Open Source Python Artificial Intelligence Software for BSD

Python Artificial Intelligence Software for BSD

Browse free open source Python Artificial Intelligence Software for BSD and projects below. Use the toggles on the left to filter open source Python Artificial Intelligence Software for BSD by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    A cross-platform library that computes fast and accurate SIFT image features. libsiftfast provides Octave/Matlab scripts, a command line interface, and a python interface (siftfastpy). Optimized with SIMD instructions and OpenMP .
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    NeMo is a high-performance spiking neural network simulator which simulates networks of Izhikevich neurons on CUDA-enabled GPUs. NeMo is a C++ class library, with additional interfaces for pure C, Python, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Design and develop Recommendation and Adaptive Prediction Engines to address eCommerce opportunities. Build a portfolio of engines by creating and porting algorithms from multiple disciplines to a usable form. Try to solve NetFlix and other challenges.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.