Open Source Unix Shell Artificial Intelligence Software

Unix Shell Artificial Intelligence Software

View 12018 business solutions

Browse free open source Unix Shell Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source Unix Shell Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Zendesk: The Complete Customer Service Solution Icon
    Zendesk: The Complete Customer Service Solution

    Discover AI-powered, award-winning customer service software trusted by 200k customers

    Equip your agents with powerful AI tools and workflows that boost efficiency and elevate customer experiences across every channel.
    Learn More
  • 1
    CogVideo

    CogVideo

    text and image to video generation: CogVideoX (2024) and CogVideo

    CogVideo is an open source text-/image-/video-to-video generation project that hosts the CogVideoX family of diffusion-transformer models and end-to-end tooling. The repo includes SAT and Diffusers implementations, turnkey demos, and fine-tuning pipelines (including LoRA) designed to run across a wide range of NVIDIA GPUs, from desktop cards (e.g., RTX 3060) to data-center hardware (A100/H100). Current releases cover CogVideoX-2B, CogVideoX-5B, and the upgraded CogVideoX1.5-5B variants, plus image-to-video (I2V) models, with options for BF16/FP16/FP32—and INT8 quantized inference via TorchAO for memory-constrained setups. The codebase emphasizes practical deployment: prompt-optimization utilities (LLM-assisted long-prompt expansion), Colab notebooks, a Gradio web app, and multiple performance knobs (tiling/slicing, CPU offload, torch.compile, multi-GPU, and FA3 backends via partner projects).
    Downloads: 15 This Week
    Last Update:
    See Project
  • 2
    Rhasspy

    Rhasspy

    Offline private voice assistant for many human languages

    Rhasspy (ˈɹæspi) is an open-source, fully offline set of voice assistant services for many human languages that works well with Hermes protocol-compatible services (Snips.AI), Home Assistant and Hass.io, Node-RED, Jeedom, OpenHAB. Rhasspy will produce JSON events that can trigger action in home automation software, such as a Node-RED flow. Rhasspy comes with a snazzy web interface that lets you configure, program, and test your voice assistant remotely from your web browser. All of the web UI's functionality is exposed in a comprehensive HTTP API. You can easily extend or replace functionality in Rhasspy by using the appropriate messages. Many of these messages can be also sent and received over the HTTP API and the WebSocket API. Rhasspy is intended for savvy amateurs or advanced users that want to have a private voice interface to their chosen home automation software.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    CodeGeeX is a large-scale multilingual code generation model with 13 billion parameters, trained on 850B tokens across more than 20 programming languages. Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art performance compared to other open models like InCoder and CodeGen. CodeGeeX also powers IDE plugins for VS Code and JetBrains, offering features like code completion, translation, debugging, and annotation. The model supports Ascend 910 and NVIDIA GPUs, with optimizations like quantization and FasterTransformer acceleration for faster inference.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Replica Dataset

    Replica Dataset

    High-fidelity indoor 3D dataset for AI simulation and robotics

    Replica Dataset is a high-quality 3D dataset of realistic indoor environments designed to advance research in computer vision, robotics, and embodied AI. Developed by Facebook Research (now Meta AI), it features accurate geometric reconstructions, high-resolution and high dynamic range textures, and comprehensive semantic annotations. Each environment contains detailed models of real-world spaces, including rooms, furniture, glass, and mirror surfaces. The dataset also provides semantic and instance segmentations, planar decomposition, and navigation meshes, making it highly suitable for simulation, visual perception, and autonomous navigation tasks. Replica integrates seamlessly with AI Habitat, Meta’s framework for embodied AI training, enabling large-scale agent simulation and photorealistic rendering for reinforcement learning and robotics. Researchers can use Replica’s ReplicaViewer to interactively explore the 3D scenes.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    ChatGLM3

    ChatGLM3

    ChatGLM3 series: Open Bilingual Chat LLMs | Open Source Bilingual Chat

    ChatGLM3 is ZhipuAI & Tsinghua KEG’s third-gen conversational model suite centered on the 6B-parameter ChatGLM3-6B. It keeps the series’ smooth dialog and low deployment cost while adding native tool use (function calling), a built-in code interpreter, and agent-style workflows. The family includes base and long-context variants (8K/32K/128K). The repo ships Python APIs, CLI and web demos (Gradio/Streamlit), an OpenAI-format API server, and a compact fine-tuning kit. Quantization (4/8-bit), CPU/MPS support, and accelerator backends (TensorRT-LLM, OpenVINO, chatglm.cpp) enable lightweight local or edge deployment.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    MobileLLM

    MobileLLM

    MobileLLM Optimizing Sub-billion Parameter Language Models

    MobileLLM is a lightweight large language model (LLM) framework developed by Facebook Research, optimized for on-device deployment where computational and memory efficiency are critical. Introduced in the ICML 2024 paper “MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases”, it focuses on delivering strong reasoning and generalization capabilities in models under one billion parameters. The framework integrates several architectural innovations—SwiGLU activation, deep and thin network design, embedding sharing, and grouped-query attention (GQA)—to achieve a superior trade-off between model size, inference speed, and accuracy. MobileLLM demonstrates remarkable performance, with the 125M and 350M variants outperforming previous state-of-the-art models of the same scale by up to 4.3% on zero-shot commonsense reasoning tasks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    ShaHaN SSH Panel

    ShaHaN SSH Panel

    SSH User Management With Add/Delete Users

    SSH user management with add/delete users, online users, and limit users.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports over 100 programming languages. With improved inference efficiency, quantization options, and multi-query/flash attention, CodeGeeX2 achieves faster generation speeds and lightweight deployment, requiring as little as 6GB GPU memory at INT4 precision. Its backend powers the CodeGeeX IDE plugins for VS Code, JetBrains, and other editors, offering developers interactive AI assistance with features like infilling and cross-file completion.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    GLM-130B is an open bilingual (English and Chinese) dense language model with 130 billion parameters, released by the Tsinghua KEG Lab and collaborators as part of the General Language Model (GLM) series. It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple benchmarks, while also showing significant improvements on Chinese datasets compared to other large models. The model supports efficient inference via INT8 and INT4 quantization, reducing hardware requirements from 8× A100 GPUs to as little as a single server with 4× RTX 3090s. Built on the SwissArmyTransformer (SAT) framework and compatible with DeepSpeed and FasterTransformer, it supports high-speed inference (up to 2.5× faster) and reproducible evaluation across 30+ benchmark tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 10
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support for dynamic scene handling, dense point cloud export, video-based reconstruction (1000+ frames), and integration with Gaussian Splatting pipelines. It leverages tools like PyCOLMAP, poselib, LightGlue, and PyTorch3D for feature matching, pose estimation, and visualization. With minimal configuration, users can process single scenes or full video sequences, apply motion masks to exclude moving objects, and train neural radiance or splatting models directly from reconstructed outputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ChatGLM2-6B

    ChatGLM2-6B

    ChatGLM2-6B: An Open Bilingual Chat LLM

    ChatGLM2-6B is the second-gen Chinese-English conversational LLM from ZhipuAI/Tsinghua. It upgrades the base model with GLM’s hybrid pretraining objective, 1.4 TB bilingual data, and preference alignment—delivering big gains on MMLU, CEval, GSM8K, and BBH. The context window extends up to 32K (FlashAttention), and Multi-Query Attention improves speed and memory use. The repo includes Python APIs, CLI & web demos, OpenAI-style/FASTAPI servers, and quantized checkpoints for lightweight local deployment on GPUs or CPU/MPS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    Claude-Flow v2 Alpha is an advanced AI orchestration and automation framework designed for enterprise-grade, large-scale AI-driven development. It enables developers to coordinate multiple specialized AI agents in real time through a hive-mind architecture, combining swarm intelligence, neural reasoning, and a powerful set of 87 Modular Control Protocol (MCP) tools. The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI collaboration with persistent contextual memory. At its core, Claude-Flow integrates Dynamic Agent Architecture (DAA) for self-organizing agent management, neural pattern recognition accelerated by WebAssembly SIMD, and a SQLite-based memory system for context retention and knowledge persistence across tasks. It automates development workflows via pre- and post-operation hooks, providing seamless coordination, code formatting, validation, and performance optimization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Coconut

    Coconut

    Training Large Language Model to Reason in a Continuous Latent Space

    Coconut is the official PyTorch implementation of the research paper “Training Large Language Models to Reason in a Continuous Latent Space.” The framework introduces a novel method for enhancing large language models (LLMs) with continuous latent reasoning steps, enabling them to generate and refine reasoning chains within a learned latent space rather than relying solely on discrete symbolic reasoning. It supports training across multiple reasoning paradigms—including standard Chain-of-Thought (CoT), no-thought, and hybrid configurations—using configurable training stages and latent representations. The repository is built with Hugging Face Transformers, PyTorch Distributed, and Weights & Biases (wandb) for logging, supporting large-scale experiments on mathematical and logical reasoning datasets such as GSM8K, ProntoQA, and ProsQA.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    ImageReward

    ImageReward

    [NeurIPS 2023] ImageReward: Learning and Evaluating Human Preferences

    ImageReward is the first general-purpose human preference reward model (RM) designed for evaluating text-to-image generation, introduced alongside the NeurIPS 2023 paper ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation. Trained on 137k expert-annotated image pairs, ImageReward significantly outperforms existing scoring methods like CLIP, Aesthetic, and BLIP in capturing human visual preferences. It is provided as a Python package (image-reward) that enables quick scoring of generated images against textual prompts, with APIs for ranking, scoring, and filtering outputs. Beyond evaluation, ImageReward supports Reward Feedback Learning (ReFL), a method for directly fine-tuning diffusion models such as Stable Diffusion using human-preference feedback, leading to demonstrable improvements in image quality.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Kalavai

    Kalavai

    Turn everyday devices into your own AI cluster

    Kalavai is a self-hosted platform that turns everyday devices into your very own AI cluster. Do you have an old desktop or a gaming laptop gathering dust? Aggregate resources from multiple machines and say goodbye to CUDA out-of-memory errors. Deploy your favorite open-source LLM, fine-tune it with your own data, or simply run your distributed work, zero-DevOps. Simple. Private. Yours.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    OpenAI Harmony

    OpenAI Harmony

    Renderer for the harmony response format to be used with gpt-oss

    Harmony is a response format developed by OpenAI for use with the gpt-oss model series. It defines a structured way for language models to produce outputs, including regular text, reasoning traces, tool calls, and structured data. By mimicking the OpenAI Responses API, Harmony provides developers with a familiar interface while enabling more advanced capabilities such as multiple output channels, instruction hierarchies, and tool namespaces. The format is essential for ensuring gpt-oss models operate correctly, as they are trained to rely on this structure for generating and organizing their responses. For users accessing gpt-oss through third-party providers like HuggingFace, Ollama, or vLLM, Harmony formatting is handled automatically, but developers building custom inference setups must implement it directly. With its flexible design, Harmony serves as the foundation for creating more interpretable, controlled, and extensible interactions with open-weight language models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. Fine-tuning on long visual QA datasets further aligns the model’s responses with human preferences. The repository provides inference APIs, command-line demos, web demos, and efficient fine-tuning options like LoRA, QLoRA, and P-tuning. It also supports quantization down to INT4, enabling local deployment on consumer GPUs with as little as 6.3 GB VRAM.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Ubix Linux

    Ubix Linux

    The Pocket Datalab

    Ubix stands for Universal Business Intelligence Computing System. Ubix Linux is an open-source, Debian-based Linux distribution geared towards data acquisition, transformation, analysis and presentation. Ubix Linux purpose is to offer a tiny but versatile datalab. Ubix Linux is easily accessible, resource-efficient and completely portable on a simple USB key. Ubix Linux is a perfect toolset for learning data analysis and artificial intelligence basics on small to medium datasets. You can find additional information, technical guidance, and user credentials on the project website https://ubix-linux.sourceforge.io/ or on the project subreddit https://reddit.com/r/UbixLinux.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 20
    vinuxproject

    vinuxproject

    Vinux is an Ubuntu derived distribution for blind & visually impaired.

    Vinux supports software text to speech and Braille support from boot-up to shutdown. Users can use installation medium to install independently with no sighted assistance required. Vinux supports command line environment speech, Desktop environment speech and magnification features. Vinux comes with an accessible suite of software and has an excellent mailing list support group.
    Leader badge
    Downloads: 11 This Week
    Last Update:
    See Project
  • 21
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and researchers to fully utilize the AMD AI Engine across both platforms. This cross-platform support is a major innovation, enabling AI workload portability, integration into CI environments, and deployment into Linux-based research and production pipelines.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    A series of open source files and programs available to use for developing programs to work with the WowWee Robotics RSMedia Robot. These include a USB serial console, a cross-compiler, a firmware dump program, text-to-speech and source code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    VoxForge collects user-submitted speech audio files for the creation of Acoustic Models for Free and Open Source Speech Recognition Engines such as HTK, Julius, ISIP and Sphinx.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    The Infomap NLP software performs automatic indexing of words and documents from free-text corpora, using a variant of LSA to enable information retrieval and other applications. It was developed by the Infomap Project at Stanford University's CSLI.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    This project is aimed to the development of a framework for alife contests: the main rules of life, a graphical interface and some examples of elementary microorganisms (more complex survival strategies are developed by the contestants).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next