Open Source R Machine Learning Software for Mac

R Machine Learning Software for Mac

View 58 business solutions

Browse free open source R Machine Learning Software for Mac and projects below. Use the toggles on the left to filter open source R Machine Learning Software for Mac by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 1
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant diagnostic potential (based on the results of miRNA-seq, for validation in qPCR experiments).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next