Lecture 2: The SVM classifier

C19 Machine Learning Hilary 2015 A. Zisserman

e Review of linear classifiers
* Linear separability
e Perceptron

e Support Vector Machine (SVM) classifier
* Wide margin
e Cost function
« Slack variables
* Loss functions revisited
o Optimization



Binary Classification

Given training data (x;,vy;) fori=1...N, with
x; € R% and y; € {—1,1}, learn a classifier f(x)
such that

N) 20 y =1

i.e. y;f(x;) > 0 for a correct classification.
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Linear separability
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Linear classifiers

A linear classifier has the form

f(x) =w'x+b

e in 2D the discriminant is a line

J(x)=0

f(x) <O
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f(x)>0

e W Iis the normal to the line, and b the bias

* W is known as the weight vector



Linear classifiers

L2

A linear classifier has the form A/f(X) —

f(x) =w'x+b

L3

* in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to carry’ the training data
For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data



The Perceptron Classifier

Given linearly separable data x; labelled into two categories y; = {-1,1},
find a weight vector w such that the discriminant function

f(xi) =w'x; +b
separates the categories fori=1, .., N
* how can we find this separating hyperplane ?

The Perceptron Algorithm

Write classifier as f(x;) = v”vaiz- + wg = waz-

where w = (W, wqp),x; = (X;,1)
e Initialize w =0
* Cycle though the data points { X;, y; }
« if x; is misclassified then W < W 4+ asign( f(x;)) x;

» Until all the data is correctly classified



For example in 2D

e Initialize w = 0
» Cycle though the data points { x;, y; }
« if X, is misclassified then w < w + asign(f(x;)) x;

» Until all the data is correctly classified

before update after update
X2 o X2 o
A A
o ©® o\ ©
[ A A A A
® W °
o A A A A
W A
\ A, A,
\ X1 X1
X4 W — W — X

NB after convergence w = YN a;x;



Perceptron
example

-10

o if the data is linearly separable, then the algorithm will converge

e convergence can be slow ...

» separating line close to training data

» we would prefer a larger margin for generalization



What is the best w?

A A
A A,

A AAA ,

AAdA
A AA

* maximum margin solution: most stable under perturbations of the inputs



Support Vector Machine

linearly separable data
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SVM — sketch derivation

e Since w'x+b =0 and ¢(w'x 4+ b) = 0 define the same
plane, we have the freedom to choose the normalization
of w

e Choose normalization such that w'x,+b= 41 and w'x_+
b = —1 for the positive and negative support vectors re-
spectively

e [ hen the margin Is given by

(x4 %) =



Support Vector Machine
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SVM — Optimization

e Learning the SVM can be formulated as an optimization:

2 _ > i L=
max —— subject to w!x,+b = 1 Ty =+1

W ] <1 ifg=—1 fore=1...N

e Or equivalently

min |lw||? subject to y; (WTXZ' -+ b) >1fori=1...N

e [ his is a quadratic optimization problem subject to linear
constraints and there is a unigue minimum



Linear separability again: What is the best w?

* the points can be linearly separated but
there is a very narrow margin
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In general there is a trade off between the margin and the number of
mistakes on the training data



Introduce “slack” variables
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“Soft” margin solution

The optimization problem becomes

N
: 2
min W —I—CE &;
WERQ&ER"‘H H i ’

subject to
yi (WTx;+b) > 1-¢ fori=1...N

e Every constraint can be satisfied if &; is sufficiently large

e (' is a regularization parameter:
— small C allows constraints to be easily ignored — large margin
— large C' makes constraints hard to ignore — narrow margin

— C = oo enforces all constraints: hard margin

e [ his is still a quadratic optimization problem and there is a
unique minimum. Note, there is only one parameter, C.



0.8 O

0.4

0.2

feature y

-0.2-

0.4+

-0.6 -

O

|
-0.8 -0.6 -0.4 -0.2 0
feature x

data is linearly separable

but only with a narrow margin

0.2

0.4

0.6

0.8



C = Infinity hard margin

feature y

-0.2
feature x

Comment Windosny

=W (L1 by Sequential Minimal Optimizer I~
Kernel: linear (-], < Inf

kernel evaluations: 971
Mumber of Support Yectars: 3
Margin: 0.0966

Training error: 0.00%
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kernel evaluations: 2645
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Application: Pedestrian detection in Computer Vision

Obijective: detect (localize) standing humans in an image
» cf face detection with a sliding window classifier

« reduces object detection to
binary classification

» does an image window
contain a person or not?

Method: the HOG detector



Training data and features

* Positive data — 1208 positive window examples




Feature: histogram of oriented gradients (HOG)

dominant

image HOG

e tile window into 8 x 8 pixel cells

» each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024






Averaged positive examples
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Algorithm

Training (Learning)

* Represent each example window by a HOG feature vector

x; € R, with d = 1024

 Train a SVM classifier

Testing (Detection)

« Sliding window classifier
f(z)=w'x+b



Dalal and Triggs, CVPR 2005




Learned model

positive negative
weights weights

Slide from Deva Ramanan



What do negative weights mean!

wx > 0
(W+-w)x>0

edestrian
~Zjbackground
“imodel

pedestrianl' 7~~~
model}- i+

Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Optimization

Learning an SVM has been formulated as a constrained optimization prob-
lem over w and &

N
min _||w]|>+C Y & subject to y; (wix;+b) >1-¢ fori=1...N
weRd ¢ eRT ;

The constraint y; (wai + b) > 1—¢&;, can be written more concisely as

v f(x;) > 1 =¢
which, together with &, > 0, is equivalent to
& = max (0,1 —y; f(x;))

Hence the learning problem is equivalent to the unconstrained optimiza-
tion problem over w

N
min, lwi|?+CY max (0,1 — yif(xil)
M .
- ’ s

regularization loss function




L_oss function

N
min ||w||? + CY max (0,1 — y;f(x;))
weRd PN J

loss function ® O

Points are in three categories:

Support Vector
L. yif(z;) > 1 @ o
Point is outside margin. ® ° O
No contribution to loss @’éupport Vector
2. yif(z;) =1 P
Point is on margin.
No contribution to loss. ® o

As in hard margin case.

3. yif(zi) <1
Point violates margin constraint. .
Contributes to loss ®

Y ® . wWiXx+b=0



Loss functions
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e SVM uses “hinge” loss max (0,1 — y; f(x;))

e an approximation to the 0-1 loss



Optimization continued

N |
min CY " max (0,1 — y;f (x))) + ||wl[® | |
wcRd i i

local global
minimum minimum

 Does this cost function have a unique solution?

» Does the solution depend on the starting point of an iterative
optimization algorithm (such as gradient descent)?

If the cost function is convex, then a locally optimal point is globally optimal (provided
the optimization is over a convex set, which it is in our case)



Convex functions

D — a domain in R"™.

A convex function f : D — IR is one that
satisfies, for any xg and x; in D:

FU1—a)xg +ax1) < (1 —a)f(xg) +af(x1) .
§(x,)

Line joining (xq, f(x0)) f@)
and (X]_,f(Xl)) lies
above the function graph.




Convex function examples

convex Not convex

A non-negative sum of convex functions is convex



SVM

N

min C) max (0,1 —y;f(x;)) + |w|]? convex
weRd i



Gradient (or steepest) descent algorithm for SVM

To minimize a cost function C(w) use the iterative update

Wit — Wi — i VwC(wy)

where n is the learning rate.

First, rewrite the optimization problem as an average

| Ao 1Y
minC(w) = EHWH +szax(oal_yif(xi))

N
= 3 (SIWIP + max (0,1~ yif (x))

(with A =2/(NC) up to an overall scale of the problem) and
f(x)=w'x+b

Because the hinge loss is not differentiable, a sub-gradient is
computed



Sub-gradient for hinge loss

L(xi,y;w) =max (0,1 —y; f(x:)) f(x)=wlx;+b

Y uif ()



Sub-gradient descent algorithm for SVM

N
cw) = (SIWIPR + £0x 55 w)

i
The iterative update is
Wip1 — Wt —nVw,C(Wy)
1 N
< Wiy > (AWt 4 VwL(x4, 9 We))
i

where n is the learning rate.

Then each iteration t involves cycling through the training data with the
updates:

Wip1 — Wi —n(Awg — y;X;) ity f(x;) <1
— Wi — NAWy otherwise

In the Pegasos algorithm the learning rate is set at n; = %



Pegasos — Stochastic Gradient Descent Algorithm

Randomly sample from the training data




Background reading and more ...

» Next lecture — see that the SVM can be expressed as a sum over the
support vectors:

Z oy ( X; | )+ b
\

support vectors

* On web page:
http://www.robots.ox.ac.uk/~az/lectures/ml

e links to SVM tutorials and video lectures

« MATLAB SVM demo



