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ABSTRACT

Complex interactions and the distributed nature of wireless
sensor networks make automated testing and debugging be-
fore deployment a necessity. A main challenge is to detect
bugs that occur due to non-deterministic events, such as
node reboots or packet duplicates. Often, these events have
the potential to drive a sensor network and its applications
into corner-case situations, exhibiting bugs that are hard to
detect using existing testing and debugging techniques.

In this paper, we present KleeNet, a debugging environ-
ment that effectively discovers such bugs before deployment.
KleeNet executes unmodified sensor network applications on
symbolic input and automatically injects non-deterministic
failures. As a result, KleeNet generates distributed execu-
tion paths at high-coverage, including low-probability corner-
case situations. As a case study, we integrated KleeNet into
the Contiki OS and show its effectiveness by detecting four
insidious bugs in the uIP TCP/IP protocol stack. One of
these bugs is critical and lead to refusal of further connec-
tions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation, Assertion Checkers; D.2.5 [Testing and Debug-
ging]: Testing tools, Distributed Debugging, Symbolic exe-
cution

General Terms
Design, Reliability, Verification

Keywords

Automated Protocol Testing, Failure Detection, Experimen-
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1. INTRODUCTION

Wireless Sensor Networks (WSN) are envisioned to be de-
ployed in the absence of permanent network infrastructure
and in environments with limited or no human accessibil-
ity [27,30,33]. Operating complex distributed protocols over
lossy links and potentially unreliable nodes, WSNs demand
extensive testing and debugging before deployment. After
deployment, bugs are very difficult to detect, costly to fix,
and can potentially cause an operational outage.

For example, a recent WSN deployment in the Swiss Alps
[3] experienced sporadic packet loss on all GSM nodes simul-
taneously. This was caused by a bug in the GPRS drivers of
the WSN sink node used for collecting measurements. The
bug prevented it from reconnecting to the cellular network
after connection loss. It did not occur during testing before
deployment as the test site had a very good GSM connec-
tivity. Similarly, a bug in the flash driver of Deluge [11]
caused a three-day network-outage during a deployment on
an active volcano in Ecuador [37]: Due to this bug, reboot-
ing after remote reprogramming failed breaking the network
for three days until each node was manually reprogrammed
on the volcano.

Overall, examples of bugs detected during deployments
[3,16,33,37] indicate that bugs are often revealed in corner-
cases, that were not tested sufficiently before deployment.
To explore these corner-cases during the debugging of wire-
less sensor networks, we present KleeNet, a debugging envi-
ronment for high-coverage testing of sensor network appli-
cations before deployment. It enables the detection of bugs
that result from complex interactions of multiple nodes, non-
deterministic events in the network, and unpredictable data
inputs. Built on the symbolic virtual machine KLEE [4],
KleeNet makes the following four key contributions and fa-
cilitates rigorous testing of distributed WSN applications
and protocols:

e Coverage: KleeNet enables symbolic execution of un-
modified distributed sensor network applications. It
considers symbolic input values from the environment
and generates execution paths of participating nodes
at high-coverage.

e Non-determinism: KleeNet injects symbolic, non-
deterministic events such as loss, duplication and cor-
ruption of packets and node failures automatically.
These events can appear at any point in time, and thus
drive the sensor network execution into corner-case sit-
uations.



e Distributed Assertions: KleeNet allows to formu-
late intuitive assertions about the distributed state of
a sensor network. If an execution path violates an as-
sertion, KleeNet automatically generates a test case to
reproduce the bug and allows to easily narrow down
its root cause.

e Repeatability: Automatically generating test cases
for each bug found, KleeNet allows to reproduce the
execution that led to a bug and to replay distributed
systems. We believe that this seamless transition be-
tween the testing and real execution makes KleeNet a
powerful and attractive debugging environment.

We demonstrate the contribution and effectiveness of Klee-
Net with four insidious bugs discovered in Contiki’s plIP
TCP/IP stack [8]—a protocol stack for resource-constrained
devices. It has been actively used for years in many open-
source and commercial projects worldwide, such as wireless
sensor networks and (pico) satellites. One of the detected
bugs is crucial—it lead to a dead TCP protocol state refus-
ing any further connections to the affected node.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses existing tools for testing and debugging of
WSNs and relates our approach. We introduce the basic
concept of KleeNet in Section 3 and provide the required
background on symbolic execution in Section 4. Section
5 details the design of KleeNet and Section 6 introduces
KleeNet extensions along with optimizations to reduce the
number of states required for the evaluation of distributed
systems. Next, Section 7 describes the implementation and
usability of KleeNet. We present evaluation results and the
detected bugs in Section 8 and conclude in Section 9.

2. RELATED WORK

Existing approaches of debugging wireless sensor networks
fall into two categories: testing before and after deployment.

Testing before deployment. Compiler tools are the first
step to detect and troubleshoot local node errors, such as
out-of-bounds memory access, wrong type conversions and
possible race conditions. Safe TinyOS [7] is an example of
a compilation toolchain enforcing type-safe applications in
TinyOS [18]. It warns the developer about unsafe code por-
tions during compilation and additionally instruments the
code with safety annotations preventing memory corruption
at runtime. However, such compiler tools are only suitable
to identify local implementation errors and are unable to
detect distributed bugs that result from complex node in-
teractions.

Employing formal methods [2, 21, 34], code analysis ap-
proaches attempt to verify the correctness of sensor net-
work applications by extracting a model from the applica-
tion code that is later fed into a model checking environ-
ment. These tools face the state explosion problem due to
non-determinism in distributed systems such as wireless sen-
sor networks. Furthermore, model extraction requires man-
ual effort, making formal validation a laborious task. The
symbolic execution based tool FSMGen [14] comes closest to
our work. It automatically derives a high-level system rep-
resentation from a single TinyOS application in the form of
state machines. In contrast, KleeNet detects bugs in the dis-
tributed interaction of sensor network applications and mod-
els non-deterministic events such as packet loss and node
reboot to drive the sensor network into corner-cases.

Next to validation, simulation and emulation based tools
provide a convenient way to test sensor network applica-
tions. Discrete event simulators—such as TOSSIM [17]—
provide functional debugging support and are easy to use.
Full-system simulators, including Avrora [31], COOJA [22],
S’DB [36], and ATEMU [23], offer additional fidelity in
terms of timing, hardware characteristics and memory ac-
cess. Although being systematically used in many projects,
such simulation based testing lacks high input coverage and
simulation of scenarios that lead to the occurrence of low-
probability, but often severe bugs.

Testing after deployment. After sensor nodes have been
programmed and deployed, memory safe execution of ap-
plications is one of the most crucial concerns. For example,
Safe TinyOS and Neutron [6] automatically enforce run-time
memory safety and efficiently recover from memory bugs. In
addition, semi-automated approaches, such as TraceSQL [5]
and NodeMD [15], offer simple annotations to trace and
avoid critical errors in specific parts of the code. Finally,
interactive debugging systems such as Marionette [38] and
Clairvoyant [40] enable GDB like tracing capabilities at run-
time. However, these approaches focus on local state only
and often interfere with the application execution itself.

Sympathy [24], Nucleus [32], EnviroLog [20], Dustminer
[12], PDA [25] and others [19,29, 35] (passively or actively)
collect and analyze information about node states and their
communication. While these traces provide insight into a
deployed network and its distributed interaction, it is often
difficult to narrow down a failure with certainty or to re-
peat the scenario causing it [35]. MDB [29]—a post-mortem
debugger for macroprograms—enables high-fidelity analysis
of distributed systems using hypothetical changes. However,
all these approaches detect failures in a particular execution
trace or analyze slight modifications to it.

In contrast, KleeNet enables the testing of applications
before deployment: it provides (1) high input and execution
path coverage through symbolic analysis techniques, (2) ex-
ecution accuracy by executing unmodified applications, (3)
a network model to analyze distributed node behavior, and
(4) non-deterministic network and node failures to discover
new, often corner-case distributed execution paths.

For completion, we relate our contribution to existing
symbolic execution techniques in Section 4.

3. BASIC CONCEPT

In this section we present an overview of KleeNet and its
debugging process. Using a simple example scenario, we
demonstrate the architectural challenges and highlight our
key contributions.

Consider a scenario with three communicating nodes, suc-
cessively placed so that each of them is directly connected to
its neighbors only (Case 0 in Figure 1). Assume that node
A begins the communication by broadcasting a data packet
to its neighbor B. Upon receiving the packet, node B first
determines the validity of the packet, i.e., it calculates the
header checksum. As the packet can contain arbitrary data,
the validation branches into two execution paths, namely
?packet invalid” and ”packet valid”. Hence, KleeNet follows
both program execution paths at node B separately. In case
of an invalid packet, B discards it (see Case 1 in Figure
1). While manually testing the correct handling of arbitrary
program input is time-consuming and challenging, KleeNet
explores such execution paths automatically.



Node B

packet received

validity check

Case 0: initial state

. send packet . @

invalid

l discard |

destination check

v
$ Case 1: packet invalid

local, to forward

l reply l l forward l

Case 2: local delivery

0 0. 0.0 o 6.9

Case 3: packet to forward Case 4: B forwards & reboots

N
Al BN

reboot -7 H S

-

3 21 TN, e 21
1 1 1
1 1 1
! 1 1

\\\ '
~. - H ~. - . ~.

Figure 1: KleeNet’s debugging approach. The initial execution path (A broadcasts a packet to B) splits after
packet reception at node B into four execution paths: packet invalid, local delivery, packet to forward, and
packet to forward followed by a reboot of node B. Following these execution paths, KleeNet provides a high
program coverage including non-deterministic failures such as reboots and packet losses.

In the case of a valid packet, B next checks the destination
of the packet. Here, B again splits the execution path to
"packet to forward” and “local delivery”. Case 2 in Figure
1 represents the latter path where node B consumes the
packet and sends a reply back to node A. Whereas, in Case
3, B forwards the packet to its next neighbor C. These
two execution paths represent a node’s protocol behavior
for valid packets and are covered by KleeNet as well.

Cases 1-3 result from B’s functional decisions due to the
uncertain packet data. In deployed wireless sensor networks,
applications have to be aware of non-determinism: For ex-
ample, a node might experience a reboot, receive dupli-
cate packets or packets might get lost due to interference.
Case 4 illustrates one of these failures: After forwarding
the packet to C', B encounters a reboot and looses its state
information. As a result, a new node execution path oc-
curs, which can reveal further aspects of a distributed pro-
tocol execution. Such communication aspects are either
impossible to observe in traditional pre-deployment test-
ing mechanisms, or require laborious manual effort by the
developers to generate them. In contrast, KleeNet—based
on high-coverage symbolic execution—automatically injects
such non-deterministic and low-probability events into the
program flow and thus explores corner-case situations.

4. SYMBOLIC EXECUTION

Our debugging approach is built on the symbolic virtual
machine KLEE [4]. Therefore, we give a short overview on
symbolic execution. This background information is neces-
sary to explain the context of KleeNet’s environment as well
as to understand the challenges that influenced our design
decisions.

Symbolic execution [13] allows the automatic exploration
of execution paths in complex applications. The idea is to
execute program code on symbolic input, e.g., incoming net-
work packets, which are initially allowed to take any value.
During symbolic execution code is executed normally until it
reaches a symbolic value. At this point, program execution
is branched into all possible states and execution is resumed
for each branch. For example, if the program flow reaches
the code line addr = packet->src where the packet is sym-
bolic, the symbolic execution engine assigns addr with a
constraint containing symbolic memory access. Next, upon
reaching a symbolic branch, e.g., checking whether addr

equals myAddr, the engine forks the active program path
and follows both program paths independently with addi-
tional path constraints, namely addr == myAddr and addr
= myAddr, respectively. If an explored application path ter-
minates or detects a bug such as a buffer overflow, a test case
with the respective input values that led to this execution
path is generated. The easy way of bug reproduction makes
this testing approach very effective and attractive for many
developers.

Existing symbolic execution frameworks such as KLEE,
JPF-SE [1], and CUTE [28] are designed to explore non-
distributed applications including the GNU core utilities 1s
and mkdir, and the Vim editor. For interaction with the en-
vironment, e.g., file system or network socket they assemble
models that abstract from the complexity of the underly-
ing hardware, system libraries, and network communication
logic. Thus, in contrast to our work, these tools do not
support symbolic distributed execution, which controls and
groups independently explored execution paths into valid
distributed execution scenarios.

In our previous work [26], which is also built on top of
KLEE, we showed that it is possible to symbolically execute
a single TinyOS instance and check applications for data
input safety before deployment. In this paper we extend this
preliminary work to enable symbolic execution of distributed
sensor network applications.

Moreover, we designed non-deterministic failure models
that uncover new distributed execution paths.

S. DESIGN

Detection of low-probability bugs in WSNs demands a
high-coverage of possible distributed execution paths. In
the following we discuss the design of KleeNet and its tech-
niques that enable automated generation of such paths in
distributed systems. These paths also include non-determi-
nistic events such as packet loss or node failure.

KleeNet provides the following four mechanisms to gener-
ate high-coverage paths and to test the state of a distributed
system (see Figure 2):

e Symbolic Input: Testing behavior of applications
on arbitrary environment input (packets, sensor data)
enhances software reliability. We extend this concept
with node and network models to reflect the distributed
nature of WSNs.



[ Symbolic Input & Distributed Assertions ]

O T VR,

KLEE (Node 2)

AY

! KLEE (Node 1) KLEE (Node 3)

Path 1, .., n Path 1, .., n Path 1, .., n

Node Model l Node Model l | Node Model l

M s ‘%"""'--@ ------- ‘-? -[““%_;;E

l Network Model l DKleeNEt

Figure 2: KleeNet overview. KleeNet manages dis-
tributed program execution, communication, and
user-defined distributed assertions. Extensions of
KleeNet to KLEE are shaded.

e ——————————
o T ———_

e Node Model: The node model represents the behav-
ior of individual nodes in KleeNet including outage
and reboot. Modeling such low-probability events al-
low KleeNet to drive sensor network applications into
corner-cases of their execution.

e Network Model: The network model describes the
interaction of nodes, such as sending and receiving
packets, and corresponding non-deterministic failures,
such as packet loss, duplication and corruption. In our
evaluation we show that complex interaction bugs can
arise from such events and drive the distributed sys-
tems into invalid states or even render deployed net-
work non-operational.

e Distributed Assertions: Distributed assertions al-
low to permanently check the distributed state of a
wireless sensor network. With the help of these asser-
tions KleeNet detects when a sensor network reaches
undefined states.

In the remainder of this section we discuss individual de-
sign choices and their complexity.

5.1 Symbolic Input

Symbolic input is the first step to explore the execution
paths of a distributed application. In KleeNet, a developer
can mark variables or data structures to be symbolic. Sen-
sor network applications are driven by the input from the
environment. Hence, the most critical execution scenarios
appear by marking network packets and sensor data as sym-
bolic. Thus, assuming a loss-free network, symbolic input is
a convenient way to test an application’s functional correct-
ness at an early stage of the development.

For example, a developer of a new protocol stack might
want to receive a packet with a symbolic header to analyze
which execution paths header processing code will take, and
how the stack responds to a particular data input. Hence,
it allows to test whether a protocol stack or application re-
mains in valid states independent of the data input, and
gives early feedback to the developers.

Complexity: Assuming a worst case execution time of c,
symbolic execution along an m-ary branch results in growth
of O(c™). Therefore, for a sensor network setup with m
nodes the resulting path complexity is O(c™™). Despite this
worst case complexity, we observed that most sensor network
applications, including their communication protocols, do
not exhibit this exponential growth. This observation can
be explained by the resource-constrained nature of sensor
network applications: In practice, protocols commonly only
have a small number of possible execution paths. As a result,
the number of possible protocol states remains manageable
[14].

5.2 Node Model

KleeNet models the behavior of individual nodes, such
as node reboots and node outage. Introducing these non-
deterministic events allows KleeNet to drive protocols and
applications into corner-cases of their execution.

During their lifetime, sensor nodes may experience reboot
and outage due to memory bugs, hardware failures or a
power outage. Typically, these unexpected events cause a
node to loose all program state. If neighboring nodes do not
detect this reboot or outage reliably, this may lead to un-
defined states or even to operational outages of a deployed
distributed system [39].

Node Reboot and Outage: To cover these low-probabi-
lity situations we introduce symbolic reboot events in the
node model of KleeNet. When a reboot event is triggered,
KleeNet branches the active execution path into two paths:
In the one branch we continue normal execution while in
the other, we reboot the node by clearing its state and reini-
tializing the deployed application. Hence, this branch re-
executes the application from the initial state while all other
nodes in the network continue with their uninterrupted ex-
ecution. Similarly, KleeNet allows symbolic outage events
to occur during the program flow, creating additional exe-
cution paths. In doing so, we reveal corner-case execution
paths increasing the overall coverage in a distributed system.
Moreover, by exploiting our domain knowledge of sensor net-
work applications, we reduce the overall complexity.

Complexity: In contrast to other non-deterministic fail-
ures, node outage does not directly increase the number of
execution paths. A node reboot forks the active application
execution path and brings it to its initial state, i.e., to an al-
ready visited state. Nonetheless, this state plays a different
role in the distributed node communication.

5.3 Network Model

Next to modeling the behavior of individual nodes, Klee-
Net models their interaction. Hence, KleeNet provides a
network model with non-deterministic events such as packet
loss, corruption and duplication.

Packet Loss: In wireless sensor network deployments, pa-
cket loss is a common failure faced by applications. To test
applications against packet losses, KleeNet’s network model
introduces symbolic packet drops. A symbolic drop con-
ceptually discards arbitrary packets traversing the network.
This allows KleeNet to effectively discover additional dis-
tributed execution paths beyond the sensor network behav-
ior induced by the deterministic execution of applications.
Hence, it achieves much higher coverage than in the case
of ideal network conditions or when using a network model
with random packet drops.



Packet Duplication: Similar to packet drops, KleeNet in-
jects packet duplicates—a frequent phenomenon observed
in deployed sensor networks—in the network model. For ex-
ample, in collection tree protocols, such as CTP [10], packet
duplication is a well known problem that has ruinous effects
over multiple hops as duplication is exponential: If each hop
produces one duplicate on average, then there will be two
packets at the first hop, four at the second, and eight at the
third. Therefore, by employing symbolic duplicates, we can
test such protocol robustness at different steps of distributed
execution. In Section 8 we demonstrate that in stateful com-
munication protocols, packet duplicates must be considered
very carefully to avoid complex interaction bugs.

Packet Corruption: Symbolic packet corruption events is
a further feature of KleeNet. As with other non-deterministic
failures, KleeNet can corrupt any packet traversing the net-
work model. Again, the resulting execution paths discover
new distributed execution paths.

Complexity: The choice between delivering, dropping, or
corrupting a packet trebles the number of investigated ex-
ecution paths. Thus, worst-case complexity stays within
O(c™™). In all distributed scenarios where we detected bugs
our network model dropped or duplicated at most 20 pack-
ets. Any subsequent failure events were leading to redun-
dant execution paths showing the same, already discovered,
distributed application behavior. In that sense, KleeNet
leverages domain knowledge to make the symbolic execu-
tion more effective for this specific application domain.

Overall, modeling the non-determinism of node and net-
work behavior allows KleeNet to cover execution paths be-
yond normal program execution and to find bugs in corner-
cases. This high degree of coverage is very challenging and
laborious to achieve with conventional testing tools such as
network simulators and testbeds.

5.4 Distributed Assertions

Depending on a application, even a small sensor network
setup has the potential to produce hundreds or even thou-
sands of distributed execution paths. Manual analysis of
each of these scenarios becomes quickly a very laborious
task.

In KleeNet, we extend the C like assertions provided by
KLEE to check predicates on distributed node states. This is
very useful for protocol testing, e.g. to permanently check if
the communicating nodes reside in well-defined states during
sensor network execution. As an example, we can specify the
following distributed assertion in the code of node A: If node
A adds a new parent node (node B in this case), then node
B should also have node A in his children set:

if (parentID != NULL) {
assert (NODE(parentID, ''isChild'', myID));

}

Note that this assertion calls the function isChild (myID)
at node B whereas parentID and myID are variables in A’s
code. Thus, if any of the distributed execution scenarios
violates this assertion, a developer can directly replay the
suspicious scenario and narrow down the root cause of the
problem. Furthermore, KleeNet’s distributed assertions can
be easily extended to formulate high-level sensor network
predicates as presented in the PDA paper [25].

Nonetheless, specifying distributed assertions in KleeNet
is a manual step requiring knowledge of application logic
and appropriate data structures.

6. KLEENET EXTENSIONS

After discussing the design of KleeNet, we next discuss
our main extensions to the KLEE engine and further intro-
duce optimizations to reduce the number of execution paths
required to obtain all valid distributed execution scenarios.

6.1 Symbolic Distributed Execution

From the software architecture point of view, KLEE is not
designed to test the interaction of distributed applications.
Instead, each of the emerging program execution paths is ex-
plored independently from all others. An application being
tested in KLEE communicates with its environment both
via native library calls and using runtime models (e.g. file
system, socket library). However, these models cannot in-
fluence the execution of other program paths and vice versa.
For example, if several paths of a TCP client/server appli-
cation reach the blocking accept socket call, the affected
execution paths will neither know that there might be a
path calling connect nor be able to synchronize or exchange
data between these paths. To overcome this issue, KleeNet
provides a number of extensions to KLEE enabling symbolic
execution and interaction of distributed applications.

Execution path control: KleeNet offers hooks to sus-
pend, resume, and manually fork execution paths. This
functionality is required by the network model to control
the communication, i.e., to synchronize the program flow of
tested applications.

Distributed scenario isolation: All emerging execu-
tion paths in KLEE are treated equally within a single set.
In KleeNet, each of the execution paths belongs to a particu-
lar distributed execution scenario. Thus, this allows to share
the data (e.g. send/receive data packets, trigger events) be-
tween these paths and check distributed assertions.

6.2 Optimizations

As long as sensor nodes exchange non-symbolic data, Klee-
Net’s network model acts like any other simulator network
model. However, upon reception of symbolic input or when
symbolic failures occur, the execution paths of affected nodes
automatically branch into new ones. These new paths must
be considered by the network model to keep the execution
of the distributed system consistent.

The naive approach to tackle this situation is straight-
forward: every time an execution path branches all other
affected execution paths are forked as well. This causes a
quadratic growth of execution paths and quickly leads to
path explosion. However, many of these newly created paths
are redundant and unnecessarily waste memory resources.
Consider an example with three nodes (A1, B1, C1) where
node B; branches into four execution paths during its ex-
ecution (see Figure 3). With the naive approach, four dis-
tributed execution scenarios ({41, B1, Ci}, {A2, B2, Ca},
{As, Bs, C3}, {A4, B4, C4}) are generated with six addi-
tional path forks (Figure 4(a)).

In KleeNet, we optimize this naive approach by removing
redundant branches and forking execution paths on demand.
Our network model tracks application paths which request
packet transmission and afterwards forks destination nodes
before delivering the data, if necessary. Therefore, we only
consider execution paths that are involved in a particular
communication while the rest of the sensor network remains
unchanged. For the exemplary scenario discussed above,
KleeNet’s network model generates four distributed execu-
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tion paths ({AQ, Bl, Cl} - ACK, {Ag, BQ, Cl} - NACK,
{A1, Bs, C1} — discard, {A1, B4, C2} — forward) with only
three additional forks (see Figure 4(b)). Compared to the
naive approach, we significantly decrease the number of ex-
ecution paths. This is especially efficient in larger sensor
network setups where the transmission of a packet only af-
fects a small number of neighboring nodes.

Conceptually, a distributed execution scenario in KleeNet
is a set of related execution paths. KleeNet detects and
manages these sets throughout the sensor network execu-
tion. Packets exchanged between nodes of the same path
set are not visible in other sets. For example, the ACK
packet sent by Bi to Az in the first path set is not observed
in any other set.

7. IMPLEMENTATION

In this section we discuss the realization of node and net-
work models in KleeNet, its integration into the Contiki OS,
and usability aspects.

7.1 Node and Network Model

The node and network models of KleeNet base on a hard-
ware abstraction layer, similar to TOSSIM [17]. Hence, they
provide hooks to (1) handle node boot-up, outage, and re-
sets, (2) to interact with the environment via sensors and (3)

Contiki OS Contiki OS
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\
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Figure 5: Contiki kleenet platform. The non-

deterministic failures are triggered within network
and node models.

to communicate, i.e., to send and receive packets. KleeNet’s
network model abstracts from the MAC-layer and hence con-
siders network and application-level behavior only.

In contrast to existing models as in TOSSIM, KleeNet
models node and network events symbolically. Hence, fail-
ures can appear at “any” point in time, creating new dis-
tributed execution paths (see Section 5.3). For example,
packet loss in KleeNet is not determined by a channel model.
Instead, KleeNet forks the execution path and considers
both cases, i.e., successful delivery and packet loss. Mod-
eling of packet duplicates and corruption as well as node
failures is realized similarly. To ease its usability, KleeNet
provides a flexible plug-in architecture, allowing users to in-
tegrate own failure models, such as packet reordering and
delay.

The code that injects failures is executed both in the net-
work model (e.g. within packet transmission code for packet
related failures) and in the main OS scheduler using sym-
bolic timer events (node failures only). In the latter case, the
granularity of the symbolic timer must be carefully chosen
to limit the state explosion.

For node connectivity, KleeNet allows a developer to de-
fine the topology according to testing requirements. Hence,
a user can either select complex, multi-hop radio models (list
of node pairs) or a simple model where all nodes can reach
each other.

7.2 Case Study: Integration in Contiki

KleeNet has a platform-independent design, and there-
fore, it can easily be ported to any sensor operating sys-
tem’. It can even evaluate sensor networks with nodes ex-
ecuting different operating systems and applications. As a
case study, we present KleeNet’s integration into the Con-
tiki [9] operating system.

We integrated KleeNet into Contiki by adding two ad-
ditional build platforms, namely kleenet (see Figure 5) and
replay. Both platforms are based on the existing native plat-
form which executes Contiki on an ordinary Linux machine.

KleeNet Platform: One of our key design goals is to
allow developers to test their applications with low man-
ual effort. In KleeNet, users specify a simple configuration
file describing the desired testing scenario consisting of (1)
the applications of each node, (2) desired failure classes (see
Table 1). To model scenarios beyond direct connectivity,

!The only prerequisite is the LLVM (Low Level Virtual Ma-
chine) front-end for the WSN OS programming language.



ID app loss dupl corrupt reboot outage
1 tepelient 1 1 0 1 0
2 tcpserver 1 1 0 1 0

Table 1: Sample scenario configuration file with
symbolic packet losses, duplicates, and node reboots
enabled.

users may optionally specify a network topology to model
complex, multi-hop communication. Symbolic data and dis-
tributed assertions are specified directly in the source code
as they operate on application data structures.

To activate KleeNet, a user is only required to type make
TARGET=kleenet to compose his test scenario. Next, make
runtest starts the exploration process and generates test
cases for all discovered execution paths.

Replay Platform: A test case in KleeNet specifies the
input, such as packets received, and non-deterministic events,
such as node failures, that led to the violation of an (dis-
tributed) assertion.

To replay this test case in a real system, KleeNet addi-
tionally provides a so-called replay platform. It represents a
native (i.e. non-symbolic) version of the applications under
test. Hence, executing a test case on this platform provides
the exact execution path (assuming deterministic code) that
lead to a bug. As this native version is a set of Linux bina-
ries, the developer can rely on well-known tools such as gdb,
valgrind and wireshark to easily identify the root cause
of a bug. Overall, the replay platform is very similar to
a simulator, which executes a given scenario setup with a
predefined set of parameters.

7.3 Usability

A key feature of KleeNet’s integration in Contiki is the
seamless transition between the testing, replay, and deploy-
ment platforms. Already at the early stage of application
development, KleeNet allows a developer to define a sen-
sor network scenario including distributed assertions that
permanently check the functionality of the distributed sys-
tem. If KleeNet encounters a bug, a developer switches to
the replay platform and executes the unmodified sensor net-
work scenario again with the test case generated by KleeNet.
Hence, the resulting sensor network execution follows the
same path and hits the same bug. After fixing bugs, the
code can be deployed and executed on real motes without
the need for modifications.

Overall, we experienced that the combination of replaying
a distributed system in KleeNet and the possibility to use
standard tools for analysis of program execution is a very
effective strategy to narrow down, fix, and report the root
causes of complex interaction bugs discovered during testing.

8. EVALUATION

This section demonstrates the efficacy of KleeNet as a de-
bugging tool. For our evaluation, we use a comprehensive set
of standard Contiki applications, eminently the widespread
uIP TCP/IP stack®. Using KleeNet, we discovered four in-
sidious interaction bugs® that occurred due to typical wire-

2From here onwards we use the term pIP as an abbreviation
for the TCP/IP protocol stack of Contiki.

3All bug reports were confirmed and fixed by the Contiki
developers.

Runtime 6 sec, 14-15 MB RAM (3 scenarios)
Scenario 1 TCP listen port not found, reset
Scenario 2 TCP connection established (port 7777)
Scenario 3 TCP connection established (port 0)

Table 2: Symbolic TCP destination port.

less communication constraints such as packet loss and du-
plicates. These bugs may lead to detrimental situations,
such as causing a total refusal to connect to an active com-
munication partner ever again.

In the remainder of this section we detail on the bugs dis-
covered and illustrate the techniques used to identify each.
While highlighting KleeNet’s debugging effectiveness, we also
discuss its limitations experienced during debugging of an
established protocol stack.

8.1 Case 1: Symbolic Packet Data

As a first scenario, we tested the robustness of pIP on
arbitrary input (see Section 5.1). By marking packet data
as symbolic in KleeNet, we show how incorrect handling
of TCP ports in puIP led to the establishment of a valid
connection to a closed (not listening) TCP port.

Communication Scenario: Our evaluation scenario in-
volved two Contiki nodes running simple TCP client and
server applications, respectively. The server application ini-
tializes the uIP stack and listens on port 7777 for incom-
ing connections. The client application initializes its stack,
connects to the server, sends one data packet, and closes
the connection. This test aimed at verifying the state con-
sistency of both applications: If the client enters the con-
nected state, the server should enter the connected state as
well. Similarly, the same assertion should be valid for the
not connected case. This type of statement allows develop-
ers to describe the functional correctness of their systems
very intuitively.

Test Setup: We began our state consistency tests by
marking the TCP destination port of the client as symbolic.
In addition, we specified the following assertion in the con-
nected and not connected states of the client’s application:

assert (connected == NODE(2, ''connected''));

As described in Section 5.4, KleeNet’s assertions check the
overall state of a distributed system, e.g., in this test case
they check the states of the client and the server. Hence,
NODE(2, ”connected”) represents the global symbol con-
nected in the server’s (node id #2) application.

Bug #1: In this test two-node setup, KleeNet discovered
three unique distributed execution paths (see Table 2): (1)
connection refused due to trying to connect to an inactive
port, (2) successful connection to port 7777, and surprisingly
(3) a successful connection to port 0.

For the latter unforeseen path, KleeNet triggered the dis-
tributed assertion violation indicating that the client was in
the connected state although the server application was not
aware of the connected client. After replaying the test case
we saw that the client successfully established a connection
to server port 0, which, according to IANA?, is a valid TCP
port. Moreover, the sent packet was acknowledged by the
server’s TCP/IP stack and even a subsequent disconnection

“Internet Assigned Numbers Authority



Runtime 8 sec, 14-15 MB RAM (7 scenarios)

5 scenarios TCP client connected
2 scenarios TCP client not connected

Table 3: Symbolic packet loss.

proceeded correctly. However, the only server application
was running on port 7777. It turned out that, during boot-
strap, the pIP stack initializes all listen ports to 0. Upon a
connection request to port 0, it assumes the port to be lis-
tening without checking for a running (server) application.
Hence, the connection is established and the client can send
arbitrary data that is acknowledged by the stack.

Discussion: Executing distributed applications on sym-
bolic input highlights the core feature of KleeNet. It allows
to achieve high-coverage of distributed scenarios while exe-
cuting unmodified code. To the best of our knowledge, none
of the available sensor network debugging tools can achieve
this level of automatic coverage for scenarios with more than
one node. For example, using a simulator we would require
to execute the same test with 65536 different ports to verify
the state consistency discussed in this section.

8.2 Case 2: Symbolic Packet Loss

In the following example, we show how a packet loss can
lead to dead protocol states in puIP, thereby, causing a refusal
to reconnect to an active communication partner.

Communication Scenario: We use the same two-node
communication scenario as in the previous example. Ad-
ditionally, we set the destination port of the TCP client
to 7777. In this scenario, we aimed at testing the robust-
ness of connection establishment in applications against non-
deterministic failures, namely packet loss. The state consis-
tency, i.e, our distributed assertions, are specified as in case
1: If the client is connected, the server should be connected
as well. For the not connected case, we modified the dis-
tributed assertion as follows: Regardless of the state of the
server, the client should always trigger the assertion viola-
tion if it fails to connect to the server or the connection
process gets aborted. This assertion was motivated by the
assumption, that the TCP connection establishment process
should be resistant against arbitrary packet loss.

Test Setup: In this setup, we enabled symbolic packet
loss for both nodes, i.e., for connection requests and replies.
The two assertions are defined as follows:

/* connected state x/
assert (connected = NODE(2, ''connected''));

/* mot connected and aborted states x/
assert (0);

A total of 7 distributed execution scenarios was generated
(see Table 3). KleeNet triggered assertion violations for two
of these scenarios, which we discuss in the following.

Bug #2: During replay, both scenarios violating our as-
sertions demonstrated the same behavior: They showed that
the client could not connect to the server, if the first reply
from the server, i.e., the SYN/ACK packet, was lost.

Figure 6 depicts the timing diagram of message exchange
for one of the communication scenarios: The client initially
sends a SYN packet to the server. The server replies with a
SYN/ACK packet, but this packet gets lost in the network.
As a result, the retransmission timer fires and triggers the

tcpclient:1025 tcpserver:7777

sending Syn |_[SYNI Seq=0
SYN received, sending SYN/ACK

é/

[SYN, ACK] Seq=0 Ack=0

W Server expects Ack=1.
Bug: Server ignores the SYN flag
& and interprets the packet being

an out of order data packet

SYN/ACK packet is lost
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Sending ACK
Client expects SYN/ACK. with the correct numbers
It cannot handle the ACK

and resets the connection

[ACK] Seq=1 Ack=1

[RST] Seq=1 Ack=2 Got reset, aborting the connection

Figure 6: Bug #2: A lost SYN/ACK packet causes
a TCP connection reset.

client to send the SYN packet again. Upon reception of the
subsequent SYN packet, the server erroneously ignores the
SYN flag in the packet. As a result, the server interprets the
packet being out of order as it does not contain an expected
ACK value of 1. Consequently, the server sends an ACK
packet with the expected sequence number Ack=1 back to the
client. However, the client is still waiting for the SYN/ACK
packet from the server and thus cannot handle the ACK
packet. Therefore, it resets the connection by sending a
reset packet to avoid any further inconsistencies. As seen in
the timing diagram, the bug occurred due to wrong handling
of subsequent SYN packets in the SYN_RCVD state of ulP.

Bug #3: After this bug was confirmed by the uIP main-
tainers, further discussion indicated a much more severe,
third bug. For RAM constrained nodes allowing only one
TCP connection a developer reported the following case: He
experienced situations in which a deployed node got perma-
nently stuck in the SYN_RCVD state, i.e., it did not leave
this state nor accepted new connections. Hence, this bug
caused a refusal to reconnect and required a reset.

However, it was not yet clear how this situation occurred.
In the reported scenario, the deployed nodes were periodi-
cally queried with a script running in a web browser. Hence,
during replay, we exchanged our plIP client application with
a Linux telnet client and again triggered the SYN/ACK
packet loss at the ulP server. In contrast to the ulP stack,
the Linux TCP/IP stack does not reset the connection upon
receiving the unexpected ACK packet during connection es-
tablishment. Instead, it retransmits the SYN packet un-
til the maximum number of retransmissions is reached and
announces a connection timeout to the application. Thus,
the plP stack of the server application gets stuck in the
SYN_RCVD state forever. This was unexpected because the
pIP stack implements a periodic timer for all active connec-
tions that are not in the CLOSED state.

During further analysis, we discovered the following bug:
the periodic connection timer is started only after the first
connection reaches the ESTABLISHED state. This finding
explained why single-connection nodes eventually reach this
dead state.

Discussion: Overall, KleeNet does not abstract from
timer predicates, as these form an important building block
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Figure 7: Bug #4: A SYN packet duplicate leads to
undefined protocol behavior.

of many protocol implementations. In contrast, other tools
such as FSMGen [14] simulate timers only partially and
hence are unable to catch communication scenarios similar
to the one described above.

8.3 Case 3: Symbolic Packet Duplicates

In the following example we show how a duplicate packet
erroneously opened a new TCP connection at the server due
to a wrong handling of SYN packets.

Communication Scenario: After submitting the report
of the previously described bug, the following patch was pro-
posed by the developers. The idea was not to pass SYN
packets to active TCP connections, i.e., connections that are
not in the state CLOSED. This appeared to be the correct
fix and KleeNet could not detect the previously described
bug. After patching the uIlP stack, we defined new tests
based on symbolic packet duplicates.

Test Setup: The state consistency, i.e, our distributed
assertions, are specified as in case 2. Hence, we test for
failures in connection setup, i.e., failures due to timeouts or
reset messages.

Based on symbolic packet duplicates, KleeNet generated a
total of 14 distributed execution scenarios (see Table 4). Of
these, nine scenarios triggered assertion violations. Their ex-
ecution traces revealed that a duplicate SYN packet caused
the connection establishment to fail.

Runtime 77 sec, 14-15 MB RAM (14 scenarios)

5 scenarios TCP client connected
9 scenarios TCP connection aborted

Table 4: Symbolic packet duplicates.

Bug #4: During replay, TCP exhibited a strange be-
havior resulting in a connection reset before a connection
could be established. A duplicate SYN packet arriving at
one particular point in time erroneously opened a new con-
nection with the same connection identifiers, i.e., same IP
addresses and port numbers. This resulted in the client re-
ceiving packets from both server connections, whereas the
data from the client arrived at the first connection of the
server only. Consequently, this led to the following unde-
fined protocol behavior (see Figure 7): The first TCP con-
nection was successfully established, but the second connec-
tion continuously retransmitted SYN/ACK packets to the
client. As the pIP stack passes the incoming data to the
first matching connection, the ACK packet from the client
never arrived at the second connection. As a result, after
reaching the number of maximum SYN/ACK retransmis-
sions, the second connection sent a reset packet (RST) to
the client.

Discussion: In this scenario, KleeNet used symbolic pa-
cket duplicates to detect a bug which was introduced by the
proposed patch. Subsequently, we proposed a new patch
that fixed the problem and appears to be resistant against
packet losses and duplicates.

8.4 Case 4: Symbolic Node Outage

In the final example, we show how a node outage during
an active TCP connection may lead to a stale protocol state
within the uIP stack.

Communication Scenario: We use the same commu-
nication scenario as described in the previous examples and
additionally enabled symbolic nodes outages.

Test Setup: To test handling of node outages in ulIP, we
defined the following state consistency check: If a node does
not reach the not connected state after 2 minutes of com-
munication, KleeNet should trigger the assertion violation.

/* 2 minutes timer handling code %/
assert (connected );

Observation #5: KleeNet generated an execution path
that violated our assertion. During replay, we noticed that
the outage of the client after successful connection establish-
ment caused this violation. The periodic timer at the server
was still running and did not time out (see Figure 8).

After discussing this issue with the developers it turned
out that this is not a bug in uIP. Contiki applications must
be designed to check connections for activity. Thus, (1) a
server application must send data on the connection to re-
ceive an RST packet if the client is back alive, or (2) employ
a watchdog to reset the connection.

Discussion: Overall, our evaluation proves the flexibility
and efficiency of KleeNet as a debugging tool. It is impor-
tant to highlight that all the bugs presented in this paper
are very difficult to detect using conventional pre- and post-
deployment debugging techniques. For example, the behav-
ior resulting from two of the bugs (bug #2 and #3) have
long been observed during deployments and reported on the
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Figure 8: Observation #5: Server connection does
not time out.

mailing list. However, their root causes could not be found.
KleeNet allows to specify simple distributed assertions to
discover the root causes of such behaviors. Moreover, our
evaluation illustrates that KleeNet is beneficial throughout
the application development life cycle, particularly during
regression testing by catching new bugs and verifying the
absence of old ones.

8.5 Limitations and Discussion

Overall, we used KleeNet to test a variety of Contiki’s
protocols such as (ARP, IP, ICMP, TCP) and applications in-
cluding ping, telnet, shell, webbrowser, and webserver.
The distributed scenarios were composed of a small number
of nodes, connected either directly or over a uIP router in
between. During testing, we experienced the following issues
with our debugging approach.

Symbolic Input: As discussed in Section 5.1, the run-
time and memory complexity of KleeNet heavily depend on
the type of applications and the number of symbolic inputs.
Furthermore, symbolic non-deterministic failures double the
number of particular execution paths. Hence, even with
relatively small-sized symbolic inputs, we experienced that
some applications quickly emerge into thousands of execu-
tion paths. However, by applying domain knowledge—as
discussed in the example below—we can efficiently reduce
this execution complexity to a reasonable level, and as a
result, resolve this limitation of KleeNet.

For example, we ran a test scenario with three nodes run-
ning a wget on a shell, a ulP router, and a webserver
application, respectively. Via the shell we sent a symbolic
HTTP request of 80 characters to the webserver. Due to the
character by character parsing of this symbolic request at the
shell, KleeNet reached the configured 1GB memory cap af-
ter 22 hours of execution generating thousands of test cases.
However, none of the test cases showed a connection request
to the webserver because the symbolic execution was still
busy with the symbolic request parsing. To limit the state
explosion, we reduced the size of symbolic data to the re-
quested filename (e.g. six characters) only. This allowed the
client to establish HT'TP sessions with the webserver and
to receive HTML documents through the network.

Automatism: Manual effort involved in specifying sym-
bolic data and distributed assertions illustrates another facet
of KleeNet. A user has to possess the knowledge of the
distributed application logic to setup a meaningful testing

scenario correctly. Only the non-deterministic node and net-
work failures are injected completely automatically. Never-
theless, we expect the developers to accomplish this manual
step as symbolic input (e.g. the initial data packet) induces
the most interesting distributed execution paths.
Application domain: As discussed in Section 7.1, Klee-
Net is not designed for MAC-level debugging, that would
surely have a large impact on fast execution state growth.
Rather, we see KleeNet as a protocol and application testing
tool at small scales where the early testing process can effec-
tively reveal interesting design and implementation details.

9. CONCLUSIONS

In this paper we presented KleeNet, an effective debug-
ging approach enabling high-coverage testing of execution
paths in distributed applications and protocol stacks. In
WSNs, undesirable events such as node failures, packet cor-
ruption, loss and duplication might lead to complex inter-
action bugs or liveness violations. Based on symbolic in-
put and automatically injecting non-deterministic failures,
KleeNet generates high-coverage traces of WSNs and their
applications. By default, KleeNet—as based on KLEE—
detects memory and division by zero errors. For checking
distributed states, the developers must specify distributed
assertions. Once these assertions are violated, KleeNet al-
lows to replay the failure scenarios. We demonstrated the
effectiveness of KleeNet with four insidious interaction bugs
discovered in Contiki’s pulIP protocol stack.

After concluding our ongoing integration of KleeNet into
TinyOS, we plan to test more complex and large-scale dis-
tributed scenarios. Such scenarios will, for example, include
collection and dissemination trees, point-to-point routing
protocols, and 6LoWPAN. We aim to detect new bugs and
to identify further scalability challenges and limitations of
our approach.

Overall, KleeNet offers a testing environment enabling
permanent, high-coverage code checking throughout the de-
velopment life cycle of WSNs at low manual effort. Fur-
thermore, we believe that KleeNet—by utilizing a seam-
less transition between testing, replay, and deployment—
significantly eases automated testing of wireless sensor net-
works.
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