
Creational Patterns

Design Patterns Cheat Sheet

Abstract Factory

Provides an interface for creating families of related or dependent objects without 
specifying their concrete classes

Client

ConcreteFactory

AbstractProduct
ProductB

ProductA

+CreateProductA()
+CreateProductB()

AbstractFactory
+CreateProductA()
+CreateProductB()

Structural Patterns
Adapter

Converts the interface of a class into another interface clients expect

Client

Adapter
+Request()

Target
+Request()

Adaptee
+SpecificRequest()

Structural Patterns (cont’d)

creates

Singleton

Ensure a class only has one instance and provide a global point of access to it

Singleton
-instance

-Singleton()
+GetInstance()

Builder

Separates the construction of a complex object from its representation so that the 
same construction process can create different representations.

Director
+Construct()

Builder
+BuildPart()

ConcreteBuilder
+BuildPart()

Product builds

Factory Method

Defines an interface for creating an object but let subclasses decide which class to 
instantiate

Product

ConcreteProduct

Creator
+FactoryMethod()

ConcreteCreator
+FactoryMethod()

creates

Prototype

Specifies the kinds of objects to create using a prototypical instance and create new 
objects by copying this prototype

Client

ConcretePrototype1
+Clone()Prototype

+Clone() ConcretePrototype2
+Clone()

Proxy

Provides a surrogate or placeholder for another object to control access to it

Subject
+Request()

Client

RealSubject
+Request()

Proxy
+Request()

Flyweight

Uses sharing to support large numbers of fine-grained objects efficiently

Flyweight
+Operation(state)

FlyweightFactory
+GetFlyweight(key)

Flyweight
+Operation(state)

UnsharedFlyweight
+Operation(state)

Client

Bridge

Decouples an abstraction from its implementation so that the two can vary 
independently

Client
Abstraction

+Operation()

ConcreteImplementorA
+OperationImpl()

Implementor
+OperationImpl() ConcreteImplementorB

+OperationImpl()

Composite

Composes objects into tree structures to represent part-whole hierarchies

Client

Component
+Operation()
+Add(component)
+Remove(component)
+GetChild(index) Leaf

+Operation()

Composite
+Operation()
+Add(component)
+Remove(component)
+GetChild(index)

Decorator

Attaches additional responsibilities to an object dynamically

Component
+Operation() Decorator

+Operation()

ConcreteComponent
+Operation()

ConcreteDecorator
+Operation()
+AddedBehavior()

Facade

Provides a unified interface to a set of interfaces in a subsystem

Facade

Subsystem



Behavioral Patterns

Design Patterns Cheat Sheet

Chain of Responsibility

Avoids coupling the sender of a request to its receiver by giving more than one object 
a chance to handle the request

Client

ConcreteHandler1
+HandleRequest()Handler

+HandleRequest() ConcreteHandler2
+HandleRequest()

Command

Encapsulates a request as an object, thereby letting you parameterize clients with 
different requests, queue or log requests, and support undoable operations

Client Invoker

Command
+Execute()

ConcreteCommand
+Execute()

Receiver
+Action()

Interpreter

Given a language, defines a representation for its grammar along with an interpreter 
that uses the representation to interpret sentences in the language

Client Context

TerminalExpression
+Interpret(context)AbstractExpression

+Interpret(context) NonterminalExpression
+Interpret(context)

Iterator

Given a language, defines a representation for its grammar along with an interpreter 
that uses the representation to interpret sentences in the language

Client

Aggregate
+CreateIterator()

ConcreteAggregate

+CreateIterator()

Iterator
+First()
+Next()
+CurrentItem()

ConcreteIterator
+Next()

Mediator

Defines an object that encapsulates how a set of objects interact

Mediator

Colleague
ConcreteColleague1

ConcreteColleague2

ConcreteMediator

Memento

Without violating encapsulation, capture and externalize an object's internal state so 
that the object can be restored to this state later

Caretaker

Originator

+SetMemento(memento)
+CreateMemento()

Memento

+GetState()
+SetState()

Behavioral Patterns (cont’d)
Observer

Defines a one-to-many dependency between objects so that when one object changes 
state all its dependents are notified and updated automatically

Observer
+Update()

Subject
+Attach(observer)
+Detach(observer)
+Notify()

ConcreteSubject
-subjectState

ConcreteObserver
-observerState

State

Allows an object to alter its behavior when its internal state changes

State
+Handle()

ConcreteStateA
+Handle()

ConcreteStateB
+Handle()

Context
+Request()

Strategy

Defines a family of algorithms, encapsulate each one, and make them interchangeable

Strategy
+AlgorithmInterface()

StrategyA
+AlgorithmInterface()

StrategyB
+AlgorithmInterface()

Context

TemplateMethod

Defines the skeleton of an algorithm in an operation, deferring some steps to 
subclasses

AbstractClass
+TemplateMethod()
+PrimitiveOperation1()
+PrimitiveOperation2()

ConcreteClass
+PrimitiveOperation1()
+PrimitiveOperation2()

TemplateMethod

Represents an operation to be performed on the elements of an object structure

Client

Visitor
+VisitElementA(element)
+VisitElementB(element)

ConcreteElementA
+Accept(visitor)Element

+Accept(visitor) ConcreteElementB
+Accept(visitor)

ConcreteVisitor
+VisitElementA(element)
+VisitElementB(element)

executes

-state -state

+HandleRequest() +Update()

+ContextInterface()


