
SWASTE TIME

sDISK ADDRESS
sPUT RBUFFER ADDRESS IN DE

SWRITE COMMAND
sOUTPUT
sWASTE TIME

sDATA REG ADDREGSS
$GET STATUS
AL IGN
$GO IF DONE
AL IGN
G0 IF NOT DR@
sGET BYTE
sOUTPUT TO DISK
s INCREMENT MEMORY PMTR
sLLO0OP TIL DONE
3GET 8TATUS
5CHECK FOR PROPER S8TATUS
sSTORE STATUG
3RESTORE REGISTERS

$RETURN TO CALLING PROG

Sy 1279 18 229
by 1282 7
D 1839 325
251 358
126y 19 5@,
236 H5y 197
Tis 324 249,
5@ 238s 55

1975 193s 33y 234 5% 221y 945 35 2215 Bbs
4y b2y 1725 119 197 1935 197y 193s 15 239,
353y 1263 15s 4Bs 8y 155 485 249 4y 3
19+ 245 2444 38, 2345 555 230 7y 22

by E21s ZE5e 2259 209 1935 241

CHREUM= 23

220

APPENDICES

APPENDIX 1
Z-80 Instruction Set

The following is a brief explanation of the Z-80 instructions used in the TRS-80
subroutines. Refer to Zilog or Radio Shack documentation for more detailed

descriptions.

ADC

This instruction adds one byte plus the current contents of the Carry flag to the
contents of the A register when used in the format “ADD A,B"’; the byte may be
in another CPU register, an immediate value, or from memory. The instruction
adds two bytes from a register pair plus the current contents of the Carry flag to
the contents of HL, 1X, or IY, when used in the format “ADD HL,DE.” Flags are
affected.

ADD

This instruction adds one byte to the contents of the A register when used in the
format “ADD A,B’’; the byte may be in another CPU register, an immediate

223

value, or from memory. The instruction adds two bytes from a register pair, IX,
or 1Y to the contents of HL, IX, or 1Y, when used in the format “ADD HL,DE.”
Flags are affected.

AND

This instruction logically ANDs one byte and the contents of the A register. The
byte may be in a CPU register, an immediate value, or from memory. Typical
format is “AND B,”” which ANDs the B and A registers. Flags are affected.

BIT

This instruction tests the bit of a CPU register or memory location. “‘BIT 7,B”
tests bit 7 of the B register, while “BIT 0, (HL)"" tests bit 0 of the memory

location pointed to by the HL register pair. The state of the bit goes into the
Carry flag.

CALL

This instruction calls a subroutine by pushing the return address into the stack.
In the format “CALL 0212H" it is an unconditional call. In the format ““CALL
NZ,0212H" it is a conditional call. The conditions may be on the state of the
Zero, Carry, Sign flag, or other flags. No flags affected.

CCF

This instruction complements the Carry flag; a set is changed to reset and vice
versa.

cpP

This instruction compares two bytes, one in the A register, and one from an-
other CPU register or memory. The result does not replace the contents of A, but
only sets the flags on the result of the compare. Typical format is “CP (HL),”
which compares A with the contents of the memory location pointed to by the
HL register pair. Flags are affected.

CPD

This instruction performs one step of an “end to beginning” block compare,
using A as the comparison key, HL as the pointer, and BC as the number of
bytes. Flags are affected.

CPDR

This instruction performs an “end to beginning” block compare, using A as
the comparison key, HL as the pointer, and BC as the number of bytes. Flags
are affected.

CPI

This instruction performs one step of a ““beginning to end”” block compare,
using A as the comparison key, HL as the pointer, and BC as the number of
bytes. Flags are affected.

CPIR

This instruction performs a “’beginning to end’” block compare, using A as the

comparison key, HL as the pointer, and BC as the number of bytes. Flags are
affected.

CPL

This instruction complements the contents of A; all ones are changed to zeroes,
and all zeroes to ones. Most flags are unaffected.

DAA

This instruction adjusts the result in the A register so that it is a ““decimal’’ or
bed result. Flags are affected.

DEC

This instruction decrements the contents of a CPU register by one, when used
in the format “DEC E.”” When used in the format ““DEC HL,” it decrements the
contents of a register pair by one. When used in the format “DEC (HL)" or
“DEC (IX+5)" it decrements the contents of a memory location by one. Flags
are affected only in the 8-bit case.

Di

This instruction disables interrupts.

DINZ

This instruction decrements the contents of the B register and then jumps if the
result is not zero. It is relocatable. Typical format is ““DJNZ 9000H.” Flags are
unaffected.

El

This instruction enables interrupts.

EX

This instruction swaps the contents of EX and HL when it is used in “EX DE, HL”
or points to the “primed set’’ of the A register and flags when it is used in “EX
AF,AF" or exchanges the first two bytes in the stack with HL, IX, or IY when
used in “EX (SP),HL” format. Flags are unaffected.

225

EXX

This instruction switches to the primed set of BC, DF, and HL. Flags are unaf-
fected.

IN

This is the input instruction. It inputs a value from an input/output device into
the A register when in the form “IN A, (OFFH).” Flags are affected.

INC

This instruction increments the contents of a CPU register by one, when used in
the format “/INC E.”” When used in the format “INC HL,” it increments the
contents of a register pair by one. When used in the format “INC (HL)” or “INC
(IX+5)" it increments the contents of a memory location by one. Flags are
affected in 8-bit case only.

JP

This is the jump instruction. In the format ““JP 9000H" or “JP (HL),” it is an
unconditional jump. In the format “/JP NZ,9000H,"" it is a conditional jump. The
condition may be on the Zero flag (Z, NZ), Carry flag (C, NC), Sign flag (M, P),
or other flags. Flags are unaffected.

JR

This is the jump “relative’” instruction. It is identical in function to the ““JP”
instruction except that it is relocatable. Typical format is ““JR 9000H"’ for an
unconditional jump or ““JR NZ,9000H" for a conditional jump. Flags are unaf-
fected.

LD

This is the load instruction. It transfers data between CPU registers or between
CPU registers and memory. When it is used to transfer data between two CPU
registers, 8 bits will be transferred, and the format will be similar to “LD A,B"
where B is the “‘source’” and A is the destination. When it is used to transfer
from a CPU register to memory, the format will be similar to “/LD (3CO0H),A”’
or “LD (HL),A”"; the former transfers 8 bits from A to memory location 3CO0H,
the later transfers 8 bits from A to the memory location pointed to by HL. The
format for 8 bit transfers from memory to a register will be reversed, as in /LD
A,3COOH)Y" and “LD A,(HL).”

LD can also be used to transfer 16 bits of data between a register pair and
memory. The format will be similar to ‘LD HL,(3C00H),” which transfers the
contents of location 3CO0H and 3COTH to the L and H registers, respectively.
To transfer data between memory and a register pair, the format is reversed as
in “LD (3CO0H),HL.”

226

LD can also be used to transfer immediate data into a register or register pair, as
in LD A45H,”” which loads A with 45H, or LD HL,3CO0H"" which loads HL
with the value 3CO0H. Flags are unaffected.

LDD

This instruction performs one step of an “‘end to beginning”” block move, using
HL as the “’source pointer,” DE as the ““destination pointer,” and BC as the byte
count. Flags are affected.

LDDR

This instuction performs one step of an “‘end to beginning” block move, using
HL as the “source pointer,”” DE as the “destination pointer,” and BC as the byte
count. Flags are affected.

LDI

This instruction performs one step of a “’beginning to end”” block move, using
HL as the “’source pointer,”” DE as the “‘destination pointer,” and BC as the byte
count. Flags are affected.

LDIR

This instruction performs a “‘beginning to end” block move, using HL as the
“source pointer,”” DE as the “‘destination pointer,” and BC as the byte count.
Flags are affected.

NEG

This instruction takes the two’s complement of the A register. It “'negates’” the
contents of A. Flags are affected.

NOP

This instruction is a ‘‘no operation’’ performing no function. Flags are unaf-
fected.

OR

This instruction logically ORs one byte and the contents of the A register. The
byte may be in a CPU register, an immediate value, or from memory. Ty pical
format is “OR B,” which ORs the B and A registers. Flags are affected.

ourt

This is the output instruction. It outputs a byte from the A register to an
input/output device when in the form “OUT (OFFH),A."" Flags are unaffected.

227

POP

This instruction POPs a two-byte value from the stack and puts it into a register
pair. “POP DE" loads the D and E registers with the next two bytes from the
stack and adjusts the SP register by two. Flags are unaffected unless AF
POPped.

PUSH

This instruction pushes a register pair, 1X, or 1Y onto the stack. "“PUSH BC”
pushes the contents of B and C onto the stack and adjusts the SP register by
two. Flags are unaffected.

RES

This instruction resets a bit in a CPU register or memory location. 'RES 5,A”
resets bit 5 of the A register to 0, while “/RES 2,(HL)" resets bit 2 of the memory
location pointed to by the HL register pair. Flags are unaffected.

RET

This instruction returns from a subroutine by popping the return address from
the stack. If the format is “RET,”” it is an unconditional return; if the format is
“RET NZ,” the return is conditional upon the Zero, Carry, Sign, or other flags.
Flags are unaffected.

RL

This instruction rotates the contents of a CPU register and carry (nine bits) left
one bit position. Typical format is “RL D" which rotates the D register and
carry. Flags are affected.

RLA

This instruction rotates the A register and carry (nine bits) one bit position left.
Flags are affected.

RLC

This instruction rotates the contents of a CPU register one bit position left.
Typical format is “RLC E,”” which rotates the E register. Flags are affected.

RLCA

This instruction rotates the A register one bit position left. Flags are affected.

RLD

This instruction rotates the memory location pointed to by HL and the least
significant four bits of the A register four bits left. It is a “bed shift.”” Flags are
affected.

228

RR

This instruction rotates the contents of a CPU register and carry (nine bits) one
bit position right. Typical format is “RR B’" which rotates the B register and
carry. Flags are affected.

RRA

This instruction rotates the A register and carry (nine bits) one bit position right.
Flags are affected.

RRC

This instruction rotates the contents of a CPU register one bit position right.
Typical format is “RRC H,”” which rotates the H register. Flags are affected.

RRCA

This instruction rotates the A register one bit position right. Flags are affected.

RRD

This instruction rotates the memory location pointed to by HL and the least
significant four bits of the A register four bits right. It is a “’bcd shift.”” Flags are
affected.

SBC

This instruction subtracts one byte minus the current contents of the Carry flag
from the contents of the A register when used in the format “SBC A B”’; the byte
may be in another CPU register, an immediate value, or from memory. The
instruction subtracts two bytes from a register pair minus the current contents of
the Carry flag from the contents of HL, IX, or 1Y, when used in the format “*SBC
HL,DE.” Flags are affected.

SCF

This instruction sets the Carry flag.

SET

This instruction sets a bit in a CPU register or memory location. “SET 5,C"" sets
bit 5 of the C register, while “‘SET 0,(HL)”” sets bit O of the memory location
pointed to by the HL register pair. Flags are unaffected.

SLA

This instruction logically shifts a CPU register one bit position left. Typical
format is "'SLA H,” which shifts the H register. Flags are affected.

229

SRA

This instruction arithmetically shifts a CPU register one bit position right. Typi-
cal format is ““SRA A,”” which shifts the A register. Flags are affected.

SRL

This instruction logically shifts a CPU register one bit position right. Typical
format is ““SRL L,”” which shifts the L register. Flags are affected.

SUB

This instruction subtracts one byte from the contents of the A register when
used in the format “SUB A,B"’; the byte may be in another CPU register, an
immediate value, or from memory. The instruction subtracts two bytes from a
register pair, 1X, or 1Y from the contents of HL, IX, or 1Y, when used in the
format “SUB HL,DE.”” Flags are affected.

XOR

This instruction logically exclusive ORs one byte and the contents of the A
register. The byte may be in a CPU register, an immediate value, or from mem-
ory. Typical format is "XOR B,”” which XORs the B and A registers. Flags are
affected.

230

- APPENDIX I
Decimal/Hexadecimal
Conversion

o oo &4 4B 128 96 192 €0

1 o1 65 41 129 81 193 ¢i '
z oz &b 4 138 82 194 ¢z

3 83 67 43 131 83 195 C3

4 @4 68 44 132 B4

5 @5 69 45 133 85 '
b P& 70 46 134 B&

7 @7 71 47 135 87

5 28 72 48 136 88

9 89 73 49 137 89

10 24 74 4A 138 BA

11 OR 75 4B 139 8B

iz 8c 76 4C 148 8C

13 @D 77 4D 141 8D

14 QE 78 4E 142 BE

15 @F 79 4F 143 BF

i6 1@ 820 50 144 99

17 11 81 51 145 91

ig 1z 8z 52 146 92 I
19 13 83 53 147 93
0 14 B4 54 148 94
21 15 85 55 149 95
2216 B&6 56 15@ 96 I
23 17 87 57 151 97
o4 1B 88 58 152 98

25 19 89 59 153 99
6 14 SR 5A 154 94
27 1B 21 5B 155 9B
8 1C 9z 5C 156 9¢C

29 1D 93 5D 157 9D
3@ O1E 94 5E 158 9E

31 1F 95 S5F 159 9F
el 96 &0 168 AD
33 97 &1 161 Al
34 98 63 162 AZ l
35 99 63 163 A3

36 100 &4 164 A4

37 181 65 165 A5

a8 102 66 166 Ab

39 183 &7 167 A7 I
4@ 104 &8 168 AB

41 105 69 169 AT
42 106 6A 17@ AA

43 187 4B 171 AR

44 108 &C 172 AC

45 109 &D 173 AD
46 118 &E 174 AE

47 111 6F 175 AF

48 11z 7@ 176 BB I
49 113 71 177 B1

50 114 72 178 B2

51 115 73 179 B3

5% 116 74 180 B4 l
53 117 75 181 BS

54 118 76 182 Bé

55 119 77 183 B7

56 120 78 184 B8 I
57 121 79 185 B9

58 122 74 184 BA

59 123 7B 187 BB

&b 124 7C 188 BC

61 125 7D 189 BD

= iz&6 7E 190 BE 254 FE

63 127 7F i91 BF 255 FF .
232

PERSONAL COMPUTERS

ﬂssierﬁblq Language
Subroutines

Here is a hands-on approach to programming that explains how any TRS-80
computer user can increase productivity and reduce the tediousness of
programming by using assembly-language subroutines.

TRS-80 ASSEMBLY LANGUAGE SUBROUTINES uses the speed and
compactness of assembly-language programming and gives you fully
debugged, ready-to-run subroutines, including:

» a subroutine that converts binary numbers in memory to decimal characters
* a subroutine that generates high-speed clearing of a screen block * a
subroutine that outputs music through the cassette port in seven octaves

* a subroutine that generates pseudo-random numbers for simulation or
modeling « a subroutine that generates high-speed string searches

Each of the 65 fully documented subroutines includes: .
« a complete description of what the subroutine does * the input/output

parameters required to use the subroutine « the algorithm for the subroutine
+ a sample calling sequence * notes on special uses or features * a decimal
listing » a “check” on the validity of the data.

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

N 0-13-931188-2

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf

