Showing 25 open source projects for "deep learning with python"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Orange Data Mining

    Orange Data Mining

    Orange: Interactive data analysis

    Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration...
    Downloads: 87 This Week
    Last Update:
    See Project
  • 2
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Matplotlib

    Matplotlib

    matplotlib: plotting with Python

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. Matplotlib ships with several add-on toolkits, including 3D plotting with mplot3d, axes helpers in axes_grid1 and axis helpers in axisartist. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    CounterfactualExplanations.jl

    CounterfactualExplanations.jl

    A package for Counterfactual Explanations and Algorithmic Recourse

    CounterfactualExplanations.jl is a package for generating Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for black-box algorithms. Both CE and AR are related tools for explainable artificial intelligence (XAI). While the package is written purely in Julia, it can be used to explain machine learning algorithms developed and trained in other popular programming languages like Python and R. See below for a short introduction and other resources or dive straight into the docs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t). Neural operator learns a continuous function between two continuous function...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    ... operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of ChainRules's rrule for the linear operators representing the discre wave equation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ReinforcementLearning.jl

    ReinforcementLearning.jl

    A reinforcement learning package for Julia

    A collection of tools for doing reinforcement learning research in Julia. Provide elaborately designed components and interfaces to help users implement new algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Algorithm Visualizer

    Algorithm Visualizer

    Interactive Online Platform that Visualizes Algorithms from Code

    ... each example, lists required environment variables or credentials (e.g., Twilio/Gmail where applicable), and gives cron examples so readers can run the scripts in a real environment. The project is intentionally informal and educational: it’s meant for experimentation, learning language-interop, and having fun rather than production-grade automation. Many implementations exist across languages (shell, Ruby, Python, Node, PowerShell, Go, Java, and more) and contributors are encouraged to add further
    Downloads: 1 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    JDF.jl

    JDF.jl

    Julia DataFrames serialization format

    JDF is a DataFrames serialization format with the following goals, fast save and load times, compressed storage on disk, enabled disk-based data manipulation (not yet achieved), and support for machine learning workloads, e.g. mini-batch, sampling (not yet achieved). JDF stores a DataFrame in a folder with each column stored as a separate file. There is also a metadata.jls file that stores metadata about the original DataFrame. Collectively, the column files, the metadata file, and the folder...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FastAI.jl

    FastAI.jl

    Repository of best practices for deep learning in Julia

    FastAI.jl is a Julia library for training state-of-the-art deep learning models. From loading datasets and creating data preprocessing pipelines to training, FastAI.jl takes the boilerplate out of deep learning projects. It equips you with reusable components for every part of your project while remaining customizable at every layer. FastAI.jl comes with support for common computer vision and tabular data learning tasks, with more to come.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Kinetic.jl

    Kinetic.jl

    Universal modeling and simulation of fluid mechanics upon ML

    Kinetic is a computational fluid dynamics toolbox written in Julia. It aims to furnish efficient modeling and simulation methodologies for fluid dynamics, augmented by the power of machine learning. Based on differentiable programming, mechanical and neural network models are fused and solved in a unified framework. Simultaneous 1-3 dimensional numerical simulations can be performed on CPUs and GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 8 This Week
    Last Update:
    See Project
  • 17
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyNanoLab

    PyNanoLab

    data analysis and Visualization with matplotlib

    PyNanoLab contains a variety of tools to complete the data analysis, statistics, curve fitting, and basic machine learning application. Visualization in pynanolab is based on matplotlib. The setup tools is desinged to control and set-up all the details of the figure with a GUI.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    ReinforcementLearningAnIntroduction.jl

    ReinforcementLearningAnIntroduction.jl

    Julia code for the book Reinforcement Learning An Introduction

    This project provides the Julia code to generate figures in the book Reinforcement Learning: An Introduction(2nd). One of our main goals is to help users understand the basic concepts of reinforcement learning from an engineer's perspective. Once you have grasped how different components are organized, you're ready to explore a wide variety of modern deep reinforcement learning algorithms in ReinforcementLearningZoo.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Spectral Python

    A python module for hyperspectral image processing

    Spectral Python (SPy) is a python package for reading, viewing, manipulating, and classifying hyperspectral image (HSI) data. SPy includes functions for clustering, dimensionality reduction, supervised classification, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Inviwo

    Inviwo

    Interactive Visualization Workshop

    ... learning models. The platform supports both novice users through its graphical interface and advanced users through scripting and plugin development.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Merlin.jl

    Merlin.jl

    Deep Learning for Julia

    Merlin is a deep learning framework written in Julia. It aims to provide a fast, flexible and compact deep learning library for machine learning. Merlin is tested against Julia 1.0 on Linux, OS X, and Windows (x64).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    pySPACE

    pySPACE

    Signal Processing and Classification Environment in Python using YAML

    pySPACE is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.